
THE ELLIPTIC SIEVE

E. KOWALSKI

In a paper in progress (“The algebraic principle of the large sieve”), the author has developed
a general abstract form of the large sieve inequality that covers both classical instances and the
more recent “sieve for Frobenius” of [Ko1].1 Looking for further applications of this general
setting, the following case suggested itself (among others). Since it is of some independent
interest, and quite simple, and since in fact it may be presented independently of the general
development, we will present it here in a short note; the results will be incorporated in the
paper already mentioned.

The sieve in question is performed on the Mordell-Weil group of rational points on an elliptic
curve E/Q; the application we derive concerns the number of prime divisors of the denominators
of those rational points. This, in turn, is related to the analysis of the prime factorization of
elements of so-called “elliptic divisibility sequences”, and we find that “most” elements have
many prime factors. This complements recent heuristics and results of Silverman, Everest,
T. Ward, M. Ward and others concerning the paucity of primes and prime powers in such
sequences.

Let E/Q be an elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ Z.

We assume that the rank r of E is positive, so there are infinitely many rational points. Let Λ
be the set of primes ` of good reduction, and for ` ∈ Λ, let ρ` : E(Q)→ E(F`) be the reduction
map.

The natural sets X ⊂ E(Q) for sieving are the sets of rational points x ∈ E(Q) with
(canonical or naive) height h(x) 6 T for some T > 0. To see the sieve potential, let Ω` = {0},
and notice that a rational point x = (r, s) ∈ E(Q) (in affine coordinates, so x 6= 0) has
reduction modulo ` ∈ Λ lying outside Ω`, if and only if ` does not appear in the denominator
of the coordinates r and s of the point, which shows that integral points (in the affine model
above) or S-integral points appear naturally as (subsets of) sifted sets in this context.

Here is the main result of this note. In this statement, we denote by ωE(x) the number of
primes occuring in the denominator of a rational point x 6= 0, without counting multiplicity,
and by convention we put ωE(0) = +∞. Then we have:

Proposition 1. Let E/Q be an elliptic curve with rank r > 1. Then we have

(1) |{x ∈ E(Q) | h(x) 6 T}| ∼ cET r/2

as T → +∞, for some constant cE > 0, and moreover for any fixed real number κ with 0 < κ <
1, we have

|{x ∈ E(Q) | h(x) 6 T and ωE(x) < κ log log T}| � T r/2(log log T )−1,

for T > 3, where the implied constant depends only on E and κ.

Proof. Let M ' Zr be a subgroup of E(Q) such that

E(Q) = M ⊕ E(Q)tors,

and let (x1, . . . , xr) be a fixed Z-basis of M . Moreover, let M ′ be the group generated by
(x2, . . . , xr). We will in fact perform sieving only on “lines” directed by x1.
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1A similar abstract framework was also developped independently by D. Zywina.
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But first of all, since the canonical height is a positive definite quadratic form on E(Q),
the asymptotic formula (1) is clear: it amounts to nothing else but counting integral points in
M ⊗R ' Rr with norm

√
h(x) 6

√
T , as many times as there are torsion points.

Moreover, we may (for convenience) measure the size of elements in E(Q) by the squared
L∞-norm

‖x‖2∞ = max |ai|2, for x =
∑

aixi + t with t ∈ E(Q)tors,

i.e, we have h(x) � ‖x‖2∞ for all x ∈M , the implied constants depending only on E.
Now we claim the following:

Lemma 2. For any fixed κ ∈]0, 1[, any fixed x′ ∈M ′, any fixed torsion point t ∈ E(Q)tors, we
have

|{x ∈ t+ x′ ⊕ Zx1 | ‖x‖2∞ 6 T and ωE(x) < κ log log T}| �
√
T (log log T )−1,

for T > 3, the implied constant depending only on E, κ and x1, but not on x′ or t.

Taking this for granted, we conclude immediately that

|{x ∈ E(Q) | h(x) 6 T and ωE(x) < κ log log T}| � T r/2(log log T )−1,

by summing the inequality of the lemma over all x′ ∈ M ′ with ‖x′‖2∞ 6 T and over all t ∈
E(Q)tors, the number of which is � T (r−1)/2, the implied constant depending only on E and
the choice of basis of M .

Next we come to the proof of this lemma. Fix x′ ∈ M ′, t ∈ E(Q)tors. The left-hand side of
the lemma being zero unless ‖t+ x′‖2∞ 6 T , we assume that this is the case. Denote

G = Zx1 ⊂ E(Q), G` = ρ`(G) ⊂ E` = ρ`(E(Q))

X = {mx1 ∈ G | ‖t+ x′ +mx1‖2∞ = m2 6 T};

we will “sieve” the set X using “reductions” modulo certain primes in Λ.
For any prime ` ∈ Λ, the finite group G` is a quotient of Zx1 and is isomorphic to Z/ν(`)Z

where ν(`) is the order of the reduction of x1 modulo `. Now we appeal to the following
consequence of a result of Silverman ([Si1, Prop. 10]): all but finitely many primes p occur as
the order ν(`) = p of x1 for some prime ` of good reduction. For any L > 2, this enables us
to sieve X using the finite set L of primes ` ∈ Λ such that ν(`) 6 L is a prime number p 6 L
(where, in case the same prime p occurs as values of ν(`) for two or more primes, we keep only
one).

More precisely, we claim that the following large-sieve inequality

(2)
∑
`∈L

∑∗

a (mod ν(`))

∣∣∣ ∑
|m|6

√
T

α(m)e
( am
ν(`)

)∣∣∣2 6 ∆
∑
|m|6

√
T

|α(m)|2,

holds for arbitrary complex numbers α(m) with

∆ 6 2
√
T + L2

for L > 2, where the implied constant depends only on E (once x1 is fixed, as it is throughout).
Indeed, since ν(`) runs once over all but finitely many primes p 6 L, this follows by positivity
from the “standard” large-sieve inequality (see e.g. [B], [IK, §7.5], [G], [Mo]):∑

p6L

∑∗

a (mod p)

∣∣∣ ∑
|m|6

√
T

α(m)e
(am
p

)∣∣∣2 6 (2
√
T + L2)

∑
|m|6

√
T

|α(m)|2.

It then follows that

(3)
∑
x∈X

(
P (x,L)− P (L)

)2
6 ∆P (L)
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where P (x,L) and P (L) are defined by

P (x,L) =
∑
`∈L

ρ`(x)∈Ω`

1, P (L) =
∑
`∈L

|Ω`|
ν(`)

,

for any given choice of sets Ω` ⊂ G` for ` ∈ Λ (see e.g. [G, Lemma A]).
We let Ω` = {−ρ`(t+ x′)}. By the remarks before the statement of the proposition, we have

ρ`(mx1) ∈ Ω` if and only if ` divides the denominator of the coordinates of t + x′ + mx1, and
therefore for x = mx1 ∈ X, we have

P (mx1,L) 6 ωE(t+ x′ +mx1).

On the other hand, we have the lower bound

P (L) =
∑
`∈L

1
|G`|

=
∑
`∈Λ

ν(`)6L

1
ν(`)

>
∑
p6L

1
p

+O(1) = log logL+O(1)

for any L > 3, because, by Silverman’s result, the values ν(`) 6 L range over all primes 6 L,
with only finitely many exceptions (independently of L).

Hence there exists L0 depending on E, x1 and κ only, such that if L > L0, we have

P (L) >
1 + κ

2
log log T.

Putting together these two inequalities, we see that if L > L0, then for any mx1 ∈ X such
that t+ x′ +mx1 satisfies ωE(t+ x′ +mx1) < κ log log T , we have(

P (x,L)− P (L)
)2
� (log log T )2,

the implied constant depending only on E, x1 and κ. So it follows by positivity from (3) that

|{x ∈ t+ x′ ⊕ Zx1 | ‖x‖2∞ 6 T and ωE(x) < κ log log T}| � ∆(log log T )−1

� (
√
T + L2)(log log T )−1

for any L > L0. If T 1/2 > L0, we take L = T 1/2 and prove the inequality of the lemma directly,
and otherwise we need only increase the resulting implied constant since L0 depends only on
E, x1 and κ. �

Remark 3. It would be interesting to know whether there is some “regular” distribution for the
function ωE(x). Notice the similarity between the above discussion and the Hardy-Ramanujan
results concerning the normal order of the number of prime divisors of an integer (see e.g. [HW,
22.11]), but note that since the denominators of rational points x are typically of size exph(x),
they should have around log log exp(h(x)) = log(h(x)) prime divisors in order to be “typical”
integers.

However, we can also note that the prime divisors accounted for in the proof above are
all 6 T 1/2 '

√
h(x) '

√
log n; it is typical behavior for an integer n 6 T to have roughly

log log log T prime divisors of this size (much more precise results of this type are due to Erdös
and Kac, Erdös and Turán).

We can relate Proposition 1, or more precisely Lemma 2, to so-called elliptic divisibility se-
quences, a notion introduced by M. Ward and currently the subject of a number of investigations
by Silverman, T. Ward, Everest, and others (see e.g. [Si2], [W], [EEW]).

Proposition 4. Let (Wn)n>0 be an unbounded sequence of integers such that

W0 = 0, W1 = 1, W2W3 6= 0, W2 |W4

Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m, for m > n > 1,

∆ = W4W
15
2 −W 3

3W
12
2 + 3W 2

4W
10
2 − 20W4W

3
3W

7
2

+4W 3
4W

5
2 + 16W 6

3W
4
2 + 8W 2

4W
3
3W

2
2 +W 4

4 6= 0.
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Then for any κ such that 0 < κ < 1, we have

|{n 6 N | ω(Wn) < κ log logN}| � N

log logN
,

for N > 3, the implied constant depending only on (Wn) and κ.

Proof. This depends on the relation between elliptic divisibility sequences and pairs (E, x0) of
an elliptic curve E/Q and a point x1 ∈ E(Q). Precisely (see e.g. [EEW, §2]) there exists such
a pair (E, x1) with x1 of infinite order such that if (an), (bn), (dn) are the (unique) sequences
of integers with dn > 1, (an, dn) = (bn, dn) = 1 and

nx1 =
(an
d2
n

,
bn
d3
n

)
,

then we have
dn |Wn for n > 1

(without the condition ∆ = 0, this is still true provided singular elliptic curves are permitted;
the condition that (Wn) be unbounded implies that x0 is of infinite order).

Now the dn are precisely the denominators of the coordinates of the points in Zx1, and we
have therefore

ω(Wn) > ω(dn) = ωE(nx1).
Hence Lemma 1 gives the desired result. �

The “simplest” example is the sequence (Wn) given by

W0 = 0, W1 = 1, W2 = 1, W3 = −1, W4 = 1,

Wn =
Wn−1Wn−3 +W 2

n−2

Wn−4
, for n > 4

(sequence A006769 in the Online Encyclopedia of Integer Sequences), which corresponds to case
of E : y2 + y = x3 − x and x0 = (0, 0).

Finally, it will be noticed that the same reasoning and similar results hold for elements of
non-degenerate divisibility sequences (un) defined by linear recurrence relations of order 2, e.g.,
un = an− 1 where a > 2 is an integer. (The analogue of Silverman’s theorem here is a result of
Schinzel, and the rest is easy).
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