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(D Calibrating a Bayesian model: a first trial



Calibration problem:

o Bayesian models tend to be highly parametrized.
o Ad-hoc choice of support of the prior ©.

o Optimizing over different supports would possibly lead to an
unfeasible optimization problem by classical methods.



Calibrating a Bayesian model: a first trial

Calibration by Machine learning following Andres
Hernandez

We shall provide a brief overview of a procedure introduced by Andres
Hernandez (2016) as seen from the point of view of Team 3's team
challenge project 2017 at UCT:

o Getting the historical price data.

o Calibrating the model, a single factor Hull-White extended Vasi¢ek
model to obtain a time series of (typical) model parameters, here the
yield curve, the rate of mean reversion «, and the short rate's
volatility o.

o Pre-process data and generate new combinations of parameters.

o With a new large training data set of (prices,parameters) a neural
network is trained.

o The neural network is tested on out-of-sample data.




Calibrating a Bayesian model: a first trial

o The collected historical data are ATM volatility quotes for GBP from
January 2nd, 2013 to June 1st, 2016. The option maturities are 1 to
10 years, 15 years and 20 years. The swap terms from 1 to 10 years,
plus 15, 20 and 25 years.

o The yield curve is given 44 points, i.e. it is discretely sampled on 0, 1,
2, 7, 14 days; 1 to 24 months; 3-10 years; plus 12, 15, 20, 25, 30, 40
and 50 years. Interpolation is done by Cubic splines if necessary.
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Calibrating a Bayesian model: a first trial

Classical calibration a la QL

o a Levenberg-Marquardt local optimizer is first applied to minimize the
equally-weighted average of squared yield or IV differences.
o calibration is done twice, with different starting points:
» at first, « = 0.1 and ¢ = 0.01 are the default choice
» second the calibrated parameters from the previous day (using the
default starting point) are used for the second stage of classical
calibration.
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Calibration results along time series

The re-calibration problem gets visible ... and it is indeed a feasible
procedure.
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Figure: Calibration using default starting point
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How do neural networks enter calibration?

o Neural networks are often used to approximate functions due to the
universal approximation property.

o We approximate the calibration functional
(yields,prices) — (parameters) which maps (yields, prices) to optimal
model parameters by a neural network.
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Neural Networks : Training Set Generation

With the calibration history A. Hernandez proceeds by generating the
training set

o obtain errors for each calibration instrument for each day,

o take logarithms of of positive parameters, and rescale parameters,
yield curves, and errors to have zero mean and variance 1,

o apply a principal component analysis and an appropriate amount of
the first modes,

o generate random normally distributed vectors consistent with given
covariance,

o apply inverse transformations, i.e. rescale to original mean, variance
and exponentiate,

o apply random errors to results.



Neural Networks: Training the network

o With a sample set of 150 thousand training data points,
A. Hernandez suggests to train a feed-forward neural network.

o The architecture is chosen feed-forward with 4 hidden layers, each
layer with 64 neurons using an ELU (Exponential Linear Unit)
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Neural Networks: testing the trained network

o two neural networks were trained using a sample set produced where
the covariance matrix was estimated based on 40% of historical data.

o the second sample set used 73% of historical data.

o for training, the sample set was split into 80% training set and 20%
cross-validation.

o the testing was done with the historical data itself (i.e. a backtesting
procedure was used to check the accuracy of the data).
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Results of A. Hernandez

The following graphs illustrate the results. Average volatility error here
just means
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Towards a Bayesian model

Consider the Hull-White extended Vasi¢ek models (on a space

(Qaf) (gt)t207P)):
dr(™ = (B1(t) — a1rM) dt + oy dW,
dr® = (Ba(t) — aari?) dt + o5 dW; .

We assume that r is is a mixture of these two models with constant
probability 7 € [0,1], i.e.

P(r < x)=nP (rt(l) < x) +(1—m)P (rt(z) < x) .

Of course the observation filtration generated by daily ATM swaption
prices and a daily yield curve is smaller than the filtration G, hence the
theory of the first part applies.
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Bayesian model: setup

We still have the same set-up (in terms of data):
o N =156 + 44 = 200 input prices (swaptions + yield curve)

o n=44+ 4+ 1 = 49 parameters to estimate. These are
a1, p,01,02,7 and Bi1(t) (or, equivalently, 82(t)) at 44 maturities.

o Hence, the calibration function is now
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Bayesian model: training

We generated a new training set and trained, tested another neural
network with a similar architecture: the quality of the new calibration is
the same as the QuantLib calibration and better than previous ML results,
in particular out of sample.
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Mixture Model: o4
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Mixture Model: o
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Mixture Model: 7
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Conclusion

o Machine Learning for calibration of Bayesian models works, even
where classical calibration would have difficulties.

o Improvements in parameter stability through a Bayesian model.

o Proof of concept that a combined Bayesian-updating, ML calibration
approach is feasible and might lead to very stable modelling
approaches.
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