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Chapter 1

Introduction

The German mathematician Leopold Kronecker (1823–1891) made the famous statement
that “God created the integers, all else is the work of man,” by which he referred to the gen-
eral process of constructing numbers. Namely, if one starts with the integers 0,±1,±2, . . . ,
one can add and subtract numbers but cannot always divide. However, one can fix this by
introducing the set of rational numbers, denoted by Q, which enlarges the integers and con-
sists of all possible ratios of integers with nonzero denominator. Now division by a nonzero
number is always possible. The construction of the rationals is thus purely algebraic, starting
from the integers.

Still, the set Q does not contain all the numbers in which one is interested. For example,
one would like to work with a number α such that α2 = 2, but there is no such α in the set
Q. The fix is simply to introduce an additional number, denoted α =

√
2, and to enlarge Q

to a bigger set F = Q(
√

2) which consists of all formal expressions a + b
√

2, where a and
b are in Q. When a = 0, b = 1, we have indeed

√
2 ∈ F. Elements in F can be added and

multiplied by the rule (
√

2)2 = 2. The key to this construction is the fact that
√

2 is a root
of the polynomial x2 − 2. Similarly, one can construct square-roots

√
3,
√

5 by the purely
algebraic process of introducing a root of the corresponding polynomial x2 − 3, x2 − 5.

Another important class of numbers that one is interested in constructing consists of
the roots of unity. By definition, a root of unity is a number ζ such that ζm = 1 for some
integer m. Besides ±1, such numbers do not exist in Q, but one can introduce them by a
purely algebraic process similar to the one for

√
2 described above. In more detail, one can

construct a number ζ (called a primitive m-th root of unity) whose m-th power is 1, but
whose smaller powers are not 1. For example, one can construct a number ζ such that ζ8 = 1
but ζ4 = −1; thus, ζ is a solution of the polynomial equation x4 + 1 = 0.

A particular case of a theorem by Kronecker–Weber states essentially that the construc-
tion of roots of unity is more fundamental than the one of square-roots. Namely, it turns
out that by constructing the various roots of unity, we have already accounted also for all
of the square-roots; i.e., any square-root of a rational number can be expressed in terms of
roots of unity. For example, using the root of unity ζ from above, recalling that ζ4 = −1,
we can write (

ζ +
1

ζ

)2

= 2 + ζ2 +
1

ζ2
= 2 +

ζ4 + 1

ζ2
= 2.
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Therefore, √
2 = ζ +

1

ζ
(1.1)

can be written in terms of the root of unity ζ.
Of special interest to number theory are numbers which generate abelian extensions1;

the simplest example of such numbers are the square-roots, so we concentrate our discussion
here on those. The Kronecker–Weber theorem is a very general and powerful result, asserting
that any number which generates an abelian extension over Q can be expressed in terms of
roots of unity. Class field theory is the study of such abelian extensions over general number
fields. The Kronecker–Weber theorem, which is the simplest case of class field theory, can
be viewed as a statement that the roots of unity constitute explicit class field theory over
the field Q.

On the other hand, one can construct the roots of unity by a process rather different in
nature — namely, by looking at special values of an analytic function. These are functions
described as convergent power series and whose values are obtained by an analytic process of
approximation: by computing more and more terms in a power series expansion, one obtains
better and better estimates for the value; the value is equal to the limit of all approximations.
Such functions are in sharp contrast with polynomials, such as x2− 2 and x4 + 1, where the
value is computed directly and exactly through a finite process, as opposed to an infinite
limiting one. In particular, the function

f(z) = e2πiz = 1 + 2πiz +
(2πiz)2

2!
+

(2πiz)3

3!
+ . . . (1.2)

is analytic — it is given by a convergent power series. Remarkably, its special value at z = 1
m

is ζ = e
2πi
m , which is a primitive m-th root of unity. In other words, the roots of unity arise

not only from a purely algebraic construction similar to the one which produces
√

2, but also
naturally as certain special values of an analytic function. It is surprising that an analytic
object, such as the function e2πiz accounts for the purely algebraic property that a number
generates an abelian extension over the rationals (such as any square-root).

Kronecker was aware of this fact and asked more generally whether one can obtain all of
the abelian extensions of a number field by considering special values of an analytic function.
Kronecker’s Jugendtraum (“dream of youth”) is, given a number field such as F = Q(

√
2),

to produce a single analytic function such that any algebraic number that generates an
abelian extension over F (in particular, any square-root one can extract from F ) can be
written in terms of special values of this analytic function. This question is solved only when
F = Q, by the Kronecker–Weber theorem and the function e2πiz, and when F is imaginary
quadratic. However, the problem is still a great mystery for any other number field. If one
takes F = Q(

√
2), the roots of unity are not sufficient any more because for example the

number 4
√

2 =
√√

2, obtained simply by extracting a square-root of an element in F , cannot
be written in terms of roots of unity and elements in F ; i.e., there is no formula which
generalizes (1.1) when

√
2 is replaced by 4

√
2.

So, given F, one has to concoct an analytic function — finer than e2πiz — whose special
values will play the role of the roots of unity over the rationals. The problem is that a special

1Galois extensions with abelian Galois group.
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value of an analytic function is obtained by an infinite limiting process and is normally not one
that on the other hand can be constructed by algebraic methods, as a root of a polynomial.
Even if one has a candidate for an analytic function, one would expect difficulties in proving
that the special value is algebraic (as in the case of Dasgupta’s conjecture treated in this
thesis). Finally, the constructed special values have to generate abelian extensions and to
be substantial enough, so that any number which generates an abelian extension is already
accounted for.

A conjecture by Stark (1970’s) and especially its further refinements by Gross (1982,
1987) and Dasgupta (2007) give a hint of where this mysterious analytic function may come
from ([13],[6],[13]). Consider an abelian extension K/F. Associated to the extension are
a number of analytic functions, called partial zeta-functions. They generalize the Riemann
zeta-function, which is an analytic function on the complex plane, holomorphic outside s = 1,
and given by

ζ(s) =
∞∑

n=1

1

ns
for Re(s) > 1.

The Riemann zeta-function would be associated to the trivial extension K = F = Q, so it is
a particular case of a partial zeta-function. It turns out that the special value of ζ at s = 0
is not just algebraic, but in fact a rational number:

ζ(0) = −1

2
.

The denominator 2 has arithmetic significance: it equals the number of roots of unity
in Q (which are ±1). The same phenomenon is observed with the partial zeta functions in
general: their values at s = 0 are rational numbers with denominators dividing the number
of roots of unity in the extension under consideration. Therefore, by multiplying by this
number of roots of unity, we can produce a set of integers attached to the abelian extension
we want to study, which come as special values (at s = 0) of analytic functions (the partial
zeta functions).

Stark’s conjecture states the existence of a special element, called a Stark unit, in the
abelian extension K which plays the role of a root of unity. The Stark unit satisfies very
strong arithmetic properties in terms of the data of these integers. Stark’s conjecture is
proven to be true in general only over the rational field and over imaginary quadratic fields:
not by accident, these are precisely the instances when Kronecker’s dream of youth is solved
and when the abelian extension is known explicitly already. For example, over Q, we can
build the Stark unit out of roots of unity.

A further refinement by Gross predicts even more properties that this Stark unit has to
satisfy. Finally, Dasgupta has proposed a yet stronger conjecture, which involves an explicit
conjectural formula for the Stark unit. The previous conjectures only state that there exists
an element with some properties, while Dasgupta’s formula states that the element given
by a certain explicit formula in fact satisfies all of the conjectural properties. The formula
involves building up the Stark unit out of the data of the integers obtained as special values
of partial zeta-functions and is analytic in nature, in the flavor of Kronecker’s dream of
youth. Naively, if one thinks of the Stark unit as playing the role of a root of unity in that
it generates an abelian extension, Dasgupta’s formula is an attempt to exhibit a function
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similar in nature to (1.2), which is analytic and yet produces an algebraic number. The
essence of Dasgupta’s conjecture is proving that the element the formula yields in fact lies in
an abelian extension and comes from an algebraic process. We verify the conjectural formula
computationally with a certain accuracy in two particular examples. This formula would be
a deep link between special values of analytic functions and algebraic elements in abelian
extensions, hence a step towards Kronecker’s dream of youth.
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Chapter 2

Outline of contents

The motivation for Stark’s conjectures comes from Dirichlet’s class number formula: let F
be a number field and let

ζF (s) =
∑

a⊂OF

Na−s for Re(s) > 1

be the zeta-function attached to it; it extends to a meromorphic function on C, and the
Taylor expansion of ζF around the origin starts as follows:

ζF (s) = −hR

ω
sr + . . . (higher–order terms), (2.1)

where r is the rank of the unit group of OF , h is the class number of F , R is the regulator, and
ω is the number of roots of unity in F. Stark formulated conjectures that would generalize
this formula in the case of extensions K/F and the leading terms of L-functions attached to
it. The abelian version of these conjectures is particularly striking.

Namely, the insight is that one can interpret (2.1) not as a formula for the value at s = 0
of an analytic function (as the formula suggests at first glance), and not as a formula for the
class number h (as is often classically done), but as a formula for the regulator R in terms
of a special value of an analytic function. As a motivating example, if F is real quadratic,
equation (2.1) is a statement about the archimedean absolute value of the fundamental unit
of OF . When one starts with an abelian extension K/F, Stark’s conjecture is a statement
about the existence of a special element ε ∈ K with prescribed absolute values, in terms of
the values at 0 of the partial zeta functions associated to K/F .

Gross has formulated further refinements of the classical Stark’s conjecture in the p-adic
context, predicting more information for this special element ε. Finally, Dasgupta has an
explicit analytical conjectural formula for the Gross–Stark unit. It can be viewed as an
attempt for explicit class field theory over a totally real number field.

In Chapter 4, we discuss the formulation of the Gross–Stark conjecture. In Chapter 5,
following [8], we present the proof over the rational field, which is the only totally real number
field for which it is known. The proof relies on a result of Gross–Koblitz which relates the
Gross–Stark unit to a special value of the p-adic Gamma function. This special value can
then be understood due to the functional equation that the p-adic Gamma function satisfies
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and the conjecture can be verified. We identify a mistake in [8] and fix it with only small
modifications of the argument.

Next, in Chapter 6, we present Dasgupta’s approach of starting with the statement of
Gross’s conjecture and attempting to construct the Gross–Stark unit explicitly. Dasgupta
interprets Gross’s conjecture in fact as a formula for the Gross–Stark unit, but in a certain
quotient of F ∗

p . The main ingredient in this formula involves a summation over elements
defined only up to the action of a certain group. The goal of Chapter 7 is to write down
an exact formula for the unit in F ∗

p . The key idea is the use of Shintani domains, which
constitute a particular fundamental domain for the group action mentioned above, with a
special geometric shape.

Finally, in Chapter 8, we provide computational evidence for Dasgupta’s conjecture. The
naive approach to calculate the unit from Dasgupta’s formula is inefficient, and we construct
a more general measure than the one explicitly involved in the formula and described in
[4]. Thus, we had to slightly modify and generalize arguments from [12] (only for a certain
analytic ingredient) and [4] (mainly) in order to obtain a formula for the more general
measure and hence an algorithm for computing the conjectural Gross–Stark unit.
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Chapter 3

Notation

3.1 Number fields

For a number field K, we denote by OK the ring of integers of K, by µ(K) the group of roots
of unity in K, and we set WK = #µ(K). For an integer m ≥ 1, we let µm be the group of
m-th roots of unity. For a prime ideal p of OK , we denote by Kp the completion of K at p,
and by Op the valuation ring of Kp. For m ≥ 0, set

Upm =

{
(1 + pmOp)

∗, if m ≥ 1,

O∗
p, if m = 0.

For a modulus m = mfm∞, Im
K denotes the group of fractional ideals of K relatively prime

to mf . Also,
a ≡ b (mod m)

for a, b ∈ K∗ means that for each finite p|mf , we have

νp(
a

b
− 1) ≥ νp(mf ),

and for each real prime v | m, we have (ab−1)v > 0. Similarly for a ≡ b (mod pk), where
a, b ∈ F ∗

p . Next,
Km,1 = {x ∈ K∗ | x ≡ 1 (mod m)},

and i(Km,1) is the image of Km,1 under the map i : Km,1 → I
mf

K given by α 7→ (α). When K
is a totally real number field, we let ∞ =

∏
v|∞ v, where the product is over all the infinite

(real) primes of K.
For an abelian extension L/K and a fractional ideal b of K relatively prime to the

product of all ramified primes, σb ∈ G(L/K) denotes the image of b uder the Artin map.
When K = Q and b > 0, we define σb = σ(b).

3.2 Measures

Let X be a compact Hausdorff, totally disconnected topological space and let µ be an additive
Z-valued measure on X, i.e., µ assigns an integer µ(U) ∈ Z to each compact open subset
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U ⊂ X, such that
µ(U1 ∪ U2) = µ(U1) + µ(U2)

for any disjoint compact opens U1, U2 ⊂ X. Let I = lim← Iα be a profinite group (each Iα is
finite) and let f : X → I be a continuous map. Let Ui ⊂ I denote the inverse image of an
element i ∈ Iα under I → Iα. Define

×
∫

X

f(x)dµ(x) = lim
←−

∏
i∈Iα

iµ(f−1(Ui)) ∈ I = lim
←−

Iα;

it is the multiplicative integral of f(x) over X.
Say X is a compact subset of some valuation ring Op, and f : X → F ∗

p is a continuous
map. Suppose that a ≡ b (mod pk) implies f(a) ≡ f(b) (mod pk) (this is the case we will
be most interested in; one can define the multiplicative integral without this assumption).
Let µ be a Z-valued measure on X. Define

A = ×
∫

X

f(x)dµ(x) ∈ F ∗
p

as the unique element in F ∗
p such that whenever X is written as a disjoint union X =

∪d
i=1(xi + pNOp), we have

A ≡
d∏

i=1

f(xi)
µ(xi+pNOp) (mod pN).

It is the limit of Riemann products over finer covers of X by compact intervals xi + pNOp.
We define the additive integral similarly: given a compact subset X ⊂ Op, a function

f : X → Fp as above, and a Z-valued measure µ on X, we can define
∫

X
f(x)dµ(x) ∈ Fp

analogously as above, with product replaced by sum. One can prove the Riemann sums
converge and hence the integral is well–defined.
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Chapter 4

Statement of the Gross–Stark
conjecture

Here we present the statement of Gross’s conjecture as in [8].

4.1 An arithmetic preliminary

Proposition 1. Let L/k be an abelian extension with G = G(L/k), and S a finite set of
primes of k containing the archimedean primes, the primes which ramify in L, and the ones
dividing the order e = #µ(L). Then the annihilator Ann(L/k) of the Z[G]-module µ(L) is
generated as a Z-module by the collection

{σp −Np | p /∈ S}.

Proof. First, let p /∈ S and let α ∈ µ(L). If B is a prime of L lying over p, we know that
b = ασp−Np ≡ 1 (mod B). To prove that in fact b = 1, we note that be = 1 in particular in
OB/B, and invoke Hensel’s lemma, which gives us uniqueness of the solution of the equation
xe = 1 with x ≡ 1 (mod B), since B - e.

If A ∈ Ann(L/k), by Chebotariov’s density theorem, we can write any σ ∈ G as σ = σp

for some p /∈ S, and hence

A =
∑

p/∈S

ap(σp −Np) + a,

for some integers ap and a, where the sum is of course finite. But then a ∈ Ann(L/k) and
so e|a. Thus, the statement will follow if we prove that

e = gcd
p/∈S, σp=1

(1−Np).

By above, it is clear that for p /∈ S with σp = 1, the integer 1−Np is divisible by e, as it
annihilates µ(L). If e′ is a common divisor of all (1−Np) with p /∈ S and σp = 1, consider the
field L′ = L(ζ), where ζ is a primitive e′-th root of unity. If σ ∈ G(L′/L) is arbitrary, write
σ = σp for some p /∈ S, unramified in L′, where the Frobenius is taken in L′/k. Since σp|L is
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trivial, we must have e′|1−Np. But then by the first part of the Proposition, ζσp = ζNp = ζ
and so σ = σp is the identity. But, σ ∈ G(L′/L) was arbitrary, hence L′ = L and e′|e, as
desired.

4.2 The classical Stark’s conjecture

Consider an abelian extension K/k with G = G(K/k). Let S be a finite set of primes of k
containing all archimedean primes, as well as the ones which ramify in K. For σ ∈ G, define
the partial zeta function

ζK/k,S(σ, s) =
∑
I⊂Ok
σI=σ

NI−s,

where the series converges for Re(s) > 1 and admits a meromorphic continuation to the
entire complex plane. Define

θK/k,S(s) =
∏

p/∈S

(1− σ−1
p Np−s)−1 =

∑
σ∈G

ζK/k,S(σ, s)σ−1.

Set θK = θK/k,S(0). It is known (see [1]) that for any A ∈ Ann(K/k), we have AθK ∈ Z[G]
(in particular, θK ∈ Q[G]). If p ∈ S is unramified in K and R = S − {p}, then

θK/k,S = (1− σ−1
p )θK/k,R.

In particular, if S contains a finite prime p which splits completely in K, then ζK/k,S(σ, 0) = 0
for all σ ∈ G.

Assume the set S contains a finite prime p which splits completely in K, and set R =
S − {p}. Fix a prime B of K lying over p. Denote

Up = {x ∈ K∗ | |x|B = 1 for any (finite or infinite) prime B - p}.

The general abelian Stark’s conjecture states as follows:

Conjecture 1. (Stark) There exists an element ε = ε(B, S) ∈ K∗ such that

(ε) = BWKθK/k,R

and ε ∈ Up if |S| ≥ 3. Moreover, K(ε
1

WK ) is abelian over k.

The element ε ∈ K∗ is called a Stark unit associated to the data (K/k, S, B) and is
uniquely determined up to a root of unity in K. We now discuss Gross’s refinement of
Stark’s conjecture, which involves first assuming that Conjecture 1 holds.

4.3 Gross’s refinement

Consider an arbitrary abelian extension L/k with G(L/k) = G and a finite set S of primes
of k as before, which contains all archimedean primes, as well as all primes which ramify
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in L. Fix a finite prime p ∈ S and a subfield K of L/k in which p splits completely. Fix a
prime B of K lying over p, and let A ∈ Ann(L/k). Let ε ∈ K be a Stark unit associated
to (K/k, S, B), and let ζ be any root of unity in an algebraic closure of k containing L. If
λWK = ζε, the extension K(λ)/k is abelian, and hence so is L(λ)/k. Thus, by Proposition 1,
there exists A0 ∈ Ann(L(λ)/k) such that A0|L = A. Define

VA = {λA0 | A0 ∈ Ann(L(λ)/k), A0|L = A}.
By Galois theory, VA ⊂ K. We now show that VA is independent of the choices of ζ, ε, λ.

The independence of λ is obvious because A0 annihilates µ(K). Since ε is determined up to a
root of unity in K, it suffices to show that VA is independent of the choice of ζ. But, a different
choice of ζ yields λ′ with λ′ = λν, for some root of unity ν. Let A′

0 ∈ Ann(L(λ′)/k) be such
that A′

0|L = A. We have to produce A0 ∈ Ann(L(λ)/k) such that A0|L = A and λA0 = (λ′)A′0 .
But, the extension L(λ, λ′)/k is abelian, hence there exists Ã ∈ Ann(L(λ, λ′)/k) such that
Ã|L(λ′) = A′

0. Set A0 = Ã|L(λ). Since Ã annihilates the roots of unity in L(λ, λ′), we have

(λ′)A′0 = (λ′)Ã = λÃ = λA0 ,

as desired.
Write

AθL = AθL/k,S =
∑
σ∈G

n(A, σ)σ,

with n(A, σ) ∈ Z; we think of n(A, σ) as a “shift” of zeta functions evaluated at s = 0.
Let H = G(L/K), and let

rB : K∗
B −→ H

be the reciprocity map of local class field theory.

Conjecture 2. (Gross) Let A ∈ Ann(L/k). Then

r−1
B (εA) =

∏
σ∈H

σn(A,σ)

for all εA ∈ VA.

An element εA ∈ VA is called a Gross–Stark unit associated to the given data; we write
Grk(L/K, S, p) if Conjecture 2 holds for any choice of B over p.

Note that we can state Conjecture 2 equivalently as follows: for any εA ∈ VA and any
τ ∈ G, we have

r−1
Bτ (εA) =

∏
σ∈Hτ

σn(A,σ).

Indeed, for a given τ ∈ G, consider A′ = τ−1A ∈ Ann(L/k) and notice that VA′ =
Vτ−1A = V τ−1

A . So, Conjecture 2 implies that

r−1
Bτ (εA) = r−1

B (ετ−1

A ) =
∏
σ∈H

σn(τ−1A,σ)

=
∏
σ∈H

σn(A,στ)

=
∏

σ∈Hτ

σn(A,σ),
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where we used that ∑
σ∈H

n(A, τσ) = 0 for any τ ∈ G,

which follows from ∑
σ∈H

ζL/k,S(στ ′, 0) = ζK/k,S(Hτ ′, 0) = 0,

since S contains a place p which splits completely in K.

4.4 Functoriality properties

We now prove the first functoriality property of the Conjecture:

Lemma 1. Suppose L1, L2 are abelian extensions of k, each containing the field K. Let
L = L1L2. If Grk(L1/K, S, p) and Grk(L2/K, S, p) hold, then so does Grk(L/K, S, p).

Proof. Let A ∈ Ann(L1L2/k), and set Ai = A|Li
, i = 1, 2. If εA ∈ VA, then also εA ∈

VA1 , εA ∈ VA2 . Let H = G(L1L2/K), Hi = G(Li/K), and Ti = G(L1L2/Li), i = 1, 2. Because
of the inclusion H ↪→ H1 ×H2, it suffices to check that for i = 1, 2, we have

r−1
B (εA)|Li

=

(∏
σ∈H

σn(A,σ)

)
|Li

.

By functoriality of the local Artin map, assuming Grk(Li/K, S, p), the left–hand side

above equals
∏

σ1∈H/Ti
σ

n(Ai,σ1)
1 while if Ri is a system of coset representatives for H/Ti, the

right–hand side above equals

∏
σ1∈Ri

(σ1|Li
)
∑

τ∈Ti
n(A,σ1τ) =

∏
σ1∈Ri

(σ1|Li
)n(Ai,σ1Ti),

which proves the Lemma.

It is now convenient to reformulate Conjecture 2 in the following way. Let I ⊂ Z[H] be
the augmentation ideal,

I = {a1σ1 + · · ·+ akσk ∈ Z[H] | a1 + · · ·+ ak = 0},

and consider the homomorphism

Exp : I −→ H given by

a1σ1 + · · ·+ akσk 7−→ σa1
1 . . . σak

k .

Let IH be the kernel of the restriction homomorphism

Z[G] −→ Z[G/H].

If R is a system of coset representatives for H in G, an element η =
∑

τ∈R γττ of Z[G]
(with γτ ∈ Z[H]) belongs to IH if and only if γτ ∈ I for all τ ∈ R. So, an element η ∈ IH
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gives rise to a map R → I given by τ → γτ . Since Exp is constant on H-orbits of I, we
obtain a map Exp ◦ η : G/H → H, which is independent of the choice of R. So, we obtain a
homomorphism

ExpH : IH −→ Fcts(G/H,H) given by

η 7−→ [Exp ◦ η : G/H → H],

where Fcts(G/H,H) is the group of functions G/H → H under pointwise multiplication.
Write

AθL =
∑
τ∈R

(∑

h∈H

n(A, hτ)h

)
τ =

∑
τ∈R

γττ.

We had observed earlier that γτ ∈ I for all τ, so AθL ∈ IH . By definition,

ExpH(AθL)(τ) =
∏

h∈H

hn(A,hτ) =
∏

σ∈Hτ

σn(A,σ).

This allows us to restate Conjecture 2 as follows:

Conjecture 3. Notation as before, for any A ∈ Ann(L/k) and any εA ∈ VA, the function
G/H → H given by

τ 7−→ r−1
Bτ (εA)

is precisely ExpH(AθL).

Moreover, by above, it suffices to verify this Conjecture only for the trivial coset τ = H.

Lemma 2. Suppose L ⊂ L∗ and K ⊂ K∗, the prime p ∈ S splits completely in K∗, and
L∗/k is unramified outside S. Then Grk(L∗/K∗, S, p) implies Grk(L/K, S, p).

Proof. Assume Grk(L∗/K∗, S, p). Fix a prime B of K lying over p and take A ∈ Ann(L/k).
Choose a prime B∗ of K∗ lying over B, and let ε∗ be a Stark unit associated to (K∗/k, S, B∗).
Set W = #µ(K),W∗ = #µ(K∗). If N ∈ Z[G(K∗/K)] denotes the norm, we will use the fact

that there is a Stark unit ε ∈ K∗ associated to (K/k, S, B), such that ε
W∗
W ∈ µ(K)εN

∗ (see [13]
or [3]). Let λ∗ satisfy λW∗∗ = ε∗, take a lifting N∗ ∈ Z[G(L∗(λ∗)/K)] of N, and set λ = λN∗∗ .
Then λWW∗ = λWW∗N∗∗ = εW∗ , so λW = ζε, where ζ is a root of unity. Take any εA ∈
VA, εA = λA0 , where A0 ∈ Ann(L(λ)/k) restricts to A on L. Choose A′

∗ ∈ Ann(L∗(λ∗)/k)
which restricts to A0 on L(λ), and set A∗ = A′

∗|L∗ . We will be able to obtain the desired

conclusion by applying Grk(L∗/K∗, S, p) to εA∗ = λ
A′∗∗ ∈ VA∗ in particular because its norm

equals εA:
εN
A∗ = λN∗A′∗∗ = λA′∗ = λA0 = εA.

Let G = G(L/k), H = G(L/K), G∗ = G(L∗/k), H∗ = G(L∗/K∗). The restriction map
res : G∗ → G induces H∗ → H, G∗/H∗ → G/H, and IH∗ → IH . By Grk(L∗/K∗, S, p) applied
to A∗ ∈ Ann(L∗/k) and εA∗ ∈ VA∗ , we have that

ExpH∗(A∗θL∗) = [τ∗ 7−→ r−1
Bτ∗∗

(εA∗)]. (4.1)
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So, we now have to relate ExpH∗ to ExpH . Consider the commutative diagram

IH∗
ExpH∗−−−−→ Fcts(G∗/H∗, H∗)yres

ym

IH
ExpH−−−→ Fcts(G/H,H)

where the homomorphism m is defined by

[m(f)](x) =
∏

y∈G∗/H∗
res(y)=x

res(f(y)).

Indeed, it suffices to check commutativity for the elements ξ∗(σ∗ − 1) ∈ IH∗ , where
ξ∗ ∈ G∗, σ∗ ∈ H∗. But in this case, clearly either composition sends ξ∗(σ∗−1) to the function
which maps res(ξ∗)H to res(σ∗) and all other cosets to 1. Now, applying m to both sides of
(4.1) and evaluating at τ ∈ G yields

[ExpH(AθL)](τ) = [ExpH(res(A∗θL∗))](τ)

=
∏

τ∗∈G∗/H∗
res(τ∗)=τH

res(r−1
Bτ∗∗

(εA∗))

=
∏

α∈G(K∗/K)

res(r−1
Bτα∗

(εA∗))

= res r−1
B∗τ (

∏

α∈G(K∗/K)

εα−1

A∗ )

= res r−1
B∗τ (εN

A∗)

= res r−1
B∗τ (εA)

= r−1
Bτ (εA).

Lemma 3. Grk(L/K, S, p) holds if p is unramified in L.

Proof. By the previous Lemma, we can assume that K is the decomposition field of p in
L/k; in this case, H = 〈σp〉. Fix a prime B of K above p, a Stark unit ε ∈ K, A ∈ Ann(L/k),
take λWK = ε, and εA = λA0 ∈ VA.

The extension L/k is unramified outside R = S − {p}, and so θ̃L = θL/k,R(0) is well–
defined. We know it is related to θL = θL/k,S(0) via

θL = (1− σ−1
p )θ̃L.

If R is a set of coset representatives of H in G, write

Aθ̃L =
∑
τ∈R

γττ, γτ ∈ Z[H].
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Then
AθL =

∑
τ∈R

(
(1− σ−1

p )γτ

)
τ.

If n(τ) ∈ Z is the sum of the coefficients in γτ , since Exp is constant on H-orbits, we
obtain

[ExpH(AθL)](τ) = σ
n(τ)
p .

On the other hand, since L/K is unramified at Bτ , we know that

r−1
Bτ (εA) = σ

ordBτ (εA)
p .

Since θK/k,R = θ̃L|K , we have that

(A|K)θK/k,R(0) = (Aθ̃L)|K
∑
τ∈R

n(τ)τ |K .

By definition,

(εA)WK = (λA0WK ) = (ε)A0 = BWKθK/k,R(0)A0|K =
∏
τ∈R

(Bτ )WKn(τ),

hence ordBτ (εA) = n(τ), as desired.

4.5 Gross’s formulation

Gross has reformulated Conjecture 1 in a manner that will be more convenient in Chapter
6, so we now discuss Conjecture 2 from this point of view in its original formulation. This
formulation of Conjecture 2 is slightly weaker than the one by Hayes that we discussed
earlier.

As before, let L/k be an abelian extension and let S be a finite set of primes of k
containing the archimedean primes as well as all ramified ones. Fix a finite prime p in S,
and let K be a subfield of L/k in which p splits completely. Assume |S| ≥ 3.

Let T be a finite set of primes of k disjoint from S, which either contains at least two
primes of different residue characteristic, or a prime η of absolute ramification degree at most
l − 2, where l is the prime of Q below η. Under this assumption,

∏
η∈T

(ση −Nη) ∈ Ann(L/k).

Indeed, if ζ ∈ µ(L) and e(η|Q) ≤ l − 2, the root of unity ζση−Nη ≡ 1 (mod η) has to be 1
because (1+pOp)

∗ ' pOp (via the logp map) is torsion–free in this case. If T contains primes
η1, η2 of different residue characteristics l1, l2, write e = #µ(L) = la1l

b
2c, with (l1l2, c) = 1.

Let α = ζ(ση1−Nη1)(ση2−Nη2) ∈ µ(L), where ζ ∈ µ(L). Then as in the proof of Proposition 1,
we deduce that αla1 = 1, αlb2 = 1, hence α = 1.

Consider the shifts ζR,T (σ, s) defined as follows in terms of the group ring of G(K/k):

∑

σ∈G(K/k)

ζR,T (σ, s)[σ] =
∏
η∈T

(1− [ση]Nη)
∑

σ∈G(K/k)

ζR(σ, s)[σ].
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Explicitly, if we define the constants cγ via

∏
η∈T

(1− [ση]Nη) =
∑

γ∈G(K/k)

cγ[γ],

then
ζR,T (σ, s) =

∑
γ

cγζR(γ−1σ, s).

Notice that if
∏

η∈T (ση−Nη)
∑

ζR(σ, s)σ−1 =
∑

n(σ, s)σ ∈ Z[G(K/k)], then ζR,T (σ, 0) =

n(σησ
−1, 0) ∈ Z.

Recall the notation for the group of p-units of K,

Up = {x ∈ K∗ | |x|B = 1 for any (finite or infinite) prime B - p}.

Let
rp : k∗p −→ G(L/K)

be the reciprocity map of local class field theory. The ideal B of K defines an embedding
K ↪→ KB ' kp, which allows us to evaluate rp on elements of K. The folllowing is Gross’s
original formulation of Conjecture 2:

Conjecture 4. There exists an element uT ∈ Up such that uT ≡ 1 (mod T ) and

ordB(uσ
T ) = ζR,T (K/k, σ, 0).

Moreover, for each σ ∈ G(K/k),

rp(u
σ
T ) =

∏

τ∈G(L/k)
τ |K=σ

τ ζS,T (L/k,τ,0).

Since uT is specified up to a root of unity congruent to 1 modulo T, the condition on T
implies uT is unique, if it exists.
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Chapter 5

The proof of Gross’s conjecture over
the rational field

Here we follow [8] to present a proof of Gross’s conjecture over Q. The main ingredient is
the theorem by Gross–Koblitz ([7]), which in turn relies on a deep result of Katz. The minor
mistake in [8] is easily fixed by constructing the appropriate Stark unit as in [5] and minor
modifications of the argument.

5.1 The p-adic Gamma function

Let p be an odd prime. The p-adic Gamma function is defined as the unique continuous
function Γp : Zp → Z∗p such that

Γp(k) = (−1)k
∏

1≤j<k
p-j

j

for all positive integers k. From the definition,

Γp(z + 1) =

{
−zΓp(z) if z ∈ Z∗p
−Γp(z) if z ∈ pZp.

For z ∈ Zp, we denote by ẑ the unique integer such that 0 < ẑ ≤ p, z ≡ ẑ (mod p). For any
z ∈ Zp, we have

Γp(z)Γp(1− z) = (−1)ẑ. (5.1)

Fix a positive integer m > 1 with p - m. Let f be the order of p in (Z/mZ)∗, and let
q = pf . Consider the cyclotomic field K = Q(µm), and fix a prime p of K lying over p.
The m-th roots of unity in k = OK/p are distinct because p - m, and so we can define
a homomorphism t from the m-torsion subgroup of k∗ to µm ⊂ OK , which is inverse to
reduction (mod p). Fix a nontrivial p-th root of unity ζ = ζp, and let L = K(µp). For any
a = r

m
∈ (1/m)Z/Z− {0} (take 0 < r < m), define the Gauss sum

g(a, p) = −
∑

x∈k∗
t(x−a(q−1))ζTr(x) ∈ L,
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where Tr is the trace map k → Z/pZ.
Note that if K ′ is the decomposition field of p in K, then g(a, p) belongs to K ′(µp). This

follows from Galois theory: if we take b > 0, b ≡ pi (mod m), b ≡ 1 (mod p), then

g(a, p)σb = −
∑

x∈k∗
t((xpi

)−a(q−1))ζTr(x) = −
∑

x∈k∗
t((xp)−a(q−1))ζTr(xp) = g(a, p).

We will see below that g(a, p) 6= 0. We will use that if

(pf − 1)
r

m
= zf + z1p + · · ·+ zf−1p

f−1, 0 ≤ zi ≤ p− 1 (5.2)

is the p-adic expansion of (pf − 1) r
m

, then the following congruence holds (cf [11]):

g(a, p)

(ζ − 1)
∑f

j=1 zj

≡ 1∏f
j=1 zj!

(mod (1− ζ)) (5.3)

(this is due to Stickelberger). Gross explains that this is the motivation for what follows:
(5.3) gives not only the valuation of g(a, p), but also the first digit in its p-adic expansion.
One may ask for the entire p-adic expansion, and since the first digit involves factorials, one
may expect the p-adic Gamma function to play a role.

Note that Qp(µp) contains a unique solution π of xp−1 = −p with

π ≡ (ζ − 1) (mod (ζp − 1)2).

Indeed,

p = (1− ζp)(1− ζ2
p ) . . . (1− ζp−1

p )

= (1− ζp)
p−1(1 + ζp)(1 + ζp + ζ2

p ) . . . (1 + ζp + · · ·+ ζp−2
p ),

and so if u = (1+ ζp)(1+ ζp + ζ2
p ) . . . (1+ ζp + · · ·+ ζp−2

p ), we have to check that the equation
xp−1 = −u has a unique solution in the valuation ring O′ of Qp(µp) with x ≡ 1 (mod ζp−1).
Observe that u ≡ 2.3 . . . (p− 1) ≡ −1 (mod ζp− 1), and xp−1 = 1 has x = 1 as a solution of
multiplicity one in the residue field O′/(ζp− 1), hence the above claim follows from Hensel’s
lemma.

Let 〈a〉 denote the fractional part of a rational number a.
The goal of this section is to express the image of g(a, p) in Qp(µp) = Qp(π) as a special

value of the p-adic Gamma function:

Theorem 1. Let a ∈ (1/m)Z/Z− {0}. Then

g(a, p) = π(p−1)
∑f−1

j=0 〈pja〉
f−1∏
j=0

Γp(〈pja〉).

To accomplish this, we need to introduce the free abelian group A =
⊕

a∈(1/m)Z/Z−{0} Zδa;

for each a =
∑

m(a)δa ∈ A, define

Γp(a) =
∏

Γp(〈a〉)m(a),

g(a, p) =
∏

g(a, p)m(a),

n(a) =
∑

m(a)〈a〉, and n(a(pj)) =
∑

m(a)〈pja〉.
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If a ∈ A and n(a) ∈ Z, we note that g(a, p) ∈ K by Galois theory: if b ≡ 1 (mod m) and
p - b, the automorphism of L corresponding to b ∈ (Z/mpZ)∗ acts on g(a, p) by multiplication
by t(ba(q−1)), hence acts trivially on g(a, p). So, g(a, p) ∈ K ′. In particular, if n(a) ∈ Z, the
image of g(a, p) in Qp(µp) lies in Qp. Using the congruence satisfied by g(a, p) cited earlier,
the above theorem will follow from the following

Proposition 2. (Gross–Koblitz) Let a ∈ A with n(a) ∈ Z. Then

g(a, p) = (−p)
∑f−1

j=0 n(a(pj))

f−1∏
j=0

Γp(a
(pj)).

Indeed, assume the Proposition holds, and fix some a ∈ (1/m)Z/Z − {0}. Then a =
(q − 1)δa ∈ A has n(a) ∈ Z, and so

g(a, p)q−1 = g(a, p) = (−p)
∑f−1

j=0 n(a(pj))

f−1∏
j=0

Γp(a
(pj))

=

(
π(p−1)

∑f−1
j=0 〈pja〉

f−1∏
j=0

Γp(〈pja〉)
)q−1

.

So, we need to prove that g(a, p) and π(p−1)
∑〈pja〉 ∏ Γp (〈pja〉) are congruent (mod ζp−1);

since they differ by a (q−1)-st root of unity in Qp(µp) and hence by a (p−1)-st root of unity,
the conclusion will follow because the (p− 1)-st roots of unity are distinct modulo (ζp − 1).

Since (p) = (ζp − 1)p−1 and ζp − 1 = πv, where v ≡ 1 (mod ζp − 1), the congruence (5.3)
wit r = 1 implies that

u = g(a, p)π−(p−1)
∑〈pja〉 = g(a, p)π−

∑
zi ≡ 1∏

zi!
(mod ζp − 1)

(we used the elementary fact that (p − 1)
∑f−1

j=0 〈pja〉 =
∑f

j=1 zj). But u ∈ Z∗p because it a
product of a value of Γp and a (p− 1)-st root of unity (which is in Qp), hence

u ≡ 1∏
zi!

(mod p).

On the other hand, one can check that 〈̂pja〉 = p− zf−j, and so

Γp(〈pja〉) ≡ (p− zf−j − 1)!(−1)p−zf−j ≡ (zf−j!)
−1 (mod p),

where we used that a ≡ b (mod p) implies Γp(a) ≡ Γp(b) (mod p), as well as Wilson’s
theorem. This gives the desired congruence.

To prove Proposition 2, note that if a ∈ A and n(a) ∈ Z, then a is a Z–linear combination
of

a0 = δ 1
m

+ δm−1
m
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and
ar = δ r

m
+ δ 1

m
− δ r+1

m
, for 0 < r < m− 1,

so it suffices to prove the Proposition only for a0 and ar.
By standard changes of variables in manipulating Gauss sums, we find

g(a0, p) = q(−1)
q−1
m .

So,

(−p)
∑

n(a
(pj)
0 )

f−1∏
j=0

Γp(a
(pj)
0 ) = q(−1)f

f−1∏
j=0

Γp(〈p
j

m
〉)Γp(1− 〈p

j

m
〉)

= q(−1)f+
∑f−1

j=0 〈̂ pj

m
〉

= q(−1)f+
∑f−1

j=0 (p−zf−j)

= q(−1)
∑f

j=1 zj

= g(a0, p)

because
∑

zj ≡ q−1
m

(mod p− 1); here q−1
m

= zf + z1p + · · ·+ zf−1p
f−1.

Now consider ar for a fixed 0 < r < m − 1. By cross–multiplying, after a change of
variables, we see that

g(ar, p) = −
∑

x∈k−{0,1}
t(x−

r(q−1)
m )t((1− x)−

q−1
m ).

We will use the following deep result of Katz (cf. [6]): denote t = m − r − 1 > 0; then
Katz proved that

g(ar, p) =

f−1∏
j=0

lim
k→−〈 pjr

m
〉

( 〈 pj+1t
m

〉−1

pk+(p〈 pjr
m
〉−〈 pj+1r

m
〉)
)

(〈 pjt
m
〉−1

k

) .

The rest of the proof is by approximating the binomial coefficients and rearranging the
factorials involved so that one can recognize special values of Γp. We now finish the proof
assuming that f = 1; the general case is similar but notationally heavier.

If h, k are positive integers such that

h ≡ − t

m
(mod pa)

k ≡ − r

m
(mod pa)

where a is large, then

〈pt
m
〉 ≡ −ph− bpt

m
c (mod pa+1) and

〈pr
m
〉 ≡ −pk − bpr

m
c (mod pa+1).
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Using
(−n

k

)
= (−1)k (n+k−1)!

k!(n−1)!
, it follows that g(ar, p) is the limit of

(−1)b
pr
m
c (ph + pk + b pt

m
c+ bpr

m
c)!

ph+k(h + k)!

pkk!

(pk + bpr
m
c)!

phh!

(ph + b pt
m
c)! ,

as a goes to infinity, hence, by the definition of Γp, we have

g(a, p) = (−1)b
pr
m
c+1 Γp(1− 〈pr

m
〉 − 〈 pt

m
〉)

Γp(1− 〈pr
m
〉)Γp(1− 〈 pt

m
〉)

= (−1)b
pr
m
c+1 Γp(1− r

m
− (1− r+1

m
))

Γp(1− r
m

)Γp(
r+1
m

)

=
Γp(

r
m

)Γp(
1
m

)

Γp(
r+1
m

)
,

where we used that p ≡ 1 (mod m) and (5.1).

5.2 Setup for the proof over Q
Consider an abelian extension L/Q, a subfield K, a prime p which splits completely in
K ⊂ L, and a finite set S of primes of Q containing ∞, p, and all the primes which ramify
in L. Let the finite part of the conductor of L/Q be pνn, and let m = n

∏
v∈S−Supp(pn) v. We

know that L is contained in Q(µpνm) and K ⊂ Q(µm). By the functorial lemmas, without
loss of generality L = Q(µpνm) and K is the decomposition field of p in Q(µm). Also, since
L is the compositum of K(µm) and K(µpν ), and K(µm)/K is unramified over p, again by
the functoriality lemmas, it suffices to assume that L = K(µpν ). However, we cannot assume
that p splits completely in Q(µm) (as is assumed in [8]).

So, from now, fix a prime p, an integer m ≥ 1, let S = {p,∞} ∪ Supp(m), let K be the
decomposition field of p in Q(µm), and let L = K(µpν ), where ν ≥ 1. We have to prove that
GrQ(L/K, S, p) is true. Let f be the order of p in (Z/mZ)∗.

Fix a system R of representatives for (Z/mZ)∗/〈p〉 that are positive and prime to p, and
a system Xν of representatives x for (Z/pνZ)∗ which satisfy x > 0 and x ≡ 1 (mod m).
Then we know that

H = G(L/K) = {σx | x ∈ Xν} and G = G(L/Q) = {σbx | b ∈ R, x ∈ Xν}.
Given b ∈ R, x ∈ Xν , 0 ≤ j < f, let t(pjb, bx) be an integer congruent to pjb modulo

m, and to bx (mod pν). Then, it will follow from Chapter 8 in particular (and it is also

well–known) that ζL/Q,S(σbx, 0) =
∑f−1

j=0

(
1
2
− 〈 t(pjb,bx))

mpν 〉
)

, so

θν = θL/Q,S =
∑

b∈R

∑
x∈Xν

(
f−1∑
j=0

(
1

2
− 〈t(p

jb, bx)

mpν
〉
))

σ−1
bx .

If a > 0 is odd and prime to pm and A = σa − a ∈ Ann(L/Q), we find

Aθν =
∑

b∈R

∑
x∈Xν

(
f−1∑
j=0

(
1− a

2
+ bt(p

jab, abx)

mpν
c − abt(p

jb, bx)

mpν
c
))

σ−1
bx . (5.4)
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Therefore,

ExpH(Aθν)(σ
−1
b ) =

∏
x∈Xν

σ
−∑f−1

j=0

(
1−a
2

+b t(pjab,abx)
mpν c−ab t(pjb,bx)

mpν c
)

x

= r−1
p

( ∏
x∈Xν

x
∑f−1

j=0

(
1−a
2

+b t(pjab,abx)
mpν c−ab t(pjb,bx)

mpν c
))

, (5.5)

where
rp : Q∗p −→ G

is the reciprocity map of local class field theory; we used that σx = rp(x) for x > 0, x ≡ 1
(mod m), p - x, which follows from the definition of rp.

5.3 The case m = 1

Assume that m = 1, so K = Q and H = G. We will assume that p > 2, as the case p = 2
requires only small modifications.

It is easy to compute that the Stark unit ε ∈ Q∗ is ε = ±1
p

because S = {p,∞}
and ζ∞(0) = −1

2
, so #µ(Q)ζ∞(0) = −1. Let τ =

∑
b∈(Z/pZ)∗

(
b
p

)
ζb ∈ Q(µp), with fixed

ζ = ζp ∈ Q(µp), so we can take λ = τ−1 because we know that τ 2 = (−1
p

)p. Then λ ∈ Q(µp),

the set VA is singleton, and so it suffices to prove Conjecture 3 for A ∈ Ann(L/Q) of the
form A = σa − a. We compute that

εA = λσa−a =
τa

τσa
=

τa

(a
p
)τ

= (
a

p
)(
−1

p
)

a−1
2 p

a−1
2 .

Notice that p ∈ Q∗p is a local norm from L(1−ζpν ) because p =
∏

j∈(Z/pνZ)∗(1− ζj
pν ). So, by

local class field theory, if j = σ−1 ∈ G denotes complex conjugation, we have that

rp(εA) =

{
1, if (a

p
)(−1

p
)

a−1
2 = 1

j, if (a
p
)(−1

p
)

a−1
2 = −1.

On the other hand, we can write ExpH(Aθν)(1) more conveniently as follows. If

X = {x ∈ Z | 0 < x ≤ pν − 1

2
},

then (Z/pνZ)∗ can be realized as the disjoint union of X and −X, and thus

θν =
∑

x∈(Z/pνZ)∗
(
1

2
− 〈 x

pν
〉)σ−1

x = (1− j)
∑
x∈X

(
1

2
− 〈 x

pν
〉)σ−1

x .

Hence,

Aθν = (1− j)
∑
x∈X

(
1− a

2
+ bax

pν
c
)

σ−1
x .
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It follows that ExpH(Aθν)(1) is a power of j. Since so is r−1
p (εA), it suffices to prove

that their restrictions to Q(µp) are equal. In other words, we can assume without loss of
generality that ν = 1.

In this case,

ExpH(Aθν)(1) = j
∑

x∈X(a−1
2
−bax

p
c) = j

a−1
2

p−1
2
−∑

x∈Xbax
p
c,

which completes the proof in the case m = 1 because of the known identity (cited in [8])

(−1)
∑

x∈Xbax
p
c = (

a

p
).

5.4 The Gross–Stark unit in the case m > 1

Now we assume m > 1 and find the Gross–Stark unit explicitly, following [5] (modifications
from [8] are necessary). Fix a prime B of K lying over p and ζ = ζp ∈ Q(µp). Let K ′ = Q(µm),
and let B′ be the unique prime of K ′ over B. Consider the residue field k = OK′/B′, and
let q = |k| = pf . The m-th roots of unity are distinct in k because p - m. Let t be the
homomorphism from the m-torsion subgroup of k to µm ⊂ K ′, which is inverse to reduction
(mod B′). For an odd positive integer a prime to S = {p,∞} ∪ Supp(m), define

G(a) = −g(− a

m
,B′) =

∑

x∈k∗
t(x

a(q−1)
m )ζTr(x) ∈ Q(µm, µp).

We saw earlier than G(a) ∈ K(µp). As before, let g =
∑

b∈(Z/pZ)∗(
b
p
)ζb ∈ Q(µp) be the usual

Gauss sum.
If a > 0 is odd and prime to pm, then

G(1)σa = t(a)−
a(q−1)

m G(a).

So, if we let

λ =
G(1)

gf
∈ K(µp)

and
ε = λW ,

where W = #µ(K), we have that ε ∈ K by Galois theory. Indeed, if a > 0, a ≡ pj (mod m),
for some j, and a ≡ 1 (mod p) then εσa = ε follows from the fact that G(a) = G(1) (since
x 7→ xp is an automorphism of k) and t(a) ∈ K (again by Galois theory, because t(a)p = t(a)).

By the result of Gross–Koblitz, if π is a uniformizer in Qp(µp) such that πp−1 = −p and
π ≡ ζp − 1 (mod (ζp − 1)2), then the image of G(a) = −g(− a

m
,B′) in Qp(µp) equals

G(a) = −π(p−1)
∑f−1

j=0 (1−〈 pja
m
〉)

f−1∏
j=0

Γp(1− 〈p
ja

m
〉).
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Comparing valuations, we see that

νB(εσa) = W

f−1∑
j=0

(
1

2
− 〈p

ja

m
〉),

so ε is a Stark unit associated to (K/Q, S, B). Since λ ∈ K(µp) ⊂ L, it suffices to prove the
conjecture for A ∈ Ann(L/Q) of the form A = σa − a.

Also, we easily compute that for A = σa−a, the image of the Gross–Stark unit εA = λσa−a

in Qp under the embedding K ↪→ KB ' Qp has p-adic unit part (with respect to the
uniformizer p) equal to

τp(εA) = t(a−
a(q−1)

m )(
a

p
)f (
−1

p
)

f(a−1)
2 (−1)

∑f−1
j=0 b pja

m
c−ab pj

m
c
∏f−1

j=0 Γp(1− 〈pja
m
〉)

∏f−1
j=0 Γp(1− 〈pj

m
〉)a

.

To find the image of εA under the local reciprocity map, we need to compute the above
p-adic unit part up to a certain p-adic accuracy (in this case, modulo pν). But, we can use

the functional equation of Γp to relate the values Γp(1 − 〈pja
m
〉) to a value of Γp that we

understand better under approximations. Concretely, if for z ∈ Zp, we denote

{z} =

{
z if z ∈ Z∗p
−1 if z ∈ pZp

then the functional equation for Γp implies that

Γp(1− z − e) =
n∏

r=e

{z + r}Γp(−z − n)

for integers e ≤ n. Let z = pja
m

, e = −bpja
m
c, and n = pja(ql−1)

m
, where l ≥ 1 is an integer, to

obtain

Γp(1− 〈p
ja

m
〉) =

∏

− pja
m

<r≤pja ql−1
m

{
pja

m
+ r

}
Γp(−pjaql

m
).

For 0 ≤ j ≤ f − 1, denote

Pl,j(a) =
∏

p-rm+apj

− pja
m

<r≤apj ql−1
m

(
pj +

rm

a

)
.

Next, we simply count the number of integers r with −pja
m

< r ≤ apj ql−1
m

such that

p | apj + rm; this will allow us to write Γp(1 − 〈pja
m
〉) as a product involving −1 to an

appropriate power, a
m

to an appropriate power, Pl,j, and the value Γp(−pjaql

m
) (we treat the

cases j = 0 and j > 0 separately). Then we write the expression for τp(εA) and after some
cancellations (in particular, the exponent of m turns out to be zero), we let l → ∞. We

recall that Γp(0) = 1, so the leftover Γp-terms go to 1. Also, we note that (apf−1+f(l−1)
)

a(q−1)
m
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goes to χp(a)
a(q−1)

m as l → ∞, where χp is the Teichmuller character. This cancels the term

t(a−
a(q−1)

m ) and we conclude that

τp(εA) = (
p

a
)f lim

l→∞

( ∏f−1
j=0 Pl,j(a)

∏f−1
j=0 Pl,j(1)a

)
.

5.5 Comparing the actual value of rp(εA) with the pre-

dicted one

We now finish the proof of GrQ(Lν/Km, S, p). The p-local conductor of the extension L/Q
is pν , and so rp is trivial on (1 + pνZp)

∗ by class field theory. Also, rp(p) = 1 because p is a
local norm, as we remarked earlier. So, it suffices to prove that for l large enough, we have

(
p

a
)f

∏f−1
j=0 Pl,j(a)

∏f−1
j=0 Pl,j(1)a

≡
∏

x∈Xν

x
∑f−1

j=0

(
1−a
2

+b t(pja,ax)
mpν c−ab t(pj,x)

mpν c
)

(mod pν).

Let Xν,j be a system of representatives x modulo (Z/pνZ)∗ which satisfy x > 0 and
x ≡ pj (mod m). We examine the product Pl,j(a) more closely and count that the number
of terms (pj + rm

a
) in it congruent to some fixed x ∈ Xν,j modulo pν is equal to

b ax

mpν
c+ ba(pjql − x)

mpν
c+ 1.

Therefore, if we let

E1(x) =
1− a

2
+ b ax

mpν
c − ab x

mpν
c

and

E2(x) =
1− a

2
+ ba(pjql − x)

mpν
c − abp

jql − x

mpν
c,

we obtain the congruence

Pl,j(a)

Pl,j(1)a
≡ (

∏
x∈Xν,j

xE1(x))(
∏

x∈Xν,j

xE2(x)) (mod pν).

We claim that
(
p

a
) ≡

∏
x∈Xν,j

xE2(x) (mod pν). (5.6)

Indeed, consider the change of variables x = pjql − my to reduce to the m = 1 case.
Notice that as y runs over (Z/pνZ)∗, x runs over a system Xν,j of representatives of (Z/pνZ)∗

congruent to pj modulo m. So, if we let

E3(y) =
1− a

2
+ bay

pν
c − ab y

pν
c,
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we have

∏
x∈Xν,j

xE2(x) ≡
∏

y∈(Z/pνZ)∗
(−my)E3(y)

= (−m)
∑

y∈(Z/pνZ)∗ E3(y)
∏

y∈(Z/pνZ)∗
yE3(y) (mod pν)

We notice that if we restrict Aθν from equation (5.4) in the case m = 1 to Q, we obtain∑
y∈(Z/pνZ)∗ E3(y) = Aθν |Q = 0. So, it now suffices to prove that

(
p

a
) ≡

∏

y∈(Z/pνZ)∗
yE3(y) (mod pν). (5.7)

But, the proof in the case m = 1 yields

rp

(
(
p

a
)
)

= rp


 ∏

y∈(Z/pνZ)∗
yE3(y)


 ;

since the kernel of rp|Z∗p is precisely 1 + pνZp, the desired congruence (5.7) follows. Now the
proof of GrQ(Lν/Km, S, p) is is reduced to the congruence

f−1∏
j=0

∏
x∈Xν,j

x
1−a
2

+b ax
mpν c−ab x

mpν c ≡
f−1∏
j=0

∏
x∈Xν

x
1−a
2

+b t(pja,ax)
mpν c−ab t(pj,x)

mpν c (mod pν),

which in turn follows from the definitions.

5.6 An observation

Notice that in the situation above, Gross’s conjecture precisely gives the image of εA in Qp.
Namely, consider a fixed m and let K be the decomposition field of p in Q(µm). We now let
ν vary and let L = K(µpν ). Since the kernel of rp|Z∗p is precisely (1 + pνZp)

∗, equation (5.5)
implies that if Gross’s conjecture is true for all ν, since p ∈ Qp is a local norm for all ν, there
must exist εA ∈ Q∗p of the form εA = paε′, where ε′ is such that

ε′ ≡
∏

x∈Xν

x
∑f−1

j=0

(
1−a
2

+b t(pja,ax)
mpν c−ab t(pj,x)

mpν c
)

(mod pν)

for all ν ≥ 1. Moreover, εA must come from the global field K and must satisfy εA ≡ 1
(mod a).

We can define a Z-valued measure ν on Z∗p as follows. Given x ∈ Z∗p and ν ≥ 1, define

ν(x + pνZp) =

f−1∑
j=0

(
1− a

2
+ bt(p

ja, ax)

mpν
c − abt(p

j, x)

mpν
c
)

.
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It is clear that this is a measure, because for a compact open U ⊂ Z∗p, ν(U) is simply the
value at 0 of a shift of zeta functions which involve a sum over n ≥ 1 in a certain fixed
residue class modulo m, and with n ∈ U.

Therefore, Gross’s conjecture implies in particular, on general grounds, that we must
have

ε′ = ×
∫

Z∗p
xdν(x) ∈ Z∗p. (5.8)

We will explore this approach of assuming Gross’s conjecture and attempting to write
down an explicit formula for the Gross–Stark unit in the remaining chapters.
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Chapter 6

Dasgupta’s restatement

In this Chapter, we follow [4] to interpret Gross’s conjecture as a formula generalizing (5.8)
when Q is replaced by an arbitrary totally real number field. In general, there will be an
obstruction and the image of the Gross–Stark unit will be determined only in a certain
quotient.

We now consider the following setting. Let F be a totally real number field, and f an
integral ideal of F. Consider the narrow ray class field Hf of F corresponding to the modulus

f. The Artin map induces an isomorphism Gf ' G(Hf/F ), where Gf = I f
F /i(Ff∞,1) is the

narrow ray class group corresponding to f. We fix a prime p of F prime to f and denote by
H the decomposition field of p in Hf. We fix a prime B of H lying over p. We know the
conductor of Hf/F divides f, so we consider a set S containing at least the archimedean
primes of F, the divisors of f, as well as p. The extension Hf/F is then unramified outside
S. We assume |S| ≥ 3, excluding only the case Hf = F = Q (by the Kronecker–Weber
theorem). Set R = S − {p}.

Let K = Hfpm be the narrow ray class field of F with respect to fpm. Let e be the order
of p in Gf and let pe = (π) with π À 0 and π ≡ 1 (mod f). Let E(f) be the group of totally
positive units of F congruent to 1 modulo f, and let Ep(f) = 〈π〉 × E(f) be the group of
totally positive p-units of F congruent to 1 modulo f.
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K = Hfpm
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By the definition of the local reciprocity map, Ep(f) ⊂ ker rp, with rp : F ∗
p −→ G(K/F ),

and since rp is trivial on Upm , also UpmEp(f) ⊂ ker rp. Conversely, if α ∈ F ∗
p belongs to

ker rp, take a ∈ F with a ≡ α (mod pm), a À 0, and a ≡ 1 (mod f). Then by definition
(a)p−νp(a) ∈ i(Ffpm∞,1). This implies first that e|νp(a) and so a = πka′ for some k and a′,
with (a′) ∈ i(Ffpm∞,1). So a′ = uβ for a unit u ∈ E(f) and β ≡ 1 (mod pm). We conclude
that α ∈ UpmEp(f). Also, if H ′ is the decomposition group of p in K, then the conductor of
H ′/F has to divide fpm, and so it must divide f. But then H ′ ⊂ Hf, and thus H ′ = H. We
deduce that rp induces an isomorphism

rp : F ∗
p /UpmEp(f) ' G(Hfpm/H).

Let Ê(f) = ∩m≥1UpmE(f) be the closure of E(f) in F ∗
p , and let Êp(f) = 〈π〉 × Ê(f) be the

closure of Ep(f) in F ∗
p . Notice that Êp(f) = ∩m≥1UpmEp(f), so Gross’s conjecture applied to

all fields K = Hfpm is a statement for the image of uσ
T in F ∗

p /Êp(f). It is now convenient to
introduce the field Hfp∞ = ∪m≥1Hfpm and to note that the map

rp : F ∗
p −→ G(Hfp∞/F )

induces an isomorphism

rp : F ∗
p /Êp(f) −→ G(Hfp∞/H).

We also have the Artin map

I fp
F −→ G(Hfp∞/F )

a 7−→ (σa),
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Denote O = Op − πOp ⊂ F ∗
p ; it is a fundamental domain for the action of 〈π〉 on F ∗

p ,
hence we have a bijection

O/Ê(f) −→ F ∗
p /Êp(f)

induced by inclusion.

Let b be a fractional ideal of F prime to S and T. For a compact–open subset U ⊂ O/Ê(f),
let

ζS(b, U, s) =
∑

a⊂OF ,(a,S)=1
σa∈σbrp(U)

Na−s

for Re(s) > 1. The condition is equivalent to σab−1 ∈ rp(U); in particular, it must be that
σab−1 is trivial on H. So, ab−1 = (α)pk for some k and some α ∈ Ff∞,1, necessarily k = −νp(α)
because p is prime to a and b. Also, note that α ∈ b−1 because a is integral. By definition,
rp(α) = σ(α)p−νp(α) = σab−1 , which belongs to rp(U) if and only if α ∈ U (because rp is

injective on F ∗
p /Êp(f)). We deduce that the sum above can be written also as

ζS(b, U, s) = Nb−s
∑

α

Npνp(α)sNα−s (6.1)

where the sum ranges over distinct representatives modulo E(f) of α satisfying α ∈ b−1, α ≡ 1
(mod f), α À 0, (α, R) = 1, and α ∈ U (when α À 0, N((α)) = Nα).

Define
ζS,T (b, U, s) =

∑
a

caζS(a−1b, U, s)

where
∏

η∈T (1 − [η]Nη) =
∑

a ca[a]. It will follow from Chapter 8 that ζS,T (b, U, 0) ∈ Z for
all compact–open U, and hence

µ(b, U) = ζS,T (b, U, 0)

defines a Z-valued measure on O/Ê(f). We compute that

µ(b,O/Ê(f)) =
∑

a⊂OF ,(a,S)=1
σH/F (a)=σH/F (b)

Na−s|s=0 = ζS,T (H/F, σb, 0) = 0

because S contains a prime p which splits completely in H. Also, note that if α ∈ F ∗
p /UpmEp(f)

and Uα denotes its inverse image in O/Ê(f) under O/Ê(f) → F ∗
p /Êp(f) → F ∗

p /UpmEp(f), then

µ(b, Uα) = ζS,T (Hfpm/F, σbrp(α), 0). (6.2)

If ρ ∈ Op is a local uniformizer, p = (ρ), we compute that for any i = 0, 1, ..., e − 1, we
have

ζS,T (b, ρiO∗
p/Ê(f), 0) = ζS,T (Hf/F, bp−i, 0). (6.3)

To check this, we can drop the index T which only corresponds to a shift, and reduce to

ζS(b, ρiO∗
p/Ê(f), 0) = ζS(Hf/F, bp−i, 0).
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The right–hand–side above is the value at s = 0 of

∑

a⊂OF ,(a,S)=1
σa=σbp−i in G(Hf/F )

Na−s.

We consider a change of variables a = bp−i(α), where α À 0, α ≡ 1 (mod f), α ∈ b−1, α ∈
ρiO∗

p, (α,R) = 1, and α is defined up to E(f). So, we can rewrite the second sum in terms of
a sum over such α:

Nb−s
∑

α

NpisN((α))−s.

At s = 0, we obtain precisely the value of the left–handside above. As a matter of notation,
for convenience, we will use for example ζS(Hf/F, bp−i, 0) and ζS(Hf/F, σbp−i , 0) interchange-
bly.

Next, we prove that for any i, we have

ζS,T (Hf/F, bp−i, 0) = ζR,T (Hf/F, bp−i, 0)− ζR,T (Hf/F, bp−i−1, 0). (6.4)

Again, after dropping the shift T, it suffices to note that

ζR(Hf/F, bp−i, s)− ζS(Hf/F, bp−i, s) =
∑

(a,R)=1,p|a
σa=σbp−i

Na−s

and consider a change of variables a = pa′.
Finally, we also observe that

e∑
i=1

ζR,T (Hf/F, bp−i, 0) = ζR,T (H/F, b, 0). (6.5)

This follows from the fact that G(H/F ) = G(Hf/F )/〈σp〉 and the functoriality of the Artin
map.

Now we are ready for the following:

Proposition 3. If Conjecture 4 is true, then

uσb
T = πζR,T (Hf/F,b,0) ×

∫

O/Ê(f)

x dµ(b, x)

in F ∗
p /Ê(f), where the integrand x is the inclusion O/Ê(f) ↪→ F ∗

p /Ê(f).

This is the generalization of the observation from section 5.6, which we obtained by
applying Gross’s conjecture to all fields L = K(µpν ). Notice that when F = Q, we have

Ê(f) = {1}, hence Gross’s conjecture already gives an exact formula for uT in Q∗p.
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Proof. We compute the p-adic valuation of the multiplicative integral above. Note that this
integral equals

∏e−1
i=0 ×

∫
ρiO∗p/Ê(f)

x dµ(b, x) and so it has p-adic valuation

e−1∑
i=0

iµ(b, ρiO∗
p/Ê(f)) =

e−1∑
i=0

iζS,T (Hf/F, bp−i, 0) by (6.3)

=
e−1∑
i=0

i(ζR,T (Hf/F, bp−i, 0)− ζR,T (Hf/F, bp−i−1, 0)) by (6.4)

=

(
e∑

i=1

ζR,T (Hf/F, bp−i, 0)

)
− eζR,T (Hf/F, bp−e, 0)

= ζR,T (H/F, b, 0)− eζR,T (Hf/F, b, 0) by (6.5).

So, the p-adic valuations in the above formula match, and hence it suffices to prove the
equality in

F ∗
p /Êp(f) = lim

←
F ∗

p /UpmEp(f).

Concretely, we have to prove that for any fixed m, if Uα ⊂ O/Ê(f) denotes the inverse image

of an element α ∈ F ∗
p /UpmEp(f) under O/Ê(f) → F ∗

p /Êp(f) → F ∗
p /UpmEp(f), then

uσb
T ≡

∏

α∈F ∗p /UpmEp(f)

αµ(b,Uα) (mod UpmEp(f)).

We now apply Gross’s conjecture for K = Hfpm . Namely, using the isomorphism rp :
F ∗

p /UpmEp(f) ' G(K/H), we can write

rp(u
σb
T ) =

∏

τ∈G(K/F )
τ∈σbG(K/H)

τ ζS,T (K/F,τ,0)

=
∏

τ=σbrp(α)
α∈F ∗p /UpmEp(f)

τ ζS,T (K/F,τ,0)

=
∏

α∈F ∗p /UpmEp(f)

rp(α)ζS,T (K/F,σbrp(α),0)

and thus
uσb

T ≡
∏

α∈F ∗p /UpmEp(f)

αζS,T (K/F,σbrp(α),0) (mod UpmEp(f)),

which finishes the proof, by (6.2).

Notice that Proposition 3 is precisely the statement of Gross’s conjecture applied to the
fields K = Hfpm for all m. To obtain an exact reformulation of Gross’s conjecture, we consider
the compositum HS of all fields K for which the conjecture can be applied. Namely, if g is the
product of the finite primes in S relatively prime to pf, we let HS = H∞

fpg be the compositum
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of all narrow ray class fields of F with respect to a modulus involving only primes in S. If v
is a prime dividing fg, set

Uv = 1 + fOv =

{
1 + vtOv if vt||f
O∗

v if v | g.

Denote
U =

∏

v|fg
Uv.

Notice that Ep(f) ⊂ F ∗
p ×U under the diagonal embedding. Let Ep(f) be the closure of Ep(f)

in F ∗
p × U . The local reciprocity maps rp and rv for v | fg induce an isomorphism

rS : (F ∗
p × U)/Ep(f) ' G(HS/H),

and the choice of π from before gives a bijection (O×U)/E(f) → (F ∗
p ×U)/Ep(f). We proceed

as before and define, for each b relatively prime to S, T a Z-valued measure µ(b, U), given
by µ(b, U) = ζ̃S,T (b, U, 0) on each compact open subset U ⊂ (O× U)/E(f), where

ζ̃S(b, U, s) =
∑

a⊂OF ,(a,S)=1
σa∈σbrS(U) in G(HS/F )

Na−s.

We consider the statement that Conjecture 4 yields when applied to each K = H∏
v

ai
i pm ,

where vi are the divisors of fg. Thus, as above, we can restate it conveniently as follows:

Proposition 4. Conjecture 4 is equivalent to the following statement: There exists an ele-
ment uT ∈ Up with uT ≡ 1 (mod T ) such that for all fractional ideals b of F prime to S, T
we have

(uσb
T , 1) = πζR,T (Hf/F,b,0) ×

∫

(O×U)/E(f)

x dµ(b, x)

in (F ∗
p × U)/E(f).
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Chapter 7

Dasgupta’s refinement

So far, Dasgupta’s restatement of Gross’s conjecture was a formula for uT in a certain
quotient. The goal however is to write an explicit formula for uT in F ∗

p and not just in

F ∗
p /Ê(f). Such a formula can then be viewed as explicit p-adic class field theory for the

extension H/F. The key is to refine the measure µ on O/Ê(f) to a measure ν on Op whose

restriction to O pushes forward to µ under the projection O → O/Ê(f). The natural idea is
to refine the formula 6.1, where the summation is over certain elements α, but defined only
modulo E(f). Writing an analogous formula for a compact–open subset U of Op, however,
requires a choice of a fundamental domain for the action of E(f) on the positive quadrant
Q = Rn

>0. It turns out that there is a fundamental domain for that action which has a special
geometric shape, and which is therefore a natural candidate for the definition of the refined
measure ν.

7.1 Shintani domains

Fix a totally real number field F and let n = [F : Q]. The n embeddings F → R given
by x 7→ xi (i = 1, ..., n) define an embedding F ↪→ Rn and an action of F ∗ on Rn via
α(x1, ..., xn) = (α1x1, ..., α

nxn). The totally positive elements in F ∗ act on Q = Rn
>0. We now

describe a fundamental domain for the action of E(f) on Q of special geometric shape.
For totally positive v1, ..., vr ∈ F, whose images in Rn are linearly independent over R,

define the simplicial cone generated by v1, ..., vr as

C(v1, ..., vr) =

{
r∑

i=1

civi | ci > 0

}
⊂ Q.

A Shintani set is a finite disjoint union of simplicial cones. The intersection of two
Shintani sets is a Shintani set, and for Shintani sets D,D′, there are only finitely many
ε ∈ E(f) such that εD ∩D′ 6= ∅ (see [4],[12]).

Shintani proved that there exists a Shintani set which is a fundamental domain for the
action of E(f) on Q; such a set D is called a Shintani domain. For example, if n = 2 and
E(f) = 〈ε〉, a Shintani domain is D = C(1) ∪ C(1, ε). If n = 3 and E(f) has basis (ε1, ε2) as
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a free abelian group, Colmez proved ([2]) that we can take

D = C(1) ∪ C(1, ε1) ∪ C(1, ε2) ∪ C(1, ε1ε2) ∪ C(1, ε1, ε1ε2) ∪ C(1, ε2, ε1ε2)

as a Shintani domain, provided ε1, ε2 satisfy a mild sign condition

det(1, ε1, ε1ε2) det(1, ε2, ε1ε2) < 0,

where det(α, β, γ) = det




α1 β1 γ1

α2 β2 γ2

α3 β3 γ3


 for α, β, γ ∈ F.

A prime η of F is called good for a simplicial cone C = C(v1, ..., vr) if Nη = l is a rational
prime and the generators vi can be chosen in O− η. A set T is good for a simplicial cone C
if it either contains two primes of different residue characteristic which are good for C, or a
prime η which is good for C and l = Nη ≥ n + 2. Also, T is called good for a Shintani set D
if D is a finite disjoint union D = ∪C, with T good for each of the simplicial cones C.

Let D = ∪B,D′ = ∪B′ be any two Shintani domains. For each B, B′, there are finitely
many ε ∈ E(f) such that B∩ εB′ 6= ∅, and we write each such nonempty Shintani set B∩ εB′

as a disjoint union ∪C of simplicial cones. From here, we conclude that we can find simplicial
cones C1, ..., Cd such that

D =
d⋃

i=1

Ci, D′ =
d⋃

i=1

γiCi (7.1)

for some γi ∈ E(f). Such a decomposition is called a simultaneous decomposition for the pair
(D,D′). A set T is called good for a pair (D,D′) of Shintani domains if there is a simultaneous
decomposition as above with T good for each Ci. If β ∈ F ∗ is totally positive, a set T is
called β-good for a Shintani domain D if it is good for the pair (D, β−1D). This property
depends only on the coset of β in F ∗/E(f). If p = (p), then π can be chosen as π = pe for
some e. In this case, since peCi = Ci, the condition that T is π-good for D reduces to the
condition that T is good for D. Note that if T is β-good for a Shintani domain D and Ci are
chosen as in (7.1) for D′ = β−1D, then for ε ∈ E(f), we have that

εD ∩ β−1D =
⋃
γi=ε

Ci

is a Shintani set for which T is good.

7.2 The refined measure ν(b,D)

We assume no prime of T has the same residue characteristic as any prime of S. Consider a
fractional ideal b of F prime to S and the residue characteristic of any prime in T (write: b

prime to S, char T ). Let D be a Shintani set.
For a compact open subset U of Op, define

ζR(b,D, U, s) =
∑

(α,R)=1
α∈b−1

α≡1 (mod f)
α∈D
α∈U

Nα−s.
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Next, define the shift ζR,T (b,D, U, s) as before. It will follow from Chapter 8 that when T is
good for D, the value at s = 0 of the analytic continuation of ζR,T (b,D, U, s) is in Z. So, we
can define a Z-valued measure ν(b,D) on Op by

ν(b,D, U) = ζR,T (b,D, U, 0)

for a compact open subset U ⊂ Op.

Equation (6.1) implies that if ν∗ is the pushforward of ν|O to O/Ê(f) under O → O/Ê(f),
then

ν∗(b,D, U) = µ(b, U)

for any compact open U ⊂ O/Ê(f). Thus we compute

ν(b,D,O) = ν∗(b,D,O/Ê(f)) = µ(b,O/Ê(f)) = 0.

Also, a change of variable a = b(α), with α À 0, α ≡ 1 (mod f) in the definition of
ζR(Hf/F, b, 0) yields

ν(b,D,Op) = ζR,T (Hf/F, b, 0).

7.3 The conjectural element uT (b,D). Naturality

Let D be a Shintani domain, and let T be π-good for D. By above, for any ε ∈ E(f), the
intersection εD ∩ π−1D is either empty or (for a finite number of ε) a Shintani set for which
T is good. So, we have that

ε(b,D, π) =
∏

ε∈E(f)

εν(b,εD∩π−1D,Op)

is a well-defined element in E(f) (the exponents above are integers).
Define

uT (b,D) = ε(b,D, π)πζR,T (Hf/F,b,0) ×
∫

O

xdν(b,D, x) ∈ F ∗
p .

Note that for any γ ∈ E(f), a change of variable α′ = αγ in the definition of ν implies

ν(b, γ−1D,Op) = ν(b,D, γOp) = ν(b,D,Op).

From here, using that D is a fundamental domain for the action of E(f) on Q, we readily
find that

ε(b,D, πγ) = ε(b,D, π)γ−ν(b,π−1D,Op) = ε(b,D, π)γ−ζR,T (Hf/F,b,0),

hence uT (b,D) is independent of the choice of π.

Proposition 5. Assume T is π-good for a Shintani domain D. If β ∈ F ∗ is relatively prime
to S, char T , totally positive, and β ≡ 1 (mod f), then

uT (b(β),D) = uT (b, βD).
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Proof. The term πζR,T (Hf/F,b,0) is not affected by the change b 7→ b(β). To investigate the
other two terms, we first note that a change of variables yields

ζR(b(β),D, U, s) = ζR(b, βD, βU, s),

and therefore
ν(b(β),D, U) = ν(b, βD, βU) (7.2)

for any U ⊂ Op. Therefore, we compute

×
∫

O

x dν(b(β),D, x) = ×
∫

O

x dν(b, βD, βx)

= β−ν(b,βD,O) ×
∫

O

x dν(b, βD, x)

= ×
∫

O

x dν(b, βD, x).

On the other hand, again using (7.2), we find

ε(b(β),D, π) =
∏

ε∈E(f)

εν(b(β),εD∩π−1D,Op) =
∏

ε∈E(f)

εν(b,εβD∩π−1βD,βOp) = ε(b, βD, π),

since βOp = Op.

Proposition 6. Let D and D′ be Shintani domains such that T is π-good for both D and
D′. Suppose that T is good for the pair (D,D′). Then

uT (b,D) = uT (b,D′).

Proof. Consder a simultaneous decomposition

D =
⋃

Ci D′ =
⋃

γiCi, with γi ∈ E(f),

such that T is good for each Ci. To prove the conclusion, it suffices to show that if D = D0∪C
for a Shintani set D0 and a cone C, such that T is good for D0 and C, then uT (b,D) =
uT (b,D0 ∪ γC), for any γ ∈ E(f). This will allow us to start with the decomposition for
D and replacing one of the cones Ci at a time with γiCi, to obtain the domain D′ without
changing the value of uT . So, set D′ = D0 ∪ γC.

A simple change of variable in the expression for ζR(b, γC, U, s) shows that

ν(b, γC, U) = ν(b, C, γ−1U)

for any U ⊂ Op. Thus,

×
∫

O

x dν(b,D′, x) = γν(b,C,O) ×
∫

O

x dν(b,D, x).
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To examine the ε-term, suppose first that T is good for each intersection εCi ∩ π−1Cj,
where ε ∈ E(f). We split ε(b,D, π) and ε(b,D′, π) into four pieces as follows:

ε(b,D, π) =
∏

ε

εν(b,εD0∩π−1D0,Op) ×
∏

ε

εν(b,εC∩π−1C,Op)

×
∏

ε

εν(b,εD0∩π−1C,Op) ×
∏

ε

εν(b,εC∩π−1D0,Op),

and similarly for ε(b,D′, π).
The first two terms are invariant if C is replaced by γC, and changing variables ε 7→ εγ

and ε 7→ εγ−1 in the second two terms yields

ε(b,D′, π) = ε(b,D, π)γ
∑

ε∈E(f) ν(b,εD0∩π−1C,Op)−ν(b,C∩ε−1π−1D0,Op). (7.3)

The exponent of γ equals

∑

ε∈E(f)

(ν(b, εD ∩ π−1C,Op)− ν(b, C ∩ ε−1π−1D,Op))

= ν(b, π−1C,Op)− ν(b, C,Op)

= ν(b, C, πOp)− ν(b, C,Op)

= −ν(b, C,O),

which finishes the proof in the case when T is good for each intersection εCi ∩ π−1Cj.
In general, the exponents in the decomposition above for ε(b,D, π) and ε(b,D′, π) need

not be integers, and the splitting into four parts is not possible. However, all exponents are
rationals (as will follow from Chapter 8) and only finitely many of them are nonzero. So, we
can look at their common denominator M ∈ Z and prove that the M -th powers of the two
sides in

ε(b,D′, π) = ε(b,D, π)γ−ν(b,C,O) (7.4)

are equal. However, both sides of (7.4) belong to the torsion-free group E(f), hence in fact
they must be equal. This completes the proof.

7.4 The refined conjecture

We are now ready to state Dasgupta’s refinement of Conjecture 4. Consider a Shintani
domain D and a set T which is π-good for D. Let b, b′ be fractional ideals prime to S, char T .
Also, fix a prime B of H lying over p; it defines an embedding H ↪→ Fp.

Conjecture 5. 1. The element uT (b,D) ∈ F ∗
p does not depend on the choice of Shintani

domain D and depends only on the class of b in Gf/〈p〉. So, it can be denoted uT (σb),
for σb ∈ G(H/F ).

2. uT (σb) ∈ Up and uT (σb) ≡ 1 (mod T ).

3. (Shimura reciprocity law) uT (σbb′) = uT (σb)
σb′ .
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Proposition 7. Conjecture (5) implies Conjecture (4).

Proof. First, we extend the measure ν(b,D, U) to a Z-valued measure ν on Op × U via
ν(b,D, U) = ζR,T (b,D, U, 0), where for a compact open U ⊂ Op × U , we define

ζR(b,D, U, s) =
∑

(α,R)=1
α∈b−1∩D

α≡1 (mod f)
α∈U

Nα−s.

The condition α ∈ U means the the image of α in Op×U under the diagonal embedding lies
in U. It follows from that

(ν(b,D)|O×U)∗ = µ(b)

as measures on O× U/E(f) (the push–forward is with respect to the natural projection).
Consider the element

∆ = ε(b,D, π)πζR,T (Hf/F,b,0) ×
∫

O×U
x dν(b,D, x) ∈ F ∗

p × U .

For each finite prime v ∈ S, the projection of ∆ onto the v-component of F ∗
p × U equals

ε(b,D, π)πζR,T (Hf/F,b,0) ×
∫

Wv

x dνv(b,D, x),

where νv(b,D) is the push–forward of ν(b,D)|O×U to the component Wv of O × U corre-
sponding to v (so Wp = O and Wv = Uv for v|fg). Thus, the projection of ∆ onto F ∗

p equals
precisely uT (b,D).

We now have to prove that for v|fg, the projection of ∆ onto Uv equals 1. This will allow
us to take uT = uT ((1),D) ≡ 1 (mod T ), uT ∈ Up, since in F ∗

p × U/E(f), we will have

(uσb
T , 1) = (uT (b,D), 1)

= image of ∆ in F ∗
p × U/E(f)

= πζR,T (Hf/F,b,0) ×
∫

O×U/E(f)

x dν∗(b,D, x)

= πζR,T (Hf/F,b,0) ×
∫

O×U/E(f)

x dµ(b, x).

Now, we fix a prime v ∈ R. Define measures ν0(b,D) and ν1(b,D) on Uv by

ν0(b,D, U) = ν(b,D,Op × U ×
∏

w∈R−{v}
Uw)

ν1(b,D, U) = ν(b,D, πOp × U ×
∏

w∈R−{v}
Uw).

What we have to prove reduces now to

×∫
Uv

x dν1(b,D, x)

×∫
Uv

x dν0(b,D, x)
= ε(b,D, π)πζR,T (Hf/F,b,0).
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But an easy change of variable α′ = π−1α yields

ν1(b,D, U) = ν0(b, π−1D, π−1U)

and so we can write

×
∫

Uv

x dν1(b,D, x) = ×
∫

Uv

x dν0(b, π−1D, π−1x)

= πν0(b,π−1D,Uv) ×
∫

Uv

x dν0(b, π−1D, x)

= πζR,T (Hf/F,b,0) ×
∫

Uv

x dν0(b, π−1D, x).

Since D is a fundamental domain for the action of E(f) on Q, we have

×
∫

Uv

x dν0(b, π
−1D, x) =

∏

ε∈E(f)

×
∫

Uv

x dν0(b, εD ∩ π−1D, x)

and

×
∫

Uv

x dν0(b,D, x) =
∏

ε∈E(f)

×
∫

Uv

x dν0(b,D ∩ ε−1π−1D, x)

=
∏

ε∈E(f)

×
∫

Uv

x dν0(b, εD ∩ π−1D, εx)

=
∏

ε∈E(f)

(
ε−ν0(b,εD∩π−1D,Uv) ×

∫

Uv

x dν0(b, εD ∩ π−1D, x)

)
,

hence
×∫
Uv

x dν0(b, π
−1D, x)

×∫
Uv

x dν0(b,D, x)
= ε(b,D, π),

which finishes the proof.
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Chapter 8

Computing the conjectural
Gross–Stark unit

The goal of this chapter is to provide numerical evidence for Dasgupta’s conjecture in the
case of a quadratic and a cubic totally real fields. While it is easy to compute the Gross–
Stark unit in practice, we now have to compute the conjectural element uT (b,D) ∈ F ∗

p from
Dasgupta’s formula, as well as its Galois conjugates, form its minimal polynomial and check
that it agrees with the minimal polynomial of the Gross–Stark unit up to a desired p-adic
accuracy.

The main term that we have to compute from Dasgupta’s formula is the multiplicative
integral; the naive approach by forming Riemann products is inefficient so we need an al-
ternative formula. This computation can be easily reduced to the one of a certain additive
integral (briefly, after taking logp and then applying expp). Thus, we have to compute a
measure which is a generalization of the measure ν(b,D). We proceed by modifying the ar-
guments in [4] to write the desired measure in terms of Shintani zeta functions, whose values
at s = 0 are easy to obtain by modifying the analytic result from [12].

8.1 The analytic ingredient

Let A = (ajk) (1 ≤ j ≤ r, 1 ≤ k ≤ n) be an r× n matrix with positive entries. Consider the
linear forms

Lj(t1, ..., tn) =
n∑

k=1

ajktk, 1 ≤ j ≤ r

and

L∗k(z1, ..., zr) =
r∑

j=1

ajkzj, 1 ≤ k ≤ n.

Let x = (x1, ..., xr) with each xj > 0 and let χ = (χ1, ..., χr) be an r-tuple of complex numbers
with |χj| ≤ 1 for all j = 1, ..., r. Let a1, ..., ar be nonnegative integers. The Dirichlet series

ζa1,...,ar(A, x, χ, s) =
∞∑

z1,...,zr=0

χz1
1 . . . χzr

r za1
1 . . . zar

r∏n
k=1(L

∗
k(z + x))s

(8.1)
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converges locally uniformly and absolutely for Re(s) > r(1+max(a1,...,ar))
n

and defines a holo-
morphic function for such s, called a Shintani zeta function.

For an integer a ≥ 0, there exists a polynomial Qa(q) ∈ Z[q] such that

∞∑
n=0

naqn =
Qa(q)

(1− q)a+1
for |q| < 1.

We now mimic the proof Proposition 1 in [12] (where ai = 0) to prove

Proposition 8. The function ζa1,...,ar extends to a meromorphic function on C. If χj 6= 1
for all j, then

ζa1,...,ar(A, x, χ, 0) =
Qa1(χ1)

(1− χ1)a1+1
...

Qar(χr)

(1− χr)ar+1
.

Proof. Let Γ(s) be the classical Gamma function. For b > 0, we have Γ(s)b−s =
∫∞
0

e−btts−1dt
and thus

Γ(s)n

n∏

k=1

L∗k(z + x)−s =

∫ ∞

0

. . .

∫ ∞

0

e−
∑n

k=1 tkL∗k(z+x)(t1...tn)s−1dt1 . . . dtn

=

∫ ∞

0

. . .

∫ ∞

0

e−
∑r

j=1(zj+xj)Lj(t)(t1...tn)s−1dt1 . . . dtn.

Therefore, since |χje
−Lj(t)| < 1, we can write

Γ(s)nζa1,...,ar(A, x, χ, s)

=

∫ ∞

0

. . .

∫ ∞

0

∞∑
z1,...,zr=0

χz1
1 . . . χzr

r za1
1 . . . zar

r e−
∑r

j=1(zj+xj)Lj(t)(t1 . . . tn)s−1dt1 . . . dtn

=

∫ ∞

0

. . .

∫ ∞

0

r∏
j=1




∞∑
zj=0

χ
zj

j z
aj

j e−zjLj(t)


 e−

∑r
j=1 xjLj(t)(t1...tn)s−1dt1 . . . dtn

=

∫ ∞

0

. . .

∫ ∞

0

r∏
j=1

(
Qaj

(χje
−Lj(t))

(1− χje−Lj(t))aj+1

)
e−

∑r
j=1 xjLj(t)(t1...tn)s−1dt1 . . . dtn

=

∫ ∞

0

. . .

∫ ∞

0

g(t)(t1 . . . tn)s−1dt1 . . . dtn,

where

g(t) =
r∏

j=1

Qaj
(χje

−Lj(t))e(aj+1)Lj(t)

(eLj(t) − χj)aj+1
e−xjLj(t).

For 1 ≤ k ≤ n, consider the domain

Dk = {t ∈ Rn | 0 ≤ tl ≤ tk for all l = 1, ..., n}.
Since the integral over a set of Lebesgue measure zero equals zero, we have that

Γ(s)nζa1,...,ar(A, x, χ, s) =
n∑

k=1

∫

Dk

g(t)(t1...tn)s−1dt1 . . . dtn.
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Let

Ak = Γ(s)−n

∫

Dk

g(t)(t1...tn)s−1dt1 . . . dtn.

On Dk, consider a change of variables t = uy, with u > 0, 0 ≤ yl ≤ 1 for l 6= k, and
yk = 1. Thus,

Ak = Γ(s)−n

∫ ∞

0

∫ 1

0

. . .

∫ 1

0

g(uy)uns−1(y1...ŷk...yn)s−1dy1 . . . d̂yk . . . dyndu.

For 0 < ε < 1, let Iε(1) (respectively Iε(∞)) be the contour consisting of the interval
[1, ε], (respectively [∞, ε]) followed by the counterclockwise circle of radius ε, followed by the
interval [ε, 1] (respectively [ε,∞]).

If we fix the variables u, y2, ..., ŷk, ..., yn > 0, also s with Re(s) sufficiently big, and let
y1 = y vary, we have to consider the integral

I =

∫ 1

0

h(y)ys−1dy,

where

h(y) =

∫ ∞

0

∫ 1

0

. . .

∫ 1

0

g(uy, uy2, ..., u, ..., uyn)uns−1(y2...ŷs...yn)s−1dy2 . . . d̂ys . . . dyndu.

Since the denominator of g(t) involves expressions of the form (eLj(t)−χj)
aj+1 and Lj(t)

is a linear form with positive coefficients, for y1 = y close enough to 0 (y ∈ C), eLj(uy) is
close to a real number of absolute value greater than 1. So, there exists ε > 0 such that h(y)
is holomorphic on a neighborhood of {z | 0 < |z| ≤ ε}. We claim that

∫ 1

0

h(y)ys−1dy =
1

e2πis − 1

∫

Iε(1)

h(y)ys−1dy,

or equivalently,

(e2πis − 1)

∫ ε

0

h(y)ys−1dy =

∫

|z|=ε

h(y)ys−1dy. (8.2)

But, given ε, we can take δ sufficiently small and apply Cauchy’s integral formula for the
contour given by a counterclockwise circle of radius ε followed by the segment [ε, δ], followed
by the clockwise circle of radius δ, and finally by [δ, ε]. Then (8.2) reduces to

lim
δ→0

∫

|y|=δ

h(y)ys−1dy = 0,

which in turn follows from the expression for h, since |h(δeiθ)δs| approaches 0 as δ → 0. We
argue similarly for the other variables (when we treat u, we recall that Re(s) is sufficiently
large) and deduce that

Ak =
Γ(s)−n

(e2nπis − 1)(e2πis − 1)n−1

∫

Iε(∞)

∫

Iε(1)n−1

g(uy)uns−1(
∏

l 6=k

yl)
s−1(

∏

l 6=k

dyl)du

=
Γ(1− s)n

enπis

(e2πis − 1)

(e2nπis − 1)

1

(2πi)n

∫

Iε(∞)

∫

Iε(1)n−1

g(uy)uns−1(
∏

l 6=k

yl)
s−1(

∏

l 6=k

dyl)du
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This expression defines a meromorphic function on C whose value at s = 0 equals 1
n
ck,

where ck is the constant term in the Taylor expansion of g(uy1, ..., uyk−1, u, uyk+1, . . . uyn)
around the origin. In particular, when χj 6= 1 for all j, we obtain

ζa1,...,ar(A, x, χ, 0) =
r∏

j=1

Qaj
(χj)

(1− χj)aj+1
,

as desired.

8.2 Reduction to the additive integral

Let F be a totally real number field of degree n over Q, and let p > 2 be a prime of Q which
is inert in F, with p = (p). In this case, the map log = logp identifies

(1 + pOp)
∗ ' pOp,

and its inverse is given by exp = expp . Moreover, we know that if x ∈ p, then exp(x) =
1 + c where νp(c) = νp(x), and log(1 + x) = c′ where νp(c

′) = νp(x). Also (cf [9]), if
n = a0 + a1p + · · ·+ akp

k with 0 ≤ ai < p, then

νp

(
xn

n!

)
= n

(
νp(x)− 1

p− 1

)
+

1

p− 1
(a0 + a1 + · · ·+ ak).

Finally, we know that

O∗
p ' µFp × (1 + pOp)

∗ ' (Op/p)∗ × (1 + pOp)
∗.

For a Z-valued measure ν on O∗
p, the goal is to evaluate the multiplicative integral

A = ×
∫

O∗p
xdν(x) ∈ O∗

p

up to M p-adic digits. We reduce the calculation to a certain additive integral.
First, take

A0 =
∏

a∈(Op/p)∗
aν(a+pOp) ∈ (Op/p)∗

and find the root of unity γ ∈ O∗
p which reduces to A0 modulo p, so that A = γ A

γ
and

A
γ
∈ (1 + pOp)

∗. The problem now reduces to computing A
γ

up to M p-adic digits. But if

x, y ∈ pOp and x ≡ y (mod pM), then exp(x) ≡ exp(y) (mod pM), and so we have to find
B ∈ pOp such that

log

(
A

γ

)
≡ B (mod pM); (8.3)

then we will have that A
γ
≡ exp(B) (mod pM).

Moreover, given B, to compute exp(B) modulo pM , it suffices to truncate the series for
exp at the smallest index k such that k + 1 ≥ M p−1

p−2
because for m ≥ k + 1, we have

νp(
Bm

m!
) > m(νp(B)− 1

p−1
) ≥ mp−2

p−1
≥ M.
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To compute B, we note that if a, b ∈ O∗
p and a ≡ b (mod pM), then log(a) ≡ log(b)

(mod pM). This holds because the same root of unity γ is congruent to both a and b modulo
p, and a

γ
≡ b

γ
(mod pM), so we reduce to the case a, b ∈ 1 + pOp. Replacing a by a

b
further

reduces to b = 1. But, we know that if a ≡ 1 (mod pM), then log(a) = log(1 + (a− 1)) has
valuation equal to νp(a− 1) ≥ M.

For a ∈ (Op/p)∗, let

Aa = ×
∫

a+pOp

xdν(x) ∈ O∗
p,

so A =
∏

Aa and log(A) =
∑

log(Aa). Modulo pM , we have that

log Aa ≡ log
∏

b∈(Op/pM )∗
b≡a (mod p)

bν(b+pMOp)

=
∑

b∈(Op/pM )∗
b≡a (mod p)

ν(b + pMOp) log(b)

=
∑

b∈(Op/pM )∗
b≡a (mod p)

ν(b + pMOp)

(
log

(
1 + (

b

a
− 1)

)
+ log(a)

)

= (log a)ν(a + pOp)

+
∑

b∈(Op/pM )∗
b≡a (mod p)

ν(b + pMOp)

((
b

a
− 1

)
− 1

2

(
b

a
− 1

)2

+
1

3

(
b

a
− 1

)3

− . . .

)

We need to know where to truncate the series. For y ∈ pOp, we have that

νp

(
ym

m

)
= νp

(
ym

m!

)
+ νp((m− 1)!)

> m
p− 2

p− 1
+ νp((m− 1)!)

≥ M

provided m ≥ k + 1, where k is the smallest integer such that (k + 1)p−2
p−1

+ νp(k!) ≥ M.
For this choice of k, write

(
b

a
− 1

)
− 1

2

(
b

a
− 1

)2

+ · · ·+ (−1)k−1

k

(
b

a
− 1

)k

= ck(a)bk + ck−1(a)bk−1 + · · ·+ c0(a).
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Thus, again modulo pM , we find

log Aa ≡ (log a)ν(a + pOp)

+
∑

b∈(Op/pM )∗
b≡a (mod p)

ν(b + pMOp)(ck(a)bk + ck−1(a)bk−1 + · · ·+ c0(a))

= (log a)ν(a + pOp)

+ ck(a)
∑

b∈(Op/pM )∗
b≡a (mod p)

bkν(b + pMOp) + · · ·+ c0(a)
∑

b∈(Op/pM )∗
b≡a (mod p)

ν(b + pMOp)

≡ (log a)ν(a + pOp) + ck(a)

∫

a+pOp

xkdν(x) + · · ·+ c0(a)

∫

a+pOp

dν(x)

= (log a)ν(a + pOp) + ck(a)µk(a + pOp) + · · ·+ c0(a)µ0(a + pOp),

where µi is defined on compact open subsets of Op via

µi(U) =

∫

U

xidν(x).

Finally, the congruence

B ≡ log A =
∑

a∈(Op/p)∗
log Aa (mod pM)

reduces the computation of A to the one of µi(a + pOp).

8.3 The additive integral

Here we generalize the computation of the measure ν in [4] (which corresponds to k = 0)
with appropriate modifications of the arguments.

Fix a totally real number field F of degree n over Q, a prime p of Q and a prime p of
F lying over p. Next, f is an integral ideal of OF prime to p, S is a finite set of primes
of F containing the archimedean primes, the ones dividing f, and p. Recall the notation
R = S − {p}. We take T = {η}, where l = Nη is prime (and of course, l is prime to S). Let
b be a fractional ideal of F prime to S and l. Consider a simplicial cone C = C(v1, ..., vr) of
dimension r with vi ∈ OF − η (i.e., T is good for C). The goal of this section is to compute
the additive integral ∫

U

xkdν(b, C, x) ∈ Op

for a compact open subset U ⊂ Op.
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8.3.1 Expression in terms of Shintani zeta functions

Let K = F (µl). Fix an embedding τ : K ↪→ C. For a compact open U ⊂ Op, consider the
series

ζk(b, C, U, s) =
∑

(α,R)=1
α∈b−1∩C

α≡1 (mod f)
α∈U

τ(α)k

Nαs
− l

∑

(α,R)=1
α∈b−1η∩C

α≡1 (mod f)
α∈U

τ(α)k

Nαs
.

The series converges absolutely for Re(s) > r
n
(k + 1), as will become evident from the form

of ζk given below.
Given a compact open U ⊂ Op, choose e such that U is a finite disjoint union of translates

of peOp. Set

a = b−1fpe
∏

v∈R,(v,f)=1
v finite

v,

so that by the Chinese Remainder Theorem, we can find yi ∈ η, i = 1, ..., d, such that

{
α ∈ b−1 ∩ U | (α, R) = 1, α ≡ 1 (mod f)

}
=

d⋃
i=1

(a + yi) (disjoint union).

So, if we define

Zk(a, y, C, s) =
∑

α∈(a+y)∩C

τ(α)k

Nαs
,

we have that

ζk(b, C, U, s) =
d∑

i=1

(Zk(a, yi, C, s)− lZk(aη, yi, C, s)).

Choose an integer in a but not in η and multiply all generators vi of the cone C by that
integer, so C = C(v1, ..., vr) with vi ∈ a− aη. Denote

Ω(a, y, v) =

{
x ∈ a + y | x =

r∑
i=1

xivi with 0 < xi ≤ 1

}
.

This is a finite set because it is the intersection of a translate of a lattice and a compact.
For α ∈ C, we can write uniquely

α =
r∑

i=1

(xi + zi)vi,

where 0 < xi ≤ 1 and zi ∈ Z, zi ≥ 0. So, α = x +
∑r

i=1 zivi belongs to a + y if and only if
x ∈ Ω(a, y, v). Thus,

Zk(a, y, C, s) =
∑

x∈Ω(a,y,v)

∞∑
z1,...,zr=0

τ(
∑r

i=1(xi + zi)vi)
k

N(
∑r

i=1(xi + zi)vi)s
.
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Fix a nontrivial character χ0 : a/aη ' OF /η ' Z/lZ→ F (µl) and consider the composi-
tion χ = τ◦χ0. To study the shift Zk(a, y, C, v)−lZk(aη, y, C, v), we will use the orthogonality
relation: if a ∈ a, then

l−1∑
t=0

χ(a)t =

{
l, if a ∈ aη

0, if a /∈ aη.

Namely, we can write

lZk(aη, y, C, s) = l
∑

x∈Ω(aη,y,v)

∞∑
z1,...,zr=0

τ(
∑r

i=1(xi + zi)vi)
k

N(
∑r

i=1(xi + zi)vi)s

=
∑

x∈Ω(a,y,v)

l−1∑
t=0

∞∑
z1,...,zr=0

χ(y − x−
r∑

i=1

zivi)
t τ(

∑r
i=1(xi + zi)vi)

k

N(
∑r

i=1(xi + zi)vi)s

and hence

Zk(a, y, C, s)− lZk(aη, y, C, s) =

−
∑

x∈Ω(a,y,v)

l−1∑
t=1

∞∑
z1,...,zr=0

χ(y − x−
r∑

i=1

zivi)
t τ(

∑r
i=1(xi + zi)vi)

k

N(
∑r

i=1(xi + zi)vi)s

= −
∑

x∈Ω(a,y,v)

l−1∑
t=1

χ(y − x)t

∞∑
z1,...,zr=0

(∏r
j=1(χ(−vj)

t)zj

)(
τ(x) +

∑r
j=1 zjτ(vj)

)k

N(
∑r

j=1(xj + zj)vj)s
. (8.4)

To recognize this as a sum of Shintani zeta functions, consider the matrix

Av =




v1
1 v2

1 . . . vn
1

· · ·
v1

r v2
r . . . vn

r




and note that if we expand binomially the sum

(
τ(x) +

r∑
j=1

zjτ(vj)

)k

,

we obtain that Zk(a, y, C, s)− lZk(aη, y, C, s) is a finite sum of products of elements in τ(K)
and sums of the form (8.1) with respect to the matrix Av, and where χj = χ(−vj)

t are
nontrivial roots of unity. Each χi then also belongs to τ(K) and by the explicit formula for
the value at s = 0 of (8.1), we deduce that the value of Zk(a, y, C, s) − lZk(aη, y, C, s) at
s = 0 belongs to τ(K) also.

Fix a prime B of K lying over p. By above, we can define a KB-valued distribution µk

on Op via
µk(U) = µk(b, C, U) = τ−1ζk(b, C, U, 0).
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8.3.2 Integrality of µk and the congruence it satisfies

By the explicit formula for the value of (8.1) at s = 0, we see that this value in fact belongs
to OB because if ζ is a primitive l-th root of unity, 1

1−ζ
belongs to the valuation ring of

Qp(µl), hence to OB. Taking into account that vj ∈ a ⊂ Op and that x =
∑

xjvj ∈ a + yi

for some i, with yi ∈ OF , we deduce that in fact

µk(U) ∈ OB for each compact open U ⊂ Op.

Now suppose that U = a + pNOp. Then we can take

a = b−1fpN
∏

v finite,v∈R
(v,f)=1

v

and so
vj ∈ a ⊂ pNOp ⊂ BN .

Also, for x =
∑

xjvj ∈ Ω(a, yi, v), we have that x ≡ a (mod pN), hence also xk ≡ ak

(mod BN). It is now clear that when we expand the sum (8.4) and set s = 0, we obtain

xkν(b, C, U) + terms of the form vjTj,

where Tj ∈ OB (note that ν(b, C, U) = µ0(b, C, U)). But this shows that

µk(U) = µk(a + pNOp) ≡ xkν(b, C, U) ≡ akν(b, C, U) (mod BN)

because we know that ν(b, C, U) ∈ OB.
This congruence , together with the fact that µk is OB-valued allows us to compute the

additive integral
∫

U
xkdν(b, C, x) ∈ Op ⊂ OB for a compact open U ⊂ Op. Indeed, let N be

large enough so that U is a finite disjoint union

U =
d⋃

i=1

(ai + pNOp).

Then we have that

∫

U

xkdν(b, C, x) ≡
d∑

i=1

ak
i ν(b, C, ai + pNOp) (mod BN)

≡
d∑

i=1

µk(ai + pNOp) (mod BN)

= µk(U).

This holds for all sufficiently large N, which implies that
∫

U

xkdν(b, C, x) = µk(U).

In particular, µk is Op-valued.

52



8.4 Integrality of ν

The case k = 0 above implies in particular that

Z0(a, y, C, s)− lZ0(a, y, C, s) = −
∑

x∈Ω(a,y,v)

l−1∑
t=1

χ(y − x)tζ(Av, x, (χ(−vi)
t), s)

= −
∑

x∈Ω(a,y,v)

l−1∑
t=1

χ(y − x)t

r∏
i=1

1

1− χ(−vi)t

= −
∑

x∈Ω(a,y,v)

TrQ(µl)/Q

(
χ(y − x)∏r

i=1(1− χ(−vi))

)
.

This shows first that ν(b, C, U) ∈ Q and in fact, since for a primitive l-th root of unity ζ, we
have that (1 − ζ)l−1 = (l) in Z[ζl], the trace above is an l-integer. Thus, ν(b, C, U) ∈ Z[1

l
].

Moreover, examining the valuation of l, we see that in fact ν(b, C, U) has denominator at
most l

r
l−1 .

Thus, if the set T contains two primes of different residue characteristics which are good
for an r-dimensional cone C, or a prime η with l = Nη ≥ r + 2, the value ν(b, C, U) is in Z,
for any compact open U ⊂ Op.

8.5 A quadratic example

Let F = Q(
√

11) with OF = Z[
√

11]. We take the prime p = 3, which is inert in F , p = (3),
and l = 5, which splits, and we fix η over l. Take f = 1, S = {∞1,∞2, p}, and T = {η}.

When we take b1 = 1, D = C(1) ∪ C(1, 10 − 3
√

11) and compute the multiplicative
integral

A = ×
∫

O∗p
xdν(b1,D, x) ∈ O∗

p

up to, say, 9 p-adic digits (set M = 9), we obtain

A ≡ −118098 + 638972
√

11 (mod 39).

Since ν(b1,D,Op) = ζR,T (H/F, b1, 0) = −1 in this case, we have to take uT (b1,D) = A
3
.

Next, we can work with, say, b2 = (
√

11), which is a representative for the nontrivial coset
in the narrow class group, and compute ν(b2,D,Op) = 1, and also

A′ = ×
∫

O∗p
xdν(b2,D, x) ≡ 1

A
(mod 39).

Thus, uT (b1,D) and uT (b2,D) are roots of the polynomial in Fp[x], whose coefficients are as
follows up to 9 p-adic digits:

x2 − (
A

3
+

3

A
)x + 1 ≡ x2 +

1

3

√
11x + 1 (mod 39).
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On the other hand, the narrow Hilbert class field is H = F (i), and we easily compute
that the minimal polynomial for the Gross–Stark unit uT ∈ H∗ is precisely

x2 +
1

3

√
11x + 1 ∈ F [x].

This example is strong computational evidence for Conjecture 5.

8.6 A cubic example

Consider the totally real number field F = Q(w), where w3 + 2w2 − 3w − 2 = 0, with ring
of integers Z[w]. The two fundamental units of F are u1 = w and u2 = −7w + 4w2. Under
the three real embeddings of F, u1 and u2 have signs (+−−) and (+ + +) respectively. So,
the fundamental totally positive units of F are v1 = u2

1 = w2 and v2 = u2.
We choose f = I2

1 , where (2) = I1I2 with I1, I2 prime ideals and N(I1) = 2. Then u1, u2

are congruent to 1 modulo f, and since −1 is not congruent to 1 modulo f, any unit congruent
to 1 modulo f has signs either (+−−) or (+++) under the three embeddings. In particular,
the degree of the narrow ray class field Hf of F corresponding to the modulus f over the
wide ray class field H ′

f of F corresponding to the modulus f equals 4. In fact, H ′
f = F, and

Hf has degree 4 over F. The narrow ray class group G of F for the modulus f is isomorphic
to Z/2Z× Z/2Z, and can be realized as

G = 〈(3), I2〉.

We check that det(1, v1, v1v2) det(1, v2, v1v2) < 0, so we can take as a Shintani domain D
for the action of 〈v1, v2〉 on R2

>0 the union of the following cones:

C1 = C(1), C2 = C(1, v1), C3 = C(1, v2), C4 = C(1, v1v2), C5 = C(1, v1, v1v2), C6 = C(1, v2, v1v2).

Fix b1 = I2
2 ; it is a representative for the trivial class in G. The reason we take b1 = I2

2 and
not b1 = 1 as a representative for the trivial class in the narrow ray class group corresponding
to f is that this choice makes the sets Ω(a, y, v) smaller. Indeed, regardless of whether b1 = 1
or b1 = I2

2 , we still have to multiply the generators of the cones by the same smallest possible
choice 20, to ensure they lie in a (and not in η). But, when b1 = I2

2 , the lattice becomes
strictly smaller, and the intersection with the compact set (which does not increase) decreases
as well.

We take p = 5, which is inert in F, so p = (p); then p splits completely in H = Hf.
Also, we take η with (11) = ηη′ in F , with Nη = 11 = l. We take S = {∞1,∞2,∞3, I1, p},
R = S −{p}, and T = {η}. Since these will be fixed, we will not always include them in the
subsequent notation.

8.6.1 The Gross–Stark unit

Since p splits in H = Hf, we denote by Bi, i = 1, ..., 4 the primes of H over p (i.e., we fix
their order). Also, fix B = B1. We now compute the Gross–Stark unit associated to B.
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Namely, we compute

ζR,T (H/F, b, 0) = ν(b,D,Op) =





−10, if b = 1,

10, if b = (3),

−10, if b = I2,

10, if b = (3)I2.

We check that if σ1 = σ(3) and σ2 = σI2 , then σ1(B) = B3 and σ2(B) = B4, so we form

B−10
1 B10

2 B10
3 B−10

4 = (u),

and we select u such that u ≡ 1 (mod η) and |u|w = 1 for any infinite w. Then, we compute
the minimal polynomial of u over F, and find that it is

x2 +
1

510
(−1154763w2 − 6369741w + 5739634)x + 1. (8.5)

The code for this computation is in the Appendix.

8.6.2 The minimal polynomial of uT (b1,D)

We set M = 5, which will guarantee that our computation of the multiplicative integral in
the formula for uT (b1,D) will be an approximation up to p5. We perform computations in
the local field up to 10 p-adic digits, and get the following expression for

A = ×
∫

O∗p
x dν(b1,D, x),

in the field Fp = Qp(w), where w3 + 2w2 − 3w − 2 = 0 :

A = 295388w2 + 729116w + 869741 + O(59).

Now, since we know from the computation in the previous subsection that the norm
of the Gross–Stark unit is 1 (a–priori, it is ±1), the refined conjecture would predict that
uT (b1,D) = 5−10A will satisfy the polynomial

x2 −
(

5−10A +
510

A

)
x + 1 ∈ Fp[x],

and that the coefficients of this polynomial actually lie in F [x]. But, the middle coefficient
is

1

510

(
−A− 520

A

)
,

and we have that −A− 520

A
and the numerator of the middle coefficient in (8.5) indeed agree

up to 56.
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8.6.3 The code

The Magma code computing this is the main one, and is included in Appendix B.2 and B.3.
It follows the algorithm described in Sections 8.2 and 8.3. I thank Prof. Elkies for letting me
know that the efficient way to compute the sets Ω(a, y, v) is through LLL reduction. We first
compute all sets Ω that are needed, as well as all character values χ(y − x), and store them
in arrays. Then we compute all the measures µk(b1,D, x) and store them in an external file.
Finally, we just read the stored values and compute the multiplicative integral.
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Appendix A

Class field theory

Let K be a number field. A modulus for K is a formal product m = mfm∞ where mf is an
integral ideal of K and m∞ is a subset of the set if real primes of K.

Let L/K be an abelian extension of number fields. Recall that an infinite prime v of K
is ramified in L if v is real but admits an extension to a complex prime of L. If p is a finite
prime of K which is unramified in L, the Frobenius automorphism σp ∈ G(L/K) is defined
as the unique element in G(L/K) with the property σp(x) ≡ xNp (mod B) for all x ∈ OL

and for any prime B of L lying over p. If mf is an ideal of K divisible by all of the (finitely
many) ramified finite primes in L, the Artin map

σ : I
mf

K −→ G(L/K)

is defined via
I =

∏
pai

i 7−→
∏

σai
pi
∈ G(L/K).

The Artin map is surjective, and moreover, given any σ ∈ G(L/K), the set of prime ideals
p of K with σp = σ is infinite (weaker version of Chebotariov’s density theorem).

If the exponents of the finite primes in m are large enough,

i(Km,1) ⊂ ker σ.

There exists a smallest modulus f for K divisible precisely by the primes ramified in L
(finite or infinite), such that i(Kf,1) ⊂ ker σ|If

K
. This modulus f called the conductor of L/K.

If m is any modulus for K and H is a subgroup of Im
K such that

i(Km,1) ⊂ H ⊂ Im
K ,

there exists a unique abelian extension L/K which is unramified outside m and such that
the Artin map Im

K −→ G(L/K) has kernel precisely H and hence induces an isomorphism
Im
K/H ' G(L/K). When f is an integral ideal, m = f × ∏

v real v, and H = i(Km,1), the
extension L is called the narrow ray class field of K with respect to f. Any abelian extension
of conductor dividing m is contained in this field L.

Let L/K be an abelian extension of conductor m = npk for some k ≥ 0, where p - n. The
local reciprocity map

rp : K∗
p −→ G(L/K)
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is defined as follows. Consider the composition

θ : Kn,1
i−→ In

K → Im
K

σ−→ G(L/K),

where the map In
K → Im

K is given by dropping the factor of p, i.e., by a 7→ ap−νp(a). If V is
the kernel of the map Kn,1 → K∗

p/Upk , then θ is trivial on V by definition. The map rp is
defined via the composition

rp : K∗
p −→ K∗

p/Upk ' Kn,1/V
θ−→ G(L/K).

Concretely, if α ∈ K∗
p , by the weak approximation theorem, we find a ∈ K such that

a ≡ 1 (mod n) and a ≡ α (mod pk). Then we take a = (a)p−νp(a) and have that rp(α) = σa.
In particular, if p is unramified in L, then

rp(x) = σ
−νp(x)
p .

The image of rp is the decomposition group of p in G(L/K), and the kernel of rp is the
group of local norms N(L∗B), where B is a prime of L lying over p. Moreover, the kernel of
rp|O∗p is Upm .
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Appendix B

The Magma code

B.1 The Gross–Stark unit

Here we compute the Gross–Stark unit in the cubic example from section 8.6.

n:=3;

P1<x>:=PolynomialRing(Integers()); f:=x^3+2*x^2-6*x-1;

F:=NumberField(f); O:=RingOfIntegers(F);

p:=5; P:=Factorization(p*O)[1][1];

eta:=Factorization(11*O)[1][1]; Norm(eta);

I:=Factorization(2*O); ff:=I[1][1]^2; q:=I[2][1];

G,m:=RayClassGroup(ff,[1,2,3]);

H:=AbelianExtension(m); HH:=NumberField(H); OO:=RingOfIntegers(HH);

b_temp:=

[

OO![F![28, 176, -112], F![-2, 30, -16], F![0, -6, 4], F![-5, -1, 2]] / 4,

OO![F![24, 176, -112], F![12, 26, -18], F![0, -6, 4], F![-5, -1, 2]] / 4,

OO![F![32, 152, -100], F![-2, 30, -16], F![6, -6, 2], F![-5, -1, 2]] / 4,

OO![F![-12, -156, 96], F![-12, -26, 18], F![-6, 6, -2], F![5, 1, -2]] / 4

];

beta:=[];

for i:=1 to 4 do beta[i]:=b_temp[i]*OO; end for;

x:=CRT([OO!0,OO!1,OO!1,OO!1],[beta[1],beta[2],beta[3],beta[4]]);

sigma1:=ArtinMap(H)(3*O); sigma2:=ArtinMap(H)(q); sigma3:=ArtinMap(H)(q*(3*O));

OO!sigma1(x) in beta[3]; OO!sigma2(x) in beta[4]; OO!sigma3(x) in beta[2];

b,u0:=IsPrincipal(beta[1]^(-10)*beta[2]^(10)*beta[3]^(10)*beta[4]^(-10)); u0;

T:=ideal<OO|eta>;
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function check(u0,T);

ans:=true;

for i:=1 to #Factorization(T) do

ans:=ans and (Valuation(u0-1,Factorization(T)[i][1]) ge Factorization(T)[i][2]);

end for; return ans; end function;

u0:=

(80557852/9765625*O.1 + 421888581/9765625*O.2 - 52265052/1953125*O.3)*OO.1 +

(23049723/19531250*O.1 + 67281819/9765625*O.2 - 86137569/19531250*O.3)*OO.2 +

(-21364623/19531250*O.1 - 489156/390625*O.2 + 19315023/19531250*O.3)*OO.3 +

(17629923/19531250*O.1 - 15580323/19531250*O.2 + 74694/390625*O.3)*OO.4;

check(u0,T);

Habs:=AbsoluteField(HH); u00:=Habs!u0; AbsoluteValues(u00);

MinimalPolynomial(HH!u0);

B.2 Computing the measures µk

This is the main part of the code. The purpose is to compute the measure µk(b1, C, a+pOp).
We include the code from the cubic example. We then store the measures in an array
“seqalpha,” which we read in the code from the next subsection.

n:=3; P1<x>:=PolynomialRing(Integers()); f:=x^3+2*x^2-6*x-1;

F:=NumberField(f); O:=RingOfIntegers(F);

l:=11;eta:=Factorization(l*O)[1][1];

p:=5;P:=Factorization(p*O)[1][1];

I:=Factorization(2*O);ff:=I[1][1]^2;

v1:=F.1^2;v2:=-7*F.1+4*F.1^2;

function multiply_a_cone(v,a);

new_v:=[];

for i:=1 to #v do

Append(~new_v,a*v[i]);

end for;

return new_v;

end function;

C:=[];C[1]:=[O!1];C[2]:=[O!1,v1];C[3]:=[O!1,v2];C[4]:=[O!1,v1*v2];

C[5]:=[O!1,v1,v1*v2];C[6]:=[O!1,v2,v1*v2];

b1:=I[2][1]^2; a:=b1*ff*P; h_e:=20;

D:=[]; for i:=1 to 6 do D[i]:=multiply_a_cone(C[i],h_e); end for;
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//the function below returns a set of representatives for (O/P)^*

function Nonzero_reps();

PP,proj:=quo<O|P>;

G,g:=MultiplicativeGroup(PP);

G1:={};

for x in G do G1:=G1 join {g(x)}; end for;

answ:={};

for x in G1 do answ:=answ join {x@@proj}; end for;

return answ;

end function;

//TT:=SetToSequence(Nonzero_reps() join {O!0});

TT:=

[O![0, 0, 0],O![1, 0, 0],O![2, 0, 0],O![-2, 0, 0],O![-1, 0, 0],

O![-2, 1, 0],O![-1, 1, 0],O![0, 1, 0],O![1, 1, 0],O![2, 1, 0],

O![-2, -2, -1],O![-2, 2, 0],O![-1, -2, -1],O![-1, 2, 0],O![0, -2, -1],

O![0, 2, 0],O![1, -2, -1],O![1, 2, 0],O![2, -2, -1],O![2, 2, 0],

O![-2, -2, 2],O![-1, -2, 2],O![0, -2, 2],O![1, -2, 2],O![2, -2, 2],

O![-2, -1, -1],O![-1, -1, -1],O![0, -1, -1],O![1, -1, -1],O![2, -1, -1],

O![-2, -1, 2],O![-1, -1, 2],O![0, -1, 2],O![1, -1, 2],O![2, -1, 2],

O![-2, 0, -1],O![-1, 0, -1],O![0, 0, -1],O![1, 0, -1],O![2, 0, -1],

O![-2, 0, 2],O![-1, 0, 2],O![0, 0, 2],O![1, 0, 2],O![2, 0, 2],O![-2, 1, -1],

O![-1, 1, -1],O![0, 1, -1],O![1, 1, -1],O![2, 1, -1],O![-2, 1, 2],O![-2, -2, -2],

O![-1, 1, 2],O![-1, -2, -2],O![0, 1, 2],O![0, -2, -2],O![1, 1, 2],O![1, -2, -2],

O![2, 1, 2],O![2, -2, -2],O![-2, -2, 1], O![-2, 2, -1],O![-1, -2, 1],O![-1, 2, -1],

O![0, -2, 1],O![0, 2, -1],O![1, -2, 1],O![1, 2, -1],O![2, -2, 1],O![2, 2, -1],

O![-2, 2, 2],O![-1, 2, 2],O![-2, -1, -2],O![0, 2, 2],O![-1, -1, -2],O![1, 2, 2],

O![0, -1, -2],O![2, 2, 2],O![1, -1, -2],O![2, -1, -2],O![-2, -1, 1],O![-1, -1, 1],

O![0, -1, 1],O![1, -1, 1],O![2, -1, 1],O![-2, 0, -2],O![-1, 0, -2],O![0, 0, -2],

O![1, 0, -2],O![2, 0, -2],O![-2, 0, 1],O![-1, 0, 1],O![0, 0, 1],O![1, 0, 1],

O![2, 0, 1],O![-2, 1, -2],O![-1, 1, -2],O![0, 1, -2],O![1, 1, -2],O![2, 1, -2],

O![-2, 1, 1],O![-1, 1, 1],O![0, 1, 1],O![1, 1, 1],O![2, 1, 1],O![-2, 2, -2],

O![-1, 2, -2],O![0, 2, -2],O![1, 2, -2],O![2, 2, -2],O![-2, 2, 1],O![-2, -2, 0],

O![-1, -2, 0],O![-1, 2, 1],O![0, -2, 0],O![0, 2, 1],O![1, -2, 0],O![1, 2, 1],

O![2, -2, 0],O![2, 2, 1],O![-2, -1, 0], O![-1, -1, 0],O![0, -1, 0],

O![1, -1, 0],O![2, -1, 0]];

function yyy(j);

return CRT([O!0,O!0,TT[j],O!1],[b1,eta,P,ff]);

end function;
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yyyy:=[]; for j:=1 to 125 do yyyy[j]:=yyy(j); end for;

function yy(j);return yyyy[j];end function;

//y is in F, and B is a Q-basis of F; we want to express y in terms of B.

function CoeffWRTBasis(y,B);

BB:=[];

for i:=1 to n do Append(~BB, Eltseq(B[i])); end for;

M:=Matrix(RationalField(), n,n, BB);

y00:=Vector(RationalField(), Eltseq(y));

answ:=Solution(M,y00); return answ;

end function;

//gives the upper bound for tw, w in [-s,1-s]

function upp(t,s); return Maximum(-t*s, t*(1-s)); end function;

//gives the lower bound for tw, w in [-s,1-s]

function low(t,s); return Minimum(-t*s, t*(1-s)); end function;

//a is a fractional ideal, y is in F, v=[v_1,...,v_r] with v_i\in O is a cone.

//Now works only for r=3. (!!!)

function OmegaFast3(a,y,v);

Set_that_we_need:={};

P:=Basis(a);r:=#v;

//r is 3 here.

AA:=CoeffWRTBasis(v[1],P);BB:=CoeffWRTBasis(v[2],P);CC:=CoeffWRTBasis(v[3],P);

DD:=CoeffWRTBasis(y,P);

A:=Matrix(RationalField(), 3,3, [[AA[1],BB[1],CC[1]],[AA[2],BB[2],CC[2]],

[AA[3],BB[3],CC[3]]]);

A_good,L:=LLL(A);

transl:=A^(-1)*Matrix(RationalField(), 3,1,[[DD[1]],[DD[2]],[DD[3]]]);

Range1_l:=Ceiling( low(A_good[1,1],transl[1,1])+low(A_good[1,2],transl[2,1] )

+low(A_good[1,3],transl[3,1]) );

Range1_r:=Floor( upp(A_good[1,1],transl[1,1])+upp(A_good[1,2],transl[2,1] )+

upp(A_good[1,3],transl[3,1]) );

Range2_l:=Ceiling( low(A_good[2,1],transl[1,1])+low(A_good[2,2],transl[2,1] )+

low(A_good[2,3],transl[3,1]) );

Range2_r:=Floor( upp(A_good[2,1],transl[1,1])+upp(A_good[2,2],transl[2,1] )+

upp(A_good[2,3],transl[3,1]) );

Range3_l:=Ceiling( low(A_good[3,1],transl[1,1])+low(A_good[3,2],transl[2,1] )+

low(A_good[3,3],transl[3,1]) );

Range3_r:=Floor( upp(A_good[3,1],transl[1,1])+upp(A_good[3,2],transl[2,1] )+

upp(A_good[3,3],transl[3,1]) );

for w1:=Range1_l to Range1_r do

for w2:=Range2_l to Range2_r do

for w3:=Range3_l to Range3_r do
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p_s:=Solution(Transpose(A_good), Vector(RationalField(),3, [w1,w2,w3]));

if (-transl[1,1] lt p_s[1]) and (p_s[1] le 1-transl[1,1]) and (-transl[2,1] lt p_s[2])

and (p_s[2] le 1-transl[2,1])

and (-transl[3,1] lt p_s[3]) and (p_s[3] le 1-transl[3,1]) then

z:=L^(-1)*Matrix(Integers(),3,1,[[w1],[w2],[w3]]);

z1:=z[1,1];

z2:=z[2,1];

z3:=z[3,1];

Set_that_we_need:=Set_that_we_need join {z1*P[1]+z2*P[2]+z3*P[3]+y};

end if;end for; end for; end for;

return Set_that_we_need; end function;

function OmegaFast2(a,y,v);

Set_that_we_need:={};P:=Basis(a);r:=#v;

//r is 2 here.

//I am using that for each v in {v1,v2,v1*v2}, (1,v,F.1) is a Q-basis of F !!!

AA:=CoeffWRTBasis(v[1],P);BB:=CoeffWRTBasis(v[2],P);CC:=CoeffWRTBasis(F.1,P);

DD:=CoeffWRTBasis(y,P);

A:=Matrix(RationalField(), 3,3, [[AA[1],BB[1],CC[1]],[AA[2],BB[2],CC[2]],

[AA[3],BB[3],CC[3]]]);

A_good,L:=LLL(A);

transl:=A^(-1)*Matrix(RationalField(), 3,1,[[DD[1]],[DD[2]],[DD[3]]]);

Range1_l:=Ceiling( low(A_good[1,1],transl[1,1])+low(A_good[1,2],transl[2,1] )

-A_good[1,3]*transl[3,1] );

Range1_r:=Floor( upp(A_good[1,1],transl[1,1])+upp(A_good[1,2],transl[2,1] )

-A_good[1,3]*transl[3,1] );

Range2_l:=Ceiling( low(A_good[2,1],transl[1,1])+low(A_good[2,2],transl[2,1] )

-A_good[2,3]*transl[3,1] );

Range2_r:=Floor( upp(A_good[2,1],transl[1,1])+upp(A_good[2,2],transl[2,1] )

-A_good[2,3]*transl[3,1] );

Range3_l:=Ceiling( low(A_good[3,1],transl[1,1])+low(A_good[3,2],transl[2,1] )

-A_good[3,3]*transl[3,1] );

Range3_r:=Floor( upp(A_good[3,1],transl[1,1])+upp(A_good[3,2],transl[2,1] )

-A_good[3,3]*transl[3,1] );

for w1:=Range1_l to Range1_r do for w2:=Range2_l to Range2_r do

for w3:=Range3_l to Range3_r do

p_s:=Solution(Transpose(A_good), Vector(RationalField(),3, [w1,w2,w3]));

if (-transl[1,1] lt p_s[1]) and (p_s[1] le 1-transl[1,1]) and (-transl[2,1] lt p_s[2])

and (p_s[2] le 1-transl[2,1])

and (-transl[3,1] eq p_s[3]) then

z:=L^(-1)*Matrix(Integers(),3,1,[[w1],[w2],[w3]]); z1:=z[1,1]; z2:=z[2,1]; z3:=z[3,1];

Set_that_we_need:=Set_that_we_need join {z1*P[1]+z2*P[2]+z3*P[3]+y};

end if; end for; end for; end for;

return Set_that_we_need; end function;
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//a is a fractional ideal, y is in F, v=[v_1,...,v_r] with v_i\in O is a cone.

function Omega(a,y,v);

r:=#v;

if (r eq 3) then return OmegaFast3(a,y,v); else

if (r eq 2) then return OmegaFast2(a,y,v); else

Set_that_we_need:={};P:=Basis(a);

A:=[]; for i:=1 to r do Append(~A, CoeffWRTBasis(v[i], P)); end for;

q:=CoeffWRTBasis(y,P); lbound:=[]; ubound:=[];

for i:=1 to n do

lbound[i]:=-q[i]+ &+[ ((1-Sign(A[j,i]))/2)*A[j,i] : j in [1..r]];

ubound[i]:=-q[i]+ &+[ ((1+Sign(A[j,i]))/2)*A[j,i] : j in [1..r]];

lbound[i]:=Ceiling(lbound[i]);

ubound[i]:=Floor(ubound[i]);

end for;

//below, nn is an n-tuple of integers.

function add_or_no(nn);

for i:=1 to n do nn[i]:=RationalField()!nn[i]; end for;

ch,L:=IsConsistent(Matrix(RationalField(), r,n, A),

q+Vector(RationalField(), n, nn));

if (not ch) then return {}; else

bool:=true; for i:=1 to r do

bool:=bool and (L[i] gt 0) and (L[i] le 1);

end for;

if bool then return

{&+[nn[j]*P[j]: j in [1..n]]+y};

else return {};

end if; end if;

end function;

//n is geq 1, and we use the cartesian product construction.

cart:=[Floor(lbound[1])..Floor(ubound[1])];

for i:=2 to n do

cart:=car<cart,[Floor(lbound[i])..Floor(ubound[i])]>;

end for;

cart:=Flat(cart);

for nnn in cart do

nn:=[]; for i:=1 to n do nn[i]:=nnn[i]; end for;

Set_that_we_need:=Set_that_we_need join add_or_no(nn);end for;

return Set_that_we_need;

end if; end if;

end function;

//****************************************************************

//this function returns the set of all sequences of t nonnegative integers with sum k.
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function Partition(k,t);

answ:={}; if t eq 1 then return {[k]}; else

for x:=0 to k do for p1 in Partition(k-x,t-1) do answ:=answ join {Append(p1,x)};

end for; end for; return answ; end if; end function;

//given a geq 0, returns a polynomial Q(q) such that sum n^a q^n=Q_a(q)/(1-q)^{a+1}.

function Poly_expansion_compute(a);

PP<q>:=PolynomialRing(RationalField());

if a eq 0 then return PP!1; else

return q*( Derivative(Poly_expansion_compute(a-1))*(1-q)+Poly_expansion_compute(a-1)*a);

end if; end function;

Polys:=[]; for i:=1 to 8 do Polys[i]:=Poly_expansion_compute(i-1); end for;

function Poly_expansion(a);

if (a le 7) then return Polys[a+1]; else return Poly_expansion_compute(a);

end if; end function;

//given an integer sequence c=[c[1],...,c[r]] of length r,

//nontrivial roots of unity chi=[chi[1],...,chi[r]],

//computes the value of the Shinatani zeta function

//zeta_{c}(A,x,chi,s) at s=0 --- which does not depend on A or x.

function Shint(c,chi2);

return

&*[ (Evaluate( Poly_expansion(c[i]) , chi2[i] ) )/(1-chi2[i])^(c[i]+1) : i in [1..#c]];

end function;

//given x in F, v=[v[1],...,v[r]] --- a sequence of elements of F,

//chi=[chi[1],...,chi[r]] -- a sequence of nontrivial roots of unity in K.

//k is a nonnegative integer

//the function below returns the value at 0 of

//sum_{z_1,...,z_r\geq 0} \frac{chi_1^z_1...(x+\sum z_jv_j)^k}{N(x+\sum z_jv_j)^s}

//The result will belong to K.

function Shint_sum(chi1, v11, x, kk);

s:=K!0; r:=#v11; Partit:=Partition(kk, r+1);

for PP in Partit do

y:=(Factorial(kk)/&*[ Factorial(PP[i]): i in [1..r+1] ])*x^(PP[1])*

(&*[ v11[j]^(PP[j+1]) : j in [1..r] ])*Shint( Remove(PP,1) ,chi1);

s:=s+y; end for; return s; end function;
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X:=[]; for i:=1 to 6 do X[i]:=[];

for j:=1 to 125 do X[i][j]:=SetToSequence(Omega(a,yy(j),D[i])); end for; end for;

function chi_0(c);

i:=0; while not (c-i*h_e in a*eta) do i:=i+1; end while; return K.1^i;

end function;

character_values:=[];

for ii:=1 to 6 do character_values[ii]:=[]; for j:=1 to #C[ii] do

character_values[ii][j]:=chi_0(-D[ii][j]);

end for; end for;

value:=[]; for i:=1 to 6 do value[i]:=[]; for j:=1 to 125 do value[i][j]:=[];

for ind:=1 to #X[i][j] do value[i][j][ind]:=chi_0(yy(j)-X[i][j][ind]);

end for; end for; end for;

masiv:=[];

for i:=1 to 6 do masiv[i]:=[]; for t:=1 to l-1 do masiv[i][t]:=[]; for j:=1 to #C[i] do

masiv[i][t][j]:=character_values[i][j]^t; end for; end for; end for;

function MU1(ii,jj,kk);

r:=#C[ii];y:=yy(jj);

answer:=0;

for ind:=1 to #X[ii][jj] do x:=X[ii][jj][ind];

for t:=1 to l-1 do

answer:=answer-(( value[ii][jj][ind] )^t )*Shint_sum(masiv[ii][t], D[ii], x , kk);

end for;end for; return answer; end function;

B.3 Computing the multiplicative integral

Here is the code which computes the multiplicative integral, given the measures µk for the
additive integrals. We first read the measures from the files where we stored them.

n:=3;P1<x>:=PolynomialRing(Integers());

f:=x^3+2*x^2-6*x-1;F:=NumberField(f);O:=RingOfIntegers(F);

l:=11;eta:=Factorization(l*O)[1][1];

p:=5;P:=Factorization(p*O)[1][1];

//TT:=SetToSequence(Nonzero_reps() join {O!0});

TT:=
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[

O![0, 0, 0],O![1, 0, 0],O![2, 0, 0],O![-2, 0, 0],O![-1, 0, 0],O![-2, 1, 0],

O![-1, 1, 0],O![0, 1, 0],O![1, 1, 0],O![2, 1, 0],O![-2, -2, -1],O![-2, 2, 0],

O![-1, -2, -1],O![-1, 2, 0],O![0, -2, -1],O![0, 2, 0],O![1, -2, -1],O![1, 2, 0],

O![2, -2, -1],O![2, 2, 0],O![-2, -2, 2],O![-1, -2, 2],O![0, -2, 2],O![1, -2, 2],

O![2, -2, 2],O![-2, -1, -1],O![-1, -1, -1],O![0, -1, -1],O![1, -1, -1],O![2, -1, -1],

O![-2, -1, 2],O![-1, -1, 2],O![0, -1, 2],O![1, -1, 2],O![2, -1, 2],O![-2, 0, -1],

O![-1, 0, -1],O![0, 0, -1],O![1, 0, -1],O![2, 0, -1],O![-2, 0, 2],O![-1, 0, 2],

O![0, 0, 2],O![1, 0, 2],O![2, 0, 2],O![-2, 1, -1],O![-1, 1, -1],O![0, 1, -1],

O![1, 1, -1],O![2, 1, -1],O![-2, 1, 2],O![-2, -2, -2],O![-1, 1, 2],O![-1, -2, -2],

O![0, 1, 2],O![0, -2, -2],O![1, 1, 2],O![1, -2, -2],O![2, 1, 2],O![2, -2, -2],

O![-2, -2, 1], O![-2, 2, -1],O![-1, -2, 1],O![-1, 2, -1],O![0, -2, 1],O![0, 2, -1],

O![1, -2, 1],O![1, 2, -1],O![2, -2, 1],O![2, 2, -1],O![-2, 2, 2],O![-1, 2, 2],

O![-2, -1, -2],O![0, 2, 2],O![-1, -1, -2],O![1, 2, 2],O![0, -1, -2],O![2, 2, 2],

O![1, -1, -2],O![2, -1, -2],O![-2, -1, 1],O![-1, -1, 1],O![0, -1, 1],O![1, -1, 1],

O![2, -1, 1],O![-2, 0, -2],O![-1, 0, -2],O![0, 0, -2],O![1, 0, -2],O![2, 0, -2],

O![-2, 0, 1],O![-1, 0, 1],O![0, 0, 1],O![1, 0, 1],O![2, 0, 1],O![-2, 1, -2],

O![-1, 1, -2],O![0, 1, -2],O![1, 1, -2],O![2, 1, -2],O![-2, 1, 1],O![-1, 1, 1],

O![0, 1, 1],O![1, 1, 1],O![2, 1, 1],O![-2, 2, -2],O![-1, 2, -2],O![0, 2, -2],

O![1, 2, -2],O![2, 2, -2],O![-2, 2, 1],O![-2, -2, 0],O![-1, -2, 0],O![-1, 2, 1],

O![0, -2, 0],O![0, 2, 1],O![1, -2, 0],O![1, 2, 1],O![2, -2, 0],O![2, 2, 1],

O![-2, -1, 0], O![-1, -1, 0],O![0, -1, 0],O![1, -1, 0],O![2, -1, 0]];

M:=5;

Q_p := pAdicField(p,10); helpmap := map<Integers() -> P1 | k :-> f>;

F_P := ext<Q_p | helpmap>; O_P:=RingOfIntegers(F_P);

P2<y>:=PolynomialRing(O_P);

P3:=PolynomialRing(F); f:=P3!CyclotomicPolynomial(l);

f1:=Factorization(f)[1][1]; K:=ext<F|f1>;

load "seqfirstfive.txt";

load "asix.txt";

mu:=[]; for i:=1 to 6 do mu[i]:=[]; for j:=1 to 125 do mu[i][j]:=F!seqalpha[i][j];

end for; end for;

//given k and a, returns the d_i such that

//(b/a-1)-1/2(b/a-1)^2+...+((-1)^{k-1}/k)(b/a-1)^k=d_k(a)b^k+...+d_0(a)

function coeff(k,d1,i);

P3<x>:=PolynomialRing(F_P); g:=0;

for i:=1 to k do g:=g+((-1)^(i-1)/i)*(x-1)^i; end for;

g1:=Eltseq(g); return g1[i+1]/d1^i; end function;

//the function below finds where we have to truncate
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//the series for the expansion of the log

function truncate_log();

i:=0; while (i+1)*(p-2)/(p-1)+Valuation(Factorial(i),p) lt M do

i:=i+1; end while; return i; end function;

//given an element a in (O_P)^*,

//the function below returns log(a).

function arb_log(a);

hensel_poly:=y^(Norm(P)-1)-1; a1:= HenselLift(hensel_poly, a);

return Log(a/a1); end function;

//Computes log(A_d)

function logA_d(j,kcut); d1:=O_P!(F_P!Eltseq(F!TT[j]));

return arb_log(d1)* (F_P!Eltseq(F!mu[1][j] ))+

(&+[ coeff(kcut,d1,i)* (F_P!Eltseq(F!mu[i+1][j] )) : i in [0..kcut]]);

end function;

//the function below is the main one here. It returns the multiplicative integral

//over O_P^* of x w.r.t. the measure mu(b,v,x,0).

function multipl_int();

A0:=&*[ TT[j]^(Integers()!mu[1][j] ) :j in [2..125] ]; A00:=F_P!Eltseq(F!A0);

A00:=O_P!A00; hensel_poly:=y^(Norm(P)-1)-1; gamma:=HenselLift(hensel_poly, A00);

kcut:=truncate_log(); B:=&+[ logA_d(j,kcut): j in [2..125]]; return gamma*Exp(B);

end function;
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