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Abstract. In this paper, we consider approximating expansions for the distribution of
integer valued random variables, in circumstances in which convergence in law cannot be
expected. The setting is one in which the simplest approximation to the n’th random
variable Xn is by a particular member Rn of a given family of distributions, whose
variance increases with n. The basic assumption is that the ratio of the characteristic
function of Xn and that of Rn converges to a limit in a prescribed fashion. Our results
cover a number of classical examples in probability theory, combinatorics and number
theory.

1. Introduction

The topic of this paper is the explicit approximation, in various metrics, of random
variables which, in terms of characteristic functions, behave like a sum

Xn = Zn + Yn (1.1)

of a “model” variable Zn (for instance, a Poisson random variable) and an independent
perturbation Yn, when the model variable has “large” parameter. Our interest is in
discrete random variables, and in cases where this simple-minded decomposition does
not in fact exist. We have two motivations:

(1) In probabilistic number theory, it has been known since the proof by Rényi and
Turán of the Erdős-Kac theorem that the random variable ω(Nn) given by the number of
prime divisors (without multiplicity, for definiteness) of an integer Nn uniformly chosen
in the interval {1, 2, . . . , n} has characteristic function given by

E{eiθω(Nn)} = E{eiθZn}Φ(θ)(1 + o(1))

as n→∞, where Zn ∼ Po (log log n) is a Poisson variable with mean log log n and Φ(θ)
is defined by

Φ(θ) =
1

Γ(eiθ)

∏
p prime

(
1 +

eiθ − 1

p

)(
1− 1

p

)eiθ−1

,

the product being absolutely convergent for all θ real. This Φ(θ) is not the characteristic
function of a probability distribution, and hence formula (1.1) with Zn ∼ Po (log log n)
cannot be true. However, we are nonetheless able to obtain explicit approximation state-
ments for the law of ω(Nn) from the characteristic function identity.
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Theorem 1.1. For every integer r ≥ 0, there exist explicitly computable signed measures
νr,n on the positive integers such that the total variation distance between the law of ω(Nn)
and νr,n is of order O{(log log n)−(r+1)/2} for n ≥ 3.

This is proved, and formulas for the measures ν1,n and ν2,n are given, in Section 8.3.
For more on the significance of the Rényi-Turán formula, comparison with the Keating-
Snaith conjectures for the Riemann zeta function, and finite-field analogues, see Kowalski
& Nikeghbali (2009).

(2) In a beautiful paper, Hwang (1999) considered sequences of non-negative integer
valued random variables Xn, whose probability generating functions fXn satisfy

eλn(1−z)fXn(z) → g(z),

for all z ∈ C with |z| ≤ η, for some η > 1, where the function g is analytic, and
limn→∞ λn = ∞. This assumption is also intuitively related to a model (1.1). Under
some extra conditions, Hwang exhibits bounds of order O(λ−1

n ) on the accuracy of the
approximation of the distribution of Xn by a Poisson distribution with carefully chosen
mean, close to λn. Hwang (1999) also notes that his methods can be applied to families of
distributions other than the Poisson family, and gives examples using the Bessel family.

In this paper, we systematically consider sequences of integer valued random vari-
ables Xn, whose characteristic functions φXn satisfy a condition which, in the Poisson
context, is some strengthening of the convergence

exp{λn(1− eiθ)}φXn(θ)→ ψ(θ), 0 < |θ| ≤ π. (1.2)

Under suitable conditions, we derive explicit approximations to the distribution of Xn,
in various metrics, by measures related to the Poisson model. The approximations can

be made close to any given polynomial order in λ
−1/2
n , if the conditions are sharp enough

and the measure is correspondingly chosen. The conditions that we require for these
expansions are much weaker than those of Hwang (1999). For instance, his conditions
require the Xn to take only non-negative values, and to have exponential tails, neither of
which conditions we need to impose.

Our basic result, Proposition 2.1, is very simple and explicit. It enables us to dispense
with asymptotic settings, and to prove concrete error bounds. It also allows us to consider
approximation by quite general families of distributions on the integers, instead of just
the Poisson family, requiring only the replacement of the Poisson characteristic function
in (1.2) by the characteristic function corresponding to the family chosen. This enables us
to deduce expansions based on any discrete family of distributions, as shown in Section 4,
without any extra effort. Indeed, the main problem would seem to be to identify the higher
order terms in the expansions, but these turn out simply to be linear combinations of the
higher order differences of the basic distribution: see (2.6).

In the Poisson context, the measures that result are the Poisson–Charlier measures.
Our general results enable us to deduce a Poisson–Charlier approximation with error of

order O(λ
−t/2
n ), for any prescribed t, assuming that Hwang’s conditions hold. We also

show that the Poisson–Charlier expansions are valid under more general conditions, in
which the Xn may have only a few finite moments. The expansions are established in
Section 5, and simpler, translated Poisson approximations are considered in Section 6.
We discuss some examples, to sums of independent integer valued random variables, to
Hwang’s setting and to our first motivation, proving Theorem 1.1, in Section 8.
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2. The basic estimate

The essence of our argument is the following elementary result, linking the closeness
of finite signed measures µ and ν to the closeness of their characteristic functions, when
these have a common factor involving a ‘large’ parameter ρ; for a finite signed measure ζ
on Z, the characteristic function φζ is defined by φζ(θ) :=

∑
j∈Z e

ijθζ{j}, for |θ| ≤ π.

Proposition 2.1. Let µ and ν be finite signed measures on Z, with characteristic func-
tions φµ and φν respectively. Suppose that φµ = ψµχ and φν = ψνχ, where, for some
γ, ρ, t > 0,

|ψµ(θ)− ψν(θ)| ≤ γ|θ|t and |χ(θ)| ≤ e−ρθ
2

for all |θ| ≤ π. (2.1)

Then there are explicit constants α1t and α2t such that

1. sup
j∈Z
|µ{j} − ν{j}| ≤ α1tγ(ρ ∨ 1)−(t+1)/2;

2. sup
a≤b∈Z

|µ{[a, b]} − ν{[a, b]}| ≤ α2tγ(ρ ∨ 1)−t/2.

Proof. For any j ∈ Z, the Fourier inversion formula gives

µ{j} − ν{j} =
1

2π

∫ π

−π
e−ijθ(ψµ(θ)− ψν(θ))χ(θ) dθ, (2.2)

from which our assumptions imply directly that

|µ{j} − ν{j}| ≤ 1

2π

∫ π

−π
γ|θ|t exp{−ρθ2} dθ.

For ρ ≤ 1, we thus have

|µ{j} − ν{j}| ≤ 1

2π

∫ π

−π
γ|θ|t dθ ≤ πtγ

t+ 1
=: β1tγ.

For ρ ≥ 1, it is immediate that

|µ{j} − ν{j}| ≤ γ

2π

( 1√
2ρ

)t+1
∫ ∞
−∞
|y|te−y2/2 dy ≤ β′1tγρ

−(t+1)/2,

with β′1t := 2−(t+1)/2mt/
√

2π; here, mt denotes the t-th absolute moment of the standard
normal distribution. Setting

α1t := max{β1t, β
′
1t} = max

{
2−(t+1)/2mt/

√
2π, πt/(t+ 1)

}
,

this proves part 1. The second part is similar, adding (2.2) over a ≤ j ≤ b, and estimating∣∣e−iaθ − e−i(b+1)θ
∣∣

|1− e−iθ|
≤ π

|θ|
, |θ| ≤ π.

This gives part 2, with

α2t := max{2−t/2mt−1

√
π/2, πt/t}.

We shall principally be concerned with taking µ to be the distribution of a random
variable X. We allow ν to be a signed measure, because in many cases, such as in the
following canonical example and in the Poisson–Charlier expansions of Section 5, signed
measures appear as the natural approximations.
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Let X be an integer valued random variable with characteristic function φX := ψχ,
where χ is the characteristic function of a (well known) probability distribution R on Z.
Suppose that χ satisfies

|χ(θ)| ≤ e−ρθ
2

, (2.3)

as for Proposition 2.1, and that ψ can be approximated by a polynomial expansion around
θ = 0 of the form

ψ̃r(θ) :=
r∑
l=0

ãl
(
eiθ − 1

)l
, (2.4)

for real coefficients ãl (and with ã0 = 1) and some r ∈ N0, in that

|ψ(θ)− ψ̃r(θ)| ≤ Krδ|θ|r+δ, |θ| ≤ π, (2.5)

for some 0 < δ ≤ 1. Clearly, this is much like supposing that ψ has a Taylor expansion
around zero (in powers of iθ), and hence that X has a corresponding number of finite
moments. However, the particular form chosen for the expansion has the advantage
that the signed measure νr = νr(R; ã1, . . . , ãr) having ψ̃rχ as characteristic function can
immediately be identified:

νr =
r∑
l=0

(−1)lãlD
lR, (2.6)

where the differences DlR of the probability measure R are determined by iterating the
relation DR{j} := R{j} − R{j − 1}. The following theorem now follows directly from
Proposition 2.1.

Theorem 2.2. Let X be a random variable on Z with distribution PX . Suppose that its
characteristic function φX is of the form ψχ, where χ is the characteristic function of a
probability distribution R and satisfies (2.3) above. Suppose also that (2.5) is satisfied,
for some r ∈ N0, ã1, . . . , ãr ∈ R and δ ≥ 0. Then, writing t = r + δ, we have

1. sup
j∈Z
|PX{j} − νr{j}| ≤ α1tKrδ(ρ ∨ 1)−(t+1)/2;

2. sup
a≤b∈Z

|PX{[a, b]} − νr{[a, b]}| ≤ α2tKrδ(ρ ∨ 1)−t/2,

with α1t and α2t as in Proposition 2.1, and with νr = νr(R; ã1, . . . , ãr) as defined in (2.6).

Remark. Note that Proposition 2.1 can be applied with ψµ = 0, corresponding to µ the
zero measure, and ψν(θ) = ãl(e

iθ − 1)l, for any 1 ≤ l ≤ r, showing that the contribution
from the l-th term in the expansion to νr{j} is at most |ãl|α1l(ρ ∨ 1)−(l+1)/2, and that to
νr{[a, b]} at most |ãl|α2l(ρ ∨ 1)−l/2. Thus, if ρ is large and the coefficients ãl moderate,
the contributions decrease in powers of ρ−1/2 as l increases. In such circumstances, the
signed measure νr can be seen as a perturbation of the underlying distribution R.

The simplest application of the above results arises when φX = φY pλ, where pλ(θ) =

eλ(eiθ−1) is the characteristic function of the Poisson distribution Po (λ) with mean λ,
which satisfies (2.3) with ρ = 2π−2λ, and φY is the characteristic function associated
with a random variable Y on the integers. In this case, X = Z + Y is the sum of
two independent random variables, as in (1.1), with Z ∼ Po (λ), and the situation is
probabilistically very clear. For w = wθ = eiθ − 1, we have φY (θ) = E{(1 + w)Y }. The
latter expression has an expansion in powers of w up to the term in wr if the r-th moment
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of Y exists, with coefficients ãk := Fk(Y )/k!, 1 ≤ k ≤ r, where Fk(Y ) denotes the k-th
factorial moment of Y :

Fk(Y ) :=
∑
l≥k

l!

(l − k)!
P[Y = l] +

∑
l≥1

(−1)k
(l + k − 1)!

(l − 1)!
P[Y = −l].

Thus the asymptotic expansion of X around Po (λ) is simply derived from the factorial
moments of the perturbing random variable Y , if they exist.

For example, we could take φY to be the characteristic function of a random variable Ys
with distribution

P[Ys = −l] = s!
s

l(l + 1) . . . (l + s)
, l ≥ 1,

for some integer s ≥ 1; the random variable has only s− 1 moments, and takes negative
values, so that Hwang’s (1999) theorems cannot be applied. However, Ys has factorial
moments

Fk(Ys) = (−1)ks!
∑
l≥1

s

(l + k) . . . (l + s)
= (−1)kk!

s

s− k
, 1 ≤ k ≤ s− 1,

and characteristic function

ψYs(θ) = 1 +
s−1∑
k=1

(−1)k
s

s− k
(eiθ − 1)k − s(1− eiθ)s log(1− e−iθ),

and (2.5) holds for ψ̃r as in (2.4), with r = s − 1 and any δ < 1, for ãk = Fk(Y )/k! =
(−1)ks/(s − k). Hence, if X = Z + Ys, where Z ∼ Po (λ) is independent of Ys, then
Theorem 2.2 can be applied, approximating the distribution of X by the signed mea-
sure νs−1(Po (λ); ã1, . . . , ãs−1).

3. Refinements

We frame our approximations in terms of three distances between (signed) measures µ
and ν on the integers: the point metric

dloc(µ, ν) := sup
j∈Z
|µ{j} − ν{j}|,

the Kolmogorov distance

dK(µ, ν) := sup
j∈Z
|µ{(−∞, j]} − ν{(−∞, j]}|,

and the total variation norm

‖µ− ν‖ :=
∑
j∈Z

|µ{j} − ν{j}|.

Other metrics could also be treated using our results. Proposition 2.1 immediately yields
explicit bounds on dloc(µ, ν) and dK(µ, ν) in terms of the quantities specified in (2.1).
However, for many applications, a slight weakening of its conditions is useful. The fol-
lowing result is proved in exactly the same way as Proposition 2.1.

Proposition 3.1. Let µ and ν be finite signed measures on Z, with characteristic func-
tions φµ and φν respectively. Suppose that φµ = ψµχ and φν = ψνχ, where, for some
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θ0, ε, η, ρ > 0 and for positive pairs γm, tm, 1 ≤ m ≤M , we have

|ψµ(θ)− ψν(θ)| ≤
M∑
m=1

γm|θ|tm + ε and |χ(θ)| ≤ e−ρθ
2

, 0 ≤ |θ| ≤ θ0;

|φµ(θ)− φν(θ)| ≤ η, θ0 < |θ| ≤ π.

Then, with notation as for Proposition 2.1, we have

1. sup
j∈Z
|µ{j} − ν{j}| ≤

M∑
m=1

γmα1tm(ρ ∨ 1)−(tm+1)/2 + α̃1ε+ α̃2η;

2. sup
a0≤a≤b≤b0

|µ{[a, b]} − ν{[a, b]}|

≤
M∑
m=1

γmα2tm(ρ ∨ 1)−tm/2 + (b0 − a0 + 1)(α̃1ε+ α̃2η),

where

α̃1 :=
(θ0

π
∧ 1

2
√
πρ

)
; α̃2 :=

(
1− θ0

π

)
.

The presence of the factor (b0−a0 + 1) in the second bound means that a direct bound
on the Kolmogorov distance between the signed measures µ and ν is not immediately
visible. The following corollary is however easily deduced; for a signed measure µ, |µ| as
usual denotes its variation.

Corollary 3.2. Under the conditions of Proposition 3.1,

dK(µ, ν) ≤ inf
a≤b

(
ε

(K)
ab + (|µ|+ |ν|){[a, b]c}

)
;

‖µ− ν‖ ≤ inf
a≤b

(
ε

(1)
ab + (|µ|+ |ν|){[a, b]c}

)
,

where

ε
(K)
ab :=

M∑
m=1

γmα2tm(ρ ∨ 1)−tm/2 + (b− a+ 1)(α̃1ε+ α̃2η);

ε
(1)
ab := (b− a+ 1)

{
M∑
m=1

γmα1tm(ρ ∨ 1)−(tm+1)/2 + (α̃1ε+ α̃2η)

}
.

If also µ is a probability measure and ν(Z) = 1, then

dK(µ, ν) ≤ 2 inf
a≤b

(
ε

(K)
ab + |ν|{[a, b]c}

)
;

‖µ− ν‖ ≤ inf
a≤b

(
ε

(1)
ab + ε

(K)
ab + 2|ν|{[a, b]c}

)
.
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Proof. The inequality for the total variation norm is immediate. For the Kolmogorov
distance, by considering the possible positions of x in relation to a < b, we have

|µ{(−∞, x]} − ν{(−∞, x]}|
≤ sup

y<a
|µ{(−∞, y]} − ν{(−∞, y]}|+ sup

a≤y≤b
|µ{[a, y]} − ν{[a, y]}|

+ sup
y>b
|µ{(b, y]} − ν{(b, y]}|

≤ (|µ|+ |ν|){(−∞, a) ∪ (b,∞)}+ ε
(K)
ab .

Remark. If µ is a probability measure and ν(Z) = 1, we have

|µ|{[a, b]c} = 1− µ{[a, b]} ≤ |1− ν{[a, b]}|+ ε
(K)
ab ≤ |ν|{[a, b]c}+ ε

(K)
ab .

Under slightly stronger conditions than those of Proposition 2.1, a much neater total
variation bound can be deduced; the argument is reminiscient of that in Presman (1983).

Proposition 3.3. Let µ and ν be finite signed measures on Z, with characteristic func-
tions φµ = ψµχ and φν = ψνχ respectively, where χ(θ) := eiζθ−u(θ) for some ζ ∈ R, and
u(0) = u′(0) = 0. Suppose now that u and the difference dµν := ψµ − ψν are both twice
differentiable, that d′µν(0) = 0 and that, for some γ, γ′ > 0, ρ ≥ 1 and t ≥ 2,

|d′′µν(θ)| ≤ γ|θ|t−2, |u′′(θ)| ≤ γ′ρ and <{u(θ)} ≥ ρθ2, for all |θ| ≤ π.

Then there is a constant α′ := α′(t, γ′) such that

‖µ− ν‖ ≤ γα′ρ−t/2.

Proof. First, the assumptions on dµν and u give

|d′µν(θ)| ≤
γ

t− 1
|θ|t−1; |dµν(θ)| ≤

γ

t(t− 1)
|θ|t;

|u′(θ)| ≤ γ′ρ|θ|.
(3.1)

In particular, for |j − ζ| < 1 + d√ρe, we can apply part 1 of Proposition 2.1, which gives

|µ{j} − ν{j}| ≤ α1tγ

t(t− 1)
ρ−(t+1)/2. (3.2)

For the remaining j, integrating the Fourier inversion formula (2.2) twice by parts gives

µ{j} − ν{j} = − 1

2π(j − ζ)2

∫ π

−π
e−i(j−ζ)θ

(
d′′µν(θ)− 2d′µν(θ)u

′(θ)

+ dµν(θ){(u′(θ))2 − u′′(θ)}
)
e−u(θ) dθ. (3.3)

Substituting the bounds from (3.1) into (3.3) gives

|µ{j} − ν{j}|

≤ 1

2π(j − ζ)2

∫ π

−π
γ

{
|θ|t−2 +

2γ′ρ

t− 1
|θ|t +

γ′ρ

t(t− 1)
|θ|t(1 + γ′ρθ2)

}
e−ρθ

2

dθ

≤ 1

(j − ζ)2
γ β′(t, γ′)ρ−(t−1)/2, (3.4)
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after some calculation, where, with mt as in Proposition 2.1,

β′(t, γ′) :=
mt−2

4t 2t/2
√
π
{4t+ 2(2t+ 1)γ′ + (t+ 1)(γ′)2}.

Hence ∑
|j−ζ|≥1+d√ρe

|µ{j} − ν{j}| ≤ 2γ β′(t, γ′)ρ−t/2,

and the proposition follows directly, with α′(t, γ′) := 2β′(t, γ′) + 6α1t

t(t−1)
.

Note that, in the Poisson context, with u(θ) = λ(1 − eiθ + iθ), we take ρ = 2λ/π2

as before, and then γ′ = π2/2. Note also that, if dµν(θ) = d̂µν(e
iθ − 1), with d̂µν(0) =

d̂′µν(0) = 0 and |d̂′′µν(w)| ≤ γ̂|w|t−2 in |w| ≤ 2, then dµν(0) = d′µν(0) = 0 and

|d′′µν(θ)| ≤
(

1 +
2

t− 1

)
γ̂|θ|t−2 (3.5)

in |θ| ≤ π.
The above proposition, like Proposition 2.1, has conditions that are often satisfied

almost, but not quite, in applications. The next result allows the sort of freedom envisaged
in Proposition 3.1. It is useful when ρ is large, the quantities ε and η are, for instance,
exponentially small with ρ, and the same is true for |ν|{[−ρ, ρ]c}. In such circumstances,
it yields a bound of (slightly) sharper order than can be deduced from Corollary 3.2, since
there it is necessary to choose a and b in such a way that ρ−1/2(b−a) is large, if |ν|{[a, b]c}
is to be made small, and the factor ρ−1/2(b− a) then multiplies the main element of the
bound thus obtained.

Proposition 3.4. Let µ and ν be finite signed measures on Z, with characteristic func-
tions φµ = ψµχ and φν = ψνχ respectively, where χ(θ) := eiζθ−u(θ) for some ζ ∈ R,
and for some function u satisfying the same conditions as in Proposition 3.3. Suppose
that d̃µν is a twice differentiable function such that d̃µν(0) = d̃′µν(0) = 0 and that

|d̃′′µν(θ)| ≤
M∑
m=1

γm|θ|tm−2 (3.6)

for some tm ≥ 2 and γm > 0, 1 ≤ m ≤M ; assume that

e−ρθ
2|ψµ(θ)− ψν(θ)− d̃µν(θ)| ≤ ε, |θ| ≤ θ0;

|φµ(θ)− φν(θ)| ≤ η, θ0 < |θ| ≤ π,

for some ε, η > 0 and for some θ0 with θ0 ≤ π/4 and ρθ2
0 ≥ log ρ ≥ 0. Then there is a

function α′ := α′(t, γ) such that, with γ′ as in Proposition 3.3,

‖µ− ν‖ ≤
M∑
m=1

γmα
′(tm, γ

′)ρ−tm/2 + 3ρmax{ε, η}+ (|µ|+ |ν|){[−ρ, ρ]c}.

If µ is a probability measure and ν(Z) = 1, then

‖µ− ν‖ ≤ 2
M∑
m=1

γmα
′(tm, γ

′)ρ−tm/2 + 6ρmax{ε, η}+ 2|ν|{[−ρ, ρ]c}.
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Proof. We begin by observing that a function w : (−∞, 0]→ R with w(0) = a and w′(0) =
b can be continued differentiably on [0,∞) by a piecewise quadratic function such that
|w′′(x)| ≤ c for all x > 0 for which w′′(x) is defined, and such that w(x) = 0 for all

x ≥ 1

c

{
|b|+ 2

√
|ac+ 1

2
sgn(b)b2|

}
,

with maxx≥0 |w(x)| ≤ |a| + b2/2c. We use this to continue the real and imaginary parts

of w̃(θ) := e−u(θ)d̃µν(θ) into θ0 ≤ |θ| ≤ π in such a way that w̃ is piecewise twice
differentiable and satisfies

w̃(−π) = w̃(π) = w̃′(−π) = w̃′(π) = 0,

with the second derivatives of the real and imaginary parts suitably bounded. We do so
by treating w̃ as a sum of M pieces, reflecting the condition (3.6); for the m’th piece w̃m,
defining κ1(t, γ) := (t+ γ)/{t(t− 1)}, we have

|w̃m(θ0)| ≤ γm
tm(tm − 1)

θtm0 e−ρθ
2
0

≤ |am| := t−1
m γmκ1(tm, γ

′)θtm0 e−ρθ
2
0 ; (3.7)

|w̃′m(θ0)| ≤ γm
tm(tm − 1)

θtm−1
0 e−ρθ

2
0{tm + γ′ρθ2

0}

≤ |bm| := γmκ1(tm, γ
′)ρθtm+1

0 e−ρθ
2
0 , (3.8)

with the same bounds holding also at −θ0, and we restrict the second derivatives of its
continuation by taking

cm := 4γmκ1(tm, γ
′)ρ2θtm+2

0 e−ρθ
2
0 (3.9)

in θ0 ≤ |θ| ≤ π. The length of the θ-interval beyond θ0 on which w̃m is not identically
zero is thus bounded by

1

cm

{
|bm|(1 +

√
2) + 2

√
|am|cm

}
≤ 1 + 3

√
2

4ρθ0

≤ h :=
2

ρθ0

, (3.10)

from (3.7) and (3.8), the bound being the same for all m; note that

h ≤ 2θ0

ρθ2
0

≤ π

2
,

since θ0 ≤ π/4 and ρθ2
0 ≥ 1. From this and (3.9), it follows also that∫

θ0≤|θ|≤π
|w̃′′m(θ)| dθ ≤ 4hcm ≤ 32γmκ1(tm, γ

′)ρθtm+1
0 e−ρθ

2
0 , (3.11)

and, using (3.7) and (3.8), that

ρ

∫
θ0≤|θ|≤π

|w̃m(θ)| dθ ≤ 4hρ{|am|+ b2
m/2cm} ≤ 5 γmκ1(tm, γ

′)θtm−1
0 e−ρθ

2
0 . (3.12)

The proof now follows the lines of those of Propositions 3.1 and 3.3. We begin by
writing

µ{j} − ν{j} =
1

2π

∫ π

−π
e−ijθ(φµ(θ)− φν(θ)) dθ

≤ 1

2π

∫ π

−π
e−i(j−ζ)θ

{
e−u(θ)[ψµ(θ)− ψν(θ)− d̃µν(θ)] + w̃(θ)

}
dθ. (3.13)

Now, by assumption,
|e−u(θ)[ψµ(θ)− ψν(θ)− d̃µν(θ)]| ≤ ε

9



in |θ| ≤ θ0, whereas, in θ0 < |θ| ≤ π, it is bounded by η + |w̃(θ)|. Hence, for any j, we
use (3.12) to give ∣∣∣∣ 1

2π

∫ π

−π
e−i(j−ζ)θe−u(θ)[ψµ(θ)− ψν(θ)− d̃µν(θ)] dθ

∣∣∣∣
≤ max{ε, η}+

5

2πρ

M∑
m=1

γmκ1(tm, γ
′)θtm−1

0 e−ρθ
2
0 . (3.14)

Noting also that, if ρθ2 ≥ log ρ ≥ 0 and θ > 0, then

ρt/2θt−1e−ρθ
2

= ρ1/2(ρθ2)(t−1)/2e−ρθ
2 ≤ k2(t),

for k2(t) = {(t− 1)/e}(t−1)/2 max{1, 2−(t−1)/2
√
t− 1}, it follows that∣∣∣∣ 1

2π

∫ π

−π
e−i(j−ζ)θe−u(θ)[ψµ(θ)− ψν(θ)− d̃µν(θ)] dθ

∣∣∣∣
≤ max{ε, η}+

5

2πρ

M∑
m=1

γmκ1(tm, γ
′)k2(tm)ρ−tm/2. (3.15)

This bounds the first element of (3.13).
For the second element of (3.13), we begin by considering values of j such that |j−ζ| <

1 + d√ρe. Here, we write

1

2π

∫ π

−π
|w̃(θ)| dθ ≤ 1

2π

∫
|θ|≤θ0

e−ρθ
2|d̃µν(θ)| dθ +

1

2π

M∑
m=1

∫
θ0<|θ|≤π

|w̃m(θ)| dθ.

The first integral is bounded, as in the proof of Propositions 2.1 and 3.1, by

M∑
m=1

γm
α1tm

tm(tm − 1)
ρ−(tm+1)/2,

and the second, as above, by

5

2πρ

M∑
m=1

γmκ1(tm, γ
′)k2(tm)ρ−tm/2,

giving the bound∣∣∣∣ 1

2π

∫ π

−π
e−i(j−ζ)θw̃(θ) dθ

∣∣∣∣
≤

M∑
m=1

γm

{
α1tm

tm(tm − 1)
+

5

2π
κ1(tm, γ

′)k2(tm)

}
ρ−(tm+1)/2, (3.16)

since ρ ≥ 1. The interval containing such j values contains at most 5 + 2
√
ρ integers.

For |j − ζ| ≥ 1 + d√ρe, integrating twice by parts, it follows that

1

2π

∫ π

−π
e−i(j−ζ)θw̃(θ) dθ = − 1

2π(j − ζ)2

∫ π

−π
e−i(j−ζ)θw̃′′(θ) dθ.

10



The right hand side can be bounded as in (3.4), but with an additional element of

1

2π(j − ζ)2

M∑
m=1

∫
θ0<|θ|≤π

|w̃′′m(θ)| dθ

≤ 16

π(j − ζ)2

M∑
m=1

γmκ1(tm, γ
′)ρθtm+1

0 e−ρθ
2
0

≤ 16

π(j − ζ)2

M∑
m=1

γmκ1(tm, γ
′) k3(tm)ρ−(tm−1)/2, (3.17)

from (3.11), with k3(t) := {(t + 1)/2e}(t+1)/2. As a result, we find that, for |j − ζ| ≥
1 + d√ρe, the second element of (3.13) can be bounded by∣∣∣∣ 1

2π

∫ π

−π
e−i(j−ζ)θw̃(θ) dθ

∣∣∣∣
≤ 1

(j − ζ)2

M∑
m=1

γm

{
β′(tm, γ

′) +
16

π
κ1(tm, γ

′) k3(tm)
}
ρ−(tm−1)/2. (3.18)

The final step is to write

‖µ− ν‖ ≤
∑
|j|≤ρ

|µ{j} − ν{j}|+ (|µ|+ |ν|){[−ρ, ρ]c},

and to note that, if µ is a probability measure and ν(Z) = 1, then

|µ|{[a, b]c} = 1− µ{[a, b]} ≤ |1− ν{[a, b]}|+ |ν{[a, b]} − µ{[a, b]}|

≤ |ν|{[a, b]c}+
b∑

j=a

|µ{j} − ν{j}|.

Remark. The interval [−ρ, ρ] could be replaced by an interval [−kρ, kρ], for any
fixed k ≥ 1, in the statement of the theorem, at the expense of multiplying the remaining
bounds by the factor k.

4. Applying the bounds

Let Rλ, λ ≥ 0, be a family of probability distributions on the integers. Assume
that, for Zλ ∼ Rλ, µ(λ) := EZλ and σ2(λ) := VarZλ exist, and are both uniformly
continuous functions of λ, with σ2(λ) strictly increasing from zero to infinity with λ.
Suppose also that the characteristic function rλ of Rλ can be written in the form rλ(θ) =
exp{iζλθ − uλ(θ)}, with u′λ(0) = 0, and that

h(λ) := inf
0<|θ|≤π

(
−θ−2<{uλ(θ)}

)
> 0. (4.19)

Then |rλ(θ)| ≤ e−h(λ)θ2 for 0 ≤ |θ| ≤ π, and so Rλ can play the role of R in Theorem 2.2,
with h(λ) for ρ. This leads to the following result.

Corollary 4.1. Let X be an integer valued random variable with distribution PX and
characteristic function φX := ψrλ, where rλ is as above and h(λ) ≥ 1. Then, if (2.5) is

satisfied for ψ̃r, as defined in (2.4), for some r ∈ N0, ã1, . . . , ãr ∈ R and δ ≥ 0, then,
11



writing t = r + δ, we have

1. sup
j∈Z
|PX{j} − νr{j}| ≤ α1tKrδh(λ)−(t+1)/2;

2. sup
a≤b∈Z

|PX{[a, b]} − νr{[a, b]}| ≤ α2tKrδh(λ)−t/2,

with α1t and α2t as in Proposition 2.1, and with νr = νr(Rλ; ã1, . . . , ãr) as defined

in (2.6). Furthermore, if r ≥ 2 and ψ − ψ̃r and uλ are both twice differentiable, and if

|ψ′′(θ)− ψ̃′′r (θ)| ≤ K̃rδ|θ|t−2 and |u′′λ(θ)| ≤ γ′h(λ) for all |θ| ≤ π, (4.20)

for constants K̃rδ and γ′, then

3. ‖PX − νr‖ ≤ α′K̃rδh(λ)−t/2,

for α′ := α′(t, γ′) as in Proposition 3.3.

Remark. Taking ψµ = 0 and ψν = (eiθ − 1)l in Proposition 3.3 for l ≥ 2 gives
|d′′µν(θ)| ≤ l(l + 1)|θ|l−2 and d′µν(0) = 0. Hence the contribution from the l-th term in

the signed measure νr of (2.6) has total variation norm at most α′l(l+ 1)|ãl|h(λ)−l/2, for
2 ≤ l ≤ r.

The use of signed measures to approximate probability distributions is convenient,
but not very natural. However, the signed measures ν1(Rλ; ã1) and ν2(Rλ; ã1, ã2) can
be replaced by suitably translated members of the family {Rλ, λ > 0}, with the same
asymptotic rate of approximation, by fitting the first two moments, a procedure analogous
to that used in the Berry–Esseen theorem. The signed measure ν2 has mean and variance
given by

µ∗ = µ(λ) + ã1; σ2
∗ = σ2(λ) + 2ã2 + ã1(1− ã1), (4.21)

and the corresponding equations for ν1 just have ã2 = 0. However, when matching these
moments, only integer translations m of Rλ can be allowed, since the distributions must
remain on the integers, and so it is not possible to match both moments exactly within
the family. To circumvent this, we extend to approximation by a member of the family
of probability distributions Qmp(Rλ′), for λ′ > 0, m ∈ Z and 0 ≤ p < 1, where

Qmp(Rλ′){j} := pRλ′{j −m− 1}+ (1− p)Rλ′{j −m}. (4.22)

If Z ∼ Rλ′ , then Qmp(Rλ′) is the distribution of Z+m+I, where I ∼ Be (p) is independent
of Z. Qmp(Rλ′) has characteristic function qmp(Rλ′) given by

qmp(Rλ′)(θ) := eimθ(1 + p(eiθ − 1))rλ′(θ), (4.23)

similar to the measure ν2{Rλ′ ;m+p,
(
m
2

)
+mp}, but with terms of higher order as powers

of (eiθ − 1) as well.
Within the family {Qmp(Rλ′); λ

′ > 0,m ∈ Z, 0 ≤ p < 1}, we can always find a member
having a given mean µ∗ and variance σ2

∗, provided that σ2
∗ ≥ 1/4, by solving the equations

µ∗ = µ(λ′) +m+ p; σ2
∗ = σ2(λ′) + p(1− p). (4.24)

To do so, let λp solve σ2(λp) = σ2
∗ − p(1 − p), possible for 0 ≤ p ≤ 1, since σ2

∗ ≥ 1/4
and the function σ2 has an inverse; note also that λ0 = λ1. Define mp := µ∗ − µ(λp)− p,
continuous under the assumptions on µ, and observe that m0 = m1 + 1. Hence the
value m = bm0c is realized in the form mp for some 0 ≤ p < 1, and then λp, mp and p
satisfy (4.24).
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We now show that Qmp(Rλ′) and νr = νr(Rλ; ã1, . . . , ãr) are close to order O{(h(λ)∨
1)−3/2}, under some assumptions on the family Rλ. We assume that µ and the inverse
function (σ2)−1 are both uniformly continuous, and that, for any λ, λ′ > 0,

dλ,λ′(θ) :=
rλ′(θ)

rλ(θ)
−
{

1 + b1(eiθ − 1) + b2(eiθ − 1)2
}

satisfies

dλ,λ′(0) = d′λ,λ′(0) = 0; |d′′λ,λ′(θ)| ≤ γ(|λ− λ′|)|θ| in |θ| ≤ π,

where, from moment considerations,

b1 := b1(λ, λ′) := µ(λ′)− µ(λ);

b2 := b2(λ, λ′) := 1
2
{σ2(λ′)− σ2(λ)− b1(1− b1)}.

If this is the case, then the choices of λ′,m, p in (4.24) when µ∗ and σ2
∗ are given by (4.21)

are such as to give

ã1 = b1 +m+ p; ã2 = b2 + (m+ p)b1 +mp+

(
m

2

)
,

so that Qmp(Rλ′) and νr = νr(Rλ; ã1, . . . , ãr) have the same mean and variance; what is
more, m, |λ′ − λ|, |µ(λ′)− µ(λ)| and |σ2(λ′)− σ2(λ)| are uniformly bounded for (ã1, ã2)
in any compact set. It thus follows, with this choice of λ′,m, p, that qmp(Rλ′)(θ) can be
written as rλ(θ)ψλ,λ′(θ), with

ψλ,λ′(θ) = {dλ,λ′(θ) + [1 + b1(eiθ − 1) + b2(eiθ − 1)2]}eiθm(1 + p(eiθ − 1)), (4.25)

and with

d̂(θ) := [1 + b1(eiθ − 1) + b2(eiθ − 1)2]eiθm(1 + p(eiθ − 1))− ψ̃r(θ) (4.26)

satisfying

d̂(0) = d̂′(0) = 0; |d̂′′(θ)| ≤ γ̂|θ|, in |θ| ≤ π, (4.27)

where γ̂ = γ̂(ã1, . . . , ãr) remains bounded if ã1, . . . , ãr do. In view of (4.25) – (4.27), the

difference ψλ,λ′− ψ̃r satisfies (4.20) for a constant K̃rδ = K̃rδ(ã1, . . . , ãr), whose definition
depends on the family Rλ, and hence, from Corollary 4.1, we have

‖Qmp(Rλ′)− νr(Rλ; ã1, . . . , ãr)‖ ≤ α′K̃rδh(λ)−3/2. (4.28)

This implies the following result.

Corollary 4.2. Under the above conditions on the family {Rλ, λ > 0}, if X has charac-
teristic function φX = ψ(θ)rλ and if (2.5) is satisfied with r ≥ 2 and δ > 0, then, for λ′,
m and p solving (4.24) and for t′ := min{3, r+ δ}, we have translated Rλ-approximation
of the form

1. dloc(PX , Qmp(Rλ′)) ≤ γ′1h(λ)−(t′+1)/2;

2. dK(PX , Qmp(Rλ′)) ≤ γ′2h(λ)−t
′/2,

for suitable choice of γ′1, γ
′
2. Furthermore, if (4.20) holds, then

3. ‖PX −Qmp(Rλ′)‖ ≤ γ′3h(λ)−t
′/2,

for suitable choice of γ′3. For given family {Rλ, λ > 0}, the constants γ′l, l = 1, 2, 3, are
bounded for (ã1, . . . , ãr) in compact sets.
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Suppose that, instead of (2.5), we are given an approximation to ψ by a Taylor expan-
sion ψr around θ = 0:

|ψ(θ)− ψr(θ)| ≤ Krδ|θ|r+δ, |θ| ≤ π, (4.29)

for some 0 < δ ≤ 1, where

ψr(θ) :=
r∑
l=0

al(iθ)
l, (4.30)

for real coefficients al (and with a0 = 1) and some r ∈ N0. Then, equating coefficients
of iθ, it follows that

|ψr(θ)− ψ̃r(θ)| ≤ Gr|θ|r+1, |θ| ≤ π, (4.31)

for Gr := Gr(a1, . . . , ar), if ã1, . . . , ãr are defined implicitly by

aj :=

j∑
l=1

ãl
∑

(s1,...,sl)∈Sj−l

l∏
t=1

1

(st + 1)!
, (4.32)

where Sm :=
{

(s1, . . . , sl) :
∑l

t=1 st = m
}

. Hence we can replace (2.5) by (4.29) in the

assumptions of the theorems, if, in the conclusions, Krδ is replaced by Krδ + π1−δGr.

5. Poisson–Charlier expansions

The most common family of distributions in applications is the Poisson family, with
Rλ = Po (λ) and rλ = pλ. Here, as observed in Section 2, the bound (2.3) is satisfied with
ρ = 2π−2λ, so that Theorem 2.2 can be applied to approximate the distribution PX of a
random variable X whose characteristic function φX has the form ψpλ, if (2.5) holds for
some r and ã1, . . . , ãr. The signed measures νr on N0 have the explicit representation

νr{j} := νr(Po (λ); ã1, . . . , ãr){j} := Po (λ){j}
{

1 +
r∑
l=1

(−1)lãlCl(j;λ)
}
, (5.1)

where

Cl(j;λ) :=
l∑

k=0

(−1)k
(
l

k

)(
j

k

)
k!λ−k (5.2)

denotes the l-th Charlier polynomial (Chihara 1978, (1.9), p. 171).
Note that, if

(
j
k

)
is replaced by jk/k! in (5.2), one obtains the binomial expansion of

(1 − j/λ)l. As this suggests, the values of Cl(j;λ) are in fact small for j near λ if λ is
large:

|Cl(j;λ)| ≤ 2l−1{|1− j/λ|l + (l/
√
λ)l} (5.3)

(Barbour & Čekanavičius 2002, Lemma 6.1). (5.3) thus implies that, in any interval of

the form |j − λ| ≤ c
√
λ, which is where the probability mass of Po (λ) is mostly to be

found, the correction to the Poisson measure Po (λ) is of uniform relative order O(λ−l/2).
Indeed, the Chernoff inequalities for Z ∼ Po (λ) can be expressed in the form

max{P[Z > λ(1 + δ)],P[Z < λ(1− δ)]}
≤ exp{−λδ2/2(1 + δ/3)} ≤ exp{−λδ2/3(δ ∨ 1)}, (5.4)

(Chung & Lu 2006, Theorem 3.2). Since also, from (5.2),

|Cl(j;λ)| ≤ (1 + j/λ)l ≤ 2l if 0 ≤ j ≤ λ,
14



and since (
j

k

)
k!λ−k

e−λλj

j!
=

e−λλj−k

(j − k)!
≤ e−λλj−l

(j − l)!
if 0 ≤ k ≤ l and j ≥ l + λ, it follows that, for any l ≥ 0, we have

m∑
j=0

|Cl(j;λ)|Po (λ){j} ≤ 2lP[Z ≤ m] ≤ 2l exp{−(λ−m)2/3λ}

for m ≤ λ, and, for l ≤ r and m ≥ λ+ r,∑
j≥m

|Cl(j;λ)|Po (λ){j} ≤ 2lP[Z ≥ m− l] ≤ 2lP[Z ≥ m− r]

≤ 2l
{

exp{−(m− r − λ)2/3λ} ∨ exp{−(m− r − λ)/3}
}
.

It thus follows that

|νr|{[0,m]} ≤ Ār e
−(λ−m)2/3λ, 0 ≤ m ≤ λ;

|νr|{[m,∞)} ≤ Ār
{
e−(m−r−λ)2/3λ ∨ e−(m−r−λ)/3

}
, m ≥ λ+ r, (5.5)

where Ār := 1 +
∑r

l=1 2l|ãl|, demonstrating concentration of measure for νr on a scale

of
√
λ around λ. Moreover, it can be deduced from (5.3) that there exists a positive

constant d = d(ã1, . . . , ãr) such that νr{j} ≥ 0 for |j − λ| ≤ dλ, and it follows from (5.5)
that |νr|{j : |j − λ| > dλ} = O(e−αλ) for some α > 0. Since also νr{N0} = 1, it thus
follows that, even if νr is formally a signed measure, it differs from a probability only on
a set of measure exponentially small with λ.

If (2.5) holds, Theorem 2.2 enables one to deduce simple bounds for dloc(PX , νr) and
dK(PX , νr). For the total variation norm, with judicious choice of m1 and m2, we can use
part 1 of Theorem 2.2 to bound

m2−1∑
j=m1+1

|PX{j} − νr{j}| ≤ (m2 −m1 − 1) sup
j∈N0

|PX{j} − νr{j}|, (5.6)

and then (5.5) and part 2 to take care of the remaining tail probabilities:∑
j≤m1

|PX{j}−νr{j}| ≤ PX{(−∞,m1]}+ |νr|{[0,m1]}

≤ sup
l∈N0

|PX{(−∞, l]} − νr{[0, l]}|+ 2|νr|{[0,m1]},
(5.7)

and ∑
j≥m2

|PX{j}−νr{j}| ≤ PX{[m2,∞)}+ |νr|{[m2,∞)}

≤ sup
l∈N0

|PX{(−∞, l]} − νr{[0, l]}|+ 2|νr|{[m2,∞)}.
(5.8)

This gives the following theorem.

Theorem 5.1. Suppose that X is as above, having characteristic function φX := ψpλ, and
that (2.5) holds; write t = r+δ as before. If λ ≥ 1, there is a constant α4t = α4t(ã0, . . . , ãr)
such that

‖PX − νr‖ ≤ α4tKrδ(λ ∨ 1)−t/2 max
{

1,
√
| logKrδ|,

√
log(λ+ 1)

}
; (5.9)
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if λ < 1, then there is a constant α5t = α5t(ã0, . . . , ãr) such that

‖PX − νr‖ ≤ α5tKrδλ
−t/2 max

{
1, | logKrδ|

}
. (5.10)

Proof. For λ ≥ 1, we use both parts of (5.5), with

m1 := bλ− crλ
√
λ log(λ+ 1)c and m2 := dλ+ r + crλ

√
λ log(λ+ 1)e,

where bxc ≤ x ≤ dxe denote the integers closest to x, and with

crλ := 3{(r + 1)/2 + | logKrδ|/ log(λ+ 1)}.

If r + crλ
√
λ log(λ+ 1) ≤ λ, we obtain

|νr|{[m1,m2]c} ≤ 2Ār(λ+ 1)−c
2
rλ/3 ≤ 2Ār(λ+ 1)−crλ/3,

since crλ ≥ 1, and, if r + crλ
√
λ log(λ+ 1) > λ, we get

|νr|{[m1,m2]c} ≤ 2Ār exp{−crλ
√
λ log(λ+ 1)/3} ≤ 2Ār(λ+ 1)−crλ/3,

since λ ≥ log(λ+ 1) in λ ≥ 0. Hence, in either case, from the definition of crλ, we have

|νr|{[m1,m2]c} ≤ 2ĀrKrδ(λ+ 1)−(r+1)/2. (5.11)

Hence, from Theorem 2.2 and (5.6)–(5.8), it follows that

‖PX − νr‖ ≤
{

2crλ
√
λ log (λ+ 1) + r + 2

}
α′1tKrδλ

−(t+1)/2

+ 2α′2tKrδλ
−t/2 + 4ĀrKrδλ

−(r+1)/2,

with

α′1t := α1t(π
2/2)(t+1)/2; α′2t := α2t(π

2/2)t/2, (5.12)

so that

‖PX − νr‖ ≤ β3tKrδλ
−t/2
√

log(λ+ 1) max

{
1,
| logKrδ|

log(λ+ 1)

}
,

with β3t := α′1t{4r + 11}+ 2α′2t + 4Ār.
For λ < 1, we take m2 :=

⌈
2 + r + 3| logKrδ|

⌉
in (5.5), giving

|νr|{[m2,∞)} ≤ ĀrKrδ,

and then, from Theorem 2.2, (5.6) and (5.8), it follows that

‖PX − νr‖ ≤ (r + 3 + 3| logKrδ|)α′1tKrδ + 2α′2tKrδ + 2ĀrKrδ,

so that

‖PX − νr‖ ≤ β′3tKrδ max
{

1, | log(Krδ|
}
,

with β′3t := α′1t{r + 6}+ 2α′2t + 2Ār.

Sometimes it is convenient, for simplicity, to use parameters in the expansions that are
not those emerging naturally from the proofs. The following theorem shows that such
alterations can easily be allowed for.
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Theorem 5.2. Suppose that

φµ := pλA; φν(1) := pλA
′; φν(2) := pλ′A,

with A(θ) := 1+
∑r

l=1 alθ
l, A′(θ) := 1+

∑r
l=1 a

′
lθ
l and with λ > λ′. Then, with ρ := 2π−2λ,

ρ′ := 2π−2λ′ and a0 := 1,

dloc(µ, ν
(1)) ≤

r∑
l=1

α1l|al − a′l|(ρ ∨ 1)−(l+1)/2;

dK(µ, ν(1)) ≤
r∑
l=1

α2l|al − a′l|(ρ ∨ 1)−l/2;

dloc(µ, ν
(2)) ≤ (λ− λ′)

r+1∑
l=1

α1l|al−1|(ρ′ ∨ 1)−(l+1)/2;

dK(µ, ν(2)) ≤ (λ− λ′)
r+1∑
l=1

α2l|al−1|(ρ′ ∨ 1)−l/2.

Proof. For the comparison between µ and ν(1), we have

|A(θ)− A′(θ)| ≤
r∑
l=1

|al − a′l| |θ|l, 0 < |θ| ≤ π,

and Proposition 2.1 completes the proof. For that between µ and ν(2), note that pλ =
pλ−λ′pλ′ , and that, for λ > λ′ and 0 < |θ| ≤ π,

|pλ−λ′(θ)− 1| |A(θ)| ≤ (λ− λ′)|θ|

{
1 +

r∑
l=1

|al||θ|l
}
,

from which and Proposition 2.1 the remaining results follow.

6. Poisson approximation

The measures νr used in the approximations of the previous section are very explicit.
However, approximation in terms of a Poisson distribution is more convenient, if possible.
Clearly, if (2.5) holds for any r = r∗, δ = δ∗, then it holds with r = 0 and ψ0(θ) = 1
for all θ, with the exponent r + δ replaced by δ0 = δ∗ if r∗ = 0 and by δ0 = 1 if
r∗ ≥ 1, with K0δ0 depending on r∗, Kr∗δ∗ and ã1, . . . , ãr∗ . Theorem 2.2 then gives
approximation by Po (λ) with accuracy in Kolmogorov distance of order O(λ−t0/2), for
t0 = min{1, r∗ + δ∗}.

However, if r∗ ≥ 1, one can also write

ψ(θ)pλ(θ) = ψ̂(θ)pλ′(θ),

for any λ′ > 0, where

ψ̂(θ) := ψ(θ) exp{(λ− λ′)(eiθ − 1)}.
Taking λ′ − λ = ã1 now gives a bound

|ψ̂(θ)− 1| ≤ K1δ1|θ|t1 , 0 ≤ |θ| ≤ π,

of the form (2.5), with δ1 = min{r∗ + δ∗ − 1, 1}, t1 = 1 + δ1 and with K1δ1 depending
on r∗, Kr∗ and ã1, . . . , ãr∗ . Hence, Theorem 2.2 implies the following approximation.
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Corollary 6.1. If X has characteristic function φX = ψpλ such that (2.5) is satisfied
with r ≥ 1 and 0 < δ ≤ 1, then we have

1. dloc(PX ,Po (λ′)) ≤ α1t′K1,t′−1(ρ′ ∨ 1)−(t′+1)/2;

2. dK(PX ,Po (λ′)) ≤ α2t′K1,t′−1(ρ′ ∨ 1)−t
′/2,

where λ′ = λ + ã1, t′ := min{2, r + δ} and ρ′ = 2π−2λ′, for a suitable constant K1,t′−1

depending on r, Krδ and ã1, . . . , ãr.

The parameter λ′ is chosen to make the Poisson mean λ′ equal to the mean λ+ a1 of X.
This choice of the Poisson parameter improves the rate, in the asymptotic sense that, if
a1, . . . , ar and Krδ remain bounded but λ→∞, and if r+ δ ≥ 2, then the approximation
error for Kolmogorov distance is of order O(λ−1), as opposed to the rate of order O(λ−1/2)
in general obtained when approximating by Po (λ).

Analogously, fitting the second moment as well (if it is finite) can lead to asymptotically
sharper approximation within the translated Poisson family. The corresponding result has
already been proved in Corollary 4.2 under the more general assumptions of Section 3,
which the Poisson family satisfies. If X has characteristic function φX = ψpλ such
that (2.5) is satisfied with r ≥ 2 and 0 < δ ≤ 1, then the first two moments ofQmp(Po (λ′))
match those of X if

λ′ +m+ p = λ+ ã1; λ′ + p(1− p) = λ+ 2ã2 + ã1(1− ã1).

λ′,m and p are found as prescribed following (4.24), giving

m = bã2
1 − 2ã2c; p2 = 〈ã2

1 − 2ã2〉;
λ′ = λ+ 2ã2 + ã1(1− ã1)− p(1− p), (6.1)

where 〈x〉 denotes the fractional part of x. Corollary 4.2 now yields the following result.

Corollary 6.2. If X has characteristic function φX = ψpλ such that (2.5) is satisfied
with r ≥ 2 and 0 < δ ≤ 1, then for λ′, m amd p given in (6.1) and for t′ := min{3, r+δ},
we have translated Poisson approximation:

1. dloc(PX , Qmp(Po (λ′))) ≤ γ′1(λ ∨ 1)−(t′+1)/2;

2. dK(PX , Qmp(Po (λ′))) ≤ γ′2(λ ∨ 1)−t
′/2,

and, if (4.20) holds, then

3. ‖PX −Qmp(Po (λ′))‖ ≤ γ′3(λ ∨ 1)−t
′/2,

for constants γ′l = γ′l(ã1, . . . , ãr), l = 1, 2, 3, that are bounded for (ã1, . . . , ãr) in compact
sets.

In particular, if a1, . . . , ar and Krδ remain bounded but λ → ∞, and if r + δ ≥ 3, then
t′ = 3 and the order of approximation in Kolmogorov distance is of order O(λ−3/2).

7. Compound Poisson approximation

The theory of Section 3 can also be applied when the distributions Rλ come from
a compound Poisson family. For λ > 0 and for µ a probability distribution on Z, let
CP (λ, µ) denote the distribution of the sum Y :=

∑
j∈Z\{0} jZj, where Zj, j 6= 0, are

independent, and Zj ∼ Po (λµj). Then, if µ1 > 0, the characteristic function of Y is
of the form Rλ := ζλpλ1 , where ζλ is the characteristic function of

∑
j∈Z\{0,1} jZj and

λ1 = λµ1. Thus, for the purposes of applying Corollaries 4.1 and 4.2, ρ can be taken
18



to be 2π−2µ1λ. Corollary 4.2, for instance, then gives conditions under which translated
compound Poisson distribution can be achieved, with approximation at rate O(λ−3/2).

These considerations apply as long as µ1 > 0, and could also be invoked if µ−1 >
0. If µ1 = µ−1 = 0, there is then no factor of the form pλ to guarantee that, for
some ρ > 0, the characteristic function φY of Y (corresponding to the characteristic
function χ of Proposition 2.1) satisfies |φY (θ)| ≤ exp{−ρθ2} for all |θ| ≤ π. Some
additional aperiodicity condition needs to be satisfied, if the family {CP (λ, µ), λ ≥ 1}
is to satisfy (4.19). Indeed, if Y = 2Z where Z ∼ Po (λ), and if W ∼ Be (1/2) is
independent of Y , it is not true that the distribution of Y + W is close to that of Y in
total variation, even though |φY+W (θ)− φY (θ)| ≤ K0|θ| |φY (θ)|.

8. Applications

8.1. Sums of independent random variables. Let X1, . . . , Xn be independent integer
valued random variables, and let Sn denote their sum. In contexts in which a central limit
approximation to the distribution of Sn would be appropriate, the classical Edgeworth
expansion (see, e.g., Petrov 1975, Chapter 5) is unwieldy, because Sn is confined to
the integers. As an alternative, Barbour and Čekanavičius (2002, Theorem 5.1) give a
Poisson–Charlier expansion, for Sn ‘centred’ so that its mean and variance are almost
equal, with an error bound expressed in the total variation norm. Here, we show that an
error bound for their expansion of the same order can be established by the techniques
of this paper, but with respect to the less stringent Kolmogorov distance.

Assume that each of the Xj has finite (r + 1 + δ)’th moment, with r ≥ 1, and define

A(r)(w) := 1 +
∑
l≥2

ã
(r)
l wl = exp

{
r+1∑
l=2

κlw
l

l!

}
, (8.1)

where κl := κl(Sn) and κl(X) denotes the l’th factorial cumulant of the random vari-
able X. Then the approximation that we establish is to the Poisson–Charlier signed
measure νr with

νr{j} := Po (λ){j}

{
1 +

Lr∑
l=2

(−1)lã
(r)
l Cl(j;λ)

}
, (8.2)

where Lr := max{1, 3(r − 1)}, and where λ := ESn; νr has characteristic function

φνr := pλ(θ) Ã
(r)(θ), (8.3)

where

Ã(r)(θ) := 1 +
Lr∑
l=2

ã
(r)
l (eiθ − 1)l. (8.4)

We need two further quantities involving the Xj:

K(n) :=
∣∣∣ n∑
j=1

κ2(Xj)
∣∣∣ = |VarSn − ESn|, (8.5)

and

pj := 1− 1
2
‖L(Xj)− L(Xj + 1)‖. (8.6)
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Theorem 8.1. Suppose that there are constants Kl, 1 ≤ l ≤ r+ 1, such that, for each j,

|κl(Xj)| ≤ Kl, 2 ≤ l ≤ r + 1; E|Xj|r+1+δ ≤ Kr+1+δ
1 .

Suppose also that pj ≥ p0 > 0 for all j, and that λ ≥ nλ0. Then

dK(L(Sn), νr) ≤ G(K1, . . . , Kr+1, K
(n), p−1

0 , λ−1
0 )n−(r−1+δ)/2,

for a function G that is bounded on compact sets.

Remark. For asymptotics in n, with triangular arrays of variables, the error is of
order O(n−(r−1+δ)/2) when λ0 and p0 are bounded away from zero, and K1, . . . , Kr+1

and K(n) remain bounded. The requirements on λ0 and p0 can often be achieved by
grouping the random variables appropriately, though attention then has to be paid to the
consequent changes in the Kl. The final condition can always be satisfied with K(n) ≤ 1,
by replacing the Xj by translates, where necessary. For more discussion, we refer to
Barbour and Čekanavičius (2002). The above conditions are designed to cover sums
of independent random variables, each of which has non-trivial variance, has uniformly
bounded (r + 1 + δ)’th moment, and whose distribution overlaps with its unit translate.

Proof. We check the conditions of Proposition 3.1. First, in view of (8.6), we can write

E
(
eiθXj

)
= 1

2
pj(e

iθ + 1)φ1j(θ) + (1− pj)φ2j(θ),

where both φ1j and φ2j are characteristic functions. Hence we have∣∣E(eiθXj)∣∣ ≤ 1− pj + pj cos(θ/2) ≤ 1− pjθ2/4π, 0 ≤ |θ| ≤ π.

Hence φµ(θ) := E
(
eiθSn

)
satisfies

|φµ(θ)| ≤ exp{−np0θ
2/4π}, 0 ≤ |θ| ≤ π. (8.7)

On the other hand, from the additivity of the factorial cumulants, we have

|κl(Sn)| ≤ nKl, 3 ≤ l ≤ r + 1,

with |κ2(Sn)| ≤ K(n) from (8.5). From (8.1), we thus deduce the bound |ã(r)
l | ≤ cln

bl/3c,
for cl = cl(K

(n), K3, . . . , Kr+1), l ≥ 1. Hence

|φνr(θ)| ≤ exp{−2nλ0θ
2/π2}c′nbLr/3c ≤ exp{−nλ0θ

2/π2}c′′, (8.8)

for c′′ = c′′(K(n), K3, . . . , Kr+1). Combining (8.7) and (8.8), we can thus take η :=

Ce−nρ
′θ20 in Proposition 3.1, for

ρ′ = min{λ0/π
2, p0/4π}

and a suitable C = C(K(n), K3, . . . , Kr+1). The choice of θ0 we postpone for now.

For |θ| ≤ θ0, we take χ(θ) := pλ(θ), and check the approximation of

φµ(θ) exp{−λ(eiθ − 1)} = E
{

(1 + w)Sn
}
e−wESn

by Ã(r)(θ) as a polynomial in w := eiθ − 1. We begin with the inequality∣∣∣(1 + w)s −
r+1∑
l=0

wl

l!
s(l)

∣∣∣ ≤ |s(r+2)|
(r + 2)!

|w|r+2 ∧ 2
|s(r+1)|
(r + 1)!

|w|r+1

≤
|s(r+1)|
(r + 2)!

|w|r+1+δ{|s|+ r + 1}δ{2(r + 2)}1−δ,
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derived using Taylor’s expansion, true for any s ∈ Z and 0 < δ ≤ 1, where s(l) :=
s(s− 1) . . . (s− l + 1). Hence, for each j, we have∣∣∣E{(1 + w)Xj

}
−

r+1∑
l=0

E{(Xj)(l)}
l!

wl
∣∣∣ ≤ cr,δ|θ|r+1+δ(K1 +Kr+1+δ

1 ), (8.9)

for a universal constant cr,δ. Then, writing

Q
(s)
r+1(w;X) := exp

{
r+1∑
l=s

κl(X)wl/l!

}
,

and using the differentiation formula in Petrov (1975, p. 170), we have∣∣∣Q(1)
r+1(w;Xj)−

r+1∑
l=0

E{(Xj)(l)}
l!

wl
∣∣∣

≤ |θ|r+2

(r + 2)!
sup
|θ′|≤θ0

∣∣∣ dr+2

dzr+2
Q

(1)
r+1(z;Xj)

∣∣∣
z=eiθ′−1

≤ |θ|r+2c(K1, . . . , Kr+1), (8.10)

for a suitable function c and for all |θ| ≤ π. Combining these estimates, we deduce that,
for w = eiθ − 1 and for all |θ| ≤ π,∣∣∣E{(1 + w)Xj

}
e−EXjw −Q(2)

r+1(w;Xj)
∣∣∣ ≤ k1|θ|r+1+δ, (8.11)

where k1 = k1(K1, . . . , Kr+1).

Now a standard inequality shows that, for uj :=
∏j

l=1 xl
∏n

l=j+1 yl, for complex xl, yl
with yl 6= 0 and |xl/yl − 1| ≤ εl, then

|un − u0| ≤ |u0|

{
n−1∏
s=1

(1 + εs)

}
n∑
l=1

εl. (8.12)

Taking xj := E
{

(1 + w)Xj
}
e−EXjw and yj := Q

(2)
r+1(w;Xj), (8.11) shows that we can take

εl := ε := k1|θ|r+1+δeE for each l, with

E := exp{
r+1∑
l=2

Kl/l!},

provided that |θ| ≤ θ0 ≤ 1. For r ≥ 2, choosing θ0 := n−1/3 then ensures that (1 + ε)n is
suitably bounded, and (8.12) yields∣∣∣E{(1 + w)Sn

}
e−wESn −Q(2)

r+1(w;Sn)
∣∣∣ ≤ k2n|θ|r+1+δ, (8.13)

for k2 = k2(K(n), K1, . . . , Kr+1), since

|u0| := |Q(2)
r+1(w;Sn)| ≤ exp{|κ2(Sn)|θ2

0/2} exp

{
r+1∑
l=3

nKlθ
l
0/l!

}
is bounded for θ0 = n−1/3, in view of (8.5). For r = 1, |u0| is uniformly bounded if θ0 ≤ 1,
and the choice θ0 = n−1/(2+δ) ensures that (1 + ε)n remains bounded.
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The remaining step is to note that, for w := eiθ − 1, Ã(r)(θ) contains all terms up to

the power wLr in the power series expansion of Q
(2)
r+1(w;Sn), giving∣∣∣Q(2)

r+1(w;Sn)− Ã(r)(θ)
∣∣∣ ≤ |θ|Lr+1

(Lr + 1)!
sup
|θ′|≤|θ|

∣∣∣ dLr+1

dzLr+1
Q

(2)
r+1(z;Sn)

∣∣∣
z=eiθ′−1

. (8.14)

Now |κ2(Sn)| is bounded by K(n), and, for l ≥ 3, each κl(Sn), for which we have only the

weak bound nKl, occurs associated with the power wl in the exponent of Q
(2)
r+1(w;Sn).

Writing
ds

dzs
Q

(2)
r+1(z;Sn) = Ps(n, z)Q

(2)
r+1(z;Sn),

the monomials that make up Ps(n, z) thus have coefficients of magnitude nl associated
with powers zm with m ≥ (2l − (s − l))+ = (3l − s)+, so that they are themselves of
magnitude at most O(nl−(3l−s)+/3) = O(ns/3) in |θ′| ≤ n−1/3. Taking s = Lr + 1 and
r ≥ 2, m = 0 requires that l ≤ r − 1, and l ≥ r entails m ≥ 2, so that, for r ≥ 2 and
|θ| ≤ θ0,

sup
|θ′|≤|θ|

∣∣∣ dLr+1

dzLr+1
Q

(2)
r+1(z;Sn)

∣∣∣
z=eiθ′−1

≤ k3n
r−1(1 + n|θ|2),

with k3 = k3(K(n), K1, . . . , Kr+1). If |θ| ≥ n−1/2, it follows that the bound in (8.14) is at
most 2k3{(Lr +1)!}−1nr|θ|3r; if |θ| ≤ n−1/2, the bound is at most 2k3{(Lr +1)!}−1n|θ|r+2.
Combining this with (8.13), we have established that for |θ| ≤ n−1/3 and r ≥ 2, we have

|φµ(θ) exp{−λ(eiθ − 1)} − Ã(r)(θ)| ≤ k4n|θ|r+1+δ(1 + (n|θ|2)r−1), (8.15)

where k4 = k4(K(n), K1, . . . , Kr+1). This gives

γ1 = nk4, t1 = r + 1 + δ, γ2 = nrk4, t2 = 3r − 1 + δ

M = 2, ρ = 2λ/π2, ε = 0 and θ0 = n−1/3

in Proposition 3.1, together with η = Ce−n
1/3ρ′ from the bounds (8.7) and (8.8). Applying

Corollary 3.2, and using the tail properties of the Poisson–Charlier measures (5.5), the
theorem follows for r ≥ 2.

For r = 1, the bound in (8.14) is easily of order |θ|2, giving a bound in (8.15) of
k′4(n|θ|2+δ + |θ|2). This leads to the choices

γ1 = nk′4, t1 = 2 + δ, γ2 = k′4, t2 = 2d

M = 2, ρ = 2λ/π2, ε = 0 and θ0 = n−1/(2+δ)

in Proposition 3.1, together with η = Ce−n
δ/(2+δ)ρ′ , and the remainder of the proof is as

before.

Remark. A total variation bound for the error, of the slightly larger orderO
(
n−(r−1+δ)/2

√
log n

)
,

can also be deduced from Corollary 3.2, by taking a = bλ − k
√
λ log λc and b = dλ +

k
√
λ log λe, for suitable choice of k = kr.

8.2. Analytic combinatorial schemes. An extremely interesting range of applications
is to be found in the paper of Hwang (1999). His conditions are motivated by examples
from combinatorics, in which generating functions are natural tools. He works in an
asymptotic setting, assuming that Xn is a random variable whose probability generating
function Rn is of the form

Rn(z) = zh(g(z) + εn(z))eλ(z−1),
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where h is a non-negative integer, and both g and εn are analytic in a closed disc of radius
η > 1. As n→∞, he assumes that λ→∞ and that supz:|z|≤η |εn(z)| ≤ Kλ−1, uniformly
in n. He then proves a number of results describing the accuracy of the approximation
of PXn−h by Po (λ+ g′(1)).

Under his conditions, it is immediate that we can write

g(z) =
∑
j≥0

gj(z − 1)j and εn(z) =
∑
j≥0

εnj(z − 1)j (8.16)

for |z| < η − 1, with

|gj| ≤ kg(η − 1)−j and |εnj| ≤ λ−1kε(η − 1)−j (8.17)

for all j ≥ 0. Hence X := Xn − h has characteristic function of the form ψ(n)pλ, where

ψ(n)(θ) = g(eiθ) + εn(eiθ),

and hence, for any r ∈ N0,

|ψ(n)(θ)− ψ̃(n)
r (θ)| ≤ Kr1|θ|r+1, |θ| ≤ (η − 1)/2, (8.18)

with ψ̃
(n)
r defined as in (2.4), taking ã

(n)
j = gj + εnj; note that the constant Kr1 can

indeed be taken to be uniform for all n. Since also g and εn are both uniformly bounded

on the unit circle, and since ψ̃
(n)
r is bounded (uniformly in n) for |θ| ≤ π, it is clear

that (8.18) can be extended to all |θ| ≤ π, albeit with a different uniform constant K ′r1,
so that (2.5) holds with δ = 1 for any r ∈ N0. Thus Corollary 4.1 (with Rλ = Po (λ) and
h(λ) = 2λ/π2) and Theorem 5.1 can be applied with any choice of r, giving progressively
more accurate approximations to PXn−h, as far as the λ-order is concerned, in terms of
progressively more complicated perturbations of the Poisson distribution. These theorems
are thus applicable to all the examples that Hwang considers, including the numbers of
components (counted in various ways) in a wide class of logarithmic assemblies, multisets
and selections.

For instance, Corollary 6.2 gives an approximation to PXn−h by the mixtureQmp(Po (λ′))
with

m := bmn − vnc; p2 := 〈mn − vn〉; λ′ := λ+ vn − p(1− p),

where mn := g′n(1), vn := g′′n(1) + g′n(1)−{g′n(1)}2 and gn := g+ εn. Hwang’s approxima-
tion by Po (λ+ g′(1)) has asymptotically the same mean as ours (and as that of Xn−h),
but a variance asymptotically differing by κ := g′′(1) − {g′(1)}2. As a consequence,
Hwang’s approximation has an error of larger asymptotic order, in which the quantity κ
appears; for instance, for Kolmogorov distance, his Theorem 1 gives an error of order
O(λ−1), whereas that from Corollary 6.2 is of order O(λ−3/2).

Although our Poisson expansion theorems are automatically applicable under Hwang’s
conditions, they also apply to examples that do not satisfy his conditions: the simple
example at the end of Section 2 is one such. Conversely, Hwang’s Theorem 2, which
establishes Poisson approximation in the lower tail with good relative accuracy, cannot
be proved using only our conditions; the conclusion would not be true, for instance, in
the example just mentioned.

Note also that Hwang examines problems from combinatorial settings in which approx-
imation is not by Poisson distributions: he has examples concerning the Bessel family of
distributions,

B(λ){j} := L(λ)−1 λj

j!(j − 1)!
, j ∈ N,
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for the appropriate choice of normalizing constant L(λ). This family also satisfies the
conditions for Rλ of Section 3, and we could apply Corollary 4.2 to obtain slightly sharper
approximations than his within the translated Bessel family, or Corollary 4.1 to obtain
asymptotically more accurate expansions.

8.3. Prime divisors. The numbers of prime divisors of a positive integer n, counted
either with (Ω(n)) or without (ω(n)) multiplicity, can also be treated by these methods,
since excellent information is available about their generating functions. For our pur-
poses, we use only the shortest expansion, taken from Tenenbaum (1995, Theorems II.6.1
and 6.2). One finds that, for Nn uniformly distributed on {1, 2, . . . , n}, the characteristic
functions of the we have

E{eiθω(Nn)} = plog logn(θ)
{

Φ1(eiθ − 1) + η1(θ)
}

;

E{eiθΩ(Nn)} = plog logn(θ)
{

Φ2(eiθ − 1) + η2(θ)
}
,

where |ηs(θ)| ≤ Cs/ log n, s = 1, 2, for some constants C1 and C2, and

Φ1(w) :=
1

Γ(1 + w)

∏
q

(
1 +

w

q

)(
1− 1

q

)w
;

Φ2(w) :=
1

Γ(1 + w)

∏
q

(
1− w

q − 1

)−1 (
1− 1

q

)w
,

q running here over prime numbers. These expansions were established and used by
Rényi and Turán (1958) in their proof of the Erdős–Kac Theorem, but they are also
sketched by Selberg (1954). We refer to Kowalski and Nikeghbali (2009) for the structural
interpretation of the two factors in these functions, with 1/Γ(1 +w) being related to the
number of cycles of large random permutations.

Let ãls, s = 1, 2, denote the Taylor coefficients of the functions Φs(w) as power series
in w (around w = 0, which corresponds to θ = 0). By analyticity near 0, it follows that,
for any r, we have∣∣∣∣∣Φs(w)− 1−

r∑
l=1

ãlsw
l

∣∣∣∣∣ ≤ Crs|w|r+1;

∣∣∣∣∣Φ′′s(w)−
r∑
l=2

ãlsl(l − 1)wl−2

∣∣∣∣∣ ≤ C ′rs|w|r−1,

for suitable constants Crs, C
′
rs and for |w| ≤ 2. In order to approximate the distributions

Pω(Nn) and PΩ(Nn), we define the measures ν
(s)
r by

ν(s)
r {j} := Po (log log n){j}

(
1 +

r∑
l=1

(−1)lãlsCl(j; log log n)
)
,

and invoke Propositions 3.1 and 3.4 together with (3.5); this leads to the following con-
clusion, which refines the Erdős–Kac theorem.
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Theorem 8.2. For the measures ν
(s)
r defined above, we have

dloc(Pω(Nn), ν
(1)
r ) ≤ α′1,r+1Cr1(log log n)−1−r/2 + α̃1C1/ log n;

‖Pω(Nn) − ν(1)
r ‖ ≤ 2α′(r + 1, π2/2)C ′r1

(
1 +

2

r

)
(log log n)−(r+1)/2

+ C̃1 log log n/ log n;

dloc(PΩ(Nn), ν
(2)
r ) ≤ α′1,r+1Cr2(log log n)−1−r/2 + α̃1C2/ log n;

‖PΩ(Nn) − ν(2)
r ‖ ≤ 2α′(r + 1, π2/2)C ′r2

(
1 +

2

r

)
(log log n)−(r+1)/2

+ C̃2 log log n/ log n,

for suitable constants C̃1 and C̃2, and with α′1l as defined in (5.12).

Remark. As far as we know, total variation approximation was first considered in
this context by Harper (2009), who proved a bound with error of size 1/(log log n) (for a

truncated version of ω(n), counting only prime divisors of size up to n1/(3(log logn)2)), and
deduced explicit bounds in Kolmogorov distance.

To indicate what this means in concrete terms for number theory readers, consider the
case of ω(n) for r = 1. Taylor expansion gives

Φ1(w) = 1 +B1w +O(w2)

as w → 0, where B1 ≈ 0.26149721 is the Mertens constant, i.e., the real number such
that ∑

q≤x
q prime

1

q
= log log x+B1 + o(1),

as x→ +∞. An application of Theorem 8.2 gives∣∣∣ 1
n
|{k ≤ n | ω(n) ∈ A}| − ν(1)

1 {A}
∣∣∣ ≤ 1

2
‖Pω(Nn) − ν(1)

1 ‖

= O
( 1

log log n

)
,

for any set A of positive integers, where

ν
(1)
1 {j} = Po (log log n){j}

(
1−B1

{
1− j

log log n

})
.

Higher expansions could be computed in much the same way.
Alternatively, a more accurate approximation is available from Corollary 6.2, while

staying within the realm of (translated) Poisson distributions. For this, we compute the
expansion of Φ1 to order 2, obtaining (after some calculations) that

Φ1(w) = 1 + ã1w + ã2w
2 +O(w3), as w → 0,

where

ã1 := B1; ã2 :=
B2

1

2
− π2

12
− 1

2

∑
q prime

1

q2

(use 1/Γ(1 + w) = 1 + γw + (γ2/2− π2/12)w2 +O(w3), as well as the Mertens identity

γ +
∑
q prime

(1

q
+ log

(
1− 1

q

))
= B1,

and expand every term in the Euler product). This corresponds to (2.5), since w = eiθ−1.
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We can then apply Corollary 6.2 to get the translated Poisson approximationQmp(Po (λ′)),
with parameters calculated using (6.1). With

x := ã2
1 − 2ã2 =

π2

6
+
∑
q prime

1

q2
≈ 2.0971815,

this gives

p =
√
〈x〉 ≈ 0.31173945; m = 2;

λ′ = log log n+B1 − x− p(1− p) ≈ log log n− 2.0502422.

Thus, for any positive integer n and any set A of positive integers, we have∣∣∣ 1
n
|{k ≤ n | ω(n) ∈ A}| − {pPo (λ′){A− 3}+ (1− p)Po (λ′){A− 2}}

∣∣∣
= O

( 1

(log log n)3/2

)
.

Similar results hold for Ω(n), where one obtains the following approximate values for the
quantities p,m, λ′:

p ≈ 0.5195; m = 0; λ′ ≈ log log n+ 0.5152.
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