
AVERAGES OF EULER PRODUCTS, DISTRIBUTION OF

SINGULAR SERIES AND THE UBIQUITY OF POISSON

DISTRIBUTION

EMMANUEL KOWALSKI

Abstract. We discuss in some detail the general problem of computing aver-

ages of convergent Euler products, and apply this to examples arising from sin-
gular series for the k-tuple conjecture and more general problems of polynomial

representation of primes. We show that the “singular series” for the k-tuple

conjecture have a limiting distribution when taken over k-tuples with (distinct)
entries of growing size. We also give conditional arguments that would imply

that the number of twin primes (or more general polynomial prime patterns)

in suitable short intervals are asymptotically Poisson distributed.

1. Introduction

Euler products over primes are ubiquitous in analytic number theory, going back
to Euler’s proof that there are infinitely many prime numbers based on the behavior
of the zeta function ζ(s) as s→ 1. As defining L-functions of various types, Euler
products are particularly important, and their properties remain very mysterious.
In this paper, we consider the issue of the average or statistical behavior of another
important class of Euler products, the so-called singular series, arising in counting
problems for certain “patterns” of primes (singular series also occur in many prob-
lems of additive number theory or diophantine geometry, but we do not consider
these here).

The first type of prime patterns are the prime k-tuples, which are the subject
of a famous conjecture of Hardy and Littlewood. Let k > 1 be an integer and let
h = (h1, . . . , hk) be a k-tuple of integers with hi > 1 for all i. Let then

π(N ;h) = |{n 6 N | n+ hi is prime for 1 6 i 6 k}|

be the counting function for primes represented by this k-tuple; note that, for
instance, h = (1, 3) leads to the function counting twin primes up to N .

For any prime number p, let νp(h) denote the cardinality of the set

{h1, . . . , hk} (mod p)

of the reductions of the hi modulo p. Note that 1 6 νp(h) 6 min(k, p) for all p,
and that if we assume (as we now do) that the hi’s are distinct, then νp(h) = k for
all sufficiently large p.
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The singular series associated with h is defined as the Euler product

(1.1) S(h) =
∏
p

(
1− νp(h)

p

)(
1− 1

p

)−k
=
∏
p

(
1− νp(h)− 1

p− 1

)(
1− 1

p

)1−k

which is absolutely convergent (as will be checked again later; here and throughout
the paper, as usual, p is restricted to prime numbers).

The significance of this value is found in the Hardy-Littlewood prime k-tuple
conjecture (originally stated in [HL]), which states that we should have

(1.2) π(N ;h) = S(h)
N

(logN)k
(1 + o(1)), as N → +∞,

and in particular, if S(h) 6= 0, there should be infinitely many integers n such
that n+ h1, . . . , n+ hk are simultaneously prime. Of course, if k > 2, this is still
completely open, but let us mention that from sieve methods, it follows that

π(N ;h) 6 2kk!(1 + o(1))S(h)
N

(logN)k

as N → +∞ (see, e.g., [IK, Th. 6.7] or [HR, Ch. 4, Th. 5.3]), showing that the
singular series does arise naturally. Also some other previously inaccessible additive
problems with primes, related to counting arithmetic progressions (of fixed length)
of primes are currently being attacked with striking success by B. Green and T.
Tao (see [GT]).

More generally, one considers polynomial prime patterns. First, a finite family
f = (f1, . . . , fm) of polynomials in Z[X] of degrees deg(fj) > 1 is said to be
primitive if the fj are distinct, and each fj is irreducible, has positive leading
coefficient, and the gcd of its coefficients is 1.

If f is primitive, we say that an integer n > 1 is an f -prime seed if f1(n), . . . ,
fm(n) are all (positive) primes. Then we denote by

π(N ;f) = |{n 6 N | n is an f -prime seed}|
for N > 1 the counting function for those prime seeds. Moreover, let

peg(f) =

m∏
j=1

deg(fj).

A generalization of the k-tuple conjecture, due to Bateman and Horn [BH],1

states that

(1.3) π(N ;f) ∼ 1

peg(f)
S(f)

N

(logN)m
, as N → +∞,

if S(f) 6= 0, where2

(1.4) S(f) =
∏
p

(
1− νp(f)

p

)(
1− 1

p

)−m
,

with νp(f) being now the number of x ∈ Z/pZ such that fj(x) = 0 for some j,
1 6 j 6 m.

1 The qualitative version of which is due to Schinzel [S].
2 Here, except in the special case where all fj are linear, the singular series S(f) is not

absolutely convergent (see below for more details on this; the problem is that νp(f) is only equal
to m on average over p, and not for all p large enough, except if each fj is linear); the product is

thus defined as the limit of partial products over primes p 6 y.
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The Hardy-Littlewood conjecture for a k-tuple h is equivalent with this conjec-
ture for the primitive family

f = (X + h1, . . . , X + hk)

for which νp(h) as defined previously does coincide with νp(f).

Our goal is to study various averages of singular series, for which there is un-
doubted arithmetic interest. A result of Gallagher [Ga] states that

(1.5) lim
h→+∞

1

hk

∑∗

|h|6h

S(h) = 1,

for any fixed k, as h→ +∞, where |h| = maxhi and
∑∗

restricts to k-tuples with

distinct components. This property was used by Gallagher himself to understand
the behavior of primes in short intervals (see also the recent work by Montgomery
and Soundararajan [MS]), and it is also important the remarkable results of Gold-
ston, Pintz and Yıldırım concerning small gaps between primes (see [GPY] or the
survey [K1]).

Our first question is to ask about finer aspects of the distribution of S(h). To
apply the method of moments, we first prove the following:

Theorem 1.1. Let k > 1 be fixed. For any complex number m ∈ C with Re(m) > 0,
there exists a complex number µk(m) such that

lim
h→+∞

1

hk

∑∗

|h|6h

S(h)m = µk(m).

Moreover, for m, k > 1 both integers, we have the symmetry property

(1.6) µk(m) = µm(k) ;

in addition, we have µ1(m) = 1 for all integers m > 1, and hence µk(1) = 1 for all
k > 1.

The last statement (µk(1) = 1) is of course Gallagher’s theorem (1.5); our proof
is not intrinsically different, but maybe more enlightening. These results are in fact
quite straightforward, and only the final symmetry in k and m is maybe surprising.
However, its origin is not particularly mysterious: it is a “local” phenomenon, and
it can be guessed from (1.2) by a formal computation.

We will also find estimates for the size of the moments which are good enough
to imply the existence of a limiting distribution of S(h) for k-tuples (k fixed):

Theorem 1.2. Let k > 1 be fixed. There exists a probability law νk on R+ =
[0,+∞[ such that S(h), for h with |h| 6 h and h → +∞, becomes equidistributed
with respect to νk, or equivalently

lim
h→+∞

1

hk

∑∗

|h|6h

f(S(h)) =

∫
R+

f(t)dνk(t)

for any bounded continuous function on R.

The second question we explore is the generalization to other prime patterns
of the result of Gallagher (based on (1.5)) that shows that a uniform version of
the prime k-tuple conjecture implies that for a fixed λ > 0, the distribution of
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π(x+ λ log x)− π(x) is close to a Poisson distribution of parameter λ as x→ +∞,
i.e., it implies that

(1.7)
1

N
|{n 6 N | π(n+ h)− π(n) = m}| → e−λ

λm

m!
, as N → +∞,

for any integer m > 0. It turns out that, indeed, under a general uniform version of
the Bateman-Horn conjecture, for any fixed primitive family f , the number of f -
prime seeds in short intervals of “fair” length (i.e., intervals around n in which (1.3)
predicts that, on average, there should be a fixed number of f -prime seeds) always
follows a Poisson distribution. As for the symmetry property of the higher moments
for the singular series related to k-tuple conjecture, this turns out to depend primar-
ily on local identities, but we found this rigidity of patterns to be quite surprising
at first sight. Precisely:

Theorem 1.3. Assume that the Bateman-Horn conjecture holds uniformly for all
primitive families with non-zero singular series, in the sense that

(1.8) π(N ;f) =
1

peg(f)
S(f)

N

(logN)m

(
1 +O

( c(f)ε

logN

))
holds for all primitive families f , all ε > 0, and all N > 2, where

c(f) =
∑

16j6m

H(fj), H(a0 + a1X + · · ·+ adX
d) = max

i
|ai|,

and the implied constant depends at most on the degrees of the elements of f and
on ε.

Let f be a fixed primitive family with S(f) 6= 0. For N > 1, let

δ(N,f) =
peg(f)

S(f)
(logN)m.

Then for any λ > 0 and any integer r > 0, we have

lim
N→+∞

1

N
|{n 6 N | π(n+ λδ(N,f);f)− π(n;f) = r}| = e−λ

λr

r!
.

In other words, for N large, the number of f -prime seeds in an interval around
N > 1 of length λ(logN)m is asymptotically distributed like a Poisson random
variable with mean given by S(f) peg(f)−1λ.

The final purpose of this paper is to emphasize the fact that Theorems 1.1 and 1.3
are special cases of the problem of computing the average of some families of values
of Euler products, and (because here the Euler products are absolutely convergent
or almost so) the outcome is consistent with the heuristic that the p-factors are
independent random variables, so the average of the Euler product is the product
of “local” averages. All this is a fairly common theme in analytic number theory,
but our presentation is maybe more systematic than usual. The works of Granville-
Soundararajan [GS] and Cogdell-Michel [CM] also present this point of view very
successfully for values of certain families of L-functions at the edge of the critical
strip, and Y. Lamzouri [La] has developed this type of ideas in a quite general
context. Although this is not really relevant from the point of view of singular
series, we just mention that Euler products built of local averages still make sense
inside the critical strip for many families of L-functions, and are closely related to
their distribution (as one can see, e.g., from the work of Bohr and Jessen [BJ] for
the Riemann zeta function). On the critical line, “renormalized” Euler products
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still occur in the moment conjectures for L-functions (see, e.g., [KS]), although
other factors (conjecturally linked to Random Matrices) also appear.

In the next section, we state in probabilistic terms a general result on averages
of random Euler products. Then we use it to prove Theorem 1.1 and Theorem 1.2
in Sections 3 and 4. In Section 5, we prove Theorem 1.3.

Notation. As usual, |X| denotes the cardinality of a set. By f � g for x ∈ X,
or f = O(g) for x ∈ X, where X is an arbitrary set on which f is defined, we mean
synonymously that there exists a constant C > 0 such that |f(x)| 6 Cg(x) for all
x ∈ X. The “implied constant” is any admissible value of C. It may depend on
the set X which is always specified or clear in context. On the other hand, f ∼ g
as x→ x0 means f/g → 1 as x→ x0.

We use standard probabilistic terminology: a probability space (Ω,Σ,P ) is a
triple made of a set Ω with a σ-algebra and a measure P on Σ with P (Ω) = 1. A
random variable is a measurable function Ω→ R (or Ω→ C), and the expectation
E(X) on Ω is the integral of X with respect to P when defined. The law of X is
the measure ν on R (or C) defined by ν(A) = P (X ∈ A). If A ⊂ Ω, then 1A is
the characteristic function of A.

For k-tuples h = (h1, . . . , hk), we recall that |h| = max(|hi|). When different
values of k can occur, we sometimes write |h|k to indicate the number of components
of h, in particular a sum such as ∑

|h|k6h

a(h)

is a sum over k-tuples (of positive integers) with components 6 h.

2. A probabilistic statement

We assume given a probability space (Ω,Σ,P ), and two sequences of random
variables

Xp, Yp : Ω→ C

which are indexed by prime numbers.
We assume that (Yp) is an independent sequence; recall that this means that

P (Yp1 ∈ A1, . . . , Ypk ∈ Ak) =
∏

16i6k

P (Ypi ∈ Ai)

for all choices of finitely many distinct primes p1, . . . , pk, and all measurable sets
Ai ⊂ C, and that a consequence is that (when the expectation makes sense), we
have

E(Yp1 · · ·Ypk) = E(Yp1) · · ·E(Ypk).

We now extend the family to all integers by denoting

Xq =
∏
p|q

Xp, Yq =
∏
p|q

Yp,

for any squarefree integer q > 1, and Xq = Yq = 0 if q > 1 is not squarefree.
We will consider the behavior of the random Euler products

ZX =
∏
p

(1 +Xp), ZY =
∏
p

(1 + Yp)

and in particular their expectations E(ZX) and E(ZY ).
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For this purpose, we assume that the products converge absolutely (almost
surely). More precisely, expand formally∏

p

(1 +Xp) =
∑[

q>1

Xq,

where
∑[

restricts the sum to squarefree numbers. Then we assume that

(2.1)
∑[

q>x

|Xq| 6 RX(x)

where RX(x) is an integrable non-negative random variable such that RX(x) → 0
almost surely as x → +∞. It then follows that ZX is almost surely an absolutely
convergent infinite product.

We moreover assume that the product

(2.2)
∏
p

(1 + |E(Yp)|)

converges (absolutely). By independence of the (Yp), we know that

|E(Yq)| =
∣∣∣E(∏

p|q

Yp

)∣∣∣ =
∏
p|q

|E(Yp)|

and so expanding again in series, we obtain that

(2.3)
∑[

q>1

|E(Yq)| =
∑[

q>1

∏
p|q

|E(Yp)| =
∏
p

(1 + |E(Yp)|) < +∞.

Our goal is to show that if (Xp) is distributed “more or less” like (Yp), but
without being independent, the expectation of ZX is close to∏

p

(1 + E(Yp)).

In particular, we will typically have (Xp) depend on another parameter (say h),
in such a way that Xp,h converges in law to Yp (which will remain fixed) when
h→ +∞, and this will lead to the relation

lim
h→+∞

E
(∏
p

(1 +Xp,h)
)

=
∏
p

(1 + E(Yp))

in a number of situations. We interpret this as saying that (when applicable) the
average of the Euler product ZX is obtained “as if” the factors were independent,
and taking the product of the local averages 1 + E(Yp) of the “model” random
variables defining ZY .

Here is the precise (and almost tautological) “finitary” statement from which
applications will be derived.

Proposition 2.1. Let (Xp), (Yp) be as above. Then for any choice of the auxiliary
parameter x > 0, we have

E(ZX) =
∏
p

(1 + E(Yp)) +O
(
E(RX(x)) +

∑[

q6x

|E(Xq − Yq)|+
∑[

q>x

|E(Yq)|
)
,

where the implied constant is absolute, and in fact has modulus at most 1.
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Proof. This more or less proves itself: for any x > 1, write first∏
p

(1 +Xp) =
∑[

q>1

Xq =
∑[

q6x

Xq +
∑[

q>x

Xq,

then use (2.1) to estimate the second term, and take the expectation, which leads
to

E(ZX) =
∑
q6x

E(Xq) +O(E(RX(x))).

Next, we insert Yq by writing Xq = Yq + (Xq − Yq), getting

E(ZX) =
∑[

q6x

E(Yq) +
∑[

q6x

E(Xq − Yq) +O(E(RX(x)))

and then use∑[

q6x

E(Yq) =
∑[

q>1

E(Yq) +O
(∑[

q>x

|E(Yq)|
)

=
∏
p

(1 + E(Yp)) +O
(∑[

q>x

|E(Yq)|
)
,

to conclude the proof. �

Remark 2.2. Observe that by (2.3), the last term in the remainder tends to zero as
x→ +∞. Moreover, if RX(x) is dominated by an integrable function as x→ +∞,
the assumption that RX(x)→ 0 almost surely implies that the first term also tends
to zero. Thus to conclude in practical applications, one needs to control the middle
term.

In terms of the “extra” parameter h mentioned before the statement of the
proposition, we may typically hope for uniform estimates for E(RX(x)), in terms
of h, say

E(RX(x))� hαx−β , α, β > 0;

if we also have a bound of the type

(2.4) E(Xq) = E(Yq) +O(qγh−δ), γ, δ > 0,

(or if this holds on average over q < x, which may often be easier to prove, as is
the case for the error term in the prime number theorem, as shows the Bombieri-
Vinogradov theorem), this leads to a remainder term which is

� hαx−β + x1+γh−δ + ε(x)

with ε(x)→ 0 as x→ +∞, uniformly in h. Then we can conclude that

(2.5) lim
h→+∞

E(ZX) =
∏
p

(1 + E(Yp))

by choosing x suitably as a function of h, provided we have

α

β
<

δ

γ + 1
.

We will see this in action concretely in the next sections. Notice that if α can be
chosen arbitrarily small (i.e., RX(x) is bounded almost uniformly in terms of h),
then this condition can be met.
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Remark 2.3. If we assume, instead of (2.2), that the product of 1 + E(|Yp|) con-
verges, which is stronger, it follows that

∑
|Yp| < +∞ almost surely (its expecta-

tion being finite), and hence the infinite product defining ZY converges absolutely
almost surely. Also, since we have

E
(∏
p6P

(1 + Yp)
)

=
∏
p6P

(1 + E(Yp))

for all P , we would obtain

E(ZY ) =
∏
p

(1 + E(Yp)).

provided ZY converges dominatedly, for instance. This formula is also valid if
Yp > 0, by the monotone convergence theorem. It provides an interpretation of the
right-hand side of (2.5).

3. Moments of singular series for the k-tuple conjecture

In this section, we prove Theorem 1.1, which includes in particular Gallagher’s
theorem, in a way which may seem somewhat complicated but which clarifies the
result.

We first assume an integer k > 1 to be fixed. We rewrite (1.1) as

S(h) =
∏
p

(
1 +

pk − νp(h)pk−1 − (p− 1)k

(p− 1)k

)
.

It is therefore natural to define

a(p, ν) =
pk − νpk−1 − (p− 1)k

(p− 1)k

for all primes p and real numbers ν, 0 < ν 6 p (omitting the dependency on k).
We then define am(p, ν), for m ∈ C with Re(m) > 0, by requiring that

1 + am(p, ν) = (1 + a(p, ν))m,

with the convention 0m = 0 if Re(m) = 0; the condition ν 6 p implies that
1 + a(p, ν) > 0, so this is well-defined indeed. (If we assume ν < p, we may extend
this to all m ∈ C).

We first need a technical lemma.

Lemma 3.1. For m ∈ C with Re(m) > 0, write m+ = 0 if Re(m) < 1, and
m+ = m− 1 otherwise. For all p prime and ν with 1 6 ν 6 min(p, k), we have

am(p, k)� |m|
p2

(
1 +O

( 1

p2

))m+

,(3.1)

am(p, ν)� |m|
p

(
1 +O

(1

p

))m+

, if 1 6 ν < k,(3.2)

where the implied constants depend only on k.

Proof. Notice first that, in the stated range, we have

a(p, k)� p−2,

a(p, ν)� p−1, if 1 6 ν < k,
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where the implied constants depend only on k, and then write

am(p, ν) = (1 + a(p, ν))m − 1 = ma(p, ν)

∫ 1

0

(1 + ta(p, ν))m−1dt

and estimate directly. �

We are now going to prove Theorem 1.1. Fix h > 1 (though h will tend to
infinity at the end). We first interpret the m-th moment of the singular series in
probabilistic terms, then introduce the source of its limiting value in the framework
of the previous section.

Consider the finite set (again, depending on k)

Ω1 = {h = (hi) | 1 6 hi 6 h, hi distinct},

with the normalized counting measure. Denoting h∗k = |Ω1|, notice that

(3.3) h∗k = hk(1 +O(h−1))

for h > 1, the implied constant depending only on k. We will denote by E1 and P 1

the expectation and probability for this discrete space. So we have, for instance,
that

P 1(νp = ν) =
1

h∗k
|{h ∈ Ω1 | νp(h) = ν}|.

Our goal is to find the limit as h→ +∞ of the average

1

h∗k

∑
|h|6h

hi distinct

S(h)m = E1(S(h)m)

(notice that, by (3.3), if the limit exists, it is also the limit of

1

hk

∑
|h|6h

hi distinct

S(h)m,

as h→ +∞).
We write Xp(h) = a(p, νp(h)) and Xp(m,h) = am(p, νp(h)), so that∏

p

(1 +Xp(m,h)) = S(h)m

by construction.
Now consider a second space

Ω2 =
∏
p

(Z/pZ)k

with the product measure of the probability counting measures on each factor. We
denote by ω = (hp)p the elements of Ω2. To avoid confusion with νp defined for
h ∈ Ω1, we introduce the random variables

ρp :

{
Ω2 → {1, . . . , k}
ω = (hp)p 7→ number of distinct hi in Z/pZ,

which satisfy 1 6 ρp 6 min(k, p).
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We can now define “random” singular series using Ω2, writing Yp = a(p, ρp) and
considering the Euler product ∏

p

(1 + Yp),

and similarly with Yp(m) = am(p, ρp) and∏
p

(1 + Yp(m)) =
(∏
p

(1 + Yp)
)m

.

We denote by P 2 and E2 the probability and expectation for this space. By con-
struction of Ω2, the random variables (ρp) are independent, and so are the (Yp), and
the (Yp(m)) for a given m. Note also that the components hp are equidistributed:
for any prime p and any a ∈ (Z/pZ)k, we have

(3.4) P 2(hp = a) =
1

pk
.

We now use Proposition 2.1 to compare the average E1(S(h)m) with∏
E2((1 + Yp)

m).

Although this proposition is phrased with a single probability space Ω on which
both Euler vectors are defined, this is not a serious issue and the statement remains
valid, provided the expectations are suitably subscripted and one writes∣∣∣E1(Xq(m))−E2(Yq(m))

∣∣∣
on the right-hand side instead of |E(Xq(m)− Yq(m))|.3

We start by estimating the tail R(x) = RX(m)(x) of the Euler product defining
S(h)m. In keeping with probabilistic conventions, we omit the argument h ∈ Ω1

in many places. Denoting

∆(h) =
∣∣∣∏
i<j

(hi − hj)
∣∣∣ > 1,

and noting that νp = k unless p | ∆, we have from Lemma 3.1 the bound

|Xp(m)| � |m|
(

1 +O
( (p,∆)

p2

))m+

(p,∆)p−2

for some C > 0 (depending only on k) and all h, m (with Re(m) > 0) and p, the
implied constant depending only on k (this justifies, in particular, the convergence
of the Euler product ZX for every h). Hence, taking the product over p | q for a
squarefree integer q, we get

|Xq(m)| 6 (|m|B)ω(q)(q,∆)q−2
∏
p|q

(
1 + C

(p,∆)

p2

)m+

3 We could also simply consider Ω = Ω1 ×Ω2 with the product measure, or equivalently (and

maybe more elegantly) assume that we start with some space Ω and two vectors (Xp), (Yp),
distributed according to the prescription of Ω1 and Ω2 respectively, i.e., with

P (Xp = a) =
1

h∗k
|{h ∈ Ω1 | a(p, νp(h)) = a}|,

P (Yp = a) =
1

pk
|{h ∈ (Z/pZ)k | a(p, ρp(h)) = a}|.
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for some constants B > 0 and C > 0 depending only on k. Since ∆ is bounded by

(3.5) |∆| 6 (2h)k
2

,

a standard computation with sums of multiplicative functions leads to∑[

q>x

|Xq(m)| � x−1(log 2hx)D

for x > 2 and some constant D > 0, depending on k and m.
The next step is to justify the analogue of the convergence of (2.2); more precisely,

we have

(3.6)
∏
p

(1 + E2(|Yp(m)|)) < +∞.

Indeed, Lemma 3.1 leads to

E2(|Yp(m)|)� p−2 + p−1P 2(ρp < k)� p−2

for p > 2, where the implied constant depends on k and m, since it is clear that we
have

(3.7) P 2(ρp < k) 6
k(k − 1)

2p

for all primes p and k > 1 (write that the event {ρp < k} is the union – not
necessarily disjoint – of the k(k− 1)/2 events hi = hj with i 6= j, each of which has
probability 1/p by uniform distribution (3.4)). By independence, we then also get

(3.8) E2(|Yq(m)|) 6 Aω(q)q−2.

for all squarefree integers q and some constant A > 1, which depends only on k and
m.

Finally, it remains to estimate E1(Xq(m))−E2(Yq(m)). We claim that, for any
a ∈ C, we have

(3.9) P 1(Xq(m) = a) =
(

1 +O
( q
h

))
P 2(Yq(m) = a) +O

(kω(q)

h

)
where the implied constants depend only on k. Assuming this, and noting that
Xq(m) and Yq(m) take the same finitely many values (at most kω(q) distinct values,
which are

� Fω(g)

q

where the implied constant and F depend on m and k), it follows that

E1(Xq(m)) =
(

1 +O
( q
h

))
E2(Yq(m)) +O

(Gω(q)

h

)
,

where G depends on m and k, leading in turn to∣∣∣E1(Xq(m))−E2(Yq(m))
∣∣∣� q

h
E2(|Yq(m)|) +

Gω(q)

h
� Eω(q)

h

(see (3.8)), where the implied constant depends only on k and m, as does E.
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Summing over q < x, it then follows from Proposition 2.1 that

1

h∗k

∑∗

h

S(h)m = E1

(∏
p

(1 +Xp(m))
)

=
∏
p

(1 + E2(Yp(m)))+

O
(
xh−1(log 2hx)B + x−1(log 2hx)D

)
for some B depending on k and m. Choosing for instance x = h1/2 leads to the
existence of the m-th moment of singular series, with limiting value given by
(3.10)

µk(m) =
∏
p

(1 + E2(Yp(m))) =
∏
p

(
1− 1

p

)−km{ 1

pk

∑
h∈(Z/pZ)k

(
1− ρp(h)

p

)m}
.

It only remains to prove (3.9). Note that this is clearly an expression of quanti-
tative equidistribution (or convergence in law) of Xq to Yq as h→ +∞.4

The proof is quite simple. First of all, given arbitrary integers sp with p | q, we
have

P 1(νp(h) = sp for p | q) =
1

h∗k

∑∗

νp(h)=sp for p|q
|h|6h

1

=
1

h∗k

∑
· · ·
∑

ρp(hp)=sp
hp∈(Z/pZ)k

∑∗

|h|6h
h≡hp (mod p|q)

1

(where there are as many outer sums in the last line as there are primes dividing
q, and the last sum involves summation conditions for all p | q). This inner sum is

(3.11)
∑∗

|h|6h
h≡hp (mod p|q)

1 =
∑
|h|6h

h≡hp (mod p|q)

1 +O(hk−1)

where the implied constant depends on k (i.e., we now forget the condition on h to
have distinct components). Lattice-point counting leads to∑

|h|6h
h≡hp (mod p|q)

1 =
hk

qk

(
1 +O

( q
h

))

where the implied constant depends again only on k. In view of the equidistribution
of hp for (hp)p ∈ Ω2, we therefore derive from the above the following quantitative
equidistribution result:

(3.12) P 1

(
νp(h) = sp for p | q

)
= P 2

(
ρp(hp) = sp for p | q

)(
1+O

( q
h

))
+O

( 1

h

)
.

Now to derive (3.9), we need only observe that Yq(m) and Xq(m) are “identical”
functions of ρp and νp respectively (for p | q). Hence (3.12) implies (3.9) by summing
over all possible values of (sp)p|q leading to a given a, using the fact that there are

at most kω(q) such values (the latter being a very rough estimate!).
It remains to prove the symmetry property (1.6) to finish the proof of The-

orem 1.1. We note in advance that since S(h) = 1 for all 1-tuple h, we have

4 It can also be interpreted as a form of “sieve axiom”.
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µ1(m) = 1 for all m > 1, and hence µk(1) = 1 for all k > 1, which is Gallagher’s
result (1.5).

The symmetry turns out to be true “locally”, i.e., the p-factor of the Euler
products (3.10) defining µk(m) and µm(k) coincide for all p and integers k, m > 1.

There are different ways to see this, and the following seems to encapsulate the
origin of the phenomenon. Given a finite set F (which will be Z/pZ), consider the
following obviously symmetric expression of m and k:

1

|F |m+k

∑∑
x∈Fm, h∈Fk

{xi}∩{hj}=∅

1

(which is the probability, for the normalized counting measure on F k+m, that a
pair of a k-tuple and an m-tuple, both of elements of F , do not contain a common
element). Then it can be interpreted either as

1

|F |m
m∑
τ=1

∑
x∈Fm

ρ(x)=τ

1

|F |k
∑
h∈Fk

{hj}∩{xi}=∅

1 =
1

|F |m
m∑
τ=1

∑
x∈Fm

ρ(x)=τ

(
1− τ

|F |

)k

=
1

|F |m
∑

x∈Fm

(
1− ρ(x)

|F |

)k
or (by the same computation with m and k reversed) as

1

|F |k
∑
h∈Fk

(
1− ρ(h)

|F |

)m
,

(using ρ(·) to denote the number of distinct elements in F of an m-tuple, then of a
k-tuple).

Applied with F = Z/pZ, up to the symmetric factor (1− 1/p)−km in (3.10), the
first is the p-factor for µm(k), and the second is the p-factor for µk(m), showing
that they are indeed equal.

Remark 3.2. Quantitatively, we have proved that∑∗

|h|6h

S(h)m = µk(m)h∗k +O(hk−1/2+ε),

for any ε > 0, where the implied constant depends on k and m. For m = 1,
Montgomery and Soundararajan [MS, (17), p. 593] have obtained a more refined
expansion with contributions of size hk−1 log h and hk−1, and error term of size
hk−3/2+ε.

Remark 3.3. The fact that µk(1) = 1 can be used to recover the combinatorial
identities used by Gallagher [Ga, p. 7–8] instead of the probabilistic phrasing
above. We review this for completeness: in order to prove µk(1) = 1, it suffices to
show that the average of a(p, ρp) is zero. We have

∑
h∈(Z/pZ)k

a(p, ρp(h)) =

p∑
ν=1

a(p, ν)|{h ∈ (Z/pZ)k | ρp(h) = ν}|
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and on the other hand, we have

|{h ∈ (Z/pZ)k | ρp(h) = ν}| =
(
p

ν

){
k

ν

}
,

where
{
k
ν

}
is the number of surjective maps from a set with k elements to one

with ν elements5; indeed, a k-tuple h with ν distinct values is the same as a map
{1, . . . , k} → Z/pZ with image of cardinality ν, i.e., the set of such tuples is the
disjoint union of those sets of surjective maps

{1, . . . , k} → I

over I ⊂ Z/pZ with order ν.
Therefore, Gallagher’s result follows from the identity

p∑
ν=1

a(p, ν)

(
p

ν

){
k

ν

}
= 0

which is proved in [Ga, p. 7], and which we have therefore reproved. Similarly, the
identities

p∑
ν=1

(
p

ν

){
k

ν

}
= pk,

p∑
ν=1

ν

(
p

ν

){
k

ν

}
= pk+1 − p(p− 1)k,

of [Ga, p. 8] can be derived from the proof that the p-factor for µk(1) is 1.

Remark 3.4. From (1.2), one can guess that µk(m) = µm(k) for m > 1 integer, by
computing∑

|h|6h

(∑
n6N

∏
16i6k

Λ(n+ hi)
)m

=
∑
|h|k6h

∑
|n|m6N

∏
16i6k
16j6m

Λ(nj + hi)

(where n is an m-tuple), which is a symmetric expression in n and h, except for
the ranges of summation, and which should be asymptotic to either µk(m)hkNm

or µm(k)hkNm by a uniform k-tuple conjecture. In fact, the computation we did
amounts to doing the same argument locally (i.e., looking on average over h at the
distribution of integers such that, for a fixed prime p, n + h1,. . . , n + hk are not
divisible by p).

This symmetry µk(m) = µm(k), despite the simplicity of its proof, is a very
strong property, as pointed out to us by A. Nikeghbali. Indeed, write Xk = ZY,k,
the random variable given by the random singular series. Since we have

µk(m) =

∫
R+

tmdνk(t) = E(Xm
k ),

the symmetry implies that the sequence (E(Xm
k ))k, for a fixed value of m, is the

sequence of moments of a probability distribution of [0,+∞[, which is a highly
non-trivial property. We refer to the survey [Si] of the classical theory surrounding
the “moment problems”, noting that from Theorem 1 of loc. cit. it follows that,
for any fixed m > 1, we have∑∑

06i6N
06j6N

αiᾱjµi+j(m) > 0,
∑∑
06i6N
06j6N

αiᾱjµi+j+1(m) > 0,

5 This is denoted σ(k, ν) in [Ga], and it is not the standard notation, which would write r!
{k
r

}
instead.
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for any N > 1 and any complex numbers (αi) ∈ CN − {0}.
It would be quite interesting to know what other types of natural sequences

of random variables (or probability distributions) satisfy the relation E(Xm
k ) =

E(Xk
m). One fairly general construction is as follows (this was pointed out by A.

Nikeghbali and P. Bourgade): just take Xn = Zn for Z a random variable such that
all moments of Z exist, or a bit more generally, take a sequence (Xn) of positive

random variables such that the X
1/n
n are identically distributed. But note that the

variables we encountered are not of this type.

Example 3.5. Let m = 2. We find (using the symmetry property) that the mean-
square of S(h) is given by

lim
h→+∞

1

hk

∑∗

|h|6h

S(h)2 = µk(2),

where

µk(2) =
∏
p

((
1− 1

p

)(
1− 2

p

)k
+

1

p

(
1− 1

p

)k)(
1− 1

p

)−2k

.

In particular, we find (using Pari/GP for instance):

µ2(2) = 2.300 . . . µ3(2) = 6.03294 . . .

µ4(2) = 17.562 . . . µ5(2) = 55.255 . . .

µ6(2) = 184.18 . . .

Note that the second (and higher) moments increase quickly with k (as proved
in Proposition 4.1 in the next section). This is explained intuitively by the fact
that S(h) is often zero: for instance, the 2-factor of S(h) is zero unless all hi are
of the same parity, which happens with probability 21−k only (see Example 4.3 for
a more precise estimate). For those, of course, the 2-factor is very large (equal to
2k−1).

4. Growth and distribution of moments of singular series

In this section, we will prove Theorem 1.2, using the methods of moments. For
this, we consider the problem (which has independent interest) of determining the
growth of µk(m). We look at the dependency on m for fixed k, or equivalently the
dependency on k for fixed m, by symmetry (as in Example 3.5). The result is that
the moments grow just a bit faster than exponentially.

Proposition 4.1. For any fixed k > 1, we have

logµk(m) = km log log 3m+O(m), for m > 1,

where the implied constant depends on k.

Proof. We use the formula (3.10), written in the form

µk(m) =
∏
p

(
1− 1

p

)−km
E2

((
1− ρp

p

)m)
.

We will prove first that

logµk(m) > km log log 3m+O(m),

for m > 1, with an implied constant depending on k, before proving the corre-
sponding upper bound.
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We start by checking that all terms in the Euler product are > 1, i.e., for all
primes p, all integers k and all real numbers m > 1, we have

(4.1) E2

((
1− ρp

p

)m)
>
(

1− 1

p

)mk
.

Indeed, by the symmetry between the p-factor for µk(1) and for µ1(k), we have(
1− 1

p

)k
= E2

(
1− ρp

p

)
,

while raising to the m-th power and applying Hölder’s inequality gives(
E2

(
1− ρp

p

))m
6 E2

((
1− ρp

p

)m)
.

From this we can bound µk(m) from below by any subproduct, and we look at

µ∗k(m) =
∏
p6m

(
1− 1

p

)−km
E2

((
1− ρp

p

)m)
.

The probability that ρp is 1 is clearly equal to p−(k−1) (there are only p k-tuples
with this property). Hence we have crude lower bounds

E2

((
1− ρp

p

)m)
>

1

pk−1

(
1− 1

p

)k
and

µk(m) > µ∗k(m) >
∏
p6m

(
1 +

1

p− 1

)k(m−1) 1

pk−1
.

The logarithm of this expression is easily bounded from below as follows:

logµk(m) > k(m− 1)
∑
p6m

log
(

1 +
1

p− 1

)
− (k − 1)

∑
p6m

log p

= km log log 3m+O(m),

for m > 2, the implied constant depending only on k, by standard estimates, and
we can incorporate trivially m = 1 also.

To prove the corresponding upper bound, we split the Euler product (3.10) into
two ranges: we write

µk(m) = µ
(1)
k (m)µ

(2)
k (m),

where µ
(1)
k (m) is the product over primes p < km (which includes the range used

for the lower bound), while µ
(2)
k (m) is the product over the other primes p > km.

We will show that

logµ
(1)
k (m) 6 km log log 3m+O(m), logµ

(2)
k (m)� m

log 2m
,

with implied constants depending on k, and this will conclude the proof.
We start with small primes, and simply bound the expectation of (1− ρ/p)m by

the trivial bound 1; this leads to

logµ
(1)
k (m) 6 −km

∑
p<km

log
(

1− 1

p

)
= km log log 3m+O(m),

where the implied constant depends on k, again by standard estimates.
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Next, we estimate µ
(2)
k (m) more carefully. The logarithm (say L(x)) of the

product restricted to km 6 p 6 x is given by

L(x) = −km
∑

km6p6x

log(1− p−1) +
∑

km6p6x

logE2

((
1− ρp

p

)m)
.

Using (3.7), we write first, for p > km, the upper bound

E2

((
1− ρp

p

)m)
6
(

1− k

p

)m
(1− P 2(ρp < k)) + P 2(ρp < k)

=
(

1− k

p

)m
+ P 2(ρp < k)

(
1−

(
1− k

p

)m)
6
(

1− k

p

)m
+
mk2(k − 1)

2p2

6 1− mk

p
+
m(m− 1)

2

k2

p2
+
mk2(k − 1)

2p2
,

= 1− mk

p
+
m2k2

2p2
+
mAk
2p2

(with Ak = k3 − 2k2) since

1−mx 6 (1− x)m 6 1−mx+
m(m− 1)

2
x2 for 0 6 x 6 1, m > 1.

Moreover, we have log(1− x) 6 −x− x2/2 for 0 6 x < 1, and hence after some
rearranging, we obtain

logE2

((
1− ρp

p

)m)
6 −mk

p
+
m2k2

2p2
+
mAk
2p2

− 1

2

(mk
p
− m2k2

2p2
− mAk

2p2

)2

= −mk
p

+
m3k2

p3
− m4k4

8p4
+
mAk
2p2

− m2kAk
2p3

− m2A2
k − 2m3k2Ak

8p4
,

the terms involving (m2k2)/(2p2) having cancelled out.
Summing over km 6 p 6 x, we can let x go to infinity in all but the first resulting

term since they define convergent series; bounding the tail by∑
p>km

1

pσ
� (km)1−σ(log 2km)−1,

leads to ∑
km6p6x

logE2

((
1− ρp

p

)m)
6 −km

∑
km6p6x

1

p
+O

( m

log 2m

)
for all m and x > km, where the implied constant depends on k. Finally,

logL(x) 6 −km
∑

km<p6x

(1

p
+ log

(
1− 1

p

))
+O

( m

log 2m

)
,

and since p−1 + log(1 − p−1) defines an absolutely convergent series with tail (for
p > y) decreasing like y−1(log y)−1, we obtain the desired bound for

logµ
(2)
k (m) = lim

x→+∞
L(x).

�
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The existence of a limiting distribution (Theorem 1.2) is an easy consequence of
this.

Corollary 4.2. Let k > 1 be a fixed integer. As h goes to infinity, the singular
series S(h) for h ∈ Ω1, i.e., such that |h| 6 h, converges in law to the random
singular series

ZY = ZY,k =
∏
p

(
1− 1

p

)−k(
1− ρp

p

)
on Ω2. In other words, there exists a probability law νk on [0,+∞[, which is the
law of ZY , such that S(h), for |h| 6 h, becomes equidistributed with respect to νk,
or equivalently

lim
h→+∞

1

hk

∑∗

|h|6h

f(S(h)) =

∫
R+

f(t)dνk(t)

for any bounded continuous function on R. Moreover we have

(4.2) µk(m) = E2(ZmY ) =

∫
R+

tmdνk(t).

Proof. First of all, using (3.10), the monotone and dominated convergence theorems
and (3.6) imply that we have

(4.3) µk(m) = E2(ZmY )

for all integers m > 1. Now a standard result of probability theory (the “method
of moments”) states that given a positive random variable X and a sequence of
positive random variables (Xn), such that E(Xm) < +∞, E(Xm

n ) < +∞ for all n
and m, the condition

lim
n→+∞

E(Xm
n ) = E(Xm)

for all m > 1 implies the convergence in law of Xn to X, if the moments E(Xm)
do not grow too fast (a sufficient, but not necessary condition). In fact, it is enough
that the power series ∑

m>0

im
E(Xm)

m!
tm

have a non-zero radius of convergence, which in our case holds (with X = ZY )
by the almost exponential upper bound for µk(m) in Proposition 4.1. Finally, the
formula (4.2) follows from (4.3). �

Example 4.3. As a corollary of Proposition 4.1 and symmetry, we have

logµk(2) = 2k log log 3k +O(k)

for k > 1.
Combined with the classical lower bound for non-vanishing arising from Cauchy’s

inequality, it follows that for every fixed k > 1, we have

lim inf
h→+∞

1

hk
|{h | |h| 6 h and S(h) 6= 0}| > µk(1)2

µk(2)
> exp(−(2k log log 3k +O(k))).
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This is close to the truth, as one can check by noting that we have in fact6

lim
h→+∞

1

hk
|{h | |h| 6 h and S(h) 6= 0}| = P 2(ZY,k 6= 0) =

∏
p6k

P 2(ρp < p)

using the almost sure absolute convergence of the random Euler product ZY,k. We
have the bounds

(p− 1)k

pk
6 P 2(ρp < p) 6

p(p− 1)k

pk

(since, for p 6 k, a k-tuple will have ρp < p only if it omits at least one value in
Z/pZ; the lower bound follows by looking at those omitting 0, for instance, and the
upper one is a union bound over the possible omitted values), from which we get

−k log log 3k +O(k) 6 logP 2(ZY,k 6= 0) 6 k − k log log 3k +O(k),

i.e., we have

P 2(ZY,k 6= 0) = exp(−k log log 3k +O(k)).

It follows from this that if we replace the space Ω1 of all k-tuples with distinct
entries by the much smaller one

Ω̃1 = {h ∈ Ω1 | S(h) 6= 0},

(which still depends on h, with cardinality h̃k), the singular series still has a limiting

distribution when interpreted as a random variable on Ω̃1 with h → +∞: indeed,
this is the distribution ν̃k given by

ν̃k(A) =
νk(A∩]0,+∞[)

νk(]0,+∞[)
,

since, for any integer m > 1, we have

1

h̃k

∑
h∈Ω̃1

S(h)m =
h∗k
h̃k

E1(S(h)m)→ µk(m)

P 2(ZY,k 6= 0)
=

∫
[0,+∞[

tmdν̃k(t),

as h→ +∞.
Of course, those moments do not satisfy the symmetry property enjoyed by

µk(m).

Remark 4.4. Before going on to the second part of this paper, the following question
seems natural: are there arithmetic consequences (possibly conditional, similarly to
Gallagher’s proof of (1.7)) of the existence of m-th moments of the singular series
for k-tuples?

5. Poisson distribution for general prime patterns

In this section, we prove Theorem 1.3, essentially by following Gallagher’s re-
duction to averages of Euler products, which turn out to be easily computable after
application of Proposition 2.1.

We fix a primitive family of polynomials f with S(f) 6= 0 (the reader may want
to review the notation in the introduction for what follows). To apply Gallagher’s
method, we also require some auxiliary families of polynomials, indexed by k-tuples.

6 This does not follow directly from convergence in law for S(h), but from the absolute
convergence and local structure of the singular series.
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Thus let k > 1 be an integer and h a k-tuple of integers. For our fixed primitive f ,
we denote

f � h = (fj(X + hi))16j6m
16i6k

,

which is a family of km integer polynomials.
Technical difficulties will arise because this family may not be primitive, even

if the components of h are distinct (which is a necessary condition), i.e., we may
have an equality

fj1(X + hi1) = fj2(X + hi2),

for some i1 6= i2, j1 6= j2.
For instance, we have (X,X + 2)� (3, 1) = (X + 3, X + 1, X + 5, X + 3) (in the

case of twin primes). However, we will show that these degeneracies have no effect
for the problem at hand. Moreover, f � h is primitive whenever h has distinct
arguments, in the following quite general situations:

– if m = 1;
– if the degrees of the fj are distinct;
– if no two among the polynomials fj are related by a translation X 7→ X + α,

for some α ∈ Z.
This means that the reader may well disregard the technical problems in a first

reading (for the twin primes, see also Example 5.9 which explains a special reason
why the degeneracies have no consequence then). The following lemma is already
a first step, and we will need it before proving the full statement.

Lemma 5.1. Let f be a primitive family and k > 1. Then for any h > 1, we have

|{h | |h|k 6 h, f � h is not primitive}| � hk−1

where the implied constant depends only on k and m.

Proof. Let I be the set of k-tuples h with distinct components such that f � h is
not primitive. If h ∈ I, then there exists at least one relation of the type

(5.1) fj1(X + hi1) = fj2(X + hi2), i1 6= i2, j1 6= j2,

hence

fj1(X) = fj2(X + hi2 − hi1),

so the two polynomials differ by a “shift”. Let R be the set of pairs (j1, j2) for
which

fj1(X) = fj2(X + δ(j1, j2))

for some integer δ(j1, j2) 6= 0. Because the polynomials involved are non-constant,
this integer is indeed unique. The cardinality of R is bounded in terms of m only,
and from the above, any k-tuple h ∈ I must satisfy at least one relation

hi1 − hi2 = δ(j1, j2),

for some i1 6= i2 and (j1, j2) ∈ R. Each such relation is valid for at most hk−1

among the k-tuples with |h| 6 h. �

We will deduce Theorem 1.3 from the following (unconditional) result, which is
another instance of average of Euler products:
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Proposition 5.2. Let f = (f1, . . . , fm) be a primitive family and k > 1 an integer.
Then we have

lim
h→+∞

1

hk

∑∗

|h|6h

S(f � h) = S(f)k,

where
∑∗

here restricts the summation to those k-tuples for which f�h is primitive.

Remark 5.3. Taking f = (X), with S(f) = 1 and f � h = (X + h1, . . . , X + hk),
we recover once more Gallagher’s result (1.5).

We have the following complementary statement, which is also unconditional
(recall that, in many cases, it holds for trivial reasons; it does not follow trivially
from Lemma 5.1 because although fewer k-tuples are concerned, the number of
prime seeds increases when f � h is not primitive).

Lemma 5.4. Let f = (f1, . . . , fm) be a primitive family with S(f) 6= 0, and k > 1
an integer. Then for any N > 2, if h 6 λ(logN)m for some λ > 0, and for any
ε > 0, we have ∑∗

|h|k6h
f�h not primitive

π(N ;f � h)� N

(logN)1−ε

where
∑∗

restricts the sum to those k-tuples with distinct entries, and where the

implied constant depends only on k, f , λ and ε.

Here is the proof of the (conditional) Poisson distribution, assuming those two
results.

Proof of Theorem 1.3. The argument is essentially identical with that of Gallagher,
but we reproduce it for completeness, and so that the necessary uniformity in the
Bateman-Horn conjecture becomes clear.

Because the Poisson distribution is characterized by its moments, it is enough
to prove that for any fixed integer k > 1, we have

1

N

∑
n6N

(
π(n+ λδ(N,f);f)− π(n;f)

)k
→ E(P kλ ), as N → +∞,

where Pλ is any Poisson random variable with mean λ.
Write h = λδ(N,f). Expanding the left-hand side, we obtain

1

N

∑
n6N

( ∑
· · ·
∑

n<mi6n+h
mi f -prime seed

1
)

where there are k sums over m1, . . . , mk. Write mi = n+ hi, so that 1 6 hi 6 h,
and the condition becomes that fj(n + hi) is prime for all i and j, i.e., that n be
an f � h-prime seed. Exchanging the order of summation, we get

1

N

∑
|h|k6h

π(N ;f � h).

Before applying (1.8), we need to account for the k-uples which do not necessarily
have distinct components, and for those where f � h is not primitive.

For this, observe first that π(N ;f � h) only depends on the set containing the
components of the k-tuple h. This justifies the fact that the reorderings that
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follow are permissible. For each r, 1 6 r 6 k, and each r-tuple h′ with distinct
components, the set of those k-tuples for which the set of values is given by the set
of components of h′ has cardinality depending only on r and k, but independent of
h′, and in fact it is given by

{
k
r

}
(one can assume that h′ = (1, . . . , r), and obtain

a bijection{
{suitable k-tuples} → {surjective maps {1, . . . , k} → {1, . . . , r}}

h 7→ (f : i 7→ hi)

between the two sets).
Then we can write

1

N

∑
|h|k6h

π(N ;f � h) =
1

N

k∑
r=1

1

r!

{
k

r

} ∑∗

|h′|r6h

π(N ;f � h′)

where we divide by r! because we sum over all r-tuples instead of only ordered ones,

and
∑∗

restricts to r-tuples with distinct entries.

Now, for each r, we separate the sum over r-tuples for which f �h′ is primitive
from the other subsum. Applying (1.8) and using the easy bound

c(f � h′)� c(f)|h′|max deg(fj)
r ,

(where the implied constant depends on r and f) the first sum (still denoted
∑∗

)

is equal to

k∑
r=1

1

r!

{
k

r

}
1

peg(f)r
1

(logN)rm

∑∗

|h′|r6h

S(f � h′)
(

1 +O
( hε

logN

))
,

for any ε > 0, where the implied constant depends on f , k and ε. Using Proposi-
tion 5.2 and the choice of h = λ peg(f)S(f)−1(logN)m, this converges as N → +∞
to the limit

k∑
r=1

λr

r!

{
k

r

}
,

which is well-known to be the k-th moment of a Poisson distribution with mean
λ (this is checked by Gallagher for instance, see [Ga, §3]). Hence, to conclude the
proof, we need only notice that Lemma 5.4 (applied with k = r for 1 6 r 6 k)
implies (taking ε = 1/2 for concreteness) that the complementary sum is bounded
by

1

N

k∑
r=1

1

r!

{
k

r

} ∑
|h′|r6h

f�h′ not primitive

π(N ;f � h′)� (logN)−1/2

for N > 2, where the implied constant depends on k, f and λ. Hence this second
contribution goes to 0 as N → +∞, as desired. �

We now prove Proposition 5.2. This is the conjunction of the two following
lemmas, where we use the same notation as in Section 3, but change a bit the
definition of probability spaces. Precisely,

Ω2 =
∏
p

(Z/pZ)k
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is unchanged, but we let

Ω1 = {h = (h1, . . . , hk) | 1 6 hi 6 h, f � h is primitive}
with the counting probability measure (note that the condition forces h to have
distinct coordinates). By Lemma 5.1, note that we have

(5.2) |Ω1| ∼ hk as h→ +∞.
The next lemma shows that the average of Euler product involved can be com-

puted as if the components where independent:

Lemma 5.5. Let S(f) = (f1, . . . , fm) be a primitive family with S(f) 6= 0. Then
for any k > 1, we have

lim
h→+∞

1

hk

∑
|h|6h

S(f � h) = lim
h→+∞

E1

(∏
p

(
1− 1

p

)−km(
1− νp,f

p

))
=
∏
p

E2

((
1− 1

p

)−km(
1− ρp,f

p

))
,

where

νp,f (h) = νp(f � h) for h = (h1, . . . , hk) with hi > 1,

ρp,f (h) = |{x ∈ Z/pZ | fj(x+ hi) = 0 for some i, j}| for h ∈ (Z/pZ)r.

The second lemma computes the limit locally:

Lemma 5.6. Let f = (f1, . . . , fm) be a primitive family. Then for any k > 1 and
any prime p, we have

E2

((
1− 1

p

)−km(
1− ρp,f

p

))
=
(

1− 1

p

)−km(
1− νp(f)

p

)k
.

Looking at the definition (1.4) of S(f), both lemmas together prove Proposi-
tion 5.2. We start by proving Lemma 5.6 because Lemma 5.5 is certainly plausible
enough in view of Section 3, and the reader may be more interested by the final
formal flourish.

Proof of Lemma 5.6. It suffices to compute

E2

(
1− ρp,f

p

)
since the other factor is the same on both sides. We argue probabilistically, although
one can also just expand the various sums (and do the same steps in a different
language, as we did when proving the symmetry (1.6)). We can write

1− ρp,f
p

=
1

p
|Z/pZ−M |

where M ⊂ Z/pZ is the (random) subset of those x ∈ Z/pZ such that fj(x+hi) = 0
for some i and j. We write

|Z/pZ−M | =
∑

x∈Z/pZ

(1− χM (x))

where χM (x) is the random variable equal to one if x ∈M and zero otherwise. We
have

1− χM (x) =
∏

16i6k

∏
16j6m

(1− 1{fj(x+hi)=0}) =
∏

16i6k

ξf ,i(x),
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say. Since ξf ,i(x) only involves the i-th component of the random h ∈ Ω2, the
family (ξf ,i(x)) is an independent k-tuple of random variables. Consequently we
derive

E2

(
1− ρp,f

p

)
=

1

p

∑
x∈Z/pZ

E2

( ∏
16i6k

ξf ,i(x)
)

=
1

p

∑
x∈Z/pZ

∏
16i6k

E2(ξf ,i(x)).

To conclude we notice that for every x and i, h 7→ x+hi is identically (uniformly)
distributed, so that all ξf ,i(x) are identically distributed like

ξf = ξf ,1(0) =
∏

16j6m

(1− 1{fj(h1)=0}).

Hence all x give the same contribution, and we derive that

E2

(
1− ρp,f

p

)
= E2(ξf )k = P 2(f1(h1) · · · fm(h1) 6= 0)k =

(
1− νp(f)

p

)k
,

since h1 is uniformly distributed in Z/pZ. �

To prove Lemma 5.5, we wish to apply Proposition 2.1. A complication is that,
if peg(f) 6= 1, the singular series S(f � h) are not defined by absolutely convergent
products, and therefore the result is not directly applicable. However, we can bypass
this difficulty here without significant work because of the following fact: all the
relevant Euler products can be uniformly “renormalized” to absolutely convergent
ones. This is the content of the next lemma.

Lemma 5.7. Let f be a primitive family with S(f) 6= 0, and let k > 1 be an
integer. There exist real numbers γp(f) > 0, for all primes p, such that the product∏

p

γp(f)

converges, and such that the following hold:
(1) For all prime p, and all k-tuple h ∈ (Z/pZ)k, we have(

1− 1

p

)−km(
1− ρp,f (h)

p

)
= γp(f)× (1 +Xp,f (h))

for some coefficients Xp,f (h), and for all k-tuple of integers h such that f � h is
primitive, the product

(5.3)
∏
p

(1 +Xp,f (h))

is absolutely convergent.
(2) We have

lim
h→+∞

1

hk

∑∗

|h|k6h

∏
p

(1 +Xp,f (h)) =
∏
p

(1 + E2(Xp,f )),

where the sum is over k-tuples with f � h primitive.
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Proof. (1) To define γp(f), let θj , 1 6 j 6 m, be a complex root of the irreducible
polynomial fj , and letKj = Q(θj) be the extension of Q of degree deg(fj) generated
by θj . Then put

γp(f) =
∏

16i6m

(
1− 1

p

)k(rj(p)−1)

where rj(n), for n > 1, is the number of prime ideals of norm n in the ring of integers
of Kj . In view of this definition, to check first that the product of γp(f) converges,
we can do so for each fj separately. Then the statement follows, after taking the
logarithm of a partial product over p 6 X, from the well-known asymptotic formula∑

p6X

rj(p)

p
=
∑
p6X

1

p
+ c(Kj) +O((logX)−1)

for X > 2, where c(Kj) is a constant depending only on Kj , and the implied
constant also depends only on Kj .

It therefore remains to prove that the product (5.3) is absolutely convergent for
any k-tuple of integers h with f �h primitive. To do so, we claim that there exists
an integer D(h) > 1 (which may also depend on f) such that, for p - D(h), we
have

(5.4) ρp,f (h) = k

m∑
j=1

νp(fj) = k

m∑
j=1

rj(p).

The desired convergence then follows from that of∏
p-D(h)

γp(f)−1
(

1− 1

p

)−km(
1− ρp,f (h)

p

)
=

∏
p-D(h)

(
1− 1

p

)−ρp,f (h)(
1− ρp,f (h

p

)
,

and the latter is clear since the p-factor can be written 1 + O(p−2), where the
implied constant depends only on k and f .

The existence of D(h) is easy; first, let

D1(h) =
∣∣∣ ∏
(i,j)6=(i′,j′)

Res(fj(X + hi), fj′(X + hi′))
∣∣∣,

where Res(·, ·) is the resultant of two polynomials. By compatibility of the resultant
with reduction modulo p, we have p | D1(h) if and only if, for some (i, j) 6=
(i′, j′), there exists a common zero x ∈ Z/pZ of fj(X + hi) and fj′(X + hi′). By
contraposition, we first obtain

ρp,f (h) = kνp(f) = k

m∑
j=1

νp(fj),

for p - D1(h) (the sets of zeros modulo p of the components of f � h are then
distinct, and obviously there are as many, namely the sum νp(f) of the νp(fj), for
each of the k shifts hi).

Next, it is a standard fact of algebraic number theory that for each j, there exists
an integer ∆j > 1 such that νp(fj) = rj(p) for p - ∆j . Thus we can take

D(h) = D1(h)
∏

16j6m

∆j

to obtain the second equality in (5.4).
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Note that D(h) is non-zero (hence > 1) because otherwise, there would exist a
common zero θ ∈ C of fj(X+hi) and fj′(X+hi′), and because those are irreducible
integral primitive7 polynomials with positive leading coefficient, this is only possible
if

fj(X + hi) = fj′(X + hi′),

which is excluded by the assumption that f � h be primitive.
Note in passing the estimate

D(h)� (2|h|k)2k2m
∑

deg(fj)

for all h, where the implied constant depends only on f ; this follows straightfor-
wardly from the determinant expression of the resultant in D1(h) (see, e.g., [L,
§V.10]).

(2) With the bounds we have proved on Xp,f (h) (leading to an analogue of
Lemma 3.1), and the estimate onD(h) (analogue of (3.5)), together with Lemma 5.1
to ensure that the equidistribution of k-tuples modulo squarefree integers q remains
valid (compare with (3.11)), we can pretty much follow the steps of the proof of
Theorem 1.1. We also use (5.2) to go from the limit of the expectation on Ω1 to
summing over k-tuples normalized by 1/hk and taking h → +∞. The details are
left to the reader. �

Proof of Lemma 5.5. We have first

1

hk

∑
|h|6h

S(f � h) =
1

hk

∑
|h|6h

(∏
p

γp(f)
)∏

p

(1 +Xp,f (h))

→
(∏
p

γp(f)
)∏

p

(1 + E2(Xp,f )) as h→ +∞,

by the above, and then we can simply write this limit as(∏
p

γp(f)
)∏

p

(1 + E2(Xp,f )) =
∏
p

E2(γp(f)(1 +Xp,f ))

=
∏
p

E2

((
1− 1

p

)−km(
1− ρp,f (h)

p

))
.

�

We conclude with the last remaining part of the proof, namely Lemma 5.4.
The following proof can almost certainly be improved, but although the statement
becomes fairly clear after checking one or two examples, the author has not found a
cleaner way to deal with the apparent possibilities of combinatorial complications.
The point is that as f � h becomes “less primitive” (i.e., there are less distinct
elements among the km polynomials involved), the number of prime seeds 6 N
should increase (by a power of (logN)), but also the number of k-tuples with this
property diminishes (by a power of h 6 λ(logN)m), and this gain has to compensate
for the loss.

Proof of Lemma 5.4. We first quote a standard sieve upper-bound for an individual
primitive family f (with m elements), which is uniform, and which allows us to

7 In the sense that the gcd of their coefficients is 1.
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prove the lemma unconditionally: for N > 2, for any k-tuple h with distinct
elements for which f � h contains ` distinct components, we have

(5.5) π(N ;f � h)� (log log 3|h|)km N

(logN)`
,

where the implied constant depends only on k and f . Precisely, (5.5) for k-tuples
follows immediately from, e.g, Th. 2.3 in [HR], and it is easy to adapt this to the
case at hand since uniformity is only asked with respect to h. Note also that, since
the application we give is conditional on much stronger statements like (1.8), we
could also apply the latter for this purpose.

Now, as in the proof of Lemma 5.1, we denote by I the set of k-tuples h with
distinct components such that f � h is not primitive. Recall R is the set of pairs
(j1, j2) for which

fj1(X) = fj2(X + δ(j1, j2))

for some (unique) integer δ(j1, j2) 6= 0.
We continue as follows: for an h ∈ I, let Γh be the graph with vertex set

{1, . . . , k} and with (unoriented) edges (i1, i2) corresponding to those indices for
which the relation

(5.6) hi1 − hi2 = δ(j1, j2)

holds for some (j1, j2) ∈ R; the proof of Lemma 5.1 shows that there is at least one
edge. Because the number of possibilities for Γh is clearly bounded in terms of k
only, and we allow a constant depending on k in our estimate, we may continue by
fixing one possible graph Γ and assuming that all h ∈ I satisfy Γh = Γ.

This being done, we first estimate from above the number of k-tuples which lie
in I (under the above assumption that the graph is fixed!). We claim that

(5.7) |{h ∈ I | |h| 6 h}| 6 hc

where c = |π0(Γ)| is the number of connected components of Γ.
To see this, notice that each connected component C corresponds to a set of

variables which are independent of all others, so that I is the product over the
connected components of sets IC of |C|-tuples satisfying the relations (5.6) dictated
by C. Now we have

|{h ∈ IC | |h| 6 h}| 6 h,
because C is connected: if we fix some vertex i0 of C, then for any choice of hi0 , the
value of hi is determined by means of the relations (5.6) for all vertices i of C, using
induction on the length of a path from i0 to i (which exists by connectedness).

Taking the product over C of these individual upper bounds, we obtain the
desired estimate (5.7).

We next need to estimate from below the number of distinct elements in the
family f � h for a fixed h ∈ I (still under the assumption that the graph Γh = Γ
is fixed).

Let again C be a connected component of the graph Γ. We consider the set (say
{f�h}C) of polynomials of the form fj(X+hi), where 1 6 j 6 m and i is a vertex
of C. We claim this set contains at least m+1 distinct polynomials if C has at least
2 vertices, and m if C is a singleton. Indeed, fixing a vertex i0 of C, the set contains
the polynomials fj(X + hi0), which are distinct since f is a primitive family. This
already takes care of the case where C is a singleton, so assume now that C contains
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at least another vertex i. If all the m distinct polynomials fj(X + hi) were already
in the set {fj(X+hi0)}, this would define a permutation σ of {1, . . . ,m} such that

fj(X + hi) = fσ(j)(X + hi0), 1 6 j 6 m.

Consider a cycle (j1, . . . , j`) of length ` in the decomposition of σ; applying the
identity to j1, σ(j1) = j2, etc, in turn, we derive the identity

fj1(X) = fσ`(j1)(X + (`− 1)(hi0 − hi)) = fj1(X + (`− 1)(hi0 − hi)).

Since fj is non-constant and hi0 6= hi, we deduce that ` = 1; this holding for all
cycles in σ would mean that σ is the identity, but then f1(X + hi) = f1(X + hi0)
again contradicts the fact that h has distinct components. This means that σ can
not exist, and so the set {fj(X + hi)} contains at least one polynomial not among
the first m ones, which was our objective.

Next observe that, by the very definition of the graph Γ, the sets {f � h}C are
disjoint when C runs over the connected components of Γ, and hence we find that
any f � h contains at least cm + d elements, where d is the number of connected
components of Γ which are not singletons. Note that d > 1, because Γ has at least
one edge.

We finally estimate the contribution of k-tuples in I using (5.5) and (5.7): we
obtain

1

N

∑
h∈I
|h|6h

π(N ;f � h)� hc(log 2h)km(logN)−cm−d

where the implied constant depends on k and f . If h 6 λ(logN)m, as assumed in
Lemma 5.4, we obtain

1

N

∑
h∈I
|h|6h

π(N ;f � h)� (logN)−d+ε

for any ε > 0, where the implied constant depends on k, λ, f and ε. Since d > 1,
the lemma is finally proved. �

Remark 5.8. The gain of (logN)−1 is indeed the best possible in general. Consider
for example the primitive family f = (f1, f2, f3) = (X2+7, (X+2)2+7, (X+4)2+7)
for which it is easy to check that S(f) 6= 0 (7 is not a square modulo 3 or 5, and
each fj(0) is odd). We have relations f1(X + 2) = f2(X), f2(X + 2) = f3(X).

Consider k = 2. If we look at 2-tuples h = (h1, h2) for which h2 = h1 + 2, we
obtain

f � h = (f1(X + h1), f2(X + h1), f3(X + h1),

f1(X + h2), f2(X + h2), f3(X + h2))

= (f1(X + h1), f1(X + h1 + 2), f1(X + h1 + 4),

f1(X + h2), f1(X + h2 + 2), f1(X + h2 + 4))

= (f1(X + h2 − 2), f1(X + h2), f1(X + h2 + 2),

f1(X + h2), f1(X + h2 + 2), f1(X + h2 + 4)),

which contains 4 distinct polynomials. With h � λ(logN)3, those 2-tuples with
|h| 6 h contribute about N(logN)3−4 to the sum of Lemma 5.4 (under (1.8), of
course).
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Finally, here are a few examples.

Example 5.9. (1) If we take f1 = (X,X + 2), we obtain that the number of twin
primes (p, p + 2) with n < p 6 n + λ(log n)2 should be approximately distributed
like a Poisson random variable with mean

2λ
∏
p>3

(
1− 1

(p− 1)2

)
≈ 1.320336593 . . . λ.

Similarly, if we take f2 = (X, 2X + 1), we find that the number of Germain
primes (i.e., primes p with 2p+ 1 also prime) with n < p 6 n+ λ(log n)2 should be
approximately distributed like a Poisson random variable with mean

λS(f2) = 2λ
∏
p>3

(
1− 1

(p− 1)2

)
.

Two further remarks are interesting here. First, the proof of Theorem 1.3 shows
that whenever f consists of linear polynomials (in particuler for those two results),
“only” the (uniform) Hardy-Littlewood conjecture is needed. In other words, no
assumption is required beyond those of Gallagher’s original result for the primes
themselves.

Secondly, if one is interested in the case of twin primes in particular, Lemma 5.4
has a trivial proof from the following coincidence: if f = (X,X + 2), h has distinct
entries, and f � h is not primitive, then

S(f � h) = 0, π(N ;f � h) 6 1.

Indeed, if f � h is not primitive, we have k > 2 and an equality hi2 = hi1 + 2
for some i1, i2. The family f � h contains in particular the three polynomials
X + hi1 , X + hi2 = X + hi1 + 2 and X + hi2 + 2 = X + hi1 + 4. Hence, to be
a prime seed for f � h, an integer n > 1 must be such that, in particular, the
triple (n+ hi1 , n+ hi1 + 2, n+ hi1 + 4) consists of prime numbers. But those three
numbers are distinct modulo 3, showing that ν3(f � h) = 3, and the only possible
case is (n, n + 2, n + 4) = (3, 5, 7). (Examples such as f = (X2 + 7, (X + 2)2 + 7)
and h = (3, 1) show that this special situation where imprimitive k-tuples lead to
vanishing singular series for f � h is indeed a coincidence).

(2) If we take f3 = (X2 + 1), and renormalize in an obvious way, we find
that the number of primes of the form p = n2 + 1 in an interval of the form
N2 < n 6 (N + λ(logN))2 should be approximately distributed like a Poisson
random variable with mean

λS(f3) =
4λ

π

∏
p≡1 (mod 4)

(
1− 1

(p− 1)2

) ∏
p≡3 (mod 4)

(
1− 1

p2 − 1

)
.
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[K1] E. Kowalski, Petits écarts entre nombres premiers, d’après Goldston, Pintz et Yıldırım,
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