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Chapter 1

Introduction

The German mathematician Leopold Kronecker (1823-1891) made the famous statement
that “God created the integers, all else is the work of man,” by which he referred to the gen-
eral process of constructing numbers. Namely, if one starts with the integers 0, £1,£2, ...,
one can add and subtract numbers but cannot always divide. However, one can fix this by
introducing the set of rational numbers, denoted by Q, which enlarges the integers and con-
sists of all possible ratios of integers with nonzero denominator. Now division by a nonzero
number is always possible. The construction of the rationals is thus purely algebraic, starting
from the integers.

Still, the set Q does not contain all the numbers in which one is interested. For example,
one would like to work with a number o such that a? = 2, but there is no such « in the set
Q. The fix is simply to introduce an additional number, denoted o = v/2, and to enlarge Q
to a bigger set F' = Q(v/2) which consists of all formal expressions a 4 by/2, where a and
b are in Q. When a = 0,b = 1, we have indeed v/2 € F. Elements in F can be added and
multiplied by the rule (\/5)2 = 2. The key to this construction is the fact that V2 is a root
of the polynomial z2 — 2. Similarly, one can construct square-roots v/3,v/5 by the purely
algebraic process of introducing a root of the corresponding polynomial z2 — 3, 2% — 5.

Another important class of numbers that one is interested in constructing consists of
the roots of unity. By definition, a root of unity is a number ( such that (" = 1 for some
integer m. Besides 41, such numbers do not exist in Q, but one can introduce them by a
purely algebraic process similar to the one for v/2 described above. In more detail, one can
construct a number ¢ (called a primitive m-th root of unity) whose m-th power is 1, but
whose smaller powers are not 1. For example, one can construct a number ¢ such that ¢ =1
but (* = —1; thus, ( is a solution of the polynomial equation z* 4+ 1 = 0.

A particular case of a theorem by Kronecker—Weber states essentially that the construc-
tion of roots of unity is more fundamental than the one of square-roots. Namely, it turns
out that by constructing the various roots of unity, we have already accounted also for all
of the square-roots; i.e., any square-root of a rational number can be expressed in terms of
roots of unity. For example, using the root of unity ¢ from above, recalling that (* = —1,
we can write
¢t+1
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Therefore,

\/§:§+% (1.1)

can be written in terms of the root of unity (.

Of special interest to number theory are numbers which generate abelian extensions
the simplest example of such numbers are the square-roots, so we concentrate our discussion
here on those. The Kronecker—Weber theorem is a very general and powerful result, asserting
that any number which generates an abelian extension over Q can be expressed in terms of
roots of unity. Class field theory is the study of such abelian extensions over general number
fields. The Kronecker—Weber theorem, which is the simplest case of class field theory, can
be viewed as a statement that the roots of unity constitute explicit class field theory over
the field Q.

On the other hand, one can construct the roots of unity by a process rather different in
nature — namely, by looking at special values of an analytic function. These are functions
described as convergent power series and whose values are obtained by an analytic process of
approximation: by computing more and more terms in a power series expansion, one obtains
better and better estimates for the value; the value is equal to the limit of all approximations.
Such functions are in sharp contrast with polynomials, such as 22 — 2 and z* 4 1, where the
value is computed directly and exactly through a finite process, as opposed to an infinite
limiting one. In particular, the function
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is analytic — it is given by a convergent power series. Remarkably, its special value at z = %
211

is ( = e"m , which is a primitive m-th root of unity. In other words, the roots of unity arise
not only from a purely algebraic construction similar to the one which produces v/2, but also
naturally as certain special values of an analytic function. It is surprising that an analytic
object, such as the function e?™** accounts for the purely algebraic property that a number
generates an abelian extension over the rationals (such as any square-root).

Kronecker was aware of this fact and asked more generally whether one can obtain all of
the abelian extensions of a number field by considering special values of an analytic function.
Kronecker’s Jugendtraum (“dream of youth”) is, given a number field such as F = Q(v/2),
to produce a single analytic function such that any algebraic number that generates an
abelian extension over F' (in particular, any square-root one can extract from F') can be
written in terms of special values of this analytic function. This question is solved only when
F = Q, by the Kronecker-Weber theorem and the function e?™*, and when F is imaginary
quadratic. However, the problem is still a great mystery for any other number field. If one
takes F' = Q(+/2), the roots of unity are not sufficient any more because for example the

number v/2 = \/ﬁ, obtained simply by extracting a square-root of an element in F', cannot
be written in terms of roots of unity and elements in F'; i.e., there is no formula which
generalizes (1.1) when /2 is replaced by v/2.

So, given F, one has to concoct an analytic function — finer than e — whose special
values will play the role of the roots of unity over the rationals. The problem is that a special
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value of an analytic function is obtained by an infinite limiting process and is normally not one
that on the other hand can be constructed by algebraic methods, as a root of a polynomial.
Even if one has a candidate for an analytic function, one would expect difficulties in proving
that the special value is algebraic (as in the case of Dasgupta’s conjecture treated in this
thesis). Finally, the constructed special values have to generate abelian extensions and to
be substantial enough, so that any number which generates an abelian extension is already
accounted for.

A conjecture by Stark (1970’s) and especially its further refinements by Gross (1982,
1987) and Dasgupta (2007) give a hint of where this mysterious analytic function may come
from ([13],[6],[13]). Consider an abelian extension K/F. Associated to the extension are
a number of analytic functions, called partial zeta-functions. They generalize the Riemann
zeta-function, which is an analytic function on the complex plane, holomorphic outside s = 1,
and given by

1
C(s) = nZ:l e for Re(s) > 1.
The Riemann zeta-function would be associated to the trivial extension K = F = Q, so it is
a particular case of a partial zeta-function. It turns out that the special value of ( at s =0
is not just algebraic, but in fact a rational number:

The denominator 2 has arithmetic significance: it equals the number of roots of unity
in Q (which are £1). The same phenomenon is observed with the partial zeta functions in
general: their values at s = 0 are rational numbers with denominators dividing the number
of roots of unity in the extension under consideration. Therefore, by multiplying by this
number of roots of unity, we can produce a set of integers attached to the abelian extension
we want to study, which come as special values (at s = 0) of analytic functions (the partial
zeta functions).

Stark’s conjecture states the existence of a special element, called a Stark unit, in the
abelian extension K which plays the role of a root of unity. The Stark unit satisfies very
strong arithmetic properties in terms of the data of these integers. Stark’s conjecture is
proven to be true in general only over the rational field and over imaginary quadratic fields:
not by accident, these are precisely the instances when Kronecker’s dream of youth is solved
and when the abelian extension is known explicitly already. For example, over QQ, we can
build the Stark unit out of roots of unity.

A further refinement by Gross predicts even more properties that this Stark unit has to
satisfy. Finally, Dasgupta has proposed a yet stronger conjecture, which involves an explicit
conjectural formula for the Stark unit. The previous conjectures only state that there exists
an element with some properties, while Dasgupta’s formula states that the element given
by a certain explicit formula in fact satisfies all of the conjectural properties. The formula
involves building up the Stark unit out of the data of the integers obtained as special values
of partial zeta-functions and is analytic in nature, in the flavor of Kronecker’s dream of
youth. Naively, if one thinks of the Stark unit as playing the role of a root of unity in that
it generates an abelian extension, Dasgupta’s formula is an attempt to exhibit a function



similar in nature to (1.2), which is analytic and yet produces an algebraic number. The
essence of Dasgupta’s conjecture is proving that the element the formula yields in fact lies in
an abelian extension and comes from an algebraic process. We verify the conjectural formula
computationally with a certain accuracy in two particular examples. This formula would be
a deep link between special values of analytic functions and algebraic elements in abelian
extensions, hence a step towards Kronecker’s dream of youth.



Chapter 2

Outline of contents

The motivation for Stark’s conjectures comes from Dirichlet’s class number formula: let F
be a number field and let

Cr(s) = Z Na™® for Re(s)>1

aCOp

be the zeta-function attached to it; it extends to a meromorphic function on C, and the
Taylor expansion of (r around the origin starts as follows:

Cr(s) = —%ST + ... (higher—order terms), (2.1)
where r is the rank of the unit group of Op, h is the class number of F', R is the regulator, and
w is the number of roots of unity in F. Stark formulated conjectures that would generalize
this formula in the case of extensions K/F and the leading terms of L-functions attached to
it. The abelian version of these conjectures is particularly striking.

Namely, the insight is that one can interpret (2.1) not as a formula for the value at s =0
of an analytic function (as the formula suggests at first glance), and not as a formula for the
class number h (as is often classically done), but as a formula for the regulator R in terms
of a special value of an analytic function. As a motivating example, if F' is real quadratic,
equation (2.1) is a statement about the archimedean absolute value of the fundamental unit
of Op. When one starts with an abelian extension K/F, Stark’s conjecture is a statement
about the existence of a special element € € K with prescribed absolute values, in terms of
the values at 0 of the partial zeta functions associated to K/F.

Gross has formulated further refinements of the classical Stark’s conjecture in the p-adic
context, predicting more information for this special element e. Finally, Dasgupta has an
explicit analytical conjectural formula for the Gross—Stark unit. It can be viewed as an
attempt for explicit class field theory over a totally real number field.

In Chapter 4, we discuss the formulation of the Gross-Stark conjecture. In Chapter 5,
following [8], we present the proof over the rational field, which is the only totally real number
field for which it is known. The proof relies on a result of Gross—Koblitz which relates the
Gross—Stark unit to a special value of the p-adic Gamma function. This special value can
then be understood due to the functional equation that the p-adic Gamma function satisfies



and the conjecture can be verified. We identify a mistake in [8] and fix it with only small
modifications of the argument.

Next, in Chapter 6, we present Dasgupta’s approach of starting with the statement of
Gross’s conjecture and attempting to construct the Gross—Stark unit explicitly. Dasgupta
interprets Gross’s conjecture in fact as a formula for the Gross—Stark unit, but in a certain
quotient of Fy. The main ingredient in this formula involves a summation over elements
defined only up to the action of a certain group. The goal of Chapter 7 is to write down
an exact formula for the unit in Fj;. The key idea is the use of Shintani domains, which
constitute a particular fundamental domain for the group action mentioned above, with a
special geometric shape.

Finally, in Chapter 8, we provide computational evidence for Dasgupta’s conjecture. The
naive approach to calculate the unit from Dasgupta’s formula is inefficient, and we construct
a more general measure than the one explicitly involved in the formula and described in
[4]. Thus, we had to slightly modify and generalize arguments from [12] (only for a certain
analytic ingredient) and [4] (mainly) in order to obtain a formula for the more general
measure and hence an algorithm for computing the conjectural Gross—Stark unit.



Chapter 3

Notation

3.1 Number fields

For a number field K, we denote by Ok the ring of integers of K, by u(K) the group of roots
of unity in K, and we set Wy = #u(K). For an integer m > 1, we let p,, be the group of
m-th roots of unity. For a prime ideal p of O, we denote by K, the completion of K at p,
and by O, the valuation ring of K,. For m > 0, set

(14pm0,), it m>1,
(O if m=0.

For a modulus m = mym,, /2 denotes the group of fractional ideals of K relatively prime
to my. Also,
a=b (modm)

for a,b € K* means that for each finite p|my, we have
a
VF'(E - ]') 2 Vp(mf)u

and for each real prime v | m, we have (ab™!'), > 0. Similarly for a = b (mod p*), where
a,b € Fy. Next,
Kni={r € K"|z=1 (modm)},

and i(K ;) is the image of K,,; under the map i : K1 — I’ given by a + (). When K
is a totally real number field, we let co = Hv|oo v, where the product is over all the infinite
(real) primes of K.

For an abelian extension L/K and a fractional ideal b of K relatively prime to the
product of all ramified primes, o, € G(L/K) denotes the image of b uder the Artin map.

When K = Q and b > 0, we define o, = o).

3.2 Measures

Let X be a compact Hausdorff, totally disconnected topological space and let u be an additive
Z-valued measure on X, i.e., p assigns an integer u(U) € Z to each compact open subset
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U C X, such that
(Ui UUz) = p(Us) + pu(Us)

for any disjoint compact opens Uy, Us C X. Let I = lim._ I, be a profinite group (each I, is
finite) and let f : X — I be a continuous map. Let U; C I denote the inverse image of an
element ¢ € I, under I — I,. Define

7[ f@)dp(z) =lim [T VD € I =lim I,
X — —

1€,

it is the multiplicative integral of f(z) over X.

Say X is a compact subset of some valuation ring Oy, and f : X — F is a continuous
map. Suppose that a = b (mod p*) implies f(a) = f(b) (mod p*) (this is the case we will
be most interested in; one can define the multiplicative integral without this assumption).
Let p be a Z-valued measure on X. Define

A ]{( f(2)dp(z) € F;

as the unique element in Fy such that whenever X is written as a disjoint union X =
UL, (zi + pN O,), we have

d
A= T Fa) @Yo (mod p).

i=1

It is the limit of Riemann products over finer covers of X by compact intervals z; + p™ O,.

We define the additive integral similarly: given a compact subset X C O,, a function
f: X — F, as above, and a Z-valued measure p on X, we can define [, f(x)du(z) € F,
analogously as above, with product replaced by sum. One can prove the Riemann sums
converge and hence the integral is well-defined.

11



Chapter 4

Statement of the Gross—Stark
conjecture

Here we present the statement of Gross’s conjecture as in [8].

4.1 An arithmetic preliminary

Proposition 1. Let L/k be an abelian extension with G = G(L/k), and S a finite set of
primes of k containing the archimedean primes, the primes which ramify in L, and the ones
dividing the order e = #u(L). Then the annihilator Ann(L/k) of the Z|G]-module pu(L) is
generated as a Z-module by the collection

{op—Np | p ¢ Sh

Proof. First, let p ¢ S and let a € p(L). If B is a prime of L lying over p, we know that
b=a>¥P =1 (mod B). To prove that in fact b = 1, we note that b = 1 in particular in
O /B, and invoke Hensel’s lemma, which gives us uniqueness of the solution of the equation
¢ =1 with z =1 (mod 9B), since B te.

If A e Ann(L/k), by Chebotariov’s density theorem, we can write any o € G as 0 = o,
for some p ¢ S, and hence

A:Zap(ap_NP)+a,

for some integers a, and a, where the sum is of course finite. But then a € Ann(L/k) and
so e|a. Thus, the statement will follow if we prove that

e= ged (1 — Np).
pé¢sS, op=1
By above, it is clear that for p ¢ S with o, = 1, the integer 1 — Np is divisible by e, as it
annihilates p(L). If €’ is a common divisor of all (1—Np) with p ¢ S and o, = 1, consider the
field L' = L(¢), where ( is a primitive ¢/-th root of unity. If o € G(L'/L) is arbitrary, write
o = oy, for some p ¢ S, unramified in L', where the Frobenius is taken in L'/k. Since oy, is

12



trivial, we must have €’|1 — Np. But then by the first part of the Proposition, (% = (M = (
and so o = 0, is the identity. But, 0 € G(L'/L) was arbitrary, hence L' = L and €'|e, as
desired. O

4.2 The classical Stark’s conjecture

Consider an abelian extension K/k with G = G(K/k). Let S be a finite set of primes of k
containing all archimedean primes, as well as the ones which ramify in K. For ¢ € G, define
the partial zeta function

Cryrs(o,s) =Y NI,

1COy,
or=0

where the series converges for Re(s) > 1 and admits a meromorphic continuation to the
entire complex plane. Define

GK/k,S(S) = H(l — O’;leis>71 = ZCK/k,S(Ua 8)0’71.

pg¢sS oeG

Set Ox = Ok /k,s(0). It is known (see [1]) that for any A € Ann(K/k), we have A0k € Z[G]
(in particular, Ox € Q[G]). If p € S is unramified in K and R =S — {p}, then

Oxns = (L — 0, )0k/nr-

In particular, if S contains a finite prime p which splits completely in K, then (x5 5(0,0) =0
for all o € G.

Assume the set S contains a finite prime p which splits completely in K, and set R =
S — {p}. Fix a prime B of K lying over p. Denote

Ug={r € K" | |x|]g =1 for any (finite or infinite) prime B {p}.
The general abelian Stark’s conjecture states as follows:
Conjecture 1. (Stark) There ezists an element € = €(B,S) € K* such that

(6) — BWkOk/kr

1
and € € Uy, if |S| > 3. Moreover, K(e"x ) is abelian over k.
The element € € K* is called a Stark unit associated to the data (K/k,S,%) and is
uniquely determined up to a root of unity in K. We now discuss Gross’s refinement of
Stark’s conjecture, which involves first assuming that Conjecture 1 holds.

4.3 Gross’s refinement

Consider an arbitrary abelian extension L/k with G(L/k) = G and a finite set S of primes
of k as before, which contains all archimedean primes, as well as all primes which ramify

13



in L. Fix a finite prime p € S and a subfield K of L/k in which p splits completely. Fix a
prime B of K lying over p, and let A € Ann(L/k). Let € € K be a Stark unit associated
to (K/k,S,%), and let ¢ be any root of unity in an algebraic closure of k containing L. If
MWE = (e, the extension K (\)/k is abelian, and hence so is L(\)/k. Thus, by Proposition 1,
there exists Ay € Ann(L(\)/k) such that Ag|, = A. Define

Va= {2 | Ay € Ann(L(N)/k), Aolp = A}.

By Galois theory, V4 C K. We now show that V) is independent of the choices of (, e, A.
The independence of A is obvious because A, annihilates p(K). Since € is determined up to a
root of unity in K, it suffices to show that V, is independent of the choice of (. But, a different
choice of ¢ yields X with X = Av, for some root of unity v. Let A, € Ann(L(\')/k) be such
that A)|, = A. We have to produce Ay € Ann(L(\)/k) such that Ag|;, = A and Ao = (\').
But, the extension L(\, X)/k is abelian, hence there exists A € Ann(L(\, N)/k) such that
/~1|L(,\/) = Aj. Set Ay = A|L()\)- Since A annihilates the roots of unity in L(A, X)), we have

(V)% = (X)* = At =2,
as desired.

Write
Ab, = Abpps = Y n(A,0)o,
oeG

with n(A, o) € Z; we think of n(A, o) as a “shift” of zeta functions evaluated at s = 0.

Let H =G(L/K), and let

Ty - K*SB — H
be the reciprocity map of local class field theory.
Conjecture 2. (Gross) Let A € Ann(L/k). Then
ry (ea) = [[ "4
occeH

for all e4 € V4.

An element €4 € V} is called a Gross—Stark unit associated to the given data; we write
Gri(L/K, S, p) if Conjecture 2 holds for any choice of B over p.

Note that we can state Conjecture 2 equivalently as follows: for any e4 € V4 and any

T € (G, we have
rat(ea) = [] o7
oeHT

Indeed, for a given 7 € G, consider A’ = 771A € Ann(L/k) and notice that V4 =
Voig = Vj_l. So, Conjecture 2 implies that

rat(ea) = rg' (3 ) = [T o4
oceH

_ H g™MAoT)

oc€eH

_ H On(A,U)’

cc€HT

14



where we used that
Z n(A, 7o) =0 forany 7€Q@G,

oceH

which follows from
Z Cosr,s(07',0) = Cxyp,s(HT',0) = 0,

oceH

since S contains a place p which splits completely in K.

4.4 Functoriality properties

We now prove the first functoriality property of the Conjecture:

Lemma 1. Suppose Li, Lo are abelian extensions of k, each containing the field K. Let
L =1LLy. If Grg(L1 /K, S,p) and Gri(Ls/K, S,p) hold, then so does Gry(L/K,S,p).

Proof. Let A € Ann(LiLs/k), and set A; = Alr,,i = 1,2. If ¢4 € V4, then also €4 €
Va,, €4 € Va,. Let H=G(L1Ly/K), H; = G(L;/K), and T; = G(L1Ly/L;),i = 1, 2. Because
of the inclusion H — H; x Hs, it suffices to check that for ¢ = 1,2, we have

L = (H O_?’L(A,O‘))
occeH

By functoriality of the local Artin map, assuming Gry(L;/K, S, p), the left-hand side
above equals [], .y e a?(A“UI) while if R; is a system of coset representatives for H/T;, the

right-hand side above equals

I1 (eule)=re@? = T (o

o1€R; o1€R;

7“%1(514) L;-

)TL(Ai,O'lTi)

L;

Y

which proves the Lemma. Il

It is now convenient to reformulate Conjecture 2 in the following way. Let I C Z[H]| be
the augmentation ideal,

[:{a101+..-+ak0k GZ[H] ’ a1_|_..._|_a/k:0},
and consider the homomorphism

Exp:I — H given by

a10y + -+ + apoy — ot . Lopk.
Let Iy be the kernel of the restriction homomorphism
Z|G] — Z|G/H].

If R is a system of coset representatives for H in G, an element n = Y _p 7,7 of Z[G]
(with v, € Z[H]) belongs to Iy if and only if 7, € I for all 7 € R. So, an element n € Iy

15



gives rise to a map R — [ given by 7 — ~,. Since Exp is constant on H-orbits of I, we
obtain a map Expon: G/H — H, which is independent of the choice of R. So, we obtain a
homomorphism

Expy : Iy — Fcts(G/H, H) given by
n+— [Expon:G/H — HJ,

where Fets(G/H, H) is the group of functions G/H — H under pointwise multiplication.

Write
Al = Z (Z n(A, hT)h) T = Z%T.

re€R \heH TER
We had observed earlier that ~, € I for all 7, so A0y, € Iy. By definition,

Expy (A0L) (T H prART) — H o Ae),

heH oc€HT
This allows us to restate Conjecture 2 as follows:

Conjecture 3. Notation as before, for any A € Ann(L/k) and any es € Va, the function
G/H — H given by
T+ 1o (€a)

is precisely Expy(A0L).
Moreover, by above, it suffices to verify this Conjecture only for the trivial coset 7 = H.

Lemma 2. Suppose L C L, and K C K,, the prime p € S splits completely in K., and
L./k is unramified outside S. Then Gry(L./K,S,p) implies Gri(L/K, S, p).

Proof. Assume Gry(L./K.,S,p). Fix a prime 9B of K lying over p and take A € Ann(L/k).
Choose a prime B, of K, lying over B, and let €, be a Stark unit associated to (K, /k, S, B.).
Set W = #u(K), W, = #u(K,). If N € Z|G(K,/K)] denotes the norm, we will use the fact
that there is a Stark unit € € K* associated to (K/k, S, B), such that W € p(K)el (see [13]
or [3]). Let A, satisfy AV = ¢,, take a lifting N, € Z[G(L.(\.)/K)] of N, and set A = A+,
Then \WW+ = MWWl — W 50 \W = (e, where ( is a root of unity. Take any e4 €
Va,ea = Mo where Ay € Ann(L(\)/k) restricts to A on L. Choose A’ € Ann(L.(\,)/k)
which restricts to Ag on L()\), and set A, = A/, Lot We will be able to obtain the desired
conclusion by applying Gri(L./K,,S,p) to €4, = =k e V4, in particular because its norm
equals €4:

/ /
e = AN = A = 3 =y

Let G = G(L/k),H = G(L/K),G. = G(L./k), H, = G(L./K,). The restriction map
res: G, — G induces H, — H, G,/H, — G/H, and Iy, — Iy. By Gry(L./K,, S, p) applied
to A. € Ann(L./k) and €4, € V4., we have that

Expy (A0L,) = [t — 7"%7*( BIE (4.1)
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So, we now have to relate Expy to Expy. Consider the commutative diagram

Exppy,

Iy, — Fets(G./H,, H,)

Iy =21, Fets(G/H, H)

where the homomorphism m is defined by

(M) =[] res(Fy).

yEG* /H*
res(y)=x

Indeed, it suffices to check commutativity for the elements &,(o, — 1) € Iy,, where
& € Gy, 0, € H,. But in this case, clearly either composition sends &, (o, — 1) to the function
which maps res(&,)H to res(o,) and all other cosets to 1. Now, applying m to both sides of
(4.1) and evaluating at 7 € G yields

[Expy (A0L))(T) = [Expp (res(A.6L.))|(7)
= H res(r%%* (€a,))

res(t«)=T7H

= J] restraa(ea))
a€G(K«/K)
=res ryg - H Ejzl)
OCEG(K*/K)
= res ry,-(€a.)
=res r%if(eA)

= r%}(eA).

Lemma 3. Gri(L/K,S,p) holds if p is unramified in L.

Proof. By the previous Lemma, we can assume that K is the decomposition field of p in
L/k; in this case, H = (0y,). Fix a prime B of K above p, a Stark unit e € K, A € Ann(L/k),
take AWK = ¢, and €4 = A0 € V4.

The extension L/k is unramified outside R = S — {p}, and so 0, = 0. z(0) is well-
defined. We know it is related to 6 = 01/; 5(0) via

9L = (1 - 0';1)9}/

If R is a set of coset representatives of H in G, write

Al = Z%T, v € Z[H].

TER
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Then

Afp = Z ((1 — 0y )%)

TER
If n(r) € Z is the sum of the coefficients in ., since Exp is constant on H-orbits, we
obtain
[Expy (401))(7) = 737,
On the other hand, since L/K is unramified at B7, we know that

ratlea) = of o)

Since Ok /pr = (9~L|K, we have that

(Al)0rc/kr(0) = (AGL) |k Y n(7)7|k.

TER

By definition,

(EA)WK — ()\AoWK) — (E)AO — %WKOK/I@,R(O)A(HK — H(%T)WKH(T)7

TER

hence ordg-(€4) = n(7), as desired. O

4.5 Gross’s formulation

Gross has reformulated Conjecture 1 in a manner that will be more convenient in Chapter
6, so we now discuss Conjecture 2 from this point of view in its original formulation. This
formulation of Conjecture 2 is slightly weaker than the one by Hayes that we discussed
earlier.

As before, let L/k be an abelian extension and let S be a finite set of primes of k
containing the archimedean primes as well as all ramified ones. Fix a finite prime p in S,
and let K be a subfield of L/k in which p splits completely. Assume |S| > 3.

Let T be a finite set of primes of k disjoint from S, which either contains at least two
primes of different residue characteristic, or a prime 7 of absolute ramification degree at most
[ — 2, where [ is the prime of Q below 7. Under this assumption,

[[ (o0 — Nn) € Ann(L/k).

ne’l

Indeed, if ¢ € u(L) and e(n|Q) < 1 — 2, the root of unity (77~ = 1 (mod 7) has to be 1
because (1+p0,)* ~ pO, (via the log, map) is torsion-free in this case. If 7" contains primes
m, o of different residue characteristics Iy, lo, write e = #u(L) = 1$l5¢, with (l1l,¢) = 1.
Let a = ¢@m=Nm)(on=Nm) ¢ (L), where ¢ € u(L). Then as in the proof of Proposition 1,
we deduce that o/t =1, als = 1, hence a = 1.

Consider the shifts (g (0o, s) defined as follows in terms of the group ring of G(K/k):

Z Crr(o,s)lo] = H(l—anNr] Z Cr(o, 8)[o

oc€G(K/k) neT 0c€G(K/k)

18



Explicitly, if we define the constants ¢, via
[[a-lfelvn = > bl
neT vEG(K/k)

then
Crar(o,8) =Y eyCr(y'o,s).
g

Notice that if [, . (0,—Nn) 3" Cr(o, s)o~! = 3 7(0, s)o € Z[G(K/k)], then (g r(0,0) =
n(o,01,0) € Z.
Recall the notation for the group of p-units of K,

Ug={xe K| |z|g =1 for any (finite or infinite) prime B {p}.

Let
p : ky — G(L/K)

be the reciprocity map of local class field theory. The ideal 8 of K defines an embedding
K — Ky ~ k,, which allows us to evaluate r, on elements of K. The folllowing is Gross’s
original formulation of Conjecture 2:

Conjecture 4. There exists an element up € U, such that ur =1 (mod T') and
ordss(ug) = Crr(K/k,0,0).

Moreover, for each o € G(K/k),

Tp (ug_‘) — H TCS,T(L/kﬂ—’O) .

TEG(L/k)
T|lxk=0

Since ur is specified up to a root of unity congruent to 1 modulo 7', the condition on T’
implies up is unique, if it exists.
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Chapter 5

The proof of GGross’s conjecture over
the rational field

Here we follow [8] to present a proof of Gross’s conjecture over Q. The main ingredient is
the theorem by Gross—Koblitz ([7]), which in turn relies on a deep result of Katz. The minor
mistake in [8] is easily fixed by constructing the appropriate Stark unit as in [5] and minor
modifications of the argument.

5.1 The p-adic Gamma function

Let p be an odd prime. The p-adic Gamma function is defined as the unique continuous
function I, : Z, — Z;, such that

Fp(k) = (_1)k H J
1§]jfj<k

for all positive integers k. From the definition,

—zI(2) if zeZ,

D(2+1) =
ozt 1) {—Fp(z) if ze€pZ,.

For z € Z,, we denote by Z the unique integer such that 0 <z < p,z =z (mod p). For any

z € 7y, we have R
Ly ()0,(1 - 2) = (~1)% (5.1)

Fix a positive integer m > 1 with p t m. Let f be the order of p in (Z/mZ)*, and let
q = p’. Consider the cyclotomic field K = Q(f,,), and fix a prime p of K lying over p.
The m-th roots of unity in &k = Og/p are distinct because p t m, and so we can define
a homomorphism ¢ from the m-torsion subgroup of £* to u,, C Ok, which is inverse to
reduction (mod p). Fix a nontrivial p-th root of unity ¢ = (,, and let L = K(u,). For any
a= "€ (1/m)Z/7Z — {0} (take 0 <r < m), define the Gauss sum

glap) == >t ) e L

zek*
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where T'r is the trace map k — Z/pZ.
Note that if K’ is the decomposition field of p in K, then g(a, p) belongs to K’(u,). This
follows from Galois theory: if we take b > 0,b = p* (mod m),b =1 (mod p), then

gla,p)™ = = 3 #((a?) )T = 3 4((a7) DT = g(a,p).

rek* xek*
We will see below that g(a,p) # 0. We will use that if
(W — V) =z +zmp+- 2™ 0<n<p-1 (5.2)
is the p-adic expansion of (p/ — 1)L, then the following congruence holds (cf [11]):
gla,p 1
(a,p) = (mod (1 —()) (5.3)

! .
(S Vi S | /e

(this is due to Stickelberger). Gross explains that this is the motivation for what follows:
(5.3) gives not only the valuation of g(a,p), but also the first digit in its p-adic expansion.
One may ask for the entire p-adic expansion, and since the first digit involves factorials, one
may expect the p-adic Gamma function to play a role.

Note that @Q,(x,) contains a unique solution 7 of 2?~! = —p with

T=(C—1) (mod (¢, —1)%).
Indeed,

p=01-¢)1-¢)...(1=¢™)
= (1 - Cp)p71(1 + Cp)(l + Cp + Cﬁ) s (1 + Cp +oet Cﬁfz),

and so if u = (1+()(1+G+C) ... (L+ ¢ +---+¢57?), we have to check that the equation
xP~t = —u has a unique solution in the valuation ring O’ of Q,(u,) with z =1 (mod (, —1).
Observe that u =2.3...(p—1) = —1 (mod {, — 1), and 2P~* = 1 has z = 1 as a solution of
multiplicity one in the residue field O’/(¢, — 1), hence the above claim follows from Hensel’s
lemma.

Let (a) denote the fractional part of a rational number a.

The goal of this section is to express the image of g(a,p) in Q,(x,) = Q,(7) as a special

value of the p-adic Gamma function:

Theorem 1. Let a € (1/m)Z/Z — {0}. Then
PP
g(a,p) = aP V20O TTT,((a)).
=0

To accomplish this, we need to introduce the free abelian group A = @ae(l Jm)Z/Z—{0} Zdg;
for each a = > m(a)d, € A, define

Tp(a) = [ To({a))™,
g(a,p) = [ [ 9(a,p)™,
n(a) = > m(a){a), and n(a®)) =3 " m(a)(p’a).
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If a € A and n(a) € Z, we note that g(a,p) € K by Galois theory: if b=1 (mod m) and
p 1 b, the automorphism of L corresponding to b € (Z/mpZ)* acts on g(a,p) by multiplication
by t(b%4=1) | hence acts trivially on g(a,p). So, g(a,p) € K'. In particular, if n(a) € Z, the
image of g(a,p) in Q,(1,) lies in Q,. Using the congruence satisfied by g(a,p) cited earlier,
the above theorem will follow from the following

Proposition 2. (Gross-Koblitz) Let a € A with n(a) € Z. Then

F—1

-
Jf na(PJ) J
gla.p) = ()= [y,

Indeed, assume the Proposition holds, and fix some a € (1/m)Z/Z — {0}. Then a =
(g — 1), € A has n(a) € Z, and so

-1

g(aap)qil =g(a,p) = (—p)zf;(} n(a®”)) H Fp(a(pj))

7=0

= !

) (W(p_l)zf‘_“’ﬂ” HFP<<pﬂ'a>>> |
j=0

So, we need to prove that g(a, p) and 7®~DE@ @ [TT, ((p/a)) are congruent (mod ¢,—1);
since they differ by a (¢ —1)-st root of unity in Q,(x,) and hence by a (p—1)-st root of unity,
the conclusion will follow because the (p — 1)-st roots of unity are distinct modulo ({, — 1).

Since (p) = (¢, — 1)P~! and ¢, — 1 = v, where v = 1 (mod (, — 1), the congruence (5.3)
wit = 1 implies that

u=g(a,p)m TTVEC — g(a,p)rm X7 =

1
HZ'! (mOd Cp - 1)

(we used the elementary fact that (p — 1) Z;;Ol (PPa) = Z;;l zj). But u € Z; because it a
product of a value of I', and a (p — 1)-st root of unity (which is in Q,), hence

1

—

On the other hand, one can check that (pia) = p — z;_;, and so

u =

(mod p).

Lp({p'a)) = (p— 27— — DU=1)P " = (zp31)7" (mod p),

where we used that ¢ = b (mod p) implies I'y(a) = I',(b) (mod p), as well as Wilson’s
theorem. This gives the desired congruence.

To prove Proposition 2, note that if a € A and n(a) € Z, then a is a Z-linear combination
of



and

a726%+6i_57'+17 for 0<r<m-—1,

so it suffices to prove the Proposition only for ay and a,.
By standard changes of variables in manipulating Gauss sums, we find

q—1

g(ag,p) = q(—=1)m

So,
iy I o P P
(=p)= " T Toaf”) = (=1 TITo((NT(1 = ()
J=0 =0
_ g(—1)f T )
— q(_l)f+25—&(17 zf—j)
= g(~ )T
= g(ao,p)
because ) z; = %1 (mod p — 1); here % =zp+aup+---+zpap

Now consider a, for a fixed 0 < r < m — 1. By cross—multiplying, after a change of
variables, we see that

glanp)=— Y tla (1 - 2) ),

x€k—{0,1}

We will use the following deep result of Katz (cf. [6]): denote t = m —r — 1 > 0; then
Katz proved that

(Et)-1
f-1 ( Jry  pitl )

. ph+(p(5 ) — ()
g(a,,p) = H lim -

j=0 k——(E) (<Wk>’1)

The rest of the proof is by approximating the binomial coefficients and rearranging the
factorials involved so that one can recognize special values of I'). We now finish the proof
assuming that f = 1; the general case is similar but notationally heavier.

If h, k are positive integers such that

h=—-— (mod p*)

k=—— d p*
Z (mod )
where a is large, then

<%t> = —ph — [p—tJ (mod p**) and

= —pk — [EJ (mod p**1).
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Using (") = (—1)k(;l!(+nk:11))!!, it follows that g(a,,p) is the limit of

g (ph + pk + L%J + L%J)‘ pkk! phh!
PR+ k)] (pk + [Z)! (ph + [E])

as a goes to infinity, hence, by the definition of I',, we have

(1 — (5 — (&)
Tp(1 = (5N, (1 = ()
_ (_1)L%j+lrp(1 - % - (1 - 1"171))
Lp(1 = 5T (57)

m

(=1)

g(a,p) = (=1t *

_ DBGIT(G)
NE

m

where we used that p =1 (mod m) and (5.1).

5.2 Setup for the proof over QQ

Consider an abelian extension L/Q, a subfield K, a prime p which splits completely in
K C L, and a finite set S of primes of Q containing oo, p, and all the primes which ramify
in L. Let the finite part of the conductor of L/Q be p'n, and let m = nHveS_Supp(pn) v. We
know that L is contained in Q(upvm) and K C Q(p,). By the functorial lemmas, without
loss of generality L = Q(ppv,) and K is the decomposition field of p in Q(p,,,). Also, since
L is the compositum of K (u.,) and K (u), and K(p,,)/K is unramified over p, again by
the functoriality lemmas, it suffices to assume that L = K (). However, we cannot assume
that p splits completely in Q(u,,) (as is assumed in [8]).

So, from now, fix a prime p, an integer m > 1, let S = {p, oo} U Supp(m), let K be the
decomposition field of p in Q(uy,), and let L = K (p,v), where v > 1. We have to prove that
Gro(L/K, S,p) is true. Let f be the order of p in (Z/mZ)*.

Fix a system R of representatives for (Z/mZ)*/(p) that are positive and prime to p, and
a system X, of representatives x for (Z/p"Z)* which satisfy x > 0 and = = 1 (mod m).
Then we know that

H=G(L/K)={o, |z X,} and G=G(L/Q)={op |be R,z e X,}.

Given b € R,z € X,,,0 < j < f, let t(p’b,bx) be an integer congruent to p’b modulo
m, and to bz (mod p”). Then, it will follow from Chapter 8 in particular (and it is also

well-known) that (1,q.s(0b,0) = Z;;& <l — <M>) , SO

2 mpY
/1 t(p'b, br)
O, =005=9 > (Z (5 - <m—];,,>)> Th
beR z€ X, 7=0

If @ > 0 is odd and prime to pm and A = 0, — a € Ann(L/Q), we find

i —a 'CL aoxr / X
A@V:zz<z(12 # )y, A2 0) )J)>ab;. (5.4

beR xc X, \j=0
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Therefore,

JEL abx J xT
<1J+L (fabgbe) | aLt(z:ﬂl;b”)

Expy(A6,)( H of
rzeX,
1— l-a_ pjab abz) a t(p]b bz)
=7‘p1(H S e 0) (5.5)
zeX,
where
rp:Q — G

is the reciprocity map of local class field theory; we used that o, = r,(z) for > 0,z =1
(mod m), p t z, which follows from the definition of r,.

5.3 The case m=1

Assume that m = 1, so K = Q and H = G. We will assume that p > 2, as the case p = 2
requires only small modifications.
It is easy to compute that the Stark unit e € Q* is € = jzl because S = {p, oo}

and ((0) = —3, 50 #u(Q)¢(0) = —1. Let 7 = 372 (;) ¢ € Qu,), with fixed
¢ =¢, € Q(up), so we can take A = 77! because we know that 72 = (5 L)p. Then A € Q(p,),
the set Vj, is singleton, and so it suffices to prove Conjecture 3 for A € Ann(L/Q) of the
form A = 0, — a. We compute that

A= )\Ua’_a = — a
T ()T pp

Notice that p € Q) is a local norm from L;_¢,,) because p = HjE(Z/pVZ)*(l — ng). So, by
local class field theory, if j = 0_1 € G denotes complex conjugation, we have that

1, if (&) ()T =1
ey =10 WG)E
g i G)I5) T =
On the other hand, we can write Expj(A6,)(1) more conveniently as follows. If

v —1
X:{er\0<x§p }

then (Z/p"Z)* can be realized as the disjoint union of X and —X, and thus

1 T

Hence,




It follows that Expp(A6,)(1) is a power of j. Since so is r,"'(e4), it suffices to prove
that their restrictions to Q(u,) are equal. In other words, we can assume without loss of
generality that v = 1.

In this case,

Exp,; (A6,)(1) = jleex (U =LTD — o5 P Eaex 5

which completes the proof in the case m = 1 because of the known identity (cited in [8])

a

N\ TaexleE=l
(=1) (p)~

5.4 The Gross—Stark unit in the case m > 1

Now we assume m > 1 and find the Gross—Stark unit explicitly, following [5] (modifications
from [8] are necessary). Fix a prime B of K lying over p and ¢ = ¢, € Q(u,). Let K/ = Q (),
and let B’ be the unique prime of K’ over %B. Consider the residue field k = Ok /B’, and
let ¢ = |k| = p/. The m-th roots of unity are distinct in k& because p { m. Let t be the
homomorphism from the m-torsion subgroup of k to u,, C K’, which is inverse to reduction
(mod B’). For an odd positive integer a prime to S = {p, 0o} U Supp(m), define

Gla) = —g(~ . B) = 3 (™ )¢ € Qo ).

zek*

We saw earlier than G(a) € K(up). As before, let g =370 ( )¢’ € Q(p,) be the usual
Gauss sum.
If a > 0 is odd and prime to pm, then

So, if we let

G(1)
A= o € K (pp)
and
e=\",

where W = #u(K), we have that € € K by Galois theory. Indeed, if @ > 0,a = p’ (mod m),
for some j, and @ = 1 (mod p) then €7 = € follows from the fact that G( ) = G(l) (smce
x +— 2P is an automorphism of k) and t(a) € K (again by Galois theory, because t(a)? = t(a)).
By the result of Gross—Koblitz, if 7 is a uniformizer in Q,(u,) such that 7*~! = —p and
m=(,—1 (mod (¢, — 1)?), then the image of G(a) = —g(—=%,®’) in Q,(p,) equals

N
_ f—1 _ p]a p]CL
Gla) = —a DTG T 0 - (2
j=0
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Comparing valuations, we see that

T
L

() =W 35— (2)

o,
I
(e}
DO | —

so € is a Stark unit associated to (K/Q, S,B). Since A € K(u,) C L, it suffices to prove the
conjecture for A € Ann(L/Q) of the form A = o, — a.

Also, we easily compute that for A = o, —a, the image of the Gross—Stark unit e4 = \7*~¢
in Q, under the embedding K — Ky =~ Q, has p-adic unit part (with respect to the
uniformizer p) equal to

fla=1)
2

Tpl€ = G_% gf__l _ Z;;JL%J—aL%JHf;(}FP(l_<I%>)
e T Lm0

To find the image of €4 under the local reciprocity map, we need to compute the above
p-adic unit part up to a certain p-adic accuracy (in this case, modulo p”). But, we can use

the functional equation of T, to relate the values I'y(1 — (22)) to a value of ', that we
understand better under approximations. Concretely, if for z € Z,, we denote

() = z if.ZGZZ
-1 it zepZ,

then the functional equation for I', implies that

n

Il—z-—e)= H{z +r}l,(—z —n)

for integers e < n. Let z = %a,e = —Lp%j, and n = ’M(+Ll), where [ > 1 is an integer, to
obtain , ‘ .
pa Pa P aq
T (1— (2% = LIRS e .
== T e netn
pla

. l_q
— e <r<pla’T=

For 0 < j < f — 1, denote

Pi(a) = 11 (pi + %) :
plrm+ap? »

7 )
_pa Ja —2
m <r<ap m

Next, we simply count the number of integers r with —%“ <r < ap 2=1 guch that

p | ap’ + rm; this will allow us to write T'p(1 — (%» as a product involving —1 to an

appropriate power, -~ to an appropriate power, I ;, and the value Fp(—p] ;qu) (we treat the
cases j = 0 and j > 0 separately). Then we write the expression for 7,(e4) and after some

cancellations (in particular, the exponent of m turns out to be zero), we let | — oco. We
recall that I',(0) = 1, so the leftover I',-terms go to 1. Also, we note that (ap#l””*l))%
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a(g—1)

goes to xp(a)” m

t(a’a(qr;l)) and we conclude that

TeAzgflim M)
p(€a) ()H”(H L)

as | — oo, where x, is the Teichmuller character. This cancels the term

5.5 Comparing the actual value of 7,(e4) with the pre-
dicted one

We now finish the proof of Grg(L, /K., S,p). The p-local conductor of the extension L/Q
is p”, and so 1, is trivial on (1 4 p*Z,)* by class field theory. Also, r,(p) = 1 because p is a
local norm, as we remarked earlier. So, it suffices to prove that for [ large enough, we have

> 2)s s Pis(@) _ 1 SIS (e ) el M2
H BJ( ) zeX

Let X, ; be a system of representatives x modulo (Z/p”Z)* which satisfy z > 0 and
z =p’ (mod m). We examine the product P, ;(a) more closely and count that the number
of terms (p’ + ™2) in it congruent to some fixed z € X,,; modulo p” is equal to

(mod p”).

mp” mp”

|+ 1.

Therefore, if we let

1—a ax T
Ey(z) = 5 T me,, i

and

1 — i il
Es(x) 5 i La(p;zpy x)J - aijqm—pV:EJ?

we obtain the congruence

llﬂ — El() Es ()
= ” T ” a2\ mod p¥).

reX, j acEXl,J

We claim that
) = H 22 (mod p¥). (5.6)

zeXy j

Indeed, consider the change of variables x = p’¢' — my to reduce to the m = 1 case.
Notice that as y runs over (Z/p"Z)*, x runs over a system X, ; of representatives of (Z/p"Z)*
congruent to p/ modulo m. So, if we let

1—a

Byly) = —5— + 7] —al-7)
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we have

H oz H (—my)E3(y)

zeXy, y€e(Z/pvZ)*

= (—m)>vecrnr BW - TT PO (mod p")
ye(Z/p Z)*

We notice that if we restrict A6, from equation (5.4) in the case m = 1 to QQ, we obtain
> ey E3(y) = Aby|g = 0. So, it now suffices to prove that

&)

a

H yP @) (mod p"). (5.7)
ye(Z/p )"

But, the proof in the case m =1 yields

Tp ((§)> =Tp H y= W

ye(Z/p*L)*

since the kernel of r,[z: is precisely 1+ p“Z,, the desired congruence (5.7) follows. Now the
proof of Gro(L, /K, S, p) is is reduced to the congruence

ﬁ I = ) —H [ &= (mod p),

7=0 Z‘EXV’]' 7=0 z€X,

which in turn follows from the definitions.

5.6 An observation

Notice that in the situation above, Gross’s conjecture precisely gives the image of €4 in Q,.
Namely, consider a fixed m and let K be the decomposition field of p in Q(p,,). We now let
v vary and let L = K (u,»). Since the kernel of ry[z; is precisely (1 + p”Z,)*, equation (5.5)
implies that if Gross’s conjecture is true for all v, since p € Q, is a local norm for all v, there
must exist €4 € Q) of the form €4 = p®’, where € is such that

f=1{1-a_ | t@aax) | t@, 2)
6/ — H Iij()( 2 +|_ mp? J \_ mp? J) (mod py)

CCEXU

for all v > 1. Moreover, €4 must come from the global field K and must satisfy ¢4 = 1
(mod a).
We can define a Z-valued measure v on Z, as follows. Given z € Z; and v > 1, define

Vet T le (1 —a p7a ax)J _att(p",x)J) |

mpY mpY
=0 p p
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It is clear that this is a measure, because for a compact open U C Z;, v(U) is simply the
value at 0 of a shift of zeta functions which involve a sum over n > 1 in a certain fixed

residue class modulo m, and with n € U.
Therefore, Gross’s conjecture implies in particular, on general grounds, that we must

have
¢ :7[ vdv(x) € Z,, (5.8)
Zy
We will explore this approach of assuming Gross’s conjecture and attempting to write
down an explicit formula for the Gross—Stark unit in the remaining chapters.
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Chapter 6

Dasgupta’s restatement

In this Chapter, we follow [4] to interpret Gross’s conjecture as a formula generalizing (5.8)
when Q is replaced by an arbitrary totally real number field. In general, there will be an
obstruction and the image of the Gross—Stark unit will be determined only in a certain
quotient.

We now consider the following setting. Let F' be a totally real number field, and § an
integral ideal of F. Consider the narrow ray class field H; of F' corresponding to the modulus
f. The Artin map induces an isomorphism G; ~ G(H;/F), where G; = I},/i(Fjoo1) is the
narrow ray class group corresponding to f. We fix a prime p of F' prime to f and denote by
H the decomposition field of p in H;. We fix a prime B of H lying over p. We know the
conductor of H;/F divides f, so we consider a set S containing at least the archimedean
primes of F, the divisors of f, as well as p. The extension H;/F is then unramified outside
S. We assume |S| > 3, excluding only the case H; = F' = Q (by the Kronecker-Weber
theorem). Set R = S — {p}.

Let K = Hjm be the narrow ray class field of F' with respect to fp™. Let e be the order
of p in Gy and let p¢ = (7) with 7 > 0 and 7 = 1 (mod §). Let E(f) be the group of totally
positive units of F' congruent to 1 modulo f, and let Ey(f) = (m) x E(f) be the group of
totally positive p-units of F' congruent to 1 modulo f.
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(op)

—

By the definition of the local reciprocity map, Ey(f) C kerry, with r, : Fy — G(K/F),
and since 7y is trivial on Upm, also Upm Ey(f) C kerr,. Conversely, if a € F, belongs to
kerry, take @ € F with a = a (mod p™), a > 0, and a = 1 (mod f). Then by definition
(a)p™*@ € §(Fjpmoo1). This implies first that e|vy(a) and so a = 7*a’ for some k and o,
with (a') € i(Fjymoo,1). S0 @' = uf for a unit v € E(f) and § =1 (mod p™). We conclude
that o € Upm E(f). Also, if H' is the decomposition group of p in K, then the conductor of
H'/F has to divide fp", and so it must divide f. But then H" C Hj, and thus H' = H. We

deduce that r, induces an isomorphism

Hq

~

Fp

o By JUpn By (f) ~ G(Hippm / H).

—_ — —_

Let E(f) = Nin>1Upm E(f) be the closure of E(f) in Fyy, and let Ey(f) = (m) x E(f) be the

—

closure of Ey(f) in Fy;. Notice that Ey(f) = Ny>1Upm Ep(f), so Gross’s conjecture applied to

—

all fields K = Hyyn is a statement for the image of u7 in F;/E,(f). It is now convenient to
introduce the field Hijp = Up,>1 Hjpm and to note that the map

Tp - F; — G(Hyp | F)

induces an isomorphism

—

o B/ Ey(f) — G(Hpee /H).
We also have the Artin map

I}p - G<pr°°/F)

a+— (0q),
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Denote O = O, — 70, C Fy; it is a fundamental domain for the action of () on Fy,
hence we have a bijection

—_ —

O/E(f) — Fy/Ep(f)

induced by inclusion.

Let b be a fractional ideal of F prime to S and T For a compact—open subset U C O/ E(f),
let
(s(b,U,s)= > Na*
aCOp,(a,5)=1
oa€oprp (U)
for Re(s) > 1. The condition is equivalent to og-1 € 7r,(U); in particular, it must be that
Oap-1 18 trivial on H. So, ab™' = (a)p* for some k and some a € Fj 1, necessarily k = —v,(«)
because p is prime to a and b. Also, note that a € b=! because a is integral. By definition,
re(a) = O(a)p—+v(@ = Oap-1, Which belongs to re(U) if and only if a € U (because ry is

—

injective on Fy/Ep(f)). We deduce that the sum above can be written also as

CS([]7 U, 8) — Np~* ZNpr(a)sNOéfs (61)

where the sum ranges over distinct representatives modulo E(f) of a satisfyinga € b™!, a =1
(mod f),a >0, (o, R) =1, and o € U (when a > 0, N((a)) = Nav).
Define
Csr(b,U,s) =Y cals(a'b, U, s)
a
where [], (1 — [n]Nn) = 3, cq[a]. It will follow from Chapter 8 that (sr(b,U,0) € Z for
all compact—open U, and hence

,u(b, U) — CS,T(ba U7 O)

—_—

defines a Z-valued measure on O/E(f). We compute that

—

p(b,0/E(f) = > Na*|eo=(sr(H/F,00,0) =0
aCOp,(a,5)=1
ou/r(a)=cg,p(b)

because S contains a prime p which splits completely in H. Also, note that if o € F;/Upm Ep(f)

— — —

and U, denotes its inverse image in O/E(f) under O/ E(f) — Fy/Ey(f) — F; /Uy Ey(f), then
U(ba Ua) = CS,T(Hme/F> Ubrp(a)> 0)' (6'2)

If p € O, is a local uniformizer, p = (p), we compute that for any i = 0,1,....,e — 1, we
have

—

CS,T(b7 pZO;/E(f)7 0) = CS,T(Hf/Fv bp_i7 0) (63)
To check this, we can drop the index T which only corresponds to a shift, and reduce to

—

(s(b, p'O; /E(f),0) = (s(Hy/F,bp~",0).
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The right-hand-side above is the value at s = 0 of

Z Na %,

aCOp,(a,S)=1
Oa=0y,—i in G(H;/F)

We consider a change of variables a = bp~(a), where « > 0, = 1 (mod f),a € b7}, a €
p'O% (a, R) =1, and « is defined up to E(f). So, we can rewrite the second sum in terms of

a suim over Such (oS '
Nb™* > Np“N((a)~".

At s = 0, we obtain precisely the value of the left—-handside above. As a matter of notation,
for convenience, we will use for example (g(H;/F, bp~*,0) and (s(H;/F, opy-i,0) interchange-
bly.

Next, we prove that for any i, we have

CS,T(Hf/Fv bp_i7 0) = CR,T(Hf/Fv bp_iv O) - CR,T(H)‘/F’ bp_i_17 0) (64)

Again, after dropping the shift 7, it suffices to note that

Cr(Hy/F,bp~" s) — Cs(Hg/F,bp~',s)= Y Na™*

(a,@:l,p|a
Ug—O’bpfi
and consider a change of variables a = pa’.
Finally, we also observe that
> Crar(Hg/F,bp™,0) = (par(H/F,6,0). (6.5)

i=1
This follows from the fact that G(H/F) = G(H;/F)/{o,) and the functoriality of the Artin

map.
Now we are ready for the following:

Proposition 3. If Conjecture j is true, then

ugt = 7SR, (H;/F,b,0) x du(b, x)

—

O/E()

—_ — —

in Iy /E(f), where the integrand x is the inclusion O/E(f) — F;/E(f).

This is the generalization of the observation from section 5.6, which we obtained by
applying Gross’s conjecture to all fields L = K(u,»). Notice that when F' = Q, we have

E(f) = {1}, hence Gross’s conjecture already gives an exact formula for uy in Qj.
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Proof. We compute the p-adic valuation of the multiplicative integral above. Note that this

integral equals [} 503 /BT © du(b,z) and so it has p-adic valuation

—_

€e— €

(v, 0O B) = 3 iCor(Hy/F,bp,0) by (6.3)

=

@
Il
=)

e—

1
= > i(Crr(Hy/F,bp™",0) — Crr(Hj/F,bp~""1,0)) by (6.4)

1=

< Cro(Hy/F,bp~", 0)) —eCrr(Hi/F,bp™¢,0)

So, the p-adic valuations in the above formula match, and hence it suffices to prove the
equality in

Fy/Ey(f) = lim Fy /Uy By(f).

Concretely, we have to prove that for any fixed m, if U, C O/ E/(\f) denotes the inverse image
of an element a € Fyy/Uyn Ey(f) under O/E(f) — Fy/Ey(f) — F, /Upm Ey(f), then

Op
Up

[T  o®%)  (mod Uy Ey(f)).
a€Fy [Uym Ey (f)

We now apply Gross’s conjecture for K = Hjym. Namely, using the isomorphism 7y :
Fy/Upn Ey(f) = G(K/H), we can write

Tp(“g"b) — H TCS,T(K/FvTvo)

TeG(K/F)
T€0, G(K/H)

— H TCS,T(K/FvTro)

T=0p7p ()

a€Fy [Uym By (f)
_ H Tp(a)CS,T(K/Fvo'bTP (),0)
a€F} /Uym Ey (§)
and thus
up’ = H assrEEar @0 (mod Upn By(f)),
a€Fy /Uym Ey (§)
which finishes the proof, by (6.2). O

Notice that Proposition 3 is precisely the statement of Gross’s conjecture applied to the
fields K = Hjpm for all m. To obtain an exact reformulation of Gross’s conjecture, we consider
the compositum Hg of all fields K for which the conjecture can be applied. Namely, if g is the
product of the finite primes in S relatively prime to pf, we let Hg = = Hg, be the compositum
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of all narrow ray class fields of F' with respect to a modulus involving only primes in S. If v
is a prime dividing fg, set

t : t
U, =140, = LT00 il
O; if v|g.

Denote

u=JJv.
v|fg

Notice that Ey(f) C F,; x U under the diagonal embedding. Let E,(f) be the closure of Ey(f)
in Fyy X U. The local reciprocity maps ry and r, for v | fg induce an isomorphism

rs : (Fy xU)/Ey(f) ~ G(Hs/H),
and the choice of 7 from before gives a bijection (O xU)/E(f) — (Fy xU)/Ey(f). We proceed
as before and define, for each b relatively prime to S,7T" a Z-valued measure pu(b,U), given
by 1(b,U) = (s7(b,U,0) on each compact open subset U C (O x U)/E(f), where

Cs(b,U,s) = > Na™*.
aCOp,(a,S)=1
oa€oprs(U) in G(Hg/F)

We consider the statement that Conjecture 4 yields when applied to each K = Hpp,aiym,
where v; are the divisors of fg. Thus, as above, we can restate it conveniently as follows:

Proposition 4. Conjecture 4 is equivalent to the following statement: There exists an ele-
ment ur € Uy, with ur =1 (mod T') such that for all fractional ideals b of F prime to S,T
we have

(ug?, 1) = SR (Hy/F,b,0) / x du(b, x)

(OxU)/E(f)

in (Fy xU)/E(f).
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Chapter 7

Dasgupta’s refinement

So far, Dasgupta’s restatement of Gross’s conjecture was a formula for ur in a certain
quotient. The goal however is to write an explicit formula for ur in Fy and not just in

—

F;/E(f). Such a formula can then be viewed as explicit p-adic class field theory for the

—

extension H/F. The key is to refine the measure p on O/E(f) to a measure v on O, whose

—

restriction to O pushes forward to p under the projection O — O/FE(f). The natural idea is
to refine the formula 6.1, where the summation is over certain elements «, but defined only
modulo E(f). Writing an analogous formula for a compact-open subset U of O,, however,
requires a choice of a fundamental domain for the action of E(f) on the positive quadrant
@ = RY,. It turns out that there is a fundamental domain for that action which has a special
geometric shape, and which is therefore a natural candidate for the definition of the refined
measure .

7.1 Shintani domains

Fix a totally real number field F' and let n = [F' : Q]. The n embeddings F' — R given
by # — ' (i = 1,...,n) define an embedding F — R" and an action of F* on R" via
a(x1, ..., xn) = (@lzy, ..., a™x,). The totally positive elements in F* act on @ = R”,. We now
describe a fundamental domain for the action of E(f) on @ of special geometric shape.

For totally positive vy, ...,v, € F, whose images in R™ are linearly independent over R,
define the simplicial cone generated by vy, ..., v, as

C(v1y .y vy) = {Zcmi | ¢; > 0} C Q.

=1

A Shintani set is a finite disjoint union of simplicial cones. The intersection of two
Shintani sets is a Shintani set, and for Shintani sets D,D’, there are only finitely many
e € E(f) such that eDND’ # ) (see [4],[12]).

Shintani proved that there exists a Shintani set which is a fundamental domain for the
action of FE(f) on Q; such a set D is called a Shintani domain. For example, if n = 2 and
E(f) = (€), a Shintani domain is D = C'(1) UC(1,¢€). If n = 3 and E(f) has basis (1, €2) as
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a free abelian group, Colmez proved ([2]) that we can take
D=C(1)UC(1,e1) UC(1,e9) UC(1,€169) UC(1,€1,€169) UC(1, €9, €162)
as a Shintani domain, provided €y, €5 satisfy a mild sign condition
det(1, €1, €162) det(1, €a, €1€62) < 0,

al gl
where det(c, 3,7) =det | a®> (3* ~+*| for a, 3,7 € F.
od B P

A prime 7 of F is called good for a simplicial cone C' = C(vy, ..., v,) if Np = [ is a rational
prime and the generators v; can be chosen in O — 7. A set T is good for a simplicial cone C
if it either contains two primes of different residue characteristic which are good for C, or a
prime 7 which is good for C' and [ = Nn > n+ 2. Also, T is called good for a Shintani set D
if D is a finite disjoint union D = UC, with T" good for each of the simplicial cones C'.

Let D = UB,D’ = UB’ be any two Shintani domains. For each B, B’, there are finitely
many € € F(f) such that BNeB’ # (), and we write each such nonempty Shintani set BNeB’
as a disjoint union UC' of simplicial cones. From here, we conclude that we can find simplicial

cones (', ..., Cy such that
d

d
D={]JC D =G (7.1)
i=1 i=1
for some 7; € E(f). Such a decomposition is called a simultaneous decomposition for the pair
(D, D'). A set T is called good for a pair (D, D’) of Shintani domains if there is a simultaneous
decomposition as above with T' good for each C;. If 3 € F* is totally positive, a set T is
called 3-good for a Shintani domain D if it is good for the pair (D, 37'D). This property
depends only on the coset of 5 in F*/E(f). If p = (p), then 7 can be chosen as m = p® for
some e. In this case, since p°C; = C;, the condition that T is m-good for D reduces to the
condition that T is good for D. Note that if T is $-good for a Shintani domain D and C; are
chosen as in (7.1) for D' = 37'D, then for € € E(f), we have that

eonp'D=JC
vi=¢€

is a Shintani set for which 7" is good.

7.2 The refined measure v(b, D)

We assume no prime of 7" has the same residue characteristic as any prime of .S. Consider a
fractional ideal b of F' prime to S and the residue characteristic of any prime in 7" (write: b
prime to S, char T'). Let D be a Shintani set.

For a compact open subset U of Oy, define

Cr(b,D.U,s)= >  Na*
(a,R)=1

achb™!
a=1 (mod f)

aeD

aclU
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Next, define the shift (g7 (b, D, U, s) as before. It will follow from Chapter 8 that when T is
good for D, the value at s = 0 of the analytic continuation of (g r(b,D,U, s) is in Z. So, we
can define a Z-valued measure v(b, D) on O, by

v(b,D,U) = (pr(b,D,U,0)

for a compact open subset U C O,.

Equation (6.1) implies that if v, is the pushforward of v|o to O/E(f) under O — O/ E(f),
then
v(b,D,U) = p(b,U)

—

for any compact open U C O/E(f). Thus we compute

V([J,D, O) = l/*(b,D, O/E<f)) = :u(b7 O/E<f)) = 0.

Also, a change of variable a = b(a), with @ > 0,a = 1 (mod f) in the definition of
CR(Hf/Fa b,O) ylelds
V(b,D, Op) = CR,T(Hf/Fa b,O)

7.3 The conjectural element up(b, D). Naturality

Let D be a Shintani domain, and let 7" be m-good for D. By above, for any ¢ € E(f), the
intersection €D N 7w~ !D is either empty or (for a finite number of €) a Shintani set for which
T is good. So, we have that

€(b7D77T) = H GV(b,eDmﬁ—ljlop)

e€E(f)

is a well-defined element in E(f) (the exponents above are integers).
Define

ur(b, D) = e(b, D, ) e Hi/F0.0) f xdv(b,D, ) € Fy.
o

Note that for any v € E(f), a change of variable o' = ay in the definition of v implies
v(b,y'D,0,) = v(b,D,7O,) = v(b, D, O,).

From here, using that D is a fundamental domain for the action of E(f) on @, we readily
find that
€(b,D,my) = ¢(b, D, W)y_”(h’ﬁle’Op) =¢(b, D, W)V_CRYT(Hf/F’b’O),

hence ur(b, D) is independent of the choice of 7.

Proposition 5. Assume T is w-good for a Shintani domain D. If 3 € F* is relatively prime
to S, char T, totally positive, and =1 (mod §), then

ur(b(6), D) = ur(b, 5D).
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Proof. The term m¢rr(Hi/F00) ig not affected by the change b — b(3). To investigate the
other two terms, we first note that a change of variables yields

Cr(b(8),D,U,s) = (r(b, 6D, 8U, s),

and therefore
v(b(8),D,U) =v(b, 3D, BU) (7.2)

for any U C O,. Therefore, we compute

7{)3: dv(b(B), D, x) :7[ x dv(b, D, Bx)

(0]

_ 6—1/(6,,6D70) f T dV(bH@D’x)
O
:][ z dv(b, 4D, ).
o

On the other hand, again using (7.2), we find

€<b(ﬁ)7D77T> — H el/(b(ﬁ),GDﬂﬂle,Op) _ H Eu(b,eﬁDﬂﬂ-*lﬁD,ﬁOp) _ E(b,ﬁp,ﬂ'%
e€E(f) eeE(f)

since SO, = O,. O

Proposition 6. Let D and D' be Shintani domains such that T is m-good for both D and
D'. Suppose that T is good for the pair (D,D’). Then

UT(b, D) = UT(b, D,)
Proof. Consder a simultaneous decomposition
D=Jc D =|JwuCi with 7€ E(f),

such that T is good for each C;. To prove the conclusion, it suffices to show that if D = DyUC'
for a Shintani set Dy and a cone C, such that T is good for Dy and C, then ur(b, D) =
up(b, Dy U~C), for any v € E(f). This will allow us to start with the decomposition for
D and replacing one of the cones C; at a time with v,C;, to obtain the domain D’ without
changing the value of uy. So, set D' = Dy U ~C.

A simple change of variable in the expression for (g(b,vC, U, s) shows that

v(b,vC,U) = v(b,C,y'U)

for any U C O,. Thus,

7[ z dv(b, D', x) = (®¢0) f x dv(b,D, ).
o o
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To examine the e-term, suppose first that 7' is good for each intersection eC; N7~ 1C;
where € € E(f). We split €(b, D, ) and ¢(b,D’, ) into four pieces as follows:

-1 -1
G(b,D,TF) _ Heu(b,EDoﬂﬂ' Do,0y) > Heu(b,eCﬁﬂ' C,0p)

€ €
> H€u(b,6Doﬂﬂ_1C,Op) > HEV(b,CCﬂﬂ_lpo,Op)7
€ €

and similarly for e(b, D', 7).
The first two terms are invariant if C' is replaced by yC, and changing variables € — ey
and € — ey~! in the second two terms yields

€<b, le’ 71') _ E(b, D, ﬂ)vzeeE(f) V(b,eDgﬂw*IC,Op)—V(b,Cﬁe’lﬂleo,Op)' (73)
The exponent of v equals

Z (v(b,eDN 7 'C,0,) —v(b,CNe'n™'D,0,))
e€E(f)

V(b77r_107 OP) - V<b7 Ca OP)
v(b,C,mO,) —v(b,C, O)
—v(b,C,0),

which finishes the proof in the case when T is good for each intersection eC; N7~ 1C}.

In general, the exponents in the decomposition above for €(b, D, 7) and €(b, D', 7) need
not be integers, and the splitting into four parts is not possible. However, all exponents are
rationals (as will follow from Chapter 8) and only finitely many of them are nonzero. So, we
can look at their common denominator M € Z and prove that the M-th powers of the two
sides in

(b, D', 1) = €(b, D, 1)y VO (7.4)
are equal. However, both sides of (7.4) belong to the torsion-free group E(f), hence in fact
they must be equal. This completes the proof. O]

7.4 The refined conjecture

We are now ready to state Dasgupta’s refinement of Conjecture 4. Consider a Shintani
domain D and a set T' which is m-good for D. Let b, b’ be fractional ideals prime to .S, char T'.
Also, fix a prime ‘B of H lying over p; it defines an embedding H — Fj,.

Conjecture 5. 1. The element ur(b,D) € Fy does not depend on the choice of Shintani
domain D and depends only on the class of b in Gj/(p). So, it can be denoted ur(oy),
for oy € G(H/F).

2. up(op) € Uy and ur(op) =1 (mod T).

3. (Shimura reciprocity law) ur(cpy) = ur(og)7v’.
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Proposition 7. Conjecture (5) implies Conjecture (4).

Proof. First, we extend the measure v(b,D,U) to a Z-valued measure v on O, x U via
v(b,D,U) = (rr(b,D,U,0), where for a compact open U C O, x U, we define

Ga(®,D,Us)= Y Na
(a,R)=1
acb~nD
a=1 (mod f)
aclU

The condition o € U means the the image of o in O, x U under the diagonal embedding lies
in U. It follows from that

(v(6,D)]oxu)« = pu(b)
as measures on O x U /E(f) (the push—forward is with respect to the natural projection).
Consider the element

A = e(b, D, 1) ST Hi/F0.0) 7[ x dv(b,D,r) € Fy xU.
Ooxu

For each finite prime v € S, the projection of A onto the v-component of Fyy X U equals

e(b,D,ﬂ)WCR’T(Hf/F’h’O)f x dv,(b,D, x),

v

where 1,(b, D) is the push—forward of v(b, D)|oxy to the component W, of O x U corre-
sponding to v (so W, = O and W, = U, for v|fg). Thus, the projection of A onto Fy equals
precisely ur(b, D).

We now have to prove that for v|fg, the projection of A onto U, equals 1. This will allow

us to take up = ur((1),D) =1 (mod T), ur € Uy, since in Fy x U/E(f), we will have

(u7',1) = (ur(b,D), 1)
=image of A in [ x UJE(f)

— Sr1(Hi/F0,0) f xT dy*(b, D, :C)

OxU/E(f)

— ﬂ—CR,T(Hf/Fvbvo) f x d#(b,x)

OxU/E(f)

Now, we fix a prime v € R. Define measures v4(b, D) and v4(b, D) on U, by
(6, D.U) =v(b,D,0, xUx [[ Uu)
weR—{v}
v1(6,D,U) =v(b,D,70, x U x [[ Uu).
weR—{v}

What we have to prove reduces now to

%, @ dv(b,D,x)

— b D CR,T(Hf/Fvbvo).
%, @ dw(b, D, x) (6. D, m)m
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But an easy change of variable o/ = 7!« yields
v1(6,D,U) = vy(b, 7 'D, 7 1U)

and so we can write
7[ x dvy(b, D, x) :7[ x dyy(b, 77D, 7w )
= o6 D0) / x dyy(b, 77D, x)
= SR (H;/Fb,0) ?[U x dyy(b, 77D, x).
Since D is a fundamental domain for the action of E(f) on @, we have

7[ x dvy(b, 7D, x) = H ?[ x dy(b,eDN7 D, 7)

v c€E(f)
and
7[  dvy(b,D,z) = ] ][ z dvg(b,DNe'n D, x)
v EEE(f) v
= H ][ x dy(b,eD N7 D, ex)
e€E(f)” Y
= H (e_”O(b’GDm”lp’U”)jl T dVO(b,EDﬂW_1D,$))a
e€E(f) v
hence

fi}v x dvy(b, 71D, x)
%, @ dw(b,D,x)

=¢(b,D,7),

which finishes the proof.
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Chapter 8

Computing the conjectural
Gross—Stark unit

The goal of this chapter is to provide numerical evidence for Dasgupta’s conjecture in the
case of a quadratic and a cubic totally real fields. While it is easy to compute the Gross—
Stark unit in practice, we now have to compute the conjectural element ur(b, D) € Fy from
Dasgupta’s formula, as well as its Galois conjugates, form its minimal polynomial and check
that it agrees with the minimal polynomial of the Gross—Stark unit up to a desired p-adic
accuracy.

The main term that we have to compute from Dasgupta’s formula is the multiplicative
integral; the naive approach by forming Riemann products is inefficient so we need an al-
ternative formula. This computation can be easily reduced to the one of a certain additive
integral (briefly, after taking log, and then applying exp,). Thus, we have to compute a
measure which is a generalization of the measure v(b, D). We proceed by modifying the ar-
guments in [4] to write the desired measure in terms of Shintani zeta functions, whose values
at s = 0 are easy to obtain by modifying the analytic result from [12].

8.1 The analytic ingredient

Let A= (a;;) (1 <j <r,1<k<n)beanrxn matrix with positive entries. Consider the

linear forms
n

Lj(lfl,...,tn) :Zajktka 1 S] <r
k=1

and ,
Li(z1, .y 2r) = Zajkzj, 1<k<n.
j=1

Let x = (21, ..., x,) with each z; > 0 and let x = (x4, ..., X») be an r-tuple of complex numbers
with [y;| < 1forall j =1,...,r. Let a4, ..., a, be nonnegative integers. The Dirichlet series

Xfln. . .xf:zfl - z,’iT (8.1)
o izt (Li(z + 7))

Cal,...,ar (A7 x? X? S) =

RlyeeyZr=
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r(1+ma:07(1a1,.~~,aT)) and defines a holo-

converges locally uniformly and absolutely for Re(s) >
morphic function for such s, called a Shintani zeta function.
For an integer a > 0, there exists a polynomial Q,(q) € Z[q] such that

Znaq" = (Qﬂ for gl < 1.
n=0

1 —q)tt
We now mimic the proof Proposition 1 in [12] (where a; = 0) to prove
Proposition 8. The function (4, . ., extends to a meromorphic function on C. If x; # 1

for all j, then
Qa1 (Xl) Qar (X?")
(1 =)+t (1= xp)o

Proof. Let I'(s) be the classical Gamma function. For b > 0, we have ['(s)b™* = [~ et~ dt
and thus

Cal,...,ar (A7 x? X? 0) =

D(s) [ itz + o) / / e~ SR L) (1 g sl
k=1

/ / =1 GiFeDLi O (4 4 )V Ly L dy,.

Therefore, since |y;e 5i®| < 1, we can write

I'(s)"Caryvar (A, 2, X, 5)
= / . / Z X am e Kim Gt LO g T e L dty,
0 0

21 4eey2r=0

= / / H Z X] Z e Z] J t) 6_2;:1 x]LJ(t)(tltn)S—ldtl . dtn
0

00 o T Qa] X; 'G_Lj () B . .
:/ / <(1—x( ())a3+1 e~ Xi= T Li® ) T e L dt,
0 0 i€

]:

:/Om.../ooog(t)(tl. L)Lt dt,

r Qa X e L (t)) (aj+1)Lj(t)
J

| | —x;L;(t)
e "IN

7j=1

where

For 1 < k < n, consider the domain
Dy={teR"|0<t, <t forall [=1,..,n}.

Since the integral over a set of Lebesgue measure zero equals zero, we have that

D()"Carrc (As 2, 0 ) Z / N,
Dy
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Let
Ay = F(s)"/ g(t)(ty...t,)5 Mty . . . dt,.
Dy

On Dy, consider a change of variables ¢t = uy, with v > 0,0 < y; < 1 for [ # k, and
yr = 1. Thus,

00 1 1
A = F(s)"/ / . / g™ N yr e yn) ¥ dyy - dyg . dypdu,
o Jo 0

For 0 < e < 1, let I.(1) (respectively I.(c0)) be the contour consisting of the interval
[1, €], (respectively [00, €]) followed by the counterclockwise circle of radius €, followed by the
interval [e, 1] (respectively [e, oc]).

If we fix the variables u,ys, ..., Uk, ..., yn > 0, also s with Re(s) sufficiently big, and let
y1 = y vary, we have to consider the integral

1
1:/ h(y)y*'dy,
0

where
00 1 1 _
h(y) = / / . / gy, wya, ooy Uy o, wl ) U™ (Yoo o Yn) S Y - dys . . dypdu.
o Jo 0

Since the denominator of g(t) involves expressions of the form (e%® — )%+ and L, (¢)
is a linear form with positive coefficients, for y; = y close enough to 0 (y € C), e*™) is
close to a real number of absolute value greater than 1. So, there exists € > 0 such that h(y)
is holomorphic on a neighborhood of {z | 0 < |z| < €}. We claim that

1 B 1 o~
/ hy)y* tdy = 5—— 1/ hy)y*'dy,
0 € I(1)

or equivalently,
@) [ty = [y (8.2
0 z|=€

But, given €, we can take 9 sufficiently small and apply Cauchy’s integral formula for the
contour given by a counterclockwise circle of radius e followed by the segment [e, §], followed
by the clockwise circle of radius d, and finally by [d, €]. Then (8.2) reduces to

lim h(y)y*'dy = 0,

which in turn follows from the expression for h, since |h(5e?)d*| approaches 0 as § — 0. We
argue similarly for the other variables (when we treat u, we recall that Re(s) is sufficiently
large) and deduce that

L(s)™" / / -1 -1
A = , . g(uy)u"® ||y5 ||dydu
k (62n7rzs _ 1)(6271'15 _ 1)n—l 1. (00) J1.(1yn-1 ( ) ( l) ( l)

14k 14k

PA—s)" (e —1) 1 / / 1 .
= . . : g(uy)u"* u)° dy;)du
enmis (e2n7rzs _ 1) (271'2)” 1. (00) J1. (1)1 ( ) (H l) (H l)

I#k I£k
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This expression defines a meromorphic function on C whose value at s = 0 equals %ck,
where ¢, is the constant term in the Taylor expansion of g(uyy, ..., uyg_1, U, UYki1, - - - UYn)
around the origin. In particular, when x; # 1 for all j, we obtain

d Qa'(Xj)
Ca1 ..... ar A,[E,X,O = J—,a
( ) H (1 _ Xj)a]Jrl

as desired. O

8.2 Reduction to the additive integral

Let I be a totally real number field of degree n over QQ, and let p > 2 be a prime of Q which
is inert in F, with p = (p). In this case, the map log = log, identifies

(14+p0,)*" ~pO,,

and its inverse is given by exp = exp,. Moreover, we know that if = € p, then exp(z) =
1 + ¢ where vy(c) = vy(x), and log(l + ) = ¢ where v,(c) = yp(x). Also (cf [9]), if
n=ag+ap+--+ap® with 0 < a; < p, then

z" 1 1

Finally, we know that
Op > pim, X (14 p0,)" > (Op/p)* X (1+pOy)”.

For a Z-valued measure v on Oy, the goal is to evaluate the multiplicative integral

A :}[ zdv(x) € O}
Oy

up to M p-adic digits. We reduce the calculation to a certain additive integral.
First, take

Ag= [ ) e (0y/p)
a€(Op /p)*
and find the root of unity v € Oy which reduces to Ay modulo p, so that A = 7% and
% € (1 +pOy)*. The problem now reduces to computing % up to M p-adic digits. But if

z,y € pO, and z = y (mod pM), then exp(z) = exp(y) (mod pM), and so we have to find
B € pO, such that

A
log <;) =B (mod pM); (8.3)
then we will have that % = exp(B) (mod pM).

Moreover, given B, to compute exp(B) modulo p | it suffices to truncate the series for
exp at the smallest index k such that £k +1 > M % because for m > k + 1, we have

vp(Z5) > m(vp(B) — Iﬁ) > mé’%ﬁ > M.

m!
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To compute B, we note that if a,b € Oy and a = b (mod p*), then log(a) = log(b)
(mod p™M). This holds because the same root of unity 7 is congruent to both a and b modulo
p, and % = % (mod pM), so we reduce to the case a,b € 1+ pO,. Replacing a by 3 further
reduces to b = 1. But, we know that if a = 1 (mod p*), then log(a) = log(1 + (a — 1)) has
valuation equal to vy(a — 1) > M.

For a € (O,/p)*, let

A, :7[ zdv(r) € O,
a+pOyp
so A =[] A, and log(A) = > log(A,). Modulo pM, we have that

log A, = log H b+ )

be(Op /pM)*
b=a (mod p)

— Z v(b+ pM0O,)log(b)

bE(Op /pM)*
b=a (mod p)

> wb+pM0y,) <log (1 + (2 — 1)) + log(a)>

be(Op /pM)*
b=a (mod p)

= (loga)v(a+ pO,)
+ > *u(b+pMOp)<<§—1>—%(2—1)2+%<g—1)3—...>

be(Oy /p™M)
b=a (mod p)

We need to know where to truncate the series. For y € pO,, we have that

" (%) - (%) +uy((m— 1))

> m’Li + vp((m — 1))

> M

provided m > k + 1, where k is the smallest integer such that (k + 1)% + v, (k) > M.
For this choice of k, write

(é — 1) 1 (9 - 1)2 4t (_1]3k_1 (9 — 1)k = cx(@)b” + cp1 (@)™ + - + co(a).

a a
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Thus, again modulo p™, we find

log A, = (loga)v(a + pO,)
+ Z v(b+ pMO,) (er(a)b* + cr_1(a)b* ' + -+ + co(a))

be(Op /pM)*
b=a (mod p)
= (loga)v(a+pOy)
+or(a) D vl +pMO) + ) D wb+pMOp)
be(Op /pM)* be(Op /pM)*
b=a (mod p) b=a (mod p)
= (loga)v(a + pOy) + cx(a) / aFdv(z) + -+ + co(a) / dv(z)
a+p0Oyp a+p0Oyp

= (log a)v(a +pOy) + cr(a)ur(a + pOp) + - - + cola)o(a + pOy),

where p; is defined on compact open subsets of O, via

wi(U) = / z'dv(x).
U
Finally, the congruence

B=logA = Z log A, (mod p™)
a€(Oyp/p)*

reduces the computation of A to the one of y;(a + pOy).

8.3 The additive integral

Here we generalize the computation of the measure v in [4] (which corresponds to k& = 0)
with appropriate modifications of the arguments.

Fix a totally real number field F' of degree n over QQ, a prime p of Q and a prime p of
F' lying over p. Next, f is an integral ideal of O prime to p, S is a finite set of primes
of F' containing the archimedean primes, the ones dividing f, and p. Recall the notation
R =S5 —{p}. We take T'= {n}, where [ = Nn is prime (and of course, [ is prime to S). Let
b be a fractional ideal of F' prime to S and [. Consider a simplicial cone C' = C(vy, ..., v,) of
dimension r with v; € Op —n (i.e., T is good for C'). The goal of this section is to compute
the additive integral

/ z*dv(b, C,z) € O,
U

for a compact open subset U C O,.
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8.3.1 Expression in terms of Shintani zeta functions

Let K = F(y). Fix an embedding 7 : K — C. For a compact open U C O,, consider the

series ( )k ( )k
T(o T(ox
Gr(b,C U, s) = Z Nos — 1 Z Nas

(o, R)=1 (e, R)=1
acb~InC acb~1nNC
a=1 (mod f) a=1 (mod f)

aclU aclU

The series converges absolutely for Re(s) > =(k + 1), as will become evident from the form
of (;, given below.
Given a compact open U C Oy, choose e such that U is a finite disjoint union of translates

of p¢O,. Set
a=b'fp° ] v

vER,(v,f)=1
v finite

so that by the Chinese Remainder Theorem, we can find y; € n,7 = 1, ..., d, such that

d
{faebNU|(a0,R)=1,a=1 (modf)}= U(a+ y;) (disjoint union).

So, if we define

we have that
Ck(ba Ca Ua S) = Z(Zk(aa Yis Ca S) - le:(C”% Yis 07 S))
i=1
Choose an integer in a but not in n and multiply all generators v; of the cone C' by that
integer, so C' = C(vy, ..., v,) with v; € a — an. Denote

Qa,y,v) = {xECH—y | :E:Zx,-vi with 0 <x; < 1}.

i=1
This is a finite set because it is the intersection of a translate of a lattice and a compact.

For a € C, we can write uniquely

T

o = Z(l’z + ZZ')UI',

=1

where 0 < z; < 1l and z; € Z,z; > 0. So, « = = + 22:1 z;v; belongs to a + y if and only if
x € Q(a,y,v). Thus,

: @i+ 2P
Zp(a,y.Cos)= Y Z S e

z€Q(a,y,v) 21,.,2r=
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Fix a nontrivial character xo : a/an ~ Op/n ~ Z/IZ — F(1;) and consider the composi-
tion x = Toxo. To study the shift Zy(a,y, C,v)—1Z(an,y, C,v), we will use the orthogonality

relation: if a € a, then
— l if aean
dox@)f=<9" .
— 0, if a ¢ an.

Namely, we can write

xz—i—zlvlk
[Z(an,y,C,s) =1 Z Z N 21 Vi)

1 (zi + 2i)vi)*

z€Q(an,y,v) #1,--,2r=0 ’
-1 00 r -
T(O o (i + zi)v)"
= . D xy-z=) Zi”i)tN(Z’f : (s + 21)01)°
z€Q(a,y,v) =0 z1,...,2r=0 i=1 =1\ L

and hence

Zk‘(auy7078 - le(a07y7C 8) =

-1 00

iy (@ + zi)v)"
- Z Z X _x_ZZZUZtT Tl(xxz—i-zzz')zi)s

z€Q(ay,v) t=1 21,...,2r=0 l 1

k

= (M =e))? ) (r@) + X7 2 ()
- N i (@) + 2)vy) '

To recognize this as a sum of Shintani zeta functions, consider the matrix

v vi oL o

A, =
1 2 n
vl w2 o

and note that if we expand binomially the sum

<T(l’) + Z Zﬂ(%‘)) :

we obtain that Z(a,y,C, s) —1Z;(an,y,C, s) is a finite sum of products of elements in 7(K)
and sums of the form (8.1) with respect to the matrix A,, and where x; = x(—v;)" are
nontrivial roots of unity. Each x; then also belongs to 7(K) and by the explicit formula for
the value at s = 0 of (8.1), we deduce that the value of Zy(a,y,C,s) — (Z;(an,y,C,s) at
s = 0 belongs to 7(K) also.

Fix a prime 8 of K lying over p. By above, we can define a Kg-valued distribution puy
on O, via

pr(U) = pe(b,C,U) = 771¢ (b, C, U, 0).
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8.3.2 Integrality of y; and the congruence it satisfies

By the explicit formula for the value of (8.1) at s = 0, we see that this value in fact belongs
to Og because if ( is a primitive [-th root of unity, 1Tlc belongs to the valuation ring of

Qp(tu), hence to Og. Taking into account that v; € a C O, and that x = ) z,v; € a+y;
for some 7, with y; € O, we deduce that in fact

pie(U) € Og  for each compact open U C O,.

Now suppose that U = a + p™ O,. Then we can take

a=b'pY ] v
v finite,v€R
(v,f)=1

and so
v; €a CpNO, C BY.

Also, for z = Y xv; € Q(a,y;,v), we have that z = a (mod pV), hence also ¥ = aF

(mod BY). It is now clear that when we expand the sum (8.4) and set s = 0, we obtain
2"v(b,C,U) +  terms of the form v;Tj,

where T; € Oy (note that v(b, C,U) = po(b, C,U)). But this shows that
1 (U) = pp(a + pNO,) = 2*v(b,C,U) = a*v(b,C,U)  (mod BY)

because we know that v(b,C,U) € Ogp.

This congruence , together with the fact that py is Og-valued allows us to compute the
additive integral fU zFdv(b,C,z) € O, C Oy for a compact open U C O,. Indeed, let N be
large enough so that U is a finite disjoint union

d

=1

Then we have that

d
/ z*dv(b,C,2) = Zafl/(b,C, a; +pN0,)  (mod BY)
v i=1

= iﬂk(ai +p¥0,)  (mod BY)
i=1
= ux(U).
This holds for all sufficiently large N, which implies that
/kadu(b,C, z) = up(U).
In particular, py is Op-valued.
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8.4 Integrality of v

The case k = 0 above implies in particular that

Zo(a,y,C,s) —1Zy(a,y,C,s) = Z ZX —2)'¢(Ay, 7, (X(—v3)"), 5)

zeQ(ay,v) t=
1
- ZX H —
z€Q(a,y,v) t=1 1 X( UZ)
x(y —z)
- Y Trowye ( 7 ) -
oy T (1= x(—v0)

This shows first that v(b, C,U) € Q and in fact, since for a primitive [-th root of unity ¢, we
have that (1 — ¢)'! = (I) in Z[], the trace above is an l-integer. Thus, v(b,C,U) € Z[3].
Moreover, examining the valuation of [, we see that in fact v(b,C,U) has denominator at
most [77.

Thus, if the set T" contains two primes of different residue characteristics which are good
for an r-dimensional cone C| or a prime n with | = Nn > r + 2, the value v(b,C,U) is in Z,
for any compact open U C O.

8.5 A quadratic example

Let F = Q(v/11) with Op = Z[V/11]. We take the prime p = 3, which is inert in F, p = (3),
and [ = 5, which splits, and we fix n over [. Take f =1, S = {001, 009, p}, and T = {n}.

When we take by = 1, D = C(1) U C(1,10 — 3v/11) and compute the multiplicative
integral

A :7[ xdv(by, D, z) € O,
Y
up to, say, 9 p-adic digits (set M =9), we obtain
A= —118098 + 638972v/11 (mod 3°).

Since v(by,D,0,) = (rr(H/F,b1,0) = —1 in this case, we have to take ur(by, D) = 4.
Next, we can work with, say, by = (1/11), which is a representative for the nontrivial coset

in the narrow class group, and compute v(bs, D, O,) = 1, and also

A :7[ zdv(by, D, x) = 1 (mod 37%).
o A

v
Thus, ur(by, D) and ur(by, D) are roots of the polynomial in Fy,[z], whose coefficients are as
follows up to 9 p-adic digits:

A 3
D

1
3 A)x+1zx2—|—§\/ﬁx—l—1 (mod 37).

23



On the other hand, the narrow Hilbert class field is H = F(i), and we easily compute
that the minimal polynomial for the Gross—Stark unit ur € H* is precisely

1
7%+ g\/llz +1 € Flz).

This example is strong computational evidence for Conjecture 5.

8.6 A cubic example

Consider the totally real number field ' = Q(w), where w?® + 2w? — 3w — 2 = 0, with ring
of integers Z[w]. The two fundamental units of F' are u; = w and uy = —7w + 4w?. Under
the three real embeddings of F, u; and us have signs (+ — —) and (4 + +) respectively. So,
the fundamental totally positive units of F are v; = u? = w? and vy = uy.

We choose f = IZ, where (2) = I,1, with I, I, prime ideals and N(I;) = 2. Then uy, us
are congruent to 1 modulo f, and since —1 is not congruent to 1 modulo f, any unit congruent
to 1 modulo f has signs either (+ — —) or (44 +) under the three embeddings. In particular,
the degree of the narrow ray class field H; of F' corresponding to the modulus f over the
wide ray class field H{ of F' corresponding to the modulus f equals 4. In fact, H; = F, and
Hj has degree 4 over F. The narrow ray class group G of F' for the modulus § is isomorphic
to Z/27 x Z/2Z, and can be realized as

G =((3), L)

We check that det(1, vy, v1v9) det(1, ve, v1v3) < 0, so we can take as a Shintani domain D
for the action of (vy,v2) on R2, the union of the following cones:

01 = C(].),CQ = O(].,Ul),C?, = O(].,UQ),C4 = O(]_,Ul’UQ), 05 = 0(1,1}1,1}11)2),06 = 0(1,1)2,1}11}2).

Fix b; = I2; it is a representative for the trivial class in G. The reason we take b; = 2 and
not b; = 1 as a representative for the trivial class in the narrow ray class group corresponding
to f is that this choice makes the sets 2(a, y, v) smaller. Indeed, regardless of whether b; = 1
or by = I2, we still have to multiply the generators of the cones by the same smallest possible
choice 20, to ensure they lie in a (and not in n). But, when b; = IZ, the lattice becomes
strictly smaller, and the intersection with the compact set (which does not increase) decreases
as well.

We take p = 5, which is inert in F, so p = (p); then p splits completely in H = Hj.
Also, we take n with (11) = nn’ in F, with Nn = 11 = . We take S = {001, 009, 03, I1,p},
R=S—{p}, and T = {n}. Since these will be fixed, we will not always include them in the
subsequent notation.

8.6.1 The Gross—Stark unit

Since p splits in H = Hj, we denote by B;,7 = 1,...,4 the primes of H over p (i.e., we fix
their order). Also, fix B = 9B;. We now compute the Gross—Stark unit associated to 9B.
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Namely, we compute

—10, if b=1,
10, it b=(3),
H F,b,o - b,D,O =
Crr(H/ )= ) —10, if b =1y,
10, if b= (3)L.

We check that if o1 = 03y and 0y = 0y,, then 01(B) = B3 and 02(B) = By, so we form
B BB = (),

and we select u such that u =1 (mod 7) and |ul,, = 1 for any infinite w. Then, we compute
the minimal polynomial of u over F, and find that it is

1
z® + m(—1154763w2 — 6369741w + 5739634)x + 1. (8.5)

The code for this computation is in the Appendix.

8.6.2 The minimal polynomial of uz(by, D)

We set M = 5, which will guarantee that our computation of the multiplicative integral in
the formula for ur(by, D) will be an approximation up to p°. We perform computations in
the local field up to 10 p-adic digits, and get the following expression for

A :][ x dv(by, D, z),
O
in the field F, = Q,(w), where w® + 2w? — 3w —2=0:
A = 205388w? + 729116w + 869741 + O(5°).

Now, since we know from the computation in the previous subsection that the norm
of the Gross—Stark unit is 1 (a—priori, it is £1), the refined conjecture would predict that
ur(by, D) = 57194 will satisfy the polynomial

510
r? — (5—1°A + 7) z+ 1€ Fylx],

and that the coefficients of this polynomial actually lie in F[z]. But, the middle coefficient

1S 1 520
(-4,

and we have that —A — % and the numerator of the middle coefficient in (8.5) indeed agree
up to 5°.
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8.6.3 The code

The Magma code computing this is the main one, and is included in Appendix B.2 and B.3.
It follows the algorithm described in Sections 8.2 and 8.3. I thank Prof. Elkies for letting me
know that the efficient way to compute the sets Q(a, y, v) is through LLL reduction. We first
compute all sets ) that are needed, as well as all character values x(y — ), and store them
in arrays. Then we compute all the measures py (b1, D, z) and store them in an external file.
Finally, we just read the stored values and compute the multiplicative integral.
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Appendix A
Class field theory

Let K be a number field. A modulus for K is a formal product m = mym., where m; is an
integral ideal of K and m,, is a subset of the set if real primes of K.

Let L/K be an abelian extension of number fields. Recall that an infinite prime v of K
is ramified in L if v is real but admits an extension to a complex prime of L. If p is a finite
prime of K which is unramified in L, the Frobenius automorphism o, € G(L/K) is defined
as the unique element in G(L/K) with the property op(z) = z¥* (mod B) for all x € O,
and for any prime B of L lying over p. If m; is an ideal of K divisible by all of the (finitely
many) ramified finite primes in L, the Artin map

o: Iy — G(L/K)

is defined via
I=]]pi— [[ow e G(L/K).

The Artin map is surjective, and moreover, given any o € G(L/K), the set of prime ideals
p of K with o, = o is infinite (weaker version of Chebotariov’s density theorem).
If the exponents of the finite primes in m are large enough,

i(Km1) C kero.

There exists a smallest modulus f for K divisible precisely by the primes ramified in L
(finite or infinite), such that i(Kj,) C ker o| 71, This modulus f called the conductor of L/K.
If m is any modulus for K and H is a subgroup of I such that

i(Km1) C H C I,

there exists a unique abelian extension L/K which is unramified outside m and such that
the Artin map I} — G(L/K) has kernel precisely H and hence induces an isomorphism
IR/H ~ G(L/K). When f is an integral ideal, m = § x [[, .. v, and H = (K1), the
extension L is called the narrow ray class field of K with respect to f. Any abelian extension
of conductor dividing m is contained in this field L.

Let L/K be an abelian extension of conductor m = np* for some k > 0, where p { n. The
local reciprocity map

mp: K — G(L/K)
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is defined as follows. Consider the composition
0: Ko - I — It S G(L/K),

where the map I} — I is given by dropping the factor of p, i.e., by a +— ap™ @ If V is
the kernel of the map Ky — K, /Uy, then 6 is trivial on V by definition. The map 7, is
defined via the composition

rp Kp — K5 JUp =~ Ko1 /V 5 G(L/K).

Concretely, if a € K, by the weak approximation theorem, we find a € K such that
a=1 (mod n) and a = a (mod p¥). Then we take a = (a)p™(@ and have that r,(a) = oq.
In particular, if p is unramified in L, then

ro(x) =0, " @),

The image of 7, is the decomposition group of p in G(L/K), and the kernel of r, is the
group of local norms N(L%), where B is a prime of L lying over p. Moreover, the kernel of
Tp|(’); 18 Upm.
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Appendix B

The Magma code

B.1 The Gross—Stark unit

Here we compute the Gross—Stark unit in the cubic example from section 8.6.

n:=3;

Pi1<x>:=PolynomialRing(Integers()); f:=x"3+2%x"2-6%x-1;

F:=NumberField(f); 0:=Ring0fIntegers(F);

p:=5; P:=Factorization(px0) [1][1];

eta:=Factorization(11*0) [1] [1]; Norm(eta);

I:=Factorization(2x0); ff:=I[1][1]"2; q:=I[2][1];

G,m:=RayClassGroup(ff, [1,2,3]);

H:=AbelianExtension(m); HH:=NumberField(H); 00:=RingOfIntegers(HH) ;

b_temp:=

[
oo![F![28, 176, -112], F![-2, 30, -16], F![0, -6, 4], F'![-5, -1, 2]] / 4,
00! [F![24, 176, -112], F![12, 26, -18], F![0, -6, 4], F![-5, -1, 2]] / 4,
00! [F![32, 152, -100], F![-2, 30, -16], F![6, -6, 2], F![-5, -1, 2]] / 4,
oo![F![-12, -156, 96], F![-12, -26, 18], F![-6, 6, -2], F![5, 1, -2]] / 4

1;

beta:=[];

for i:=1 to 4 do betali]:=b_temp[i]*00; end for;

x:=CRT([00'0,00!1,00!1,00!1], [betal[1],beta[2],beta[3],betal4]]);
sigmal:=ArtinMap(H) (3%0); sigma2:=ArtinMap(H) (q); sigma3:=ArtinMap (H) (q*(3*0));
00!sigmal(x) in betal[3]; 00!'sigma2(x) in beta[4]; 00!sigma3(x) in betal[2];
b,u0:=IsPrincipal (betal[1]~(-10)*beta[2] " (10)*beta[3]~(10)*betal[4]~(-10)); u0;

T:=ideal<00|eta>;
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function check(u0,T);

ans:=true;

for i:=1 to #Factorization(T) do

ans:=ans and (Valuation(uO-1,Factorization(T)[i][1]) ge Factorization(T) [i][2]);
end for; return ans; end function;

u0:=

(80557852/9765625*%0.1 + 421888581/9765625%0.2 - 52265052/1953125%0.3)*00.1 +
(23049723/19531250%0.1 + 67281819/9765625+%0.2 - 86137569/19531250%0.3)*00.2 +
(-21364623/19531250*0.1 - 489156/390625%0.2 + 19315023/19531250*0.3)*00.3 +
(17629923/19531250*%0.1 - 15580323/19531250%0.2 + 74694/390625*0.3)*00.4;

check(u0,T);
Habs:=AbsoluteField(HH); u00:=Habs!'u0; AbsoluteValues(u00);

MinimalPolynomial (HH!uO) ;

B.2 Computing the measures

This is the main part of the code. The purpose is to compute the measure py (b1, C, a+p0O,).
We include the code from the cubic example. We then store the measures in an array
“seqalpha,” which we read in the code from the next subsection.

:=3; P1<x>:=PolynomialRing(Integers()); f:=x"3+2*x"2-6*x-1;
:=NumberField(f); 0:=RingOfIntegers(F);
:=11;eta:=Factorization(1x0) [1] [1];
:=5;P:=Factorization(p*0) [1] [1];

:=Factorization(2*0) ;ff:=I[1][1]"2;
v1:=F.172;v2:=-7*%F.1+4%F.172;

HYD - T B

function multiply_a_cone(v,a);
new_v:=[];

for i:=1 to #v do

Append ("new_v,a*v[i]);

end for;

return new_v;

end function;

C:=[];C[1]:=[0'1];cCc[2]:=[0'1,v1];C[3]:=[0'1,v2];C[4]:=[0'1,vi*v2];
C[5]:=[0'1,v1,vi*xv2];C[6]:=[0'1,v2,vi*v2];

b1:=I[2][1]"2; a:=bl*ff*P; h_e:=20;

D:=[]; for i:=1 to 6 do D[i]:=multiply_a_cone(C[i],h_e); end for;
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//the function below returns a set of representatives for (0/P) %

function Nonzero_reps();

PP,proj:=quo<0|P>;

G,g:=MultiplicativeGroup(PP);

G1:={};

for x in G do G1:=G1 join {g(x)}; end for;
answ:={};

for x in Gl do answ:=answ join {x@@proj}; end for;
return answ,

end function;

//TT:=SetToSequence (Nonzero_reps() join {0'0});

TT:=

[o!fo, o, ojl,o!rf1, o, ol,or[2, o, ol,0!'[-2, 0, o],0![-1, O, O],

o'[-2, 1, o1,0!'[-1, 1, o],0!'[0, 1, O],0!'[1, 1, O],0!'[2, 1, O],

o![-2, -2, -1],0![-2, 2, ol,0!'[-1, -2, -1],0!'[-1, 2, O],0!'[0, -2, -11,

o!'fo, 2, ol,o'f1, -2, -11,0!'[1, 2, ol,0![2, -2, -1],0![2, 2, O],

o![-2, -2, 2]1,0!'[-1, -2, 2],0!'[0, -2, 2],0!'[1, -2, 2],0![2, -2, 21,

o'f-2, -1, -1],0![-1, -1, -1],0![0, -1, -1],0!'[1, -1, -1],0!'[2, -1, -1],

o'[-2, -1, 21,0![-1, -1, 2],0!'[0, -1, 2]1,0![1, -1, 2],0!'[2, -1, 2],

o!'[-2, o, -1],0![-1, o0, -1],0!'[0, O, -1],0![1, O, -1],0!'[2, O, -1],

o'f-2, o, 21,0!'[-1, o0, 21,0!'[0, O, 2],0'[1, O, 2],0!'[2, O, 2],0'[-2, 1, -1],
o'f-1, 1, -11,0'[0, 1, -1],0![1, 1, -1],0!'[2, 1, -1],0!'[-2, 1, 2],0![-2, -2, -2],
o'f-1, 1, 21,0'[-1, -2, -21,0!'[0, 1, 2],0!'[0, -2, -2],0![1, 1, 2],0!'[1, -2, -2],
o!f2, 1, 21,0![2, -2, -21,0![-2, -2, 1], O!'[-2, 2, -1],0![-1, -2, 1],0![-1, 2, -1],
o'fo, -2, 11,0!'[0, 2, -11,0'[1, -2, 1],0'[1, 2, -1],0![2, -2, 1],0!'[2, 2, -1],
o!'[-2, 2, 21,0!'[-1, 2, 2],0![-2, -1, -2],0![0, 2, 2],0![-1, -1, -2],0'[1, 2, 2],
o'fo, -1, -21,0'[2, 2, 21,0!'[1, -1, -2],0!'[2, -1, -2],0![-2, -1, 1],0'([-1, -1, 1],
o'fo, -1, 11,0'[1, -1, 1],0'[2, -1, 11,0![-2, O, -2],0![-1, O, -2],0![0, O, -2,
o'f1, o, -21,0'[2, 0, -2],0!'[-2, O, 1],0!'[-1, O, 1],0!'[0, O, 1],0![1, O, 1],
o'f2, o, 11,0'[-2, 1, -21,0!'[-1, 1, -2],0![0, 1, -2],0'[1, 1, -2],0'[2, 1, -2],
o'f(-2, 1, 11,0'[-1, 1, 1],0'[0, 1, 1],0'[1, 1, 1],0'[2, 1, 11,0'[-2, 2, -2],
o'f-1, 2, -21,0'[0, 2, -2],0!'[1, 2, -2],0!'[2, 2, -2],0!'[-2, 2, 1],0![-2, -2, O],
o'f-1, -2, ol,o!(-1, 2, 11,0!'[0, -2, o],0!'[0, 2, 1],0'[1, -2, O],0!'[1, 2, 1],
o![2, -2, ol,0![2, 2, 1],0![-2, -1, O], O!'[-1, -1, Oo],0![0, -1, O],

o'f1, -1, ol,o![2, -1, 011;

function yyy(j);
return CRT([0!0,0!'0,TT[j],0!1], [bl,eta,P,ff]);
end function;
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yyyy:=[1; for j:=1 to 125 do yyyyljl:=yyy(j); end for;
function yy(j);return yyyyl[j];end function;

//y is in F, and B is a Q-basis of F; we want to express y in terms of B.

function CoeffWRTBasis(y,B);

BB:=[];

for i:=1 to n do Append(“BB, Eltseq(B[i])); end for;
M:=Matrix(RationalField(), n,n, BB);

y00:=Vector (RationalField(), Eltseq(y));
answ:=Solution(M,y00); return answ;

end function;

//gives the upper bound for tw, w in [-s,1-s]
function upp(t,s); return Maximum(-t*s, t*(1-s)); end function;
//gives the lower bound for tw, w in [-s,1-s]
function low(t,s); return Minimum(-t*s, t*(1-s)); end function;

//a is a fractional ideal, y is in F, v=[v_1,...,v_r] with v_i\in O is a cone.
//Now works only for r=3. (!!!)

function OmegaFast3(a,y,v);

Set_that_we_need:={};

P:=Basis(a) ;r:=#v;

//r is 3 here.

AA:=CoeffWRTBasis (v [1],P) ;BB:=CoeffWRTBasis(v[2],P) ;CC:=CoeffWRTBasis(v[3],P);
DD:=CoeffWRTBasis(y,P);

A:=Matrix(RationalField(), 3,3, [[AA[1],BB[1],CC[1]1],[AA[2],BB[2],CC[2]],
[AA[3],BB[3],CC[3]11);

A_good,L:=LLL(A);

transl:=A"(-1)*Matrix(RationalField(), 3,1, [[DD[1]], [DD[2]],[DD[3]]1]1);
Rangel_1:=Ceiling( low(A_good[1,1],transl[1,1])+low(A_good[1,2],transl[2,1] )
+low(A_good[1,3],trans1[3,1]) );

Rangel_r:=Floor( upp(A_good[1,1],transl[1,1])+upp(A_good[1,2],transl[2,1] )+
upp(A_good[1,3],transl[3,1]) );

Range2_1:=Ceiling( low(A_good[2,1],transl[1,1])+low(A_good[2,2],transl[2,1] )+
low(A_good[2,3],transl[3,1]) );

Range2_r:=Floor( upp(A_good[2,1],transl[1,1])+upp(A_good[2,2],transl[2,1] )+
upp(A_good[2,3] ,transl[3,1]) );

Range3_1:=Ceiling( low(A_good[3,1],transl[1,1])+low(A_good[3,2],transl[2,1] )+
low(A_good[3,3],transl[3,1]) );

Range3_r:=Floor( upp(A_good[3,1],transl[1,1])+upp(A_good[3,2],transl[2,1] )+
upp (A_good[3,3],trans1[3,1]) );

for wl:=Rangel_1 to Rangel_r do

for w2:=Range2_1 to Range2_r do

for w3:=Range3_1 to Range3_r do

62



p_s:=Solution(Transpose(A_good), Vector(RationalField(),3, [wl,w2,w3]));
if (-transl([1,1] 1t p_s[1]) and (p_s[1] le 1-transl[1,1]) and (-transl[2,1] 1t p_s[2])
and (p_s[2] le 1-transl[2,1])

and (-transl[3,1] 1t p_s[3]) and (p_s[3] le 1-transl[3,1]) then
z:=L~(-1)*Matrix(Integers(),3,1, [[wl], [w2], [w3]]1);

z1l:=z[1,1];

z2:=z[2,1];

z3:=2z[3,1];

Set_that_we_need:=Set_that_we_need join {z1*P[1]+z2%P[2]+z3*P[3]+y};

end if;end for; end for; end for;

return Set_that_we_need; end function;

function OmegaFast2(a,y,v);

Set_that_we_need:={};P:=Basis(a) ;r:=#v;

//r is 2 here.

//1 am using that for each v in {vi1,v2,vi*v2}, (1,v,F.1) is a Q-basis of F !!!
AA:=CoeffWRTBasis(v[1],P) ;BB:=CoeffWRTBasis(v[2],P);CC:=CoeffWRTBasis(F.1,P);
DD:=CoeffWRTBasis(y,P);

A:=Matrix(RationalField(), 3,3, [[AA[1],BB[1],CC[11], [AA[2],BB[2],CC[2]],
[AA[3],BB[3],CC[3]1]11);

A_good,L:=LLL(A);

transl:=A"(-1)*Matrix(RationalField(), 3,1,[[DD[1]], [DD[2]],[DD[3]]1]1);
Rangel_1:=Ceiling( low(A_good[1,1],transl[1,1])+low(A_good[1,2],transl[2,1] )
-A_good[1,3]*trans1[3,1] );

Rangel_r:=Floor( upp(A_good[1,1],transl[1,1])+upp(A_good[1,2],transl[2,1] )
-A_good[1,3]*trans1[3,1] );

Range2_1:=Ceiling( low(A_good[2,1],transl[1,1])+low(A_good[2,2],transl[2,1] )
-A_good[2,3] *trans1[3,1] );

Range2_r:=Floor( upp(A_good[2,1],transl[1,1])+upp(A_good[2,2],transl[2,1] )
-A_good[2,3] *trans1[3,1] );

Range3_1:=Ceiling( low(A_good[3,1],transl[1,1])+low(A_good[3,2],transl[2,1] )
-A_good[3,3]*transl[3,1] );

Range3_r:=Floor( upp(A_good[3,1],transl[1,1])+upp(A_good[3,2],transl[2,1] )
-A_good[3,3]*trans1[3,1] );

for wl:=Rangel_1 to Rangel_r do for w2:=Range2_1 to Range2_r do

for w3:=Range3_1 to Range3_r do

p_s:=Solution(Transpose(A_good), Vector(RationalField(),3, [wl,w2,w3]));

if (-transl[1,1] 1t p_s[1]) and (p_s[1] le 1-transl[1,1]) and (-transl[2,1] 1t p_s[2])
and (p_s[2] le 1-transl[2,1])

and (-transl[3,1] eq p_s[3]) then
z:=L"(-1)*Matrix(Integers(),3,1, [[wl], [w2], [w3]]); zl:=z[1,1]; z2:=z[2,1]; z3:=z[3,1];
Set_that_we_need:=Set_that_we_need join {z1xP[1]+z2*P[2]+z3*P[3]+y};

end if; end for; end for; end for;

return Set_that_we_need; end function;
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//a is a fractional ideal, y is in F, v=[v_1,...,v_r] with v_i\in O is a cone.
function Omega(a,y,v);
r:=#v;
if (r eq 3) then return OmegaFast3(a,y,v); else
if (r eq 2) then return OmegaFast2(a,y,v); else
Set_that_we_need:={};P:=Basis(a);
A:=[]; for i:=1 to r do Append(~A, CoeffWRTBasis(v[i]l, P)); end for;
q:=CoeffWRTBasis(y,P); lbound:=[]; ubound:=[];
for i:=1 to n do
lbound[i] :=-q[il+ &+[ ((1-Sign(A[j,i]))/2)*A[j,i] : j in [1..r]l];
ubound[i] :=—q[i]+ &+[ ((1+Sign(A[j,i]1))/2)*A[j,i] : j in [1..r]];
lbound[i] :=Ceiling(lbound[i]) ;
ubound [i] :=Floor (ubound[i]) ;
end for;
//below, nn is an n-tuple of integers.
function add_or_no(nn);
for i:=1 to n do nnl[i]:=RationalField()!nn[i]; end for;
ch,L:=IsConsistent (Matrix(RationalField(), r,n, A),
qt+Vector(RationalField(), n, nn));
if (not ch) then return {}; else
bool:=true; for i:=1 to r do
bool:=bool and (L[i] gt 0) and (L[i] le 1);
end for;
if bool then return
{&+[nn[jI1*P[j]: j in [1..n]l+y};
else return {};
end if; end if;
end function;
//n is geq 1, and we use the cartesian product construction.
cart:=[Floor(1lbound[1]) . .Floor (ubound[1])];
for i:=2 to n do
cart:=car<cart, [Floor(1lbound[i]) . .Floor (ubound[i])]>;
end for;
cart:=Flat(cart);
for nnn in cart do
nn:=[]; for i:=1 to n do nn[i]:=nnn[i]; end for;
Set_that_we_need:=Set_that_we_need join add_or_no(nn);end for;
return Set_that_we_need;
end if; end if;
end function;

[ /3o sk ok otk sk sk sk sk sk sk ok sk o ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok sk ok sk ok sk sk sksk sk sk ok sk ok sk sk ok sk sk sk sk sk sk ok
//this function returns the set of all sequences of t nonnegative integers with sum k.
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function Partition(k,t);

answ:={}; if t eq 1 then return {[k]}; else

for x:=0 to k do for pl in Partition(k-x,t-1) do answ:=answ join {Append(pl,x)};
end for; end for; return answ; end if; end function;

//given a geq 0, returns a polynomial Q(q) such that sum n"a q"n=Q_a(q)/(1-q)~{a+1}.

function Poly_expansion_compute(a);

PP<g>:=PolynomialRing(RationalField());

if a eq O then return PP!1; else

return g*x( Derivative(Poly_expansion_compute(a-1))*(1-q)+Poly_expansion_compute(a-1)*a);
end if; end function;

Polys:=[]; for i:=1 to 8 do Polys[i] :=Poly_expansion_compute(i-1); end for;
function Poly_expansion(a);

if (a le 7) then return Polys[a+l]; else return Poly_expansion_compute(a);
end if; end function;

//given an integer sequence c=[c[1],...,c[r]] of length r,
//nontrivial roots of unity chi=[chi[1],...,chi[r]],

//computes the value of the Shinatani zeta function
//zeta_{c}(A,x,chi,s) at s=0 --- which does not depend on A or x.

function Shint(c,chi2);

return

&+[ (Evaluate( Poly_expansion(c[i]) , chi2[i] ) )/(1-chi2[i])~(c[i]+1) : i in [1..#cl];
end function;

//given x in F, v=[v[1],...,v[r]] --- a sequence of elements of F,
//chi=[chi[1],...,chi[r]] -- a sequence of nontrivial roots of unity in K.

//k is a nonnegative integer

//the function below returns the value at O of

//sum_{z_1,...,z_r\geq 0} \frac{chi_1"z_1...(x+\sum z_jv_j) "kHN(x+\sum z_jv_j) s}
//The result will belong to K.

function Shint_sum(chil, vi11, x, kk);

s:=K!0; r:=#vl1l; Partit:=Partition(kk, r+1);

for PP in Partit do

y:=(Factorial (kk) /&*[ Factorial(PP[i]): i in [1..r+1] 1)*x~(PP[1])=*
(&*x[ v11[jl~(PP[j+1]) : j in [1..r] ]1)*Shint ( Remove(PP,1) ,chil);
s:=s+y; end for; return s; end function;

65



X:=[]; for i:=1 to 6 do X[i]l:=I[];
for j:=1 to 125 do X[i] [j]:=SetToSequence(Omega(a,yy(j),D[i]l)); end for; end for;

function chi_0(c);
i:=0; while not (c-i*h_e in a*eta) do i:=i+1; end while; return K.17i;
end function;

character_values:=[];

for ii:=1 to 6 do character_values[ii]:=[]; for j:=1 to #C[ii] do
character_values[ii] [j]:=chi_0(-D[ii] [j1);

end for; end for;

value:=[]; for i:=1 to 6 do valuel[i]:=[]; for j:=1 to 125 do valueli] [j]:=[];
for ind:=1 to #X[i][j] do valuel[i] [j] [ind]:=chi_0(yy(j)-X[i] [j] [ind]);
end for; end for; end for;

masiv:=[];
for i:=1 to 6 do masiv[i]:=[]; for t:=1 to 1-1 do masiv[i] [t]:=[]; for j:=1 to #C[i] do
masiv[i] [t] [j]:=character_values[i] [j]"t; end for; end for; end for;

function MU1(ii,jj,kk);

r:=#C[iil;y:=yy(jj);

answer:=0;

for ind:=1 to #X[ii][jj] do x:=X[ii][jj][ind];

for t:=1 to 1-1 do

answer:=answer-(( value[ii] [jj][ind] )~t )*Shint_sum(masiv[ii] [t], D[iil, x , kk);
end for;end for; return answer; end function;

B.3 Computing the multiplicative integral

Here is the code which computes the multiplicative integral, given the measures uy for the
additive integrals. We first read the measures from the files where we stored them.

:=3;P1<x>:=PolynomialRing(Integers());
:=x"3+2%x"2-6*x-1;F:=NumberField(f) ;0:=Ring0fIntegers(F);
:=11;eta:=Factorization(1x0) [1] [1];
:=5;P:=Factorization(p*0) [1] [1];

T B

//TT:=SetToSequence (Nonzero_reps() join {0!03});

TT:=
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L

o!fo, o, oJ,0'(t, 0, 0J,0'[2, O, O],0!'[-2, O, O],0![-1, O, O],0!'[-2, 1, O],

o'(-1, 1, o],0!(0, 1, OJ,0![1, 1, OJ,0![2, 1, O],0![-2, -2, -1],0![-2, 2, O],
o'(-1, -2, -1],0![-1, 2, o],0![0, -2, -1],0![0, 2, O],0![1, -2, -1],0!'[1, 2, O],
o'f2, -2, -1],0'[2, 2, o],0![-2, -2, 2],0!'[-1, -2, 2],0![0, -2, 2],0!'[1, -2, 2],
o'f2, -2, 2J,o0'(-2, -1, -1],0!'[(-1, -1, -1],0'[0, -1, -1],0![1, -1, -1],0!'[2, -1, -1],
orf-2, -1, 21,0'(-1, -1, 2],0!f0, -1, 2],0!'[1, -1, 2],0'[2, -1, 2],0!'[-2, O, -1],
otf-1, o, -1J,0'[0, O, -11,0'[1, O, -1],0!'[2, O, -1],0!'[-2, O, 2],0![-1, O, 2],
o!'fo, o, 21,01, o, 21,0![2, 0, 2],0'[-2, 1, -1],0![-1, 1, -1],0!'[0, 1, -1],
o'ft, 1, -11,0'[2, 1, -11,0'[-2, 1, 2],0!'[-2, -2, -2],0![-1, 1, 2],0![-1, -2, -2],
o!'fo, t, 21,0!'f0, -2, -2],0!'[1, 1, 2],0!'([1, -2, -2],0!'[2, 1, 2],0![2, -2, -2],
o'f-2, -2, 11, o'[-2, 2, -1],0'[-1, -2, 1],0'[-1, 2, -1],0![0, -2, 1],0!'[0, 2, -1],
orfs, -2, 13,01, 2, -1j,0![2, -2, 1],0'[2, 2, -1],0![-2, 2, 2],0![-1, 2, 2],
orf-2, -1, -21,0'fo, 2, 2],0'[-1, -1, -2],0![1, 2, 2],0!'[0, -1, -2],0!'[2, 2, 2],
orfs, -1, -2J,0'[2, -1, -2],0![-2, -1, 1],0'[-1, -1, 1],0![0, -1, 1],0![1, -1, 1],
orf2, -1, 1j,0'[-2, o, -2],0'[-1, O, -2],0![0, O, -2],0!'[1, O, -2],0![2, O, -2],
o!'f-2, o, 11,0!'[(-1, O, 1],0!'[0, O, 1],0!'[1, O, 1],0!'[2, O, 1],0!'[-2, 1, -2],
orf-1, 1, -2J,0'fo, 1, -21,0'[1, 1, -2],0'[2, 1, -2],0![-2, 1, 1],0![-1, 1, 1],
orfo, 1, 1j,0!1, 1, 1],0![2, 1, 1],0!'[-2, 2, -2],0![-1, 2, -2],0![0, 2, -2],
orfs, 2, -21,0'[2, 2, -2],0![-2, 2, 1],0![-2, -2, o],0![-1, -2, O],0![-1, 2, 1],
orfo, -2, oj,orfo, 2, 11,001, -2, oj,o!f1, 2, 11,0'[2, -2, 0],0![2, 2, 1],

o'(-2, -1, o], oO![(-t, -1, o],0!'[0, -1, O],0!'[1, -1, O],0!'[2, -1, O]];

ID:Z
gol
I

pAdicField(p,10); helpmap := map<Integers() -> P1 | k :-> £>;
ext<Q_p | helpmap>; 0_P:=RingOfIntegers(F_P);
P2<y>:=PolynomialRing(0_P);

P3:=PolynomialRing(F); f:=P3!CyclotomicPolynomial(l);
fil:=Factorization(f) [1]1[1]; K:=ext<F|f1>;

o
o
i

load "seqfirstfive.txt";
load "asix.txt";

mu:=[]; for i:=1 to 6 do mul[i]:=[]; for j:=1 to 125 do mul[i] [j]:=F!seqalphali] [j];
end for; end for;

//given k and a, returns the d_i such that
//(b/a-1)-1/2(b/a-1)"2+...+((-1)"{k-1}/k) (b/a-1) "k=d_k(a)b"k+...+d_0(a)

function coeff(k,d1,i);

P3<x>:=PolynomialRing(F_P); g:=0;

for i:=1 to k do g:=g+((-1)7(i-1)/i)*(x-1)"i; end for;
gl:=Eltseq(g); return gi[i+1]/d17i; end function;

//the function below finds where we have to truncate
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//the series for the expansion of the log

function truncate_log();
i:=0; while (i+1)*(p-2)/(p-1)+Valuation(Factorial(i),p) 1t M do
i:=i+1; end while; return i; end function;

//given an element a in (O_P) “x,
//the function below returns log(a).

function arb_log(a);
hensel_poly:=y~ (Norm(P)-1)-1; al:= HensellLift(hensel_poly, a);
return Log(a/al); end function;

//Computes log(A_d)

function logA_d(j,kcut); d1:=0_P!(F_P!Eltseq(F!TT[j]));

return arb_log(dl)*x  (F_P!Eltseq(F!mul1][j] D))+

(&+[ coeff(kcut,dl,i)* (F_P!'Eltseq(F!muli+1][j] )) : i in [0..kcutl]);
end function;

//the function below is the main one here. It returns the multiplicative integral
//over O_P"* of x w.r.t. the measure mu(b,v,x,0).

function multipl_int();

AO:=&*[ TT[j]l (Integers()'mu[1]1[j]l ) :j in [2..125] 1; AOO:=F_P!Eltseq(F!A0);
A00:=0_P!A00; hensel_poly:=y~(Norm(P)-1)-1; gamma:=HenselLift (hensel_poly, A0O0);
kcut:=truncate_log(); B:=&+[ logA_d(j,kcut): j in [2..125]]; return gamma*Exp(B);
end function;
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