
BOUNDS FOR DEGREES AND SUMS OF DEGREES OF IRREDUCIBLE

CHARACTERS OF SOME CLASSICAL GROUPS OVER FINITE FIELDS

E. KOWALSKI

The goal of this note (which is incorporated and expanded in Chapter 5 of the author’s
book “The large sieve and its applications” ) is to bound from above in a suitable manner the
degree of irreducible representations, and the sum of the degrees of irreducible representations,
of a group G`, which in applications is either between SL(r,F`) and GL(r,F`), or between
Sp(2g,F`) and CSp(2g,F`).

More generally, given a finite group G and p ∈ [1,+∞], we denote

Ap(G) =
(∑

ρ

dim(ρ)p
)1/p

, if p 6= +∞ and A∞(G) = max{dim(ρ)}

where ρ runs over irreducible linear representations of G (in characteristic zero). For example,

we have A2(G) =
√
|G| for all G and if G is abelian, then Ap(G) = |G|1/p for all p. We are

primarily interested in A1(G) and A∞(G), but other cases may turn out to be useful.
We start with an easy monotonicity lemma.

Lemma 1. Let G be a finite group and H ⊂ G a subgroup, p ∈ [1,+∞]. We have

Ap(H) 6 Ap(G).

Proof. For any irreducible representation ρ of H, choose (arbitrarily) an irreducible representa-
tion π(ρ) of G that occurs with positive multiplicity in the induced representation IndGH ρ.

Let π be a representation of G in the image of ρ 7→ π(ρ). For any ρ where π(ρ) = π, we have

〈ρ,ResGH π〉H = 〈IndGH ρ, π〉G > 0,

by Frobenius reciprocity, (i.e., all ρ with π(ρ) = π occur in the restriction of π to H. Hence∑
ρ

π(ρ)=π

dim(ρ)p 6
( ∑

ρ
π(ρ)=π

dim(ρ)
)p
6 dim(π)p,

and summing over all possible π(ρ) gives the inequality

Ap(H)p 6 Ag(G)p

by positivity. This settles the case p 6= +∞, and the other case only requires noticing that
dim(ρ) 6 dim(π(ρ)) 6 A∞(G). �

We come to the main result of this note. The terminology is partly explained by examples
after the proof. The argument we will give was suggested by J. Michel.

Proposition 2. (1) Let G/Fq be a split connected reductive linear algebraic group of dimension
d and rank r over a finite field, with connected center. Let W be its Weyl group and G = G(Fq)
the finite group of rational points of G.

For any subgroup H ⊂ G and p ∈ [1,+∞], we have

Ap(H) 6 (q + 1)(d−r)/2+r/p
(

1 +
2r|W |
q − 1

)
,

with the convention r/p = 0 if p = +∞.
(2) If G is a product of groups of type A or C, i.e., of linear and symplectic groups, then

Ap(H) 6 (q + 1)(d−r)/2+r/p.
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The proof is based on a simple interpolation argument from the extreme cases p = 1, p = +∞.
Indeed by Lemma 1 we can clearly assume H = G and by writing the obvious inequality

Ap(G)p =
∑
ρ

dim(ρ)p 6 A∞(G)p−1A1(G),

we see that it suffices to prove the following:

Proposition 3. Let G/Fq be a split connected reductive linear algebraic group of dimension d
with connected center, and let G = G(Fq) be the finite group of its rational points. Let r be the
rank of G. Then we have

(1) A∞(G) 6
|G|p′

(q − 1)r
6 (q + 1)(d−r)/2, and A1(G) 6 (q + 1)(d+r)/2

(
1 +

2r|W |
q − 1

)
,

where np′ denotes the prime-to-p part of a rational number n, p being the characteristic of Fq.

Moreover, if the principal series of G is not empty1, there is equality

A∞(G) =
|G|p′

(q − 1)r

and dim ρ = A∞(G) if and only if ρ is in the principal series.
Finally if G is a product of groups of type A or C, then the factor (1 + 2r|W |/(q − 1)) may

be removed in the bound for A1(G).

Remark 4. Although we were not aware of this when first writing this note (and Chapter 5 of the
book already mentioned), the case p = +∞ was proved earlier by G. Seitz [S, Th. 2.1], in fact in
greater generality (e.g., also for non-split groups with non-connected centers, or for representa-
tions in arbitrary characteristic). His argument is also based on Deligne-Lusztig characters, but
is nevertheless slightly different, as it uses the so-called “Jordan decomposition” of characters,
due to Lusztig, with a certain amount of case-by-case analysis of unipotent characters.

The bounds in these results are not optimal when q is fixed and (say) we consider GL(n,Fq)
as n→ +∞. The problem in such cases is studied by Larsen, Malle and Tiep in [LMT].

Remark 5. It seems quite possible that the factor (1 + 2r|W |/(q − 1)) can always be removed,
but we haven’t been able to figure this out using Deligne-Lusztig characters, and in fact for
groups of type A or C, we simply quote exact formulas for A1(G) due to Gow, Klyachko and
Vinroot, which are proved in completely different ways. The “right” upper bound for the case
of groups of type A may also be recovered using the structure of unipotent representations of
such groups.

Note that the extra factor is not likely to be a problem in applications where q → +∞, but
is more questionable for uniformity with respect to the rank. Hence it is useful to note that
Vinroot [V2, Th. 6.1] has recently shown that one can remove the factor (1 + 2r|W |/(q − 1))
for any connected classical group, including non-split ones.

Proof. This is based on properties of the Deligne-Lusztig generalized characters. We will mostly
refer to [DM], [Ca] and [L] for all facts which are needed (using notation from [DM], except for
writing simply G for what is denoted GF there). We identify irreducible representations of G
(up to isomorphism) with their characters seen as complex-valued functions on G.

First, for a connected reductive group G/Fq over a finite field, Deligne and Lusztig have
constructed (see e.g. [DM, 11.14]) a family RG

T (θ) of generalized representations of G = G(Fq)
(i.e., linear combinations with integer coefficients of “genuine” representations of G), param-
eterized by pairs (T, θ) consisting of a maximal rational torus (i.e., defined over Fq) T ⊂ G
and a (one-dimensional) character θ of the finite abelian group T = T(Fq). The RG

T (θ) are
not all irreducible, but any irreducible character occurs (with positive or negative multiplicity)
in the decomposition of at least one such character. Moreover, RG

T (θ) only depends (up to
isomorphism) on the G-conjugacy class of the pair (T, θ).

1 In particular if q is large enough given G.
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We quote here a useful classical fact: for any T we have

(2) (q − 1)r 6 |T | 6 (q + 1)r

(see e.g. [DM, 13.7 (ii)]), and moreover |T | = (q − 1)r if and only if T is a split torus (i.e.,
T ' Gr

m over Fq). Indeed, we have

|T | = |det(qn − w | Y0)|
where w ∈W is such that T is obtained from a split torus T0 by “twisting with w” (see e.g. [Ca,
Prop. 3.3.5]), and Y0 ' Zr is the group of cocharacters of T. If λ1, . . . , λi are the eigenvalues
of w acting on Y0, which are roots of unity, then we have

|T | =
r∏
i=1

(q − λi),

and so |T | = (q − 1)r if and only if each λi is equal to 1, if and only if w acts trivially on Y0, if
and only if w = 1 and T is split.

As in [DM, 12.12], we denote by ρ 7→ p(ρ) the orthogonal projection of the space C(G) of
real-valued conjugacy-invariant functions on G to the subspace generated by Deligne-Lusztig
characters, where C(G) is given the standard scalar product

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x),

and for a representation ρ, we of course denote p(ρ) = p(Tr ρ) the projection of its character.
For any representation ρ, we have dim(ρ) = dim(p(ρ)), where dim(f), for an arbitrary func-

tion f ∈ C(G) is obtained by linearity from the degree of characters. Indeed, for any f standard
character theory shows that

dim(f) = 〈f, regG〉
where regG is the regular representation of G. From [DM, 12.14], the regular representation is
in the subspace spanned by the Deligne-Lusztig characters, so by definition of an orthogonal
projector we have

dim(ρ) = 〈ρ, regG〉 = 〈p(ρ), regG〉 = dim(p(ρ)).

Now because the characters RG
T (θ) for distinct conjugacy classes of (T, θ) are orthogonal (see

e.g. [DM, 11.15]), we can write

p(ρ) =
∑
(T,θ)

β(T, θ)RG
T (θ)

where

β(T, θ) =
〈ρ,RG

T (θ)〉
〈RG

T (θ), RG
T (θ)〉

,

and so
dim(p(ρ)) =

∑
(T,θ)

β(T, θ) dim(RG
T (θ)).

By [DM, 12.9] we have

(3) dim(RG
T (θ)) = εGεT|G|p′ |T |−1,

where εG = (−1)r and εT = (−1)r(T), r(T) being the Fq-rank of T (see [DM, p. 66] for the
definition). This yields the formula

(4) dim(p(ρ)) = |G|p′
∑
(T,θ)

1

|T |
〈ρ, εGεTRG

T (θ)〉
〈RG

T (θ), RG
T (θ)〉

.

Now we use the fact that pairs (T, θ) are partitioned in geometric conjugacy classes, defined
as follows: two pairs (T, θ) and (T′, θ′) are geometrically conjugate if and only if the generalized
characters RG

T (θ) and RG
T′(θ′) have a common irreducible component (see e.g. [DM, 13.2]). In
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particular, for a given ρ, if 〈ρ,RG
T (θ)〉 is non-zero for some (T, θ), then by definition only pairs

(T′, θ′) geometrically conjugate to (T, θ) may satisfy 〈ρ,RG
T′(θ)〉 6= 0. So we have

dim(p(ρ)) = |G|p′
∑

(T,θ)∈κ

1

|T |
〈ρ, εGεTRG

T (θ)〉
〈RG

T (θ), RG
T (θ)〉

,

for some geometric conjugacy class κ, depending on ρ. By Cauchy-Schwarz, we have

(5) dim(p(ρ)) 6 |G|p′
( ∑
(T,θ)∈κ

1

|T |2
1

〈RG
T (θ), RG

T (θ)〉

)1/2( ∑
(T,θ)∈κ

|〈ρ,RG
T (θ)〉|2

〈RG
T (θ), RG

T (θ)〉

)1/2
.

The second term on the right is simply 〈p(ρ), p(ρ)〉 6 〈ρ, ρ〉 = 1. As for the first term we
have ∑

(T,θ)∈κ

1

|T |2
1

〈RG
T (θ), RG

T (θ)〉
6

1

(q − 1)2r

∑
(T,θ)∈κ

1

〈RG
T (θ), RG

T (θ)〉

by (2). Now it is known that for each class κ, the assumption that G has connected center
implies that the generalized characters

χ(κ) =
∑

(T,θ)∈κ

εGεTR
G
T (θ)

〈RG
T (θ), RG

T (θ)〉

is in fact an irreducible character of G (such characters are called regular characters). This
implies that ∑

(T,θ)∈κ

1

〈RG
T (θ), RG

T (θ)〉
= 〈χ(κ), χ(κ)〉 = 1,

and so we have

(6) dim p(ρ) 6
|G|p′

(q − 1)r
.

Now observe that we will have equality in this argument if ρ is itself of the form ±RG
T (θ), and

if |T | = (q−1)r. Those conditions hold for representations of the principal series, i.e., characters
RG

T (θ) for an Fq-split torus T and a character θ “in general position” (see e.g. [Ca, Cor. 7.3.5]).

Such characters are also, more elementarily, induced characters IndGB(θ), where B = B(Fq) is a
Borel subgroup containing T , for some Borel subgroup B defined over Fq containing T (which
exist for a split torus T); there θ is extended to B by setting θ(u) = 1 for unipotent elements
u ∈ B. For this, see e.g. [L, Prop.2.6].

Conversely, let ρ be such that

dim ρ =
|G|p′

(q − 1)r

and let κ be the associated geometric conjugacy class. From the above, for any (T, θ) in κ, we
have |T | = (q − 1)r, i.e., T is Fq-split. Now it follows from Lemma 6 (probably well-known)
that this implies that the geometric conjugacy class κ contains a single pair (T, θ), and then
RG

T (θ) is an irreducible representation (e.g. from the definition of χ(κ)), so must be equal to ρ.
We now come to A1(G). To deal with the fact that in (4), |T | depends on (T, θ) ∈ κ, we

write

dim(p(ρ)) =
|G|p′

(q − 1)r

∑
κ

〈ρ, χ(κ)〉+ |G|p′
∑
(T,θ)

( 1

|T |
− 1

(q − 1)r

)εGεT〈ρ,RG
T (θ)〉

〈RG
T (θ), RG

T (θ)〉

(since by (2), the dependency is rather weak).
Consider the first term’s contribution. Since χ(κ) is an irreducible character, the sum∑

ρ

∑
κ

〈ρ, χ(κ)〉
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is simply the number of geometric conjugacy classes. This is given by qr
′ |Z| by [DM, 14.42]

or [Ca, Th. 4.4.6 (ii)], where r′ is the semisimple rank of G and Z = Z(G)(Fq) is the group
of rational points of the center of G. For this quantity, note that the center of G being
connected implies that Z(G) is the radical of G (see e.g. [Sp, Pr. 7.3.1]) so Z(G) is a torus and
r = r′ + dimZ(G). So using again the bounds (2) for the cardinality of the group of rational
points of a torus, we obtain

(7) |Z|qr′ 6 (q + 1)r.

To estimate the sum of the contributions in the second term, say
∑
t(ρ), we write∑

ρ

t(ρ) = |G|p′
∑
(T,θ)

( 1

|T |
− 1

(q − 1)r

)εGεT〈∑ρ ρ,R
G
T (θ)〉

〈RG
T (θ), RG

T (θ)〉
,

and we bound ∣∣∣〈∑
ρ

ρ,RG
T (θ)〉

∣∣∣ 6 〈RG
T (θ), RG

T (θ)〉

for any (T, θ), since we can write

RG
T (θ) =

∑
ρ

a(ρ)ρ with a(ρ) ∈ Z,

and therefore ∣∣∣〈∑
ρ

ρ,RG
T (θ)〉

∣∣∣ =
∣∣∣∑
ρ

a(ρ)
∣∣∣ 6∑

ρ

|a(ρ)|2 = 〈RG
T (θ), RG

T (θ)〉.

Thus ∑
ρ

t(ρ) 6
|G|p′

(q − 1)r
2r

q − 1
|{(T, θ)}|.

There are at most |W | different choices of T up to G-conjugacy, and for each there are at most
|T | 6 (q + 1)r different characters, and so we have∑

ρ

t(ρ) 6
|G|p′

(q − 1)r
2r|W |
q − 1

(q + 1)r

and

(8)
∑
ρ

dim ρ 6 (q + 1)r
|G|p′

(q − 1)r

(
1 +

2r|W |
q − 1

)
.

To conclude, we use the classical formula

|G| = qN
∏

16i6r

(qdi − 1),

where N is the number of positive roots of G, and the di are the degrees of reflections of the
Weyl group (this is because G is split; see e.g. [Ca, 2.4.1 (iv); 2.9, p. 75]). So

|G|p′ =
∏

16i6r

(qdi − 1,

and

(9)
|G|p′

(q − 1)r
=
∏

16i6r

qdi − 1

q − 1
6
∏

16i6r

(q + 1)di−1 = (q + 1)
∑

(di−1) = (q + 1)(d−r)/2,

since
∑

(di − 1) = N and N = (d− r)/2 (see e.g.[Ca, 2.4.1], [Sp, 8.1.3]).
Inserting this in (6) we derive the first inequality in (1), and with (8), we get

A1(G) 6 (q + 1)(d+r)/2
(

1 +
2r|W |
q − 1

)
,

which is the second part of (1).
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Now we explain why the extra factor involving the Weyl group can be removed for products
of groups of type A and C. Clearly it suffices to work with G = GL(n) and G = CSp(2g).

For G = GL(n), with d = n2 and r = n, Gow [Go] and Klyachko [K] have proved indepen-
dently that A1(G) is equal to the number of symmetric matrices in G. The bound

A1(G) 6 (q + 1)(n
2+n)/2

follows immediately.
For G = CSp(2g), with d = 2g2 + g + 1 and r = g + 1, the exact analog of Gow’s theorem

is due to Vinroot [V1]. Again, Vinroot’s result implies A1(G) 6 (q + 1)(d+r)/2 in this case
(see [V1, Cor 6.1], and use the formulas for the order of unitary and linear groups to check the
final bound). �

Here is the lemma used in the determination of A∞(G) when there is a character in general
position of a split torus:

Lemma 6. Let G/Fq be a split connected reductive linear algebraic group of dimension d and
let G = G(Fq) be the finite group of its rational points. Let T be a split torus in G, θ a character
of T . If T′ is also a split torus for any pair (T′, θ′) geometrically conjugate to (T, θ), then the
geometric conjugacy class of (T, θ) is the singleton {(T, θ)}.

Proof. Consider RG
T (θ). If it is irreducible, then clearly we are done. Otherwise, by the scalar

product formula for Deligne-Lusztig characters, there exists w ∈ W , w 6= 1, such that wθ = θ
(see e.g. [DM, Cor. 11.15]). Let T′ be a torus obtained from T by “twisting by w”, i.e., T′ =
gTg−1 where g ∈ G is such that g−1 Fr(g) = w (see e.g. [Ca, 3.3]). Let Y = Hom(Gm,T) ' Zr

(resp Y ′) be the abelian group of cocharacters of T (resp.T;); the conjugation isomorphism
T → T′ gives rise to a conjugation isomorphism Y → Y ′ (loc. cit.). Moreover, there is an
action of the Frobenius Fr on Y and a canonical isomorphism T ' Y/(Fr−1)Y (see e.g. [DM,

Prop. 13.7]), hence canonical isomorphisms of the character groups T̂ and T̂ ′ as subgroups of
the characters groups of Y and Y ′:

T̂ ' {χ : Y → C× | (Fr−1)Y ⊂ kerχ}, T̂ ′ ' {χ : Y ′ → C× | (Fr−1)Y ′ ⊂ kerχ}.

Unravelling the definitions, a simple calculation shows that the condition wθ = θ is precisely
what is needed to prove that the character χ of Y associated to θ, when “transported” to a
character χ′ of Y ′ by the conjugation isomorphism, still satisfies kerχ′ ⊃ (Fr−1)Y ′ (see in

particular [Ca, Prop. 3.3.4]), so is associated with a character θ′ ∈ T̂ ′.
It is then clear (see the characterization of geometric conjugacy in [DM, Prop. 13.8]) that

(T, θ) is geometrically conjugate to (T′, θ′), and since w 6= 1, the torus T′ is not split, this
means that the geometric conjugacy class of (T, θ) contains two elements at least. �

Example 7. (1) Let ` be prime, r > 1 and let G = GL(r)/F`. Then G = GL(r,F`), G is a
split connected reductive of rank r and dimension r2, with connected center of dimension 1. So
from Lemma 1 and Proposition 2, we get

Ap(H) 6 (`+ 1)r(r−1)/2+r/p

for p ∈ [1,+∞] for any subgroup H of G, and in particular

A∞(H) 6 (`+ 1)r(r−1)/2 and A1(H) 6 (`+ 1)r(r+1)/2

It would be interesting to know if there are other values of p besides p = 1, 2 and +∞ (the
latter when q is large enough) for which Ap(GL(n,Fq)) can be computed exactly.

(2) Let ` 6= 2 be prime, g > 1 and let G = CSp(2g)/F`. Then G = CSp(2g,F`) and G is a
split connected reductive group of rank g+ 1 and dimension 2g2 + g+ 1, with connected center.
So from Lemma 1 and Proposition 2, we get

Ap(H) 6 (`+ 1)g
2+(g+1)/p
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for p ∈ [1,+∞] for any subgroup H of G, and in particular

A∞(H) 6 (`+ 1)g
2

and A1(H) 6 (`+ 1)g
2+g+1.

Remark 8. Here is a mnemotechnical way to remember the bounds for A∞(G) in (1)2: among
the representatons of G, we have the principal series R(θ), a family parameterized by the
characters of a maximal split torus, of which there are about qr, and those share a common
maximal dimension ∆. Hence

qr∆2 =
∑
θ

dim(R(θ))2 ' |G| ∼ qd,

so ∆ is of order q(d−r)/2. In other words: in the formula
∑

dim(ρ)2 = |G|, the principal series
contributes a positive proportion.

The bound for A1(G) is also intuitive : there are roughly qr conjugacy classes, and for a
“positive proportion” of them, the degree of the representation is of the maximal size given by
A∞(G).
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