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Chapter 1

Introduction

Classically, Bernoulli numbers Bk defined by

t

et − 1
+

t

2
− 1 =

∑

k≥2

Bk

k!
tk

were studied in connection with the class number of the cyclotomic field
Q(µp), where p is a prime number. Namely, Kummer proved that a prime p
divides the class number of Q(µp) if and only if p|Bk for some even k, with
2 ≤ k ≤ p− 3. In [10], Ribet refines this result and proves that if p|Bk, then
in fact p divides the order of a certain isotypic component of a quotient of
the class group of Q(µp), considered as a representation of the Galois group
G(Q(µp)/Q) (the converse of this result is due to Herbrand). This, together
with a result about abelian unramified extensions of Q(µp) of type (p, ..., p),
come as consequences of the main theorem (Theorem 1.3 in [10]) that we
discuss in our exposition.

Let p be a prime, let GQ = G(Q/Q) be the absolute Galois group of Q,
and let χ : GQ → Z∗

p be the standard (mod p)−cyclotomic character,

χ : GQ −→ Z∗
p giving the action on p− power roots of unity,

σ 7→ (bn)n≥1, where σ(µpn) = µbn
pn .

Let χ : GQ → Z∗
p → F∗p be the reduction of χ modulo p.

The main result that we present here, following [10], reads:

Main Theorem 1. Let k be an even integer, 2 ≤ k ≤ p − 3, and suppose
p|Bk. Then there exists a (continuous) Galois representation

ρ : GQ −→ GL(2,F),
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where F is a finite field with char(F) = p, which satisfies the following prop-
erties:

i) ρ is unramified at all primes l 6= p;
ii) With respect to an appropriate basis, ρ has the matrix form

(
1 ∗
0 χk−1

)

but is not semisimple.
iii) If Dp denotes a decomposition group for p in GQ, then ρ|Dp is diago-

nalizable.

We construct the representation ρ and prove that it satisfies i) and ii);
proving that it also satisfies iii) is beyond our scope.

Once the representation ρ is constructed, looking at the number field cor-
responding to its kernel easily yields abelian unramified extensions of Q(µp)
with certain special properties, coming from (i)–(iii), and then using class
field theory, one can prove the divisibility by p of the appropriate isotypic
component of the quotient of the class group of Q(µp). This is the subject of
Chapter 5. Ribet calls these consequences the main result of his paper; from
our point of view, however, the main result from [10] is the construction of
the Galois representation ρ.

Ribet constructs the representation ρ from a certain modular form. The
remarkable construction that allows one to associate a p−adic Galois repre-
sentations to a newform f is explained in Chapter 2. The Eichler–Shimura
relation then gives the trace and determinant of the action of a Frobenius
element in GQ under the action of this representation: namely, they are de-
termined by the eigenvalues of the Hecke operators Tl acting on the newform
f . It turns out, as discussed in Chapter 3, that an appropriate newform
(one which has the desired eigenvalues of the Hecke operators) will yield
the desired Galois representation: the key in proving this, is, of course, the
Eichler–Shimura relation.

So, we are left in Chapter 4 to construct a newform with certain eigenval-
ues modulo p. To give an indication for the proof, first, a certain Eisenstein
series G2,ε has precisely these eigenvalues under the Hecke algebra, so it will
suffice to construct a newform which is congruent to this Eisenstein series
modulo p. The key is to construct a (mod p)−eigenform for the Hecke oper-
ators with desired eigenvalues, and then use the Delign–Serre lifting lemma
and lift it to an actual eigenform. The condition that p|Bk translates to the
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one that the leading term c of G2,ε is divisible by p. Now, roughly, it suffices
to construct a suitable modular form g with constant term 1, because then
G2,ε − cg will give rise to the (mod p)−eigenform that we seek (it has zero
constant term and is in fact a cuspform).
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Chapter 2

Modular forms and Galois
representations

In this chapter, we follow mostly [6] but also [10] on some places, and give
the background from the theory of modular forms and associated Galois
representations.

2.1 Basic theory of modular forms

Here we set some notation and quickly state facts about modular forms that
will be used later. For a more detailed exposition, see [6].

For an integer k ≥ 1, recall the right action of weight k of the group
GL+

2 (Q) on meromorphic functions on the upper half plane H given by

f([γ]k)(τ) = (det γ)k−1(cτ + d)−kf(γτ), where γ =

(
a b
c b

)
∈ GL+

2 (Q).

Let k ≥ 1 be an integer, and let Γ ⊂ SL2(Z) be a congruence subgroup
of some level N. The space of modular forms of weight k for Γ is denoted
Mk(Γ), and the space of cusp forms is denoted Sk(Γ). For a Dirichlet character
ε : (Z/NZ)∗ → C∗, define

Mk(N, ε) =

{
f ∈ Mk(Γ1(N)) | f

[(
a b
c d

)]

k

= ε(d)f, for all

(
a b
c d

)
∈ Γ0(N)

}
,

and similarly Sk(N, ε). Also, define Ek(N, ε) = Mk(N, ε)/Sk(N, ε). Any mod-
ular form for Γ1(N) can be expanded as a Fourier series

∑
anq

n, where
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q = e2πiτ as usual, since

(
1 1
0 1

)
belongs to Γ1(N). The case of interest for

us is when N = p is a prime number, and k ∈ {1, 2}. Namely, when ε is a
nontrivial even character, consider

G2,ε =
L(−1, ε)

2
+
∑

n≥1

∑

d|n
ε(d)dqn (2.1)

and
s2,ε =

∑

n≥1

∑

d|n
ε
(n
d

)
dqn, (2.2)

where L(s, ε) is the usual Dirichlet L−function. These two series belong to
M2(p, ε) and represent a basis of E2(p, ε). Moreover, the space of semi–cusp
forms { ∞∑

n=0

anq
n ∈ M2(p, ε) | a0 = 0

}

is generated by s2,ε and the cusp forms. For a prime l 6= p, the Hecke operator
Tl acts on these Eisenstein series as

TlG2,ε = (1 + lε(l))G2,ε and Tls2,ε = (l + ε(l))s2,ε. (2.3)

Also, associated to the trivial character ε = 1, we have the Eisenstein series

G2,1 =
p− 1

24
+
∑

n≥1

∑

d|n
p-d

dqn. (2.4)

Finally, we know that for an odd character χ, the series

G1,ε =
L(0, ε)

2
+
∑

n≥1

∑

d|n
ε(d)qn (2.5)

belongs to M1(p, ε).
Focusing on cusp forms, the space Sk(Γ1(N)) is an inner product space

with respect to the Petersonn inner product. For each divisor d|N, there is
a map

id : (Sk(Γ1(Nd−1)))2 −→ Sk(Γ1(N)) given by

(f, g) 7−→ f + g

[(
d 0
0 1

)]

k
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showing that some cusp forms of level N come from lower levels. Define

Sk(Γ1(N))old =
∑

p|N
im(ip) ⊂ Sk(Γ1(N))

and let Sk(Γ1(N))new be the orthogonal complement of Sk(Γ1(N))old in Sk(Γ1(N)).
Let TZ be the Z−subalgebra of EndC(S2(Γ1(N))) generated by the Hecke

operators Tn and 〈n〉, for n ∈ N, and recall that TZ is commutative. Recall
that a newform is an element f =

∑
n=1 anq

n ∈ Sk(Γ1(N))new which is an
eigenform for all the Hecke operators Tn, 〈n〉, n ∈ N, and such that a1 = 1.
As a consequence of the Main Lemma in the theory of Hecke operators,
if f =

∑
n≥1 anq

n ∈ Sk(Γ1(N))new is a nonzero eigenform for the Hecke
operators Tn and 〈n〉, with (n,N) = 1, then in fact it is a Hecke eigenform
for all the Hecke operators, and a1 6= 0, so a multiple of f is a newform.
If f =

∑
n≥1 anq

n is a newform, Tnf = anf. Any newform belongs to some
eigenspace S2(N, ε), for a character ε : (Z/NZ)∗ → C.

2.2 Galois representations attached to mod-

ular forms

Here we explain the construction which is the heart of Ribet’s paper, namely
the Galois representation one associates to a newform. The key result is the
Eichler–Shimura relation, whose proof requires deep results from algebraic
geometry. A proof assuming these results can be found in [6]. Here we give
the necessary definitions for the statement.

Recall that X(Γ) = Γ\H∪Q∪{∞} has a natural structure of a Riemann
surface. Denote X1(N) = X(Γ1(N)). The space of holomorphic one–forms
on X1(N) is denoted by Ω(X1(N)), and the holomorphic map i : H → X1(N)
yields an isomorphism

Ω(X1(N) ' S2(Γ1(N)), ω 7→ f, where i∗ω = f(τ) dτ.

For a complex vector space V , set V
√
= HomC(V,C). The dual of the above

isomorphism yields in turn

S2(Γ1(N))
√
' Ω(X1(N))

√
. (2.6)

For a compact Riemann surface X of genus g, let A1, ..., Ag be the g
equatorial loops around each hole, and let B1, ..., Bg be the g meridial loops.

7



The 2g elements
∫
Ai
,
∫
Bi
, (i = 1, ..., g) of the 2g−dimensional real vector

space Ω(X)
√
form an R−basis, and so

H1(X,Z) = Z
∫

A1

⊕ · · · ⊕ Z
∫

Ag

⊕Z
∫

B1

⊕ · · · ⊕ Z
∫

Bg

is a lattice in Ω(X)
√
. We also denote byH1(X1(N),Z) the image ofH1(X1(N),Z)

in S2(Γ1(N))
√
under the isomorphism (2.6).

The Hecke algebra TZ acts on S2(Γ1(N))
√
via composition on the right,

and in fact preserves the lattice H1(X1(N),Z), so it acts on the quotient

J1(N) = S2(Γ1(N))
√
/H1(X1(N),Z),

which is a g−dimensional complex torus. Recall the isomorphism

Pic0(X1(N)) ' Ω(X)
√
/H1(X1(N),Z) ' J1(N)

from Abel’s theorem.
Let f =

∑
n≥1 anq

n ∈ S2(Γ1(N)) be a newform. Consider the eigenvalue
map

TZ −→ C given by

T 7−→ λ, such that Tf = λf.

The image of this map is the ring Of = Z[{an | n ∈ N}], and we let If denote
its kernel. Each an is an algebraic integer, and in fact Of is a finitely–
generated Z−module, so Of generates a number field denoted K = Kf .
Now, TZ/If and hence its isomorphic image Of acts on the abelian variety
associated to the newform f ,

Af = J1(N)/IfJ1(N),

which, as an abelian group, is a complex torus of dimension d = [K : Q].
Let p be a prime. For each n ≥ 1, denote by Af [p

n] the pn−torsion
subgroup of Af . Consider the p−adic Tate module

Tap(Af ) = lim←−Af [p
n],

where the maps are given by multiplication by p. Since TZ/If and hence Of

acts on Af [p
n] and the action is linear hence compatible with the inverse
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system, it makes Tap(Af ) an Of−module. Note that Af [p
n] ' (Z/pnZ)2d

and so choosing bases of each pn−torsion subgroup compatibly gives an iso-
morphism Tap(Af ) ' Z2d

p , making Tap(Af ) also a Zp−module. Therefore,
Vp(Af ) = Tap(Af ) ⊗Z Q is a module over Kf ⊗Z Zp = K ⊗Q Qp. In fact,
Vp(Af ) is a free K ⊗QQp−module of rank 2. If p is a prime ideal in the ring
of integers of K lying over p, we deduce that the p−adic Tate module

Vp(Af ) = Vp(Af )⊗K⊗Qp Kp

is a 2–dimensional Kp−vector space.
The remarkable fact is that Vp(Af ) and hence Vp(Af ) also comes equipped

with an action of the absolute Galois group GQ = G(Q/Q). There exists a
smooth projective algebraic curve X1(N)alg defined over Q, and such that the
compact Riemann surface associated to the smooth projective algebraic curve
X1(N)alg,C over C (regarding the polynomials defining X1(N)alg as having
coefficients in C), is in fact X1(N). From now on, X1(N) denotes the smooth
projective algebraic curve X1(N)alg defined over Q, X1(N)alg,C denotes the
corresponding smooth projective algebraic curve over C, andX1(N)C denotes
the latter curve when regarded as a compact Riemann surface. Thus, GQ
acts on X1(N), and induces an action on Div0(X1(N)) and on Pic0(X1(N)).
Moreover, GQ acts on the pn−torsion subgroup Pic0(X1(N))[pn] for all n,
and the action is compatible with multiplication by p. Therefore, GQ acts on
the p−adic Tate module

Tap(Pic
0(X1(N))) = lim←−Pic0(X1(N))[pn],

where the maps are multiplication by p. Recall that we can identify the field
of meromorphic functions on the compact Riemann surface X1(N)C with
the function field of the smooth complex projective curve X1(N)alg,C. The
group Pic0(X1(N)) can be regarded as a subgroup of Pic0(X1(N)C), and so
the isomorphism from Abel’s theorem, combined with J1(N) → Af , yields a
map

Pic0(X1(N))[pn] −→ Af [p
n].

This map is surjective and its kernel is stable under GQ, hence the map
induces an action of GQ on Af [p

n]. These actions for all n assemble to give an
action ofGQ on Tap(Af ), which, in fact, commutes with the action on Tap(Af )
of the Hecke algebra TZ/If ' Of . Thus, GQ acts on the K ⊗Q Qp−module
Vp(Af ) = Tap(Af ) ⊗Z Q, and so acts on the rank-two Kp−module Vp =
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Vp(Af ). This action is continuous with respect to the Krull topology on GQ
and the p−adic topology on Vp(Af ) as a finite–dimensional vector space over
a p−adic field.

In brief, the newform f =
∑

n≥1 anq
n ∈ S2(N, ε) gives rise to a 2−dimensional

Galois representation

ρ : GQ −→ AutKp(Vp(Af )).

This representation is unramified at every prime l - pN. For any prime l - pN,
consider an absolute Frobenius element Frobl ∈ GQ (it is well–defined up to
conjugation and an inertia subgroup Il ⊂ GQ). The Eichler–Shimura relation
states that then trρ(Frobl) and det ρ(Frobl), which are well-defined elements
of Kp, are respectively al and lε(l). We give more remarks on the Eichler–
Shimura relation in the next section.

Proposition 1. The 2−dimensional representation ρ : GQ → AutKp(Vp(Af ))
is irreducible.

Proof. (see [10]) Suppose ρ is reducible, so with respect to an appropriate
Kp−basis of Vp(Af ), it has the form

(
ρ1 ∗
0 ρ2

)
, (2.7)

where ρ1, ρ2 : GQ → K∗
p are characters. Results of Serre imply that we can

write ρi = χniεi, where εi is a character of finite order, and recall that χ is
the standard cyclotomic character

χ : GQ −→ Z∗
p ⊂ K∗

p giving the action on p− power roots of unity,

σ 7→ (bn)n≥1, where σ(µpn) = µbn
pn .

Note that for a prime l 6= p, any element Frobl acts by µpn 7→ µl
pn on Q(µpn),

Il ⊂ kerχ, and so χ(Frobl) = l. Also, since εi is a finite–order abelian charac-
ter, by the Kronecker–Weber theorem, it factors through Gal(Q(µNi

)/Q) →
K∗

p , for some integer Ni. Thus, there are Dirichlet characters ε̃i, such that
for all sufficiently large l, εi(Frobl) = ε̃i(l).

Now, for such primes l, the trace and determinant of ρ(Frobl), which we
know from the Eichler–Shimura relation, can also be expressed from (2.7),
and so

ln1+n2 ε̃1(l)ε̃2(l) = det(ρ(Frobl)) = lε(l)

ε̃1(l)l
n1 + ε̃2(l)l

n2 = tr(ρ(Frobl)) = al.
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Raising the first equation to an appropriate power and using that the char-
acters ε and ε̃i have finite order, we find that n1 + n2 = 1, so without loss
of generality, n1 ≥ 1 and n2 ≤ 0. The second equation above can now be
regarded in C, and taking absolute values yields

|al| ≥ l − 1,

for sufficiently large l. However, this contradicts the bound

|al| ≤ 2
√
l

due to Deligne, and so proves the Proposition.

2.3 Brief remarks on the Eichler–Shimura re-

lation

We now very briefly give the necessary definitions to state the Eichler–
Shimura relation as in [6], and indicate how it implies the version stated
earlier. This section provides only a sketch, and is not logically part of the
remaining exposition, so can be omitted by the reader. For the proper expo-
sition of the theory, see [6].

If l is a prime with l - N, the smooth projective algebraic curve X1(N)
defined over Q has good reduction at l; let X̃1(N) be the reduced smooth
projective algebraic curve defined over Fl (we do not give the precise rather
technical definition of good reduction). If λ ⊂ Z is a maximal ideal over
l, we have a reduction map Pr(Q) → Pr(Fl), which in turn yields a sur-
jection X1(N) → X̃1(N). The induced reduction map Div0(X1(N)) →
Div0(X̃1(N)) sends principal divisors to principal divisors, and hence in-
duces a map Pic0(X1(N)) → Pic0(X̃1(N)). The Frobenius automorphism
σl : x 7→ xl of Fl gives a morphism σl : X̃1(N) → X̃1(N).

For d prime to N, we have the Hecke operator 〈d〉 : X1(N) → X1(N)

defined by Γ1(N)τ 7→ Γ1(N)γ(τ), where γ =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d

(mod N) (we take 〈d〉 = 0 if d is not prime to N). Recall that a morphism
α of algebraic curves induces forward and reverse maps α∗ and α∗ of Picard
groups. There exists a morphism ˜〈d〉 : X̃1(N) → X̃1(N) such that the
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following diagram commutes:

Pic0(X1(N))
〈d〉∗ //

²²

Pic0(X1(N))

²²

Pic0(X̃1(N))
˜〈d〉∗ // Pic0(X̃1(N))

Also, for a prime l, the other Hecke operator on the level of divisor groups
is given by

Tl : Div(X1(N)C) −→ Div(X1(N)C)

Γ1(N)τ 7−→
∑

j

Γ1(N)βj(τ),

where βj =

(
1 j
0 p

)
, 0 ≤ j < l, and also including β∞ =

(
m n
N l

)(
p 0
0 1

)

when l - N ; here

(
m n
N l

)
is in SL2(Z). In fact, after identifyingX1(N)C with

X1(N)alg,C, the operaator Tl maps Q−points to Q−points, and so induces

Tl : Div(X1(N)) −→ Div(X1(N)) and in turn

Tl : Pic
0(X1(N)) −→ Pic0(X1(N)).

The version of the Eichler–Shimura relation from [6] states that if l - N,
the following diagram commutes:

Pic0(X1(N))
Tl−−−→ Pic0(X1(N))y

y

Pic0(X̃1(N))
σl,∗+〈̃l〉∗σ∗

l−−−−−−→ Pic0(X̃1(N))

Let p be a prime. Recall the injection Pic0(X1(N)) ↪→ Pic0(X1(N)C) '
J1(N). Its restricts to pn−torsion is an isomorphism

in : Pic0(X1(N))[pn] ' Pic0(X1(N)C)[p
n] ' J1(N)[pn] ' (Z/pnZ)2g,

where g is the genus of X1(N)C. Next, if l is a prime with l - N, recall that
X1(N) has good reduction at l, and we have a surjection Pic0(X1(N)) →
Pic0(X̃1(N)). In fact, when l - pN, this induces an isomorphism

πn : Pic0(X1(N))[pn] → Pic0(X̃1(N))[pn]. (2.8)
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We already defined the action of GQ on the p−adic Tate module

Tap(Pic
0(X1(N))) = lim←−Pic0(X1(N))[pn] ' lim←−(Z/pnZ)2g ' Z2g

p ,

which gives a continuous 2g−dimensional Galois representation

ρX1(N),p : GQ → GL2g(Zp) ⊂ GL2g(Qp).

We have defined the action of the Hecke operators 〈d〉 and Tl on Pic0(X1(N));
thus we obtain an action of the Hecke algebra TZ on Pic0(X1(N)). This ac-
tion is linear, restricts compatibly to pn−torsion, and hence defines an action
of TZ on the Tate group Tap(Pic

0(X1(N))), which is in fact compatible with
the Galois action.

Let l be a prime with l - pN, and let λ ⊂ Z be a maximal ideal over it.
Reductions to Fl will be with respect to λ. Let Iλ ⊂ Dλ ⊂ GQ be the inertia
and decomposition groups of λ. The Galois group GFl = G(Fl/Fl) acts on
Pic0(X̃1(N)) and in fact also on pn−torsion. The reduction map Dλ → GFl
and the isomorphism πn from (2.8) give rise to a commutative diagram

Dλ
//

²²

Aut(Pic0(X1(N))[pn])

²²
GFl // Aut(Pic0(X̃1(N))[pn])

where the vertical map on the right is an isomorphism. Since Iλ is contained
in the kernel of the vertical map on the left, it is also contained in the
kernel of the horizontal map on the top, which shows that Iλ acts trivially on
Pic0(X1(N))[pn] for all n, hence also on Tap(Pic

0(X1(N))). In other words,
Iλ ⊂ ker ρX1(N),p, i.e., ρX1(N),p is unramified at l.

Next, the diagram from the Eichler–Shimura relation, restricted to pn−torsion,
yields a commutative diagram

Pic0(X1(N))[pn]
Tl−−−→ Pic0(X1(N))[pn]y

y

Pic0(X̃1(N))[pn]
σl,∗+〈̃l〉∗σ∗

l−−−−−−→ Pic0(X̃1(N))[pn]

Of course, σ∗
l is the map given by P 7→ lσ−1

l (P ) and since Frobλ reduces
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to σl by definition, we also have a commutative diagram

Pic0(X1(N))[pn]
Frobλ+〈l〉∗lFrob−1

λ−−−−−−−−−−−→ Pic0(X1(N))[pn]y
y

Pic0(X̃1(N))[pn]
σl,∗+〈̃l〉∗σ∗

l−−−−−−→ Pic0(X̃1(N))[pn]

But, the vertical maps in these diagrams are isomorphisms, hence we
must have

Tl = Frobλ + 〈l〉∗lFrob−1
λ

as operators on Pic0(X1(N))[pn]. Compose with Frobλ on the right to con-
clude that

Frob2
λ − TlFrobλ + 〈l〉∗l = 0

as operators on Tap(Pic
0(X1(N))). Now, one can deduce the version of the

Eichler–Shimura relation stated earlier because on the level of Af (recall that
f ∈ S2(N, ε) is a newform), the Hecke operator Tl acts as al, and 〈l〉 acts as
ε(l). Here we regard al, ε(l) first as elements of Of ' TZ/If , and then take
their images in Kp.
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Chapter 3

A suitable newform gives rise
to the desired representation ρ

Here we prove that constructing a suitable newform f suffices for the proof
of Theorem 1, as a suitable reduction of the Galois representation attached
to it satisfies properties i–iii (we verify (i) and (ii) only). Once we know
what may be referred to as the main property of the Galois representation
attached to a newform, namely, the Eichler–Shimura relation, the arguments
in this chapter involve mainly simple linear algebra, in addition to a result
known as the Brauer–Nesbitt theorem. We follow [10].

We postpone the proof of the following theorem till the next chapter.

Theorem 1. Suppose 2 ≤ k ≤ p−3 is an even integer, and p|Bk. Then there
exists a newform f =

∑
n≥1 anq

n ∈ S2(p, ε), for a suitable Dirichlet character
ε modulo p, such that

al ≡ 1 + lk−1 (mod p)

for all primes l 6= p, where p|p is a fixed prime ideal of the number field
K = Kf attached to f . Here the character ε satisfies

ε(l) ≡ lk−2 (mod p),

for all primes l 6= p.

In this chapter, we deduce Theorem 1 from Theorem 1.
Let

ρ : GQ −→ AutKp(Vp)
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be the Galois representation attached to the newform f from Theorem 1,
where Vp = Vp(Af ).

Let π be a uniformizer in the valuation ring Op ofKp, and let F = Op/πOp

be the residue field of Op. A lattice in Vp is a subgroup of the form Opα⊕Opβ,
where α, β is a Kp−basis of Vp. If a lattice T = Opα⊕Opβ of Vp is invariant
under GQ, then using α, β as a Kp−basis of Vp, we may regard

ρ : GQ → GL2(Op).

Also, GQ acts on the quotient T/πT, which is a 2−dimensional F−vector
space, and with respect to the F−basis α+ πT, β + πT, the action of GQ on
T/πT is described matricially by the reduction

ρ : GQ → GL2(Op) → GL2(F).

Proposition 2. Let T ⊂ Vp be any lattice in Vp which is GQ−stable. Then
the induced GQ−action on the quotient T/πT is reducible, and its semisim-
plification is described by the two characters 1, χk−1 : GQ → F∗.

Proof. Let l 6= p be any prime, and let Frobl ∈ GQ be an absolute Frobenius
element associated to l. Then by the Eichler–Shimura relation,

tr(ρ(Frobl)) ≡ al ≡ 1 + lk−1 = 1 + χ(Frobl)
k−1 (mod p)

and similarly

det(ρ(Frobl)) ≡ lε(l) ≡ lk−1 = χ(Frobl)
k−1 (mod p).

Since the set of Frobenius elements in GQ associated to primes l 6= p is dense
in GQ and the maps σ 7→ tr(ρ(σ)), σ 7→ det(ρ(σ)), and χ are continuous, it
follows that for all σ ∈ GQ, we have

trρ(σ) = 1 + χk−1(σ)

det ρ(σ) = χk−1(σ).

Now the conclusion follows immediately from the Brauer–Nesbitt theorem
([4], combining (30.16) and (69.11)): if M,N are two representations of a
finite group, in this case GQ/(ker ρ∩kerχ) (it is finite as a quotient of GQ by
a closed subgroup) over a finite field F, and each element of the group acts via
the same characteristic roots on both M and N (counted with multiplicities),
then the representations M and N have the same composition factors.
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To simplify notation, set ϕ = χk−1, a nontrivial character GQ → F∗ In
order to prove Theorem 1, it remains to find an Op−lattice L ⊂ Vp, which
is stable by GQ, and such that the reduction ρ of ρ associated to L has the
form (

1 ∗
0 ϕ

)

and is not semisimple. We remark that a GQ−invariant lattice in Vp exists
because ρ is continuous and GQ is compact ([6], p. 382).

Note that if α1, α2 is a basis of Vp with respect to which ρ(GQ) ⊂ GL2(Op)
then Opα1 ⊕Opα2 is of course an invariant lattice. So, if we fix a basis of an
invariant lattice T and regard ρ as a homomorphism GQ → GL2(Op), then
for any B ∈ GL2(Kp) such that Bρ(GQ)B

−1 ⊂ GL2(Op), the composition

GQ → Bρ(GQ)B
−1 ⊂ GL2(Op) → GL2(F)

describes the reduction of ρ with respect to a different lattice. Certainly, this
reduction need not be isomorphic to the one associated to the original lattice
T (unless B ∈ GL2(Op), in which case the two reductions can be identified
using the matrix B ∈ GL2(F)). If T ′ is any GQ−stable lattice, Proposition 2
implies that the reduction of ρ associated to T ′, with respect to an appropiate
basis, has one of the forms

(
1 ∗
0 ϕ

)
or

(
1 0
∗ ϕ

)
,

as clearly, the form

(
ϕ ∗
0 1

)
corresponds to the second form above by swap-

ping the elements in the basis.

Proposition 3. Notation as above, there exists an Op−lattice L ⊂ Vp, such
that the reduction of ρ associated to L has the form

(
1 ∗
0 ϕ

)

and is not semisimple.

Proof. Let P =

(
1 0
0 π

)
∈ GL2(Kp). We compute

P

(
a πb
c d

)
P−1 =

(
a b
πc d

)
. (3.1)
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Suppose the reduction of ρ with respect to a basis of an invariant lat-

tice T has the form

(
1 0
∗ ϕ

)
. So, there is a matrix B ∈ GL2(F), such

that Bρ(σ)B
−1 ∈

{(
1 0
∗ ϕ(σ)

)}
, all σ ∈ GQ. Using that the projection

GL2(Op) → GL2(F) is onto, we consider a lift B ∈ GL2(Op) of B. Replacing
ρ by BρB−1, we have

ρ(σ) ∈
{(

1 + πOp πOp

∗ ϕ(σ) + πOp

)}
, all σ ∈ GQ

(here the meaning of ϕ(σ)+πOp as χ
k−1(σ)+πOp ⊂ Op is clear). Conjugate

by P using (3.1) to deduce that with respect to a basis of an invariant lattice,
which we now fix till the end of the proof, we have

ρ(σ) ∈
{(

1 + πOp ∗
πOp ϕ(σ) + πOp

)
∈ GL2(Op)

}
, all σ ∈ GQ. (3.2)

To prove the Proposition, assume for the sake of contradiction that each

reduction of ρ of the form

(
1 ∗
0 ϕ

)
is semisimple.

We define inductively a convergent sequence of matrices

Mi =

(
1 ti
0 1

)
∈ GL2(Op),

such that

Miρ(GQ)M
−1
i ⊂

{(
∗ πiOp

πOp ∗

)
∈ GL2(Op).

}

This will prove the Proposition, because then M = limMi will be a matrix
in GL2(Op) (since this group is compact) such that

Mρ(GQ)M
−1 ⊂

{(
∗ 0

πOp ∗

)
∈ GL2(Op)

}
,

which shows that Mρ(GQ)M
−1 and hence ρ is a reducible representation,

which contradicts Proposition 1.

To begin the induction, set M0 =

(
1 0
0 1

)
and use (3.2). Suppose Mi has

been chosen. Then (3.1) implies that

P iMiρ(GQ)M
−1
i P−i ⊂

{(
∗ ∗

πi+1Op ∗

)
∈ GL2(Op)

}
.
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Moreover, the reduction of σ 7→ P iMiρ(σ)M
−1
i P−i has the form

(
1 ∗
0 ϕ

)
.

Indeed, we compute directly that

P iMiρ(σ)M
−1
i P−i = P iMi

(
1 + πa ∗
πb ϕ(σ) + πc

)
M−1

i P−i

=

(
1 + πa′ ∗
πi+1b′ ϕ(σ) + πc′

)

and hence the above reduces modulo π to the form

(
1 ∗
0 ϕ

)
and is therefore

semisimple by assumption.
We now need an elementary Lemma:

Lemma 1. Let ρ′ : GQ → GL2(F) be a representation of the form

(
1 ∗
0 ϕ

)

which is semisimple (diagonalizable). Then it is diagonalizable by some

unipotent matrix U =

(
1 u
0 1

)
∈ GL2(F).

Proof. Suppose B ∈ GL2(F) is such that Bρ′(σ)B−1 =

(
1 0
0 ϕ(σ)

)
for all

σ ∈ GQ. Write B1 =

(
detB 0
0 1

)
and note that B−1

1 B has the same property.

Therefore, we can assume without loss of generality that B =

(
a b
c d

)
∈

SL2(F).
We compute

B−1

(
1 0
0 ϕ(σ)

)
B =

(
ad− bcϕ(σ) bd− bdϕ(σ)
−ac+ acϕ(σ) −bc+ adϕ(σ)

)
. (3.3)

Since ϕ is a nontrivial character1, ac = 0 from the bottom left entry. If
a = 0, then −bc = ϕ from the bottom right entry, and so −bc = 1 from
the top left entry, leading to ϕ = 1. If a 6= 0 but c = 0, we deduce that
ad = 1. Thus, replacing a, d by 1 and b by bd, (3.3) shows that the matrix

U =

(
1 bd
0 1

)
will satisfy the required condition.

1This only simplifies slightly the argument in the concrete case of interest; we can prove
the lemma without using this fact.
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Therefore, by the Lemma, there exists U =

(
1 u
0 1

)
∈ GL2(Op), such

that U diagonalizes the reduction of P iMiρM
−1
i P−i. Since also conjugation

by U preserves the lower-left entry of a matrix, we deduce that

UP iMiρ(GQ)M
−1
i P−iU−1 ⊂

{(
∗ πOp

πi+1Op ∗

)
∈ GL2(Op)

}
,

and hence

(P−iUP iMi)ρ(GQ)(P
−iUP iMi)

−1 ⊂
{(

∗ πi+1Op

πOp ∗

)
∈ GL2(Op)

}
.

This allows us to define

Mi+1 = P−iUP iMi =

(
1 ti + πiu
0 1

)
=

(
1 ti+1

0 1

)
,

and since ti+1 ≡ ti (mod πi), the sequence {Mi} converges. This completes
the proof.
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Chapter 4

Constructing the required
newform

We now prove the existence of the newform from Theorem 1, again following
[10]. In brief, we have to find an eigenform for all the Hecke operators, with
certain eigenvalues modulo a prime ideal p. We know that the Eisenstein
series G2,ε has precisely these eigenvalues, and so if we find a cusp form con-
gruent to this Eisenstein series, it will be a (mod p)−eigenform for the Hecke
operators. Then once we have a (mod p)−eigenform, we can lift it by the
key Delign–Serre lifting lemma ([5]) and obtain an eigenform in characteristic
0. So, the construction is reduced to investigating the (mod p)−expansion
of certain Eisenstein series, and this is how Bernoulli numbers appear as
leading terms of these expansions.

4.1 Constructing a suitable Eisenstain series.

Fix a prime p > 2, and consider the cyclotomic field M = Q(µp−1). The
prime p splits completely in M, and we fix a prime p of M dividing p. Since
ordp(p) = 1, we will interchange congruences modulo p and modulo p as
appropriate without explicit notice. For simplicity of notation, let A be the
ring of p−integers in M. We have that OM/p ' Z/pZ, and the (p − 1)−st
roots of unity µp−1 are distinct when reduced to OM/p, hence there exists a
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unique character

ω : (Z/pZ)∗ −→ µp−1 such that

ω(d) ≡ d (mod p), all d ∈ Z;

this is the inverse of the reduction map µp−1 → (OM/p)∗. Note that ω(−1) =
−1 and ω is a character of order precisely p− 1.

Fix an even integer k, 2 ≤ k ≤ p− 3. The goal of this section is to prove
the following

Theorem 2. There exists a modular form g ∈ M2(p, ω
k−2) all of whose

q−expansion coefficients are in A, and whose constant coefficient is 1.

It is natural to try to construct g from the explicit Eisenstein series (2.1),
(2.5), and (2.4). Note that ωk−1 is an odd character, and ωk−2 is a nontrivial
even character for k > 2, so we can use (2.5) and (2.1) for these two characters
respectively. Thus, we begin by studying the (mod p) q−expansions of
G2,ωk−2 andG1,ωk−1 . Congruences between q−expansions are to be understood
coefficient-wise.

Lemma 2. The coefficients of the q−expansions of G1,ωk−1 and G2,ωk−2 are
in A, and moreover,

G2,ωk−2 ≡ G1,ωk−1 ≡ −Bk

2k
+
∑

n≥1

∑

d|n
dk−1qn (mod p).

Proof. The statement for G2,1 is automatic because B2 = 1
6
. For the other

cases, recall that ωk−2(d)d ≡ ωk−1(d) ≡ dk−1 (mod p), so by the expansions
(2.1) and (2.5), we only need to examine the constant terms. By a standard
fact about Dirichlet L−functions (see [6], p. 137), for any nontrivial character
ε modulo p, we have

L(0, ε) = −1

p

p−1∑

n=1

ε(n)
(
n− p

2

)
(4.1)

L(−1, ε) = − 1

2p

p−1∑

n=1

ε(n)

(
n2 − pn+

p2

6

)
. (4.2)
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We now need some congruences modulo p2. If ω(n) = ζ, so n = ζ + πα,
with π ∈ p, write ζ − np = ζ − (ζ + πα)p ≡ ζ − ζp − pζp−1πα ≡ 0 (mod p2)
because ζp = ζ. Thus, ω(n) ≡ np (mod p2). Using that the sum over the
group (Z/pZ)∗ of the nontrivial character ωk−1 is 0, we have

pL(0, ωk−1) = −
p−1∑

n=1

ωk−1(n)
(
n− p

2

)

≡ −
p−1∑

n=1

n1+p(k−1) (mod p2).

Similarly,

pL(−1, ωk−2) ≡ −1

2

p−1∑

n=1

n2+p(k−2) (mod p2),

where now we used that

p−1∑

n=1

n1+p(k−2) ≡
p−1∑

n=1

nk−1 ≡ 0 (mod p),

(as is well–known, this follows easily since 0 < k − 1 < p− 1 and (Z/pZ)∗ is
cyclic).

Recall the congruence

pBt ≡
p−1∑

n=1

nt (mod p2),

valid for any positive even integer t. We are now able to compare the special
L−values with Bernoulli numbers, namely

L(0, ωk−1) ≡ −B1+p(k−1) (mod p)

L(−1, ωk−2) ≡ −1

2
B2+p(k−2) (mod p).

Therefore, we have reduced the proof to the following congruence between
Bernoulli numbers:

B1+p(k−1) ≡
Bk

k
(mod p)

B2+p(k−2)

2
≡ Bk

k
(mod p).
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Recall a special case of the famous Kummer congruence (e.g., [9], p. 44): if
(p − 1) - k, and k ≡ k′ (mod (p − 1)), then (1 − pk−1)Bk

k
≡ (1 − pk

′−1)
Bk′
k′

(mod p). Applying this with k′ = 1+ p(k− 1) and k′ = 2+ p(k− 2) finishes
the proof.

Now that we have a sufficient supply of modular forms with p−integral
q−expansions, we want also to ensure that enough of them have constant
term a p−unit.

Proposition 4. Let

t = # {n even, 2 ≤ n ≤ p− 3 | p|Bn} .

Then t < p−1
4
.

Proof. Let hp and h−
p be the class numbers of Q(µp) and Q(µp + µ−1

p ) re-

spectively, and let h∗
p =

hp

h−
p
; it is called the first factor of the class number of

Q(µp).
We first prove that pt|h∗

p. A result by Greenberg ([7], formula on p. 250
applied to the case k = Q and using that the number of roots of unity in
Q(µp) is 2p and that ω generates the group of characters on (Z/pZ)∗) implies
that

h∗
p = 2ap

p−1∏

k=2
k even

L(0, ωk−1),

for some integer a. By (4.1) for ε = ωp−2, we have that pL(0, ωp−2) is
p−integral in Q(µp−1). Now consider the remaining product

p−2∏

k=2
k even

L(0, ωk−1).

If p|Bk for k even, 2 ≤ k ≤ p− 3, then by Lemma 2, p divides the constant
term of G1,ωk−1 , or in other words, p|L(0, ωk−1). Therefore, pt|h∗

p as stated.
Next, we estimate h∗

p based on an explicit formula proved in [3]. Namely,
for r prime to p, let r′ denote an integer which gives the inverse of r modulo
p, and let R(r) ∈ {0, 1, ..., p− 1} be the residue of r modulo p. Consider the
p−1
2

× p−1
2

determinant

Dp = det(R(rs′))r,s′=1,..., p−1
2
.
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Then h∗
p = ± Dp

p
p−3
2
. Next, an easy estimation

|Dp| ≤ 2−
p−1
4 p

3(p−1)
4

from [2] implies

h∗
p < p

p−1
4

(using that h∗
p = 1 for p ≤ 19 and 2−

p−1
4 < p−1 for p ≥ 19).

Therefore,

pt ≤ h∗
p < p

p−1
4 ,

hence the statement of the Proposition.

We are now ready to prove Theorem 2.

Proof. Consider first the modular form G2,ωk−2 . If its constant term is not a
p−unit, then p|Bk. Assume this is the case. For each pair of even integers
m,n, such that 2 ≤ m,n ≤ p− 3, and m+ n ≡ k (mod p− 1), we have that
G1,ωm−1G1,ωn−1 is a modular form of weght 2, type ωm−1ωn−1 = ωk−2, and
has a p−integral q−expansion. Its constant term is a p−unit provided that
p - Bm and p - Bn. However, if we assume that for each pair (m,n) as above,
at least one of the Bernoulli numbers Bm, Bn is divisible by p, an elementary
counting argument (using that also p|Bk) shows t ≥ p−1

4
, which contradicts

Proposition 4.

4.2 Obtaining a cuspform

Now that we have the Eisenstein series g from Theorem 2, we no longer
need to consider the auxiliary modular forms of weight 1. We now make
the assumption that p|Bk. Since B2 = 1

6
, we can therefore assume that the

even integer k satisfies 4 ≤ k ≤ p − 3. So, ε = ωk−2 : (Z/pZ)∗ → µp−1 is a
nontrivial even character.

Using the main result from the previous section, we first construct a
semi-cusp form which is a (mod p)−eigenform for the Hecke operators Tn,
(n, p) = 1. Then, the key step is to use the Deligne–Serre lemma to obtain
a semicusp form which is an eigenform for the Hecke operators with desired
eigenvalues modulo p, and finally we easily note that this semicusp form is
in fact a cusp form.
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Proposition 5. There exists a semi–cusp form f ∈ M2(p, ε) whose q−expansion
coefficients are in A, and which is a (mod p)−eigenform for all the Hecke
operators Tn, (n, p) = 1, with eigenvalue of Tl equal to 1 + ε(l)l (mod p).

Proof. Let g be the modular form from Theorem 2. Let c be the constant
coefficient of G2,ε; then c ≡ −Bk

2k
≡ 0 (mod p). So,

f = G2,ε − cg ∈ M2(p, ε)

is a semicusp form with q−expansion coefficients in A, and

f ≡ G2,ε (mod p).

Recall([6], p. 179) that if
∑∞

m=0 amq
m ∈ M2(p, ε) is any modular form,

then its image under the Hecke operator Tn is given by
∑∞

m=0 bmq
m, with

bm =
∑

d|(m,n)

ε(d)dk−1amn
d2
.

In particular, applying Hecke operators to modular forms with q−expansion
coefficients in A preserves congruences modulo p.

Therefore, for a prime l 6= p, recalling the eigenvalue of Tl acting on G2,ε

from (2.3), we obtain

Tl(f) ≡ TlG2,ε = (1 + ε(l)l)G2,ε ≡ (1 + ε(l)l)f (mod p).

Proposition 6. There exists a nonzero cuspform f ′ ∈ M2(p, ε), which is an
eigenform for all the Hecke operators Tn, (p, n) = 1, and a prime ideal q|p in
the field generated over Q(µp−1) by the eigenvalues λ(n) of Tn acting on f ′

for (n, p) = 1, such that for any prime l 6= p, the eigenvalue λ(l) satisfies the
congruence

λ(l) ≡ 1 + ε(l)l (mod q).

Proof. The key step here is the Deligne–Serre lemma (note that A ⊂ Qµp−1 is
a discrete valuation ring, and consider the space of semicusp forms, on which
the subalgebra of TZ generated by 〈d〉 and Tn, p - n acts; see next section
for the precise formulation of the Deligne–Serre lemma), which shows that
the previous Proposition yields a semi cusp form f ′ ∈ M2(p, ε) satisfying all
the requirements. We only have to prove that such a semi cusp form must
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in fact be a cusp form. We recall the semi cusp form s2,ε from (2.2) and the
fact that we can write the semi cusp form f ′ as

f ′ = g + as2,ε

for some a ∈ C, where g is a cusp form. For a prime l 6= p, apply the Hecke
operator Tl to both sides above, and recall from (2.3) the action of Tl on s2,ε:

Tlg + a(ε(l) + l)s2,ε = Tlf
′ = λ(l)f ′ = λ(l)g + aλ(l)s2,ε.

Thus,
Tlg − λ(l)g = a(λ(l)− ε(l)− l)s2,ε.

The left–hand–side is a cusp form, hence so must be the right–hand–side.
Either s2,ε is a cusp form, in which case so is f ′ = g + as2,ε, or a = 0, in
which case f ′ = g in a cuspform to begin with, or, if we assume that these
two fail, then

λ(l) = ε(l) + l

for all primes l 6= p. This is not possible, however. Indeed, ε is nontrivial,
so there is some r ∈ (Z/pZ)∗ with ε(r) 6= 1. Choose a prime l ≡ r (mod p).
Then ε(l) + l = λ(l) ≡ 1 + lε(l) (mod q), hence ε(l)(1− l) ≡ 1− l (mod p)
and because l 6= 1 (mod p), we deduce ε(l) ≡ 1 (mod p) and hence ε(l) = 1,
which contradicts the choice of l. We conclude that f ′ is a cuspform.

Theorem 1 now follows immediately from the discussion of section 2.1:
since S2(SL2(Z)) is trivial, so is the space of oldforms im(ip) = S2(p, ε)

old.
Therefore, by the theorem quoted at the end of section 2.1, a suitable multiple
of f ′ is the desired newform f =

∑
n≥1 anq

n ∈ M2(p, ε), with

al = λ(l) ≡ 1 + ε(l)l ≡ 1 + lk−1 (mod p),

for all primes l 6= p. Here we abuse notation and denote by p the prime ideal
q of the ring of integers of the number field K = Q(µp−1, λ(n) : (n, p) =
1) ⊃ Q(µp−1) lying above the original prime ideal p in the ring of integers of
Q(µp−1).

4.3 The Deligne–Serre lemma

We devote this section to a detailed proof of the key commutative algebra
result that allowed us to lift a (mod p)−eigenform to an actual eigenform.
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Here we follow [5]. This section is different in flavor from the rest of our
exposition as it is purely a piece of commutative algebra. The background
from commutative algebra that is used in the proof can be found in [1].

Proposition 7. Let O be a discrete valuation ring with maximal ideal m,
field of fractions K, and residue field k = O/m. Assume that K is perfect1.
Let M be a finitely generated and free O−module, and H ⊂ EndO(M) a
commutative O−subalgebra of O−endomorphisms of M. Consider M/mM
as a k−vector space on which H acts, and suppose f 6= 0, f ∈ M/mM is
an eigenvector for all operators in H, with eigenvalue of T ∈ H equal to
aT ∈ k. Then there exists a finite extension K ′/K, such that if O′ is the
integral closure of O in K ′ (again a discrete valuation ring) and m′ ⊂ O′ is
the maximal ideal of O′, then there exists nonzero f ′ ∈ O′ ⊗O M (which is
regarded as a finitely generated and free O′−module), which is an eigenvector
of all T ∈ H (under the natural induced O′−module action), with eigenvalues
a′T ≡ aT (mod m′), for all T ∈ H.

Proof. As an O−module, EndO(M) is isomorphic to EndO(Or) ' Or2 for
some r, and is therefore finitely–generated and free. Since O is a principal
ideal domain, the submodule H is also finitely–generated and free as an
O−module. Consider B = K⊗O H as a finite–dimensional K−vector space.
The quotient of K⊗O H by a prime ideal must be an integral domain, which
is also finite–dimensional as a K−vector space; thus, multiplication by a
nonzero element in the quotient is injective and hence also surjective. This
shows that any such quotient is a field, i.e. every prime ideal of B is maximal.
Since the ring is also Noetherian, it is an Artin ring, and each residue field is
a finite extension of K. Let K ′ ⊃ K be the Galois closure of all the residue
fields of B. Ifmi are the prime ideals of B, letKi = B/mi; the exact sequence
0 → mi → B → Ki → 0 ofK−modules and the flat homomorphismK → K ′

yield an exact sequence 0 → K ′ ⊗K mi → K ′ ⊗K B → K ′ ⊗K Ki → 0. Also,
the map B → K ′ ⊗K B is injective. If q ⊂ K ′ ⊗K B is a prime ideal of
K ′ ⊗K B, then q∩B = mi for some i, and K ′ ⊗K mi ⊂ q ⊂ K ′ ⊗K B. Thus,
the residue field K ′⊗K B/q is a quotient of K ′⊗K B/K ′⊗K mi ' K ′⊗K Ki.
But, each quotient field of K ′ ⊗K Ki is isomorphic to K ′. Indeed, we can
write Ki = K[x]/(f(x)), where f(x) ∈ K[x] and f(x) =

∏
(x − αi), with

1In [5], this assumption is not made, but we can make it for our purposes.
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αi ∈ K ′ distinct. Then

K ′ ⊗K Ki = K ′ ⊗K (K[x]/(f(x))) = K ′[x]/(f(x))

= K ′[x]/
∏

(x− αi) =
∏

K ′[x]/(x− αi)

'
∏

K ′

as rings. Thus, we can choose a finite extension K ′ of K, such that K ′ ⊗O H
is an Artin ring all of whose residue fields are isomorphic to K ′.

Let O′ be the integral closure of O in K ′, m′ the maximal ideal of O′,
and k′ = O′/m′ the residue field. Let M ′ = O′ ⊗O M and H′ = O′ ⊗O H.
Since M is torsion–free, we have an inclusion O ↪→ H, and since O′ is flat
as an O−module (it is finitely generated and free), we obtain an inclusion
O′ ↪→ O′⊗OH = H′. We will often identify O′ with its image in H′. Also, we
have a natural map H′ → EndO′(M ′) = O′ ⊗O EndO(M), which is injective,
since H ⊂ EndO(M) and O′ is a flat O−module. Let χ : H → k be the
eigenvalue map sending T ∈ H to the eigenvalue aT ∈ k. Let χ′ : H′ → k′ be
the induced map on H′, b⊗ h 7→ bχ(h). Of course, χ′ is surjective.

Next, kerχ′ ⊂ H′ is a maximal ideal of H′, and clearly m′ ⊂ kerχ′∩O′ (
O′. Thus, m′ = kerχ′ ∩ O′. Since H′ is finitely–generated and free as an
O′−module, it is a flat O′−module, hence the going–down theorem holds
for the extension O′ ↪→ H′ (see [1], chapter 5, exercise 11), and so there
is a prime ideal p ⊂ kerχ′ of H′ such that p ∩ O′ = (0). The composition
O′ ↪→ H′ → H′/p now gives an inclusion O′ ↪→ H′/p, which we claim is in
fact an isomorphism.

Indeed, first notice that the map H′/p → H′/p⊗O′ K ′ is injective: recall
that if S = O′−{0}, then we can identify H′/p⊗O′K ′ = H′/p⊗O′ (S−1O′) '
S−1(H′/p), and so if a ∈ H′/p becomes 0 in the localized ring, then sa = 0 in
H′/p for some a ∈ O′−{0}. This implies a = 0 because H′/p is a domain and
hence a free O′−module. Now, again using the identification H′ ⊗O′ K ′ =
S−1H′, we note that p∩S = ∅, and therefore the extension p̃ = p⊗O′K ′ of the
ideal p to the ring H′ ⊗O′ K ′ is a prime ideal. By constructing inverse maps
in both directions, we can identify H′/p ⊗O′ K ′ ' H′ ⊗O′ K ′/p̃. The latter
quotient is one of the residue fields of the ring H⊗O K ′, hence isomorphic to
K ′, by the choice of K ′. We have found an injection O′ ↪→ H′/p ↪→ K ′, and
since O′ is integrally closed inK ′ andH′/p is integral over O′, we deduce that
indeed we must have an isomorphism O′ ' H′/p. Since χ′ sends elements
of O′ to their residue modulo m′, we now obtain a factorization of χ′ as the
composition of a map ψ : H′ → O′ and the natural projection O′ → k′.
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Consider M ′⊗O′ K ′ as a module over H′⊗O′ K ′ and notice that the ideal
p̃ belongs to its support. Indeed, if we assume that (M ′ ⊗O′ K ′)p̃ = 0, then
for any m ∈ M ′, there exists s ∈ H′ ⊗O′ K ′ − p̃ such that s(m ⊗ 1) = 0 in
M ′ ⊗ K ′. Notice that s can be written as s = α ⊗ 1

b
, some b ∈ O′, where

necessarily α /∈ p. So, α(m) ⊗ 1
b
= 0 in M ′ ⊗K ′, hence α(m)

b
= 0 in S−1M ′,

where again S = O′ − {0}. But, M ′ is a free O′−module, hence α(m) = 0.
This implies that p does not belong to the support M ′, when considered as
a (finitely–generated) H′−module. Thus, p + AnnH′(M ′) = 0, which is a
contradiction. In brief, (M ′ ⊗O′ K ′)p̃ 6= 0.

In general, if A is an Artin ring with p ⊂ A one of the prime ideals, and
M is an A−module with Mp 6= 0, then there exists some nonzero m ∈ M
which is killed by p. Indeed, Ap is a local Artin ring with maximal ideal p,
which must be nilpotent since it equals the nilradical of the Artin ring Ap.
So, Mp is an Ap−module with pkMp = 0 for smallest k, k ≥ 1. If m

b
∈ pk−1Mp

is any nonzero element, then m ∈ M is nonzero and is killed by p.
Therefore, in our setting, there exists some nonzero f̃ ∈ M ′⊗O′ K ′, which

is killed by the ideal p̃. We can write f̃ = f ′ ⊗ 1
b
, some b ∈ O′ and f ′ ∈ M ′

nonzero. From the definition of the map ψ, we have that for any h ∈ O′,
we have ψ(h) ≡ h (mod p), and so (h − ψ(h)) ⊗ 1 ∈ p̃ for all h ∈ H. Now,

((h− ψ(h))⊗ 1)(f ′ ⊗ 1
b
) = (h−ψ(h))f ′

b
= 0 in S−1M ′, and using again that M ′

is free as an O′−module, we deduce hf ′ = ψ(h)f ′, which implies the desired
conclusion.
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Chapter 5

Consequences of the Main
Theorem

5.1 Constructing unramified p−extensions of

Q(µp)

Theorem 1 gives unramified abelian extensions of Q(µp) with Galois group
of type (p, ..., p). We just have to consider the Galois extension of Q defined
as the fixed field of the kernel of ρ, and translate the three properties of ρ
into arithmetic properties of this number field.

We can change a basis of F2 such that the representation ρ from Theorem
1 in fact has the form

ρ(σ) =

(
1 α(σ)
0 χk−1(σ)

)
∈ GL2(F), for all σ ∈ GQ,

where α is an appropriate function GQ → F.
Recall that the character χ is given by

χ : GQ → ∆ → F∗p,

where ∆ = G(Q(µp)/Q) is cyclic of order p−1. Note that kerχ = G(Q/Q(µp)),

so kerχ corresponds by Galois theory to the field Q(µp). Let Q(µ⊗(1−k)
p ) be

the field which corresponds to kerχ1−k ⊂ GQ. So, Q(µ⊗(1−k)
p ) is the subfield

of Q(µp) with

G(Q(µp)/Q(µ⊗(1−k)
p )) = {σ ∈ ∆ | σ1−k = 1} = {σ ∈ ∆ | σgcd(k−1,p−1) = 1},
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which is the unique subgroup of ∆ of order gcd(k−1, p−1), hence Q(µ⊗(1−k)
p )

is the unique subfield of Q(µp) whose degree over Q is (p−1)/ gcd(k−1, p−1).

Corollary 1. Suppose 2 ≤ k ≤ p−3 is even and p|Bk. There exists a Galois

extension E ′/Q containing Q(µ⊗(1−k)
p ), such that

i) E ′/Q(µ⊗(1−k)
p ) is everywhere unramified.

ii) The Galois group H ′ = G(E ′/Q(µ⊗(1−k)
p )) is abelian, nontrivial, and

of type (p, ..., p).
iii) For σ ∈ G′ = G(E ′/Q) and τ ∈ H ′, we have στσ−1 = χ1−k(σ)τ.

Proof. The kernel ker ρ is a closed normal subgroup ofGQ, hence its fixed field

E ′ is a finite Galois extension ofQ.Also, ker ρ ⊂ kerχ1−k, soQ(µ⊗(1−k)
p ) ⊂ E ′.

By definition, G(E ′/Q) ' im ρ, and under this identification, the natural
restriction map GQ → G(E ′/Q) becomes ρ : GQ → im ρ.

If B is any finite prime of E ′, and B̃ ⊂ Z is a maximal ideal with
B̃∩E ′ = B, then the decomposition group DB ⊂ G(E ′/Q) forB in G(E ′/Q)
is the image of the decomposition group DB̃ under the natural restriction
GQ → G(E ′/Q). Thus, DB = ρ(DB̃). A similar statement holds for inertia
groups.

We are now ready to verify the three required properties. To verify (ii),
note that by definition,

H ′ =

{(
1 α(σ)
0 1

)
| σ ∈ GQ, χ

1−k(σ) = 1

}
⊂ G′ ⊂ GL(2,F).

Clearly, H ′ is abelian and killed by p. It is nontrivial because by Theorem 1,
(ii), the order of im ρ and hence the degree [E ′/Q] is divisible by p: indeed,
if p - |im(ρ)|, then ρ can be viewed as a representation of the finite group
GQ/ ker ρ, whose order is prime to p, hence ordinary representation theory
applies (e.g., [4], 10.8) and ρ would be semisimple. On the other hand, the

degree [Q(µ⊗(1−k)
p ) : Q] divides p− 1 and is therefore prime to p.

Next, to verify (i), if l 6= p and λ is a prime of E ′ over l, we have

Iλ = ρ(Iλ̃) = {1},

since ρ is unramified outside p, namely Iλ̃ ⊂ ker ρ (here λ̃ is a maximal ideal
of Z lying over λ). Thus, E ′/Q is unramified outside p.

Let p be the unique prime of Q(µ⊗(1−k)
p ) over p (we know that Q(µp)/Q

and hence Q(µ⊗(1−k)
p )/Q is totally ramified at p). Let B be a prime of E ′
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over p, and let D′
B|p ⊂ G(E ′/Q(µ⊗(1−k)

p )) be the decomposition group for B

over p. If DB ⊂ G(E ′/Q) is the decomposition group for B|p, and DB̃ ⊂ GQ
is the absolute decomposition group of a maximal ideal of Z over B, we have
that

D′
B|p = DB ∩H ′ = ρ(DB̃) ∩H ′ = {1}

because ρ(DB̃) has order prime to p by property (iii) in Theorem 1, while H ′

is a p−group. So, in fact, p splits completely in E ′.

Finally, for any

(
1 x
0 1

)
∈ H ′ and

(
1 α(σ)
0 χk−1(σ)

)
∈ G(E ′/Q) (for some

σ ∈ GQ), we compute directly
(
1 α(σ)
0 χk−1(σ)

)(
1 x
0 1

)(
1 α(σ)
0 χk−1(σ)

)−1

=

(
1 χ1−k(σ)x
0 1

)

which proves the conjugation formula (iii).

Now, we can replace Q(µ⊗(1−k)
p ) by Q(µp) above to obtain abelian unram-

ified p−extensions of Q(µp).

Theorem 3. Suppose 2 ≤ k ≤ p− 3 is even and p|Bk. There exists a Galois
extension E/Q containing Q(µp), such that

i) E/Q(µp) is everywhere unramified.
ii) The Galois group H = G(E/Q(µp)) is abelian, nontrivial, and of type

(p, ..., p).
iii) For σ ∈ G = G(E/Q) and τ ∈ H, we have στσ−1 = χ1−k(σ)τ.

Proof. Let E be the composite of Q(µp) and the field E ′ from the last Corol-
lary. It is then a Galois extension of Q, and E/Q(µp) is unramified. Since

E ′/Q(µ⊗(1−k)
p ) is unramified at the prime p of Q(µ⊗(1−k)

p ) lying over p, and

Q(µp)/Q(µ⊗(1−k)
p ) is totally ramified over p, it follows that

E ′ ∩Q(µp) = Q(µ⊗(1−k)
p ),

hence restriction induces an isomorphism

H = G(E/Q(µp)) ' H ′.

This proves automatically (ii) and for (iii), note that H is normal in G and
if σ ∈ G, τ ∈ H, then

(στσ−1)|E′ = σ|E′τ |E′σ−1|E′ = χ(σ)1−kτ |E′ = (χ(σ)1−kτ)|E′ ,

so the isomorphism H ' H ′ gives στσ−1 = χ(σ)1−kτ, as stated.
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5.2 Ribet’s converse to Herbrand

As a second consequence of the Main Theorem 1, we present Ribet’s proof of
the converse to Herbrand’s theorem. Assuming that p|Bk, class field theory
allows one to identify a certain isotypic component of a quotient of the class
group of Q(µp) with a corresponding isotypic component of the Galois group
G(Ẽ/Q(µp)), where Ẽ is the largest abelian unramified extension of Q(µp)
of type (p, ..., p). We know how to construct a nontrivial subfield of Ẽ with
certain properties from the previous section, which easily yields the desired
nontrivial isotypic component.

Let A be the class group of the cyclotomic field Q(µp), and consider the
Fp−vector space C = A/Ap. The Galois group ∆ = G(Q(µp)/Q) acts on C,
and we regard C as an Fp[∆]−module. Recall that the character

χ : ∆ → F∗p,

now viewed as a character on ∆, generates the character group of ∆.
Since p - |∆|, the theory of ordinary representations implies that we have

a decomposition

C =
⊕

i (mod p−1)

C(χi),

where C(χi) is the χi−isotypic component of C as an Fp[∆] module, i.e.,

C(χi) =
{
c ∈ C | σc = χi(σ)c, all σ ∈ ∆

}
.

Theorem 4. Let k be an even integer, 2 ≤ k ≤ p − 3, and suppose p|Bk.
Then C(χ1−k) 6= {0}.

Proof. We need the following result from class field theory: there exists a
maximal abelian unramified extension L of Q(µp), called the Hilbert class
field of Q(µp). If IQ(µp) is the group of fractional ideals of Q(µp), recall that
the map

IQ(µp) → G(L/Q(µp)), p 7→ FrobL/Q(µp)(p)

induces an isomorphism

Art : A ' G(L/Q(µp)).

Therefore, by Galois theory, abelian unramified extensions of Q(µp) cor-
respond to subgroups of A, and since Ap is the smallest subgroup of A such
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that A/Ap is of type (p, ..., p), we have that there exists a maximal abelian
unramified extension of type (p, ..., p) of Q(µp), which we denote by Ẽ. Thus,
now by Galois theory, the Artin map induces an isomorphism

Art : A/Ap ' H̃ = G(Ẽ/Q(µp)). (5.1)

We also recall from class field theory that L/Q is Galois. It follows that
Ẽ/Q is Galois as well because for any σ ∈ G(L/Q), we have σ(Q(µp)) =
Q(µp) and σ(Ẽ) is therefore an abelian unramified extension of Q(µp) of
type (p, ..., p), hence σ(Ẽ) ⊂ Ẽ as Ẽ is the maximal such extension of Q(µp)
by definition.

Therefore, H̃ is a normal subgroup of G̃ = G(Ẽ/Q), and we note that
∆ acts on H̃ by conjugation. Namely, for σ ∈ ∆ and τ ∈ H̃, consider a
lift σ ∈ G(Ẽ/Q) of σ, and define σ.τ = στσ−1 ∈ H̃. This is well–defined
(independent of choice of σ) because H̃ is abelian. Since H̃ is an abelian
group of type (p, ..., p), it now becomes an Fp[∆]−module.

Note that the Artin map (5.1) is now an isomorphism of Fp[∆]−modules.
Indeed, it suffices to recall that for a prime ideal p in Q(µp) and σ ∈ G(Ẽ/Q),
we have FrobẼ/Q(µp)

(σ(p)) = σFrobẼ/Q(µp)
(p)σ−1.

Therefore, to prove that C(χ1−k) 6= {0}, it is equivalent to prove that
H̃(χ1−k) 6= {1}. In other words, the statement of the Theorem is equivalent
to the following one: there exists τ̃ ∈ H̃, τ̃ 6= 1, such that for all σ ∈ G̃
(equivalently, for all σ ∈ ∆), we have στ̃σ−1 = χ1−k(σ)τ̃ .

Let E be the abelian unramified p−extension of Q(µp) from Theorem 3,
so E ⊂ Ẽ by the definition of Ẽ. Also, E/Q is Galois andH = G(E/Q(µp)) is
abelian, hence ∆ acts on H by conjugation as before, and H can be regarded
as an Fp[∆]−module. Note that the natural restriction

π : H̃ → H

is a surjective map of Fp[∆]−modules. Indeed, if τ ∈ H̃ and σ ∈ ∆, choose
a lift σ ∈ G(Ẽ/Q); then

(σ.τ)|E = (στσ−1)|E = σ|Eτ |Eσ−1|E = σ.(τ |E).

Therefore, again using that p - |∆|, we know from ordinary representa-
tion theory that H̃ is a semisimple Fp[∆]−module, and hence ker π has a
complement in H̃; therefore, there exists a lifting

i : H ↪→ H̃,
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which is an Fp[∆]−module map (and for x ∈ H, π(i(x)) = x).
Choose τ ∈ H, τ 6= 1, and set τ̃ = i(τ) ∈ H̃, τ̃ 6= 1. Let σ ∈ G(Ẽ/Q).

Then στ̃σ−1 ∈ H̃, and

(στ̃σ−1)|E = σ|Eτσ−1|E = χ1−k(σ)τ = (χ1−k(σ)τ̃)|E.

Since i is a map of ∆−modules, we have στ̃σ−1 = σi(τ)σ−1 = i(στσ−1). The
restrictions to E of two elements in im i are equal, and hence we must have

στ̃σ−1 = χ1−k(σ)τ̃ ,

as desired.
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