
Deep Hedging

Josef Teichmann

ETH Zürich

New York, May 2020

Josef Teichmann (ETH Zürich) Deep Hedging New York, May 2020 1 / 31



1 Introduction

2 Instances of the abstract GAN problem

3 Path functionals and Reservoir computing

4 Conclusion and Outlook

1 / 58



Introduction

Introduction

2 / 58



Introduction

Introduction

Goal of this talk is ...

to present an abstract version of deep hedging and relate it to several
problems in quantitative finance like pricing, hedging, or calibration.
to relate this view to generative adversarial models.
to present a result on representation of path space functionals with
relations to simulations.

(joint works with Erdinc Akyildirim, Hans Bühler, Christa Cuchiero, Lukas
Gonon, Lyudmila Grigoryeva, Jakob Heiss, Calypso Herrera, Wahid
Khosrawi-Sardroudi, Jonathan Kochems, Martin Larsson, Thomas
Krabichler, Florian Krach, Baranidharan Mohan, Juan-Pablo Ortega,
Philipp Schmocker, Ben Wood, and Hanna Wutte)

3 / 58



Introduction

Introduction

Goal of this talk is ...

to present an abstract version of deep hedging and relate it to several
problems in quantitative finance like pricing, hedging, or calibration.
to relate this view to generative adversarial models.
to present a result on representation of path space functionals with
relations to simulations.

(joint works with Erdinc Akyildirim, Hans Bühler, Christa Cuchiero, Lukas
Gonon, Lyudmila Grigoryeva, Jakob Heiss, Calypso Herrera, Wahid
Khosrawi-Sardroudi, Jonathan Kochems, Martin Larsson, Thomas
Krabichler, Florian Krach, Baranidharan Mohan, Juan-Pablo Ortega,
Philipp Schmocker, Ben Wood, and Hanna Wutte)

4 / 58



Introduction

Introduction

Goal of this talk is ...

to present an abstract version of deep hedging and relate it to several
problems in quantitative finance like pricing, hedging, or calibration.
to relate this view to generative adversarial models.
to present a result on representation of path space functionals with
relations to simulations.

(joint works with Erdinc Akyildirim, Hans Bühler, Christa Cuchiero, Lukas
Gonon, Lyudmila Grigoryeva, Jakob Heiss, Calypso Herrera, Wahid
Khosrawi-Sardroudi, Jonathan Kochems, Martin Larsson, Thomas
Krabichler, Florian Krach, Baranidharan Mohan, Juan-Pablo Ortega,
Philipp Schmocker, Ben Wood, and Hanna Wutte)

5 / 58



Introduction

... how it started

Deep Hedging (learn trading strategies): joint projects with Hans
Bühler, Lukas Gonon, Jonathan Kochems, Baranidharan
MohanMartin and Ben Wood at JP Morgan (2017, 2019 in arXiv and
SSRN).

Deep Calibration (learn model parameters for local stochastic
volatility models): joint project with Christa Cuchiero and Wahid
Khosrawi-Sardroudi (2020 in arXiv).

6 / 58



Introduction

... how it started

Deep Hedging (learn trading strategies): joint projects with Hans
Bühler, Lukas Gonon, Jonathan Kochems, Baranidharan
MohanMartin and Ben Wood at JP Morgan (2017, 2019 in arXiv and
SSRN).

Deep Calibration (learn model parameters for local stochastic
volatility models): joint project with Christa Cuchiero and Wahid
Khosrawi-Sardroudi (2020 in arXiv).

7 / 58



Introduction

Abstract generator

Consider a d-dimensional semi-martingale Y and (functional) stochastic
differential equation

dX γ(t) =
d∑

i=1

V γ
i (X γ ,Y )t− dY

i (t) ,

where the vector fields V γ
i : DN+n+d → Dn map (càdlàg) paths (γ,X ,Y )

to paths in a functionally Lipschitz way. We consider X as state variables
and γ as model parameters. t corresponds to time.

8 / 58



Introduction

Abstract discriminator

Let Lδ : Def(L) ⊂ L0(Ω)→ R be a loss function depending on parameters
δ. We are aiming for small values of Lδ(X γ) for a fixed discriminating
parameter δ, and for large values of Lδ(X γ) for a fixed generating
parameter process γ.

Symbolically we are trying to solve a game of inf-sup type: generate, by
choosing γ, such that the loss Lδ is small, and discriminate, by choosing δ,
when a generator X γ is not good enough.

9 / 58



Introduction

Models

The processes X γ are referred to as (generative) models, which
generate certain structures.

The loss function Lδ measures how well the generation of structure
works.

The process of choosing γ is called ’training’.

In contrast to classical modeling the number of free parameters in
models is very high (Occam’s razor is not at all used!) and the loss
function is adapted, again with a possibly high amount of free
parameters, during the training process.

Based on ideas of deep hedging we shall sometimes refer to this
training problem as ’abstract hedging’ since we hedge the possibly
varying loss by choosing the strategy γ appropriately.

10 / 58



Introduction

Models

The processes X γ are referred to as (generative) models, which
generate certain structures.

The loss function Lδ measures how well the generation of structure
works.

The process of choosing γ is called ’training’.

In contrast to classical modeling the number of free parameters in
models is very high (Occam’s razor is not at all used!) and the loss
function is adapted, again with a possibly high amount of free
parameters, during the training process.

Based on ideas of deep hedging we shall sometimes refer to this
training problem as ’abstract hedging’ since we hedge the possibly
varying loss by choosing the strategy γ appropriately.

11 / 58



Introduction

Models

The processes X γ are referred to as (generative) models, which
generate certain structures.

The loss function Lδ measures how well the generation of structure
works.

The process of choosing γ is called ’training’.

In contrast to classical modeling the number of free parameters in
models is very high (Occam’s razor is not at all used!) and the loss
function is adapted, again with a possibly high amount of free
parameters, during the training process.

Based on ideas of deep hedging we shall sometimes refer to this
training problem as ’abstract hedging’ since we hedge the possibly
varying loss by choosing the strategy γ appropriately.

12 / 58



Introduction

Models

The processes X γ are referred to as (generative) models, which
generate certain structures.

The loss function Lδ measures how well the generation of structure
works.

The process of choosing γ is called ’training’.

In contrast to classical modeling the number of free parameters in
models is very high (Occam’s razor is not at all used!) and the loss
function is adapted, again with a possibly high amount of free
parameters, during the training process.

Based on ideas of deep hedging we shall sometimes refer to this
training problem as ’abstract hedging’ since we hedge the possibly
varying loss by choosing the strategy γ appropriately.

13 / 58



Introduction

Models

The processes X γ are referred to as (generative) models, which
generate certain structures.

The loss function Lδ measures how well the generation of structure
works.

The process of choosing γ is called ’training’.

In contrast to classical modeling the number of free parameters in
models is very high (Occam’s razor is not at all used!) and the loss
function is adapted, again with a possibly high amount of free
parameters, during the training process.

Based on ideas of deep hedging we shall sometimes refer to this
training problem as ’abstract hedging’ since we hedge the possibly
varying loss by choosing the strategy γ appropriately.

14 / 58



Introduction

Neural vector fields

We shall always consider vector fields V γ which are built from neural
networks, i.e. linear combinations of compositions of simple functions and
of non-linear functions of a simple one dimensional type. Neural networks
satisfy remarkable properties.

Theorem

Let (fi )i∈I be a sequence of real valued continuous functions on a compact
space K (the ’simple’ functions). We assume that the sequence is point
separating and additively closed. Let ϕ : R→ R be a sigmoid function
(the simple ’non-linear function’), then〈

x 7→ ϕ(fi (x) + c) | i ∈ I , c ∈ R
〉

is dense in C (K ).

Models with vector fields of neural network type are called neural models.
15 / 58



Introduction

Examples of abstract neural networks

Classical shallow neural networks: K = [0, 1]d , f runs through all
linear functions.

Deep networks of depth k: K = [0, 1]d , f runs through all networks of
depth k − 1.

Let X ∗ the dual of a Banach space and K its unit ball in the
weak-∗-topology: f runs through all evaluations at elements x ∈ X .

Let X be a Banach space and K a compact subset: f runs through all
continuous linear functionals.

Neural networks forget the natural grading of polynomial-type bases on
space K .

16 / 58



Introduction

Examples of abstract neural networks

Classical shallow neural networks: K = [0, 1]d , f runs through all
linear functions.

Deep networks of depth k: K = [0, 1]d , f runs through all networks of
depth k − 1.

Let X ∗ the dual of a Banach space and K its unit ball in the
weak-∗-topology: f runs through all evaluations at elements x ∈ X .

Let X be a Banach space and K a compact subset: f runs through all
continuous linear functionals.

Neural networks forget the natural grading of polynomial-type bases on
space K .

17 / 58



Introduction

Examples of abstract neural networks

Classical shallow neural networks: K = [0, 1]d , f runs through all
linear functions.

Deep networks of depth k: K = [0, 1]d , f runs through all networks of
depth k − 1.

Let X ∗ the dual of a Banach space and K its unit ball in the
weak-∗-topology: f runs through all evaluations at elements x ∈ X .

Let X be a Banach space and K a compact subset: f runs through all
continuous linear functionals.

Neural networks forget the natural grading of polynomial-type bases on
space K .

18 / 58



Introduction

Examples of abstract neural networks

Classical shallow neural networks: K = [0, 1]d , f runs through all
linear functions.

Deep networks of depth k: K = [0, 1]d , f runs through all networks of
depth k − 1.

Let X ∗ the dual of a Banach space and K its unit ball in the
weak-∗-topology: f runs through all evaluations at elements x ∈ X .

Let X be a Banach space and K a compact subset: f runs through all
continuous linear functionals.

Neural networks forget the natural grading of polynomial-type bases on
space K .

19 / 58



Introduction

Neural models

Many algorithms in machine learning may be considered as training of
neural models.

Training is feasible when the dependence on state variables is
sufficiently regular, for instance linear in the extreme case.

Generalization of trained networks is successful when implicit or
explicit regularizations appear.

This means that state variables should contain as many features as
possible, in particular redundant information might be helpful.

20 / 58



Introduction

Neural models

Many algorithms in machine learning may be considered as training of
neural models.

Training is feasible when the dependence on state variables is
sufficiently regular, for instance linear in the extreme case.

Generalization of trained networks is successful when implicit or
explicit regularizations appear.

This means that state variables should contain as many features as
possible, in particular redundant information might be helpful.

21 / 58



Introduction

Neural models

Many algorithms in machine learning may be considered as training of
neural models.

Training is feasible when the dependence on state variables is
sufficiently regular, for instance linear in the extreme case.

Generalization of trained networks is successful when implicit or
explicit regularizations appear.

This means that state variables should contain as many features as
possible, in particular redundant information might be helpful.

22 / 58



Introduction

Neural models

Many algorithms in machine learning may be considered as training of
neural models.

Training is feasible when the dependence on state variables is
sufficiently regular, for instance linear in the extreme case.

Generalization of trained networks is successful when implicit or
explicit regularizations appear.

This means that state variables should contain as many features as
possible, in particular redundant information might be helpful.

23 / 58



Instances of the abstract GAN problem

Instances of the abstract GAN problem

24 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
25 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
26 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
27 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
28 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
29 / 58



Instances of the abstract GAN problem

Deep hedging

Let Y be an d-dimensional semi-martingale representing traded
instruments. We assume an absence of arbitrage condition.

Let (γ,Y ) 7→ V γ(Y ) be a trading strategy depending on neural
network parameters γ and on the price process Y in a functional way
(deep hedge).

X corresponds then to the profit and loss process of the trading
strategy.

Let F be an FT measurable derivative and U a utility function.

We choose the loss function L as squared difference of the expected
utility of XT + γ0 − F and the expected utility of the zero position
(’indifference price of the seller of F ’).

can be easily adapted for transaction costs, liquidity constraints, etc.

adversarial training is not necessary.
30 / 58



Instances of the abstract GAN problem

Deep Calibration

Let W be a Brownian motion and α a stochastic volatility process:
dYt = αtdWt :

Let lγ1 be a leverage function depending an neural network
parameters γ1:

dSt = Stαt l(γ1(t),St)dWt

is a local stochastic volatility model with initial value S0.

Let Cj be finitely many derivatives with market price πj , j = 1, . . . , J.

Let hγ2 be a trading strategy in the instrument S (for simplicity).

Let the loss function L be the weighted sum of squared values of
E
[
Cj − πj − (h • S)T

]
over J plus the

∑
j E
[
(Cj − πj − (h • S)T )2

]
(’calibration of LSV model to finitely many market prices with
variance reduction’). The weights will depend on discriminatory
parameters δ.

31 / 58



Instances of the abstract GAN problem

Deep Calibration

Let W be a Brownian motion and α a stochastic volatility process:
dYt = αtdWt :

Let lγ1 be a leverage function depending an neural network
parameters γ1:

dSt = Stαt l(γ1(t),St)dWt

is a local stochastic volatility model with initial value S0.

Let Cj be finitely many derivatives with market price πj , j = 1, . . . , J.

Let hγ2 be a trading strategy in the instrument S (for simplicity).

Let the loss function L be the weighted sum of squared values of
E
[
Cj − πj − (h • S)T

]
over J plus the

∑
j E
[
(Cj − πj − (h • S)T )2

]
(’calibration of LSV model to finitely many market prices with
variance reduction’). The weights will depend on discriminatory
parameters δ.

32 / 58



Instances of the abstract GAN problem

Deep Calibration

Let W be a Brownian motion and α a stochastic volatility process:
dYt = αtdWt :

Let lγ1 be a leverage function depending an neural network
parameters γ1:

dSt = Stαt l(γ1(t),St)dWt

is a local stochastic volatility model with initial value S0.

Let Cj be finitely many derivatives with market price πj , j = 1, . . . , J.

Let hγ2 be a trading strategy in the instrument S (for simplicity).

Let the loss function L be the weighted sum of squared values of
E
[
Cj − πj − (h • S)T

]
over J plus the

∑
j E
[
(Cj − πj − (h • S)T )2

]
(’calibration of LSV model to finitely many market prices with
variance reduction’). The weights will depend on discriminatory
parameters δ.

33 / 58



Instances of the abstract GAN problem

Deep Calibration

Let W be a Brownian motion and α a stochastic volatility process:
dYt = αtdWt :

Let lγ1 be a leverage function depending an neural network
parameters γ1:

dSt = Stαt l(γ1(t),St)dWt

is a local stochastic volatility model with initial value S0.

Let Cj be finitely many derivatives with market price πj , j = 1, . . . , J.

Let hγ2 be a trading strategy in the instrument S (for simplicity).

Let the loss function L be the weighted sum of squared values of
E
[
Cj − πj − (h • S)T

]
over J plus the

∑
j E
[
(Cj − πj − (h • S)T )2

]
(’calibration of LSV model to finitely many market prices with
variance reduction’). The weights will depend on discriminatory
parameters δ.

34 / 58



Path functionals and Reservoir computing

Path functionals and Reservoir computing

35 / 58



Path functionals and Reservoir computing

Problem

In all previous instances it is desirable to have a flexible representation of
adapted maps on path space:

For (deep) hedging of path dependent options or in case of market
frictions: hedging ratios will be path dependent.

For (deep) calibration beyond plain vanilla prices: leverage functions
will be path-dependent.

In the sequel we shall encounter a method to represent functionals on path
space.

36 / 58



Path functionals and Reservoir computing

Problem

In all previous instances it is desirable to have a flexible representation of
adapted maps on path space:

For (deep) hedging of path dependent options or in case of market
frictions: hedging ratios will be path dependent.

For (deep) calibration beyond plain vanilla prices: leverage functions
will be path-dependent.

In the sequel we shall encounter a method to represent functionals on path
space.

37 / 58



Path functionals and Reservoir computing

Controlled ordinary differential equations (CODE)

The goal of this section is to develop methodology to learn efficiently
represent functionals on path space C 1([0,T ],Rd) (for simplicity). We
consider differential equations of the form

dYt =
∑
i

Vi (Yt)du
i
t , Y0 = y ∈ E

to define evolutions in state space E depending on local characteristics,
initial value y ∈ E and the control u. We call this a controlled ordinary
differential equation (CODE). CODE can be used as a model to explain
expressiveness of deep neural networks, see joint work with Christa
Cuchiero and Martin Larsson (2019 in arXiv).

38 / 58



Path functionals and Reservoir computing

Generic expansions for CODEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ E

for some smooth vector fields Vi : E → TE , i = 1, . . . , d and d once
continuously differentiable curves ui , or finite variation continuous
controls, or a rough path. This describes a controlled dynamics on E .

The goal is to understand u 7→ Y and to use this structure for representing
general path space functionals.

39 / 58



Path functionals and Reservoir computing

We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.

40 / 58



Path functionals and Reservoir computing

Theorem

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R, and every x ∈ E

f
(

Evols,t(x)
)

=

=
M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )

41 / 58



Path functionals and Reservoir computing

with remainder term

RM(s, t, f ) =

=
d∑

i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vik f
(

Evols,t0(x)
)
dui0(t0) · · · duik (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Eckhard Platen, Kua-Tsai Chen, Gerard
Ben-Arous, Terry Lyons). It is a starting point of rough path analysis
(Terry Lyons, Peter Friz, etc) as well as of high-order numerical schemes
(Kloeden-Platen).

42 / 58



Path functionals and Reservoir computing

An algebraic frame

Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed . A typical element a ∈ Ad is
written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.

43 / 58



Path functionals and Reservoir computing

Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .

44 / 58



Path functionals and Reservoir computing

Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (1)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (2)

45 / 58



Path functionals and Reservoir computing

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.

46 / 58



Path functionals and Reservoir computing

Algebraic properties

Ad is a Hopf Algebra and signature is group-like, whence polynomials
of iterated integrals can be expressed as sums of iterated integrals.

As a consequence the linear span of iterated integrals (where we add
u0(t) = t as zeroth component) form a point separating algebra of
functions on path space C 1([0,T ],Rd). Whence continuous,
non-linear functionals on compact subsets of path space can be
approximated by linear combinations of signature.

Adapted non-linear functionals can also be expressed in this way.

47 / 58



Path functionals and Reservoir computing

Algebraic properties

Ad is a Hopf Algebra and signature is group-like, whence polynomials
of iterated integrals can be expressed as sums of iterated integrals.

As a consequence the linear span of iterated integrals (where we add
u0(t) = t as zeroth component) form a point separating algebra of
functions on path space C 1([0,T ],Rd). Whence continuous,
non-linear functionals on compact subsets of path space can be
approximated by linear combinations of signature.

Adapted non-linear functionals can also be expressed in this way.

48 / 58



Path functionals and Reservoir computing

Algebraic properties

Ad is a Hopf Algebra and signature is group-like, whence polynomials
of iterated integrals can be expressed as sums of iterated integrals.

As a consequence the linear span of iterated integrals (where we add
u0(t) = t as zeroth component) form a point separating algebra of
functions on path space C 1([0,T ],Rd). Whence continuous,
non-linear functionals on compact subsets of path space can be
approximated by linear combinations of signature.

Adapted non-linear functionals can also be expressed in this way.

49 / 58



Path functionals and Reservoir computing

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

50 / 58



Path functionals and Reservoir computing

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

51 / 58



Path functionals and Reservoir computing

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

52 / 58



Path functionals and Reservoir computing

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

53 / 58



Path functionals and Reservoir computing

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

54 / 58



Path functionals and Reservoir computing

Random localized signature

A random localized signature

choose a dimension M and random matrices with independent entries
A1, . . . ,Ad on RM as well as shifts β1, . . . , βd , such that the following
vector fields do not satisfy non-trivial relations.
define

dXt =
d∑

i=1

σ(AiXt + βi )du
i (t) , X0 = x .

for some smooth activation function σ.
Since the vector fields x 7→ σ(Aix + bi ) are free as first order differential
operators in the algebra of differential operators, then f (X.), for smooth
functions f constitutes a regression basis equivalent to signature.

This is joint work with Christa Cuchiero, Lukas Gonon, Lyudmila
Grigoryeva and Juan-Pablo Ortega. A more quantitative proof applies the
Johnson-Lindenstrauss theorem.

55 / 58



Path functionals and Reservoir computing

Deep Simulation

Let W 1, . . . ,W d be Brownian motions and V θ
i neural network vector

fields:

Consider for fixed θ the autonomous stochastic differential equation

dXt =
d∑

i=1

V θ
i (Xt)dW

i
t

with initial value X0.

Assume that (X̂t)0≤t≤T is a given observed trajectory for a Brownian
motion trajectory (Wt)0≤t≤T .

Let L be a possibly weighted distance of paths.

56 / 58



Conclusion and Outlook

Conclusion and Outlook

57 / 58



Conclusion and Outlook

State space extension

whenever path dependencies appear it makes sense to include random
localized signature (looking back for a certain period of time) as
additional state variables to make path dependencies as linear as
possible.

random localized signature is of moderate dimension, so state spaces
do not explode by this procedure.

Reinforcement learning on such state spaces is still feasible and
strategies are trainable.

58 / 58



Conclusion and Outlook

State space extension

whenever path dependencies appear it makes sense to include random
localized signature (looking back for a certain period of time) as
additional state variables to make path dependencies as linear as
possible.

random localized signature is of moderate dimension, so state spaces
do not explode by this procedure.

Reinforcement learning on such state spaces is still feasible and
strategies are trainable.

59 / 58



Conclusion and Outlook

State space extension

whenever path dependencies appear it makes sense to include random
localized signature (looking back for a certain period of time) as
additional state variables to make path dependencies as linear as
possible.

random localized signature is of moderate dimension, so state spaces
do not explode by this procedure.

Reinforcement learning on such state spaces is still feasible and
strategies are trainable.

60 / 58


	Introduction
	Instances of the abstract GAN problem
	Path functionals and Reservoir computing
	Conclusion and Outlook

