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Differential Geometry in Rn

1 Curves

Parametrized curves

In the following, the symbol I will always denote an interval, that is, a connected
subset of R. A continuous map c : I → X into a topological space X is called a
(parametrized) curve in X . A curve defined on [0,1] is also called a path.

Now let X = (X, d) be a metric space. The length L(c) ∈ [0,∞] of the curve
c : I → X is defined as

L(c) := sup
k∑
i=1

d(c(ti−1), c(ti)),

where the supremum is taken over all finite, non-decreasing sequences t0 ≤ t1 ≤
. . . ≤ tk in I. The curve c is rectifiable if L(c) < ∞, and c has constant speed or is
parametrized proportionally to arc length if there exists a constant λ ≥ 0, the speed
of c, such that for every subinterval [a, b] ⊂ I,

L(c |[a,b]) = λ(b − a);

if λ = 1, then c has unit speed or is parametrized by arc length.
The curve c : I → X is a reparametrization of another curve c̃ : Ĩ → X if there

exists a continuous, surjective, non-decreasing or non-increasing map ϕ : I → Ĩ
(thus a < b implies ϕ(a) ≤ ϕ(b) or ϕ(a) ≥ ϕ(b), respectively) such that c = c̃ ◦ ϕ.
Then clearly L(c) = L(c̃). The following lemma shows that every curve of locally
finite length is a reparametrization of a unit speed curve.

1.1 Lemma (reparametrization) Suppose that c : I → (X, d) is a curve with
L(c |[a,b]) < ∞ for every subinterval [a, b] ⊂ I. Pick s ∈ I, and define ϕ : I → R

such that ϕ(t) = L(c |[s,t]) for t ≥ s and ϕ(t) = −L(c |[t ,s]) for t < s. Then ϕ

is continuous and non-decreasing, and there is a well-defined unit speed curve
c̃ : ϕ(I) → X such that c̃(ϕ(t)) = c(t) for all t ∈ I.

Proof : Whenever a, b ∈ I and a < b, then

d(c(a), c(b)) ≤ L(c |[a,b]) = ϕ(b) − ϕ(a). (∗)
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Thus ϕ is non-decreasing. Moreover, given such a, b and ε > 0, there exists a
sequence a = t0 < t1 < . . . < tk = b such that

L(c |[a,b]) − ε ≤
k∑
i=1

d(c(ti−1), c(ti)) ≤ d(c(a), c(r)) + L(c |[r ,b])

for all r ∈ (a, t1], and there is a δ > 0 such that d(c(a), c(r)) < ε for all r ∈ (a,a+δ);
thus L(c |[a,r]) = L(c |[a,b]) − L(c |[r ,b]) < 2ε for r > a close enough to a. It follows
that ϕ is right-continuous, and left-continuity is shown analogously.

By (∗) there is a well-defined 1-Lipschitz curve c̃ : ϕ(I) → X such that c̃(ϕ(t)) =
c(t) for all t ∈ I. Then L(c̃ |[ϕ(a),ϕ(b)]) = L(c |[a,b]) = ϕ(b) − ϕ(a) for all [a, b] ⊂ I,
hence c̃ is parametrized by arc length. �

We now turn to the target space X = Rn, endowed with the canonical inner
product

〈x, y〉 =
〈
(x1, . . . , xn), (y1, . . . , yn)

〉
:=

n∑
i=1

xiyi

and the Euclidean metric

d(x, y) := |x − y | :=
√
〈x − y, x − y〉.

In the followingwewill tacitly assume that the interior of the interval I is non-empty.
For q ∈ {0} ∪ {1,2, . . . } ∪ {∞} we write as usual c ∈ Cq(I,Rn) if c is continuous
or q times continuously differentiable or infinitely differentiable, respectively. In
the case that q ≥ 1 and I is not open, this means that c admits an extension
c̄ ∈ Cq(J,Rn) to an open interval J ⊃ I.

Suppose now that c ∈ Cq(I,Rn) for some q ≥ 1. Then

L(c |[a,b]) =
∫ b

a

|c′(t)| dt < ∞

for every subinterval [a, b] ⊂ I (a not easy exercise), and thus the function ϕ from
Lemma 1.1 satisfies ϕ(t) =

∫ t

s
|c′(r)| dr for all t ∈ I. The curve c is called regular

if c′(t) , 0 for all t ∈ I; then ϕ′ = |c′ | > 0 on I, and both ϕ : I → ϕ(I) and the
inverse ϕ−1 : ϕ(I) → I are also of class Cq, that is, ϕ is a Cq diffeomorphism. Note
also that c ∈ C1(I,Rn) has constant speed λ ≥ 0 if and only if |c′(t)| = λ for all
t ∈ I.

Local theory of curves

The following notions go back to Jean Frédéric Frenet (1816–1900).

1.2 Definition (Frenet curve) The curve c ∈ Cn(I,Rn) is called a Frenet curve
if for all t ∈ I the vectors c′(t), c′′(t), . . . , c(n−1)(t) are linearly independent. The
corresponding Frenet frame (e1, . . . , en), ei : I → Rn, is then characterized by the
following conditions:
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(1) (e1(t), . . . , en(t)) is a positively oriented orthonormal basis of Rn for t ∈ I;

(2) span(e1(t), . . . , ei(t)) = span(c′(t), . . . , c(i)(t)) and 〈ei(t), c(i)(t)〉 > 0 for i =
1, . . . ,n − 1 and t ∈ I.

Condition (2) refers to the linear span. The vectors e1(t), . . . , en−1(t) are ob-
tained from c′(t), . . . , c(n−1)(t) by means of the Gram–Schmidt process, and en(t) is
then determined by condition (1). Note that ei ∈ Cn−i(I,Rn) for i = 1, . . . ,n− 1, in
particular e1, . . . , en ∈ C1(I,Rn).

1.3 Definition (Frenet curvatures) Let c ∈ Cn(I,Rn) be a Frenet curve with
Frenet frame (e1, . . . , en). For i = 1, . . . ,n − 1, the function κi : I → R,

κi(t) :=
1
|c′(t)|

〈e ′i (t), ei+1(t)〉,

is called the i-th Frenet curvature of c.

Note that κi ∈ Cn−i−1(I); in particular κ1, . . . , κn−1 are continuous.
Suppose now that c = c̃ ◦ ϕ for some curve c̃ ∈ Cn(Ĩ,Rn) and a Cn diffeomor-

phism ϕ : I → Ĩ with ϕ′ > 0. For i = 1, . . . ,n − 1, the i-th derivative c(i)(t) is a
linear combination

∑i
k=1 ak(t) c̃ (k)(ϕ(t)) with ai(t) = (ϕ′(t))i > 0, thus

span
(
c′(t), . . . , c(i)(t)

)
= span

(
(c̃ ′ ◦ ϕ)(t), . . . , (c̃ (i) ◦ ϕ)(t)

)
,

c is Frenet if and only if c̃ is Frenet, and the corresponding Frenet vector fields then
satisfy the relation ei = ẽi ◦ ϕ. Likewise, for the Frenet curvatures,

κi =
1
|c′ |
〈e ′i , ei+1〉 =

1
|c̃ ′ ◦ ϕ| |ϕ′ |

〈
(ẽ ′i ◦ ϕ)ϕ

′, ẽi+1 ◦ ϕ
〉
= κ̃i ◦ ϕ.

Thus the curvatures are invariant under sense preserving reparametrization.

1.4 Proposition (Frenet equations) Let c ∈ Cn(I,Rn) be a Frenet curve with
Frenet frame (e1, . . . , en) and Frenet curvatures κ1, . . . , κn−1. Then κ1, . . . , κn−2 > 0,
and

1
|c′ |

e ′i =


κ1e2 if i = 1,
−κi−1ei−1 + κiei+1 if 2 ≤ i ≤ n − 1,
−κn−1en−1 if i = n.

Proof : Since (e1(t), . . . , en(t)) is orthonormal,

e ′i (t) =
n∑
j=1
〈e ′i (t), ej(t)〉ej(t)
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for i = 1, . . . ,n, and since 〈e ′i , ej〉 + 〈ei, e
′
j 〉 = 〈ei, ej〉

′ = 0, the coefficient matrix
K(t) = (〈e ′i (t), ej(t)〉) is skew-symmetric. For i = 1, . . . ,n − 1,

〈e ′i , ei+1〉 = |c′ |κi .

Now let i ≤ n − 2, and recall condition (2) of Definition 1.2. The vector ei(t)
is a linear combination

∑i
k=1 aik(t)c(k)(t) with aii(t) > 0, so e ′i (t) is of the form∑i

k=1 bik(t)c(k)(t) + aii(t)c(i+1)(t), and it follows that

〈e ′i , ei+2〉 = . . . = 〈e ′i , en〉 = 0

and 〈e ′i , ei+1〉 = aii 〈c(i+1), ei+1〉 > 0. This gives the result. �

In the case n = 2, a curve c ∈ C2(I,R2) is Frenet if and only if c is regular.
Then the sole Frenet curvature

κor := κ1 =
1
|c′ |
〈e ′1, e2〉

is called the oriented curvature (or signed curvature) of c. Note that e1 = c′/|c′ |
and 〈c′, e2〉 = 0, thus

κor =
〈c′′, e2〉

|c′ |2
=

det(e1, c′′)
|c′ |2

=
det(c′, c′′)
|c′ |3

.

The Frenet equations may be written in matrix form as

1
|c′ |

(
e ′1
e ′2

)
=

(
0 κor
−κor 0

) (
e1
e2

)
.

The osculating circle (Schmiegkreis) of c at a point t with κor(t) , 0 is the circle
with center c(t)+(1/κor(t))e2(t) and radius 1/|κor(t)|, which approximates the curve
at t up to second order (exercise).

In the case n = 3, c ∈ C3(I,R3) is a Frenet curve if and only if c′ and c′′ are
everywhere linearly independent. The vectors e2 and e3 = e1 × e2 (vector product)
are called the normal and the binormal of c, respectively. The two Frenet curvatures

κ := κ1 =
1
|c′ |
〈e ′1, e2〉 > 0, τ := κ2 =

1
|c′ |
〈e ′2, e3〉

are called curvature and torsion of c; the latter measures the rotation of the osculat-
ing plane (Schmiegebene) span{c′, c′′} = span{e1, e2} about e1. Both κ and τ are
also invariant under sense reversing reparametrization, but τ changes sign under
orientation reversing isometries of R3. The Frenet equations for curves in R3 read

1
|c′ |

©­­«
e ′1
e ′2
e ′3

ª®®¬ =
©­­«

0 κ 0
−κ 0 τ

0 −τ 0

ª®®¬
©­­«

e1
e2
e3

ª®®¬ .
If c is parametrized by arc length, then 2〈c′, c′′〉 = 〈c′, c′〉′ = 0 and hence e2 =

c′′/|c′′ |, thus κ = 〈e ′1, e2〉 = |c′′ |.
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1.5 Theorem (fundamental theorem of local curve theory) If n − 1 functions
κ1, . . . , κn−1 ∈ C∞(I,R) with κ1, . . . , κn−2 > 0 are given, and if s0 ∈ I, x0 ∈ Rn,
and (b1, . . . , bn) is a positively oriented orthonormal basis of Rn, then there exists
a unique Frenet curve c ∈ C∞(I,Rn) of constant speed one such that

(1) c(s0) = x0;

(2) (b1, . . . , bn) is the Frenet frame of c at s0;

(3) κ1, . . . , κn−1 are the Frenet curvatures of c.

The differentiability assumptions may be weakened.

Proof : �

We now turn to some global results.

The rotation index of a plane curve

In the following it is assumed that a < b. A curve c : [a, b] → X in a topological
space X is called closed or a loop if c(a) = c(b), and c is said to be simple if c |[a,b)
is injective in addition. Now let again X = Rn. For q ∈ {1,2, . . . } ∪ {∞}, a closed
curve c ∈ Cq([a, b],Rn) will be called Cq-closed if c admits a (b − a)-periodic
extension c̄ ∈ Cq(R,Rn), that is, c̄(t + b − a) = c̄(t) for all t ∈ R.

Suppose now that c : [a, b] → R2 is a C1-closed and regular plane curve.
Let S1 ⊂ R2 denote the unit circle. The normalized velocity vector e(t) :=
c′(t)/|c′(t)| ∈ S1 of c may be represented as

e(t) = (cos θ(t), sin θ(t))

for a continuous polar angle function θ : [a, b] → R, which is uniquely determined
up to addition of an integral multiple of 2π. More precisely, θ is a lifting of
e : [a, b] → S1 with respect to the canonical covering

σ : R→ S1, σ(s) := (cos(s), sin(s));

that is, σ ◦ θ = e. To show that such a function θ exists, one may use the uniform
continuity of e on the compact interval [a, b] to find a subdivision a = a0 < a1 <

. . . < ak = b such that none of the subintervals [ai−1,ai] is mapped onto S1. Then,
for every choice of θ(a)with σ(θ(a)) = e(a), there are successive unique extensions
of θ to the intervals [a,ai] for i = 1, . . . , k.

Since e(a) = e(b), there is a unique integer %c, independent of the choice of θ,
such that

θ(b) − θ(a) = 2π%c .

This number %c is called the rotation index (Umlaufzahl) of c. If c is a
reparametrization of another C1-closed regular curve c̃, then %c = %c̃.
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1.6 Theorem (Umlaufsatz) The rotation index of a simple C1-closed, regular
curve c : [a, b] → R2 equals 1 or −1.

This probably goes back to Riemann. The following elegant argument is due to
H. Hopf [Ho1935].

Proof : We assume that c is parametrized by arc length and that [a, b] = [0, L].
Furthermore, we suppose that the image of c lies in the upper half-plane R× [0,∞)
and that c(0) = (0,0) and c′(0) = (1,0). We will show that %c = 1 under these
assumptions.

We consider the triangular domain D := {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ L} and
assign to every point in D a unit vector as follows:

e(s, t) :=


c′(s) if s = t,
−c′(0) = (−1,0) if (s, t) = (0, L),
c(t)−c(s)
|c(t)−c(s) | otherwise.

Note that this definition is possible since c is simple. The resulting map e : D→ S1

is easily seen to be continuous.
It then follows from the homotopy lifting property in topology that there is a

continuous function θ : D → R such that σ ◦ θ = e, where σ : R → S1 is the
canonical covering as above. For an alternative direct argument, note that by the
uniform continuity of e on the compact set D there is an integer k ≥ 1 such that for
δ := L/(k + 1), none of the subsets

Dj ,i := D ∩ ([iδ, (i + 1)δ] × [ jδ, ( j + 1)δ]), j = 0, . . . , k, i = 0, . . . , j,

is mapped onto S1. Clearly θ may be defined on D0,0, and then there exist successive
unique extensions to D1,0,D1,1, D2,0,D2,1,D2,2, . . . (lexicographic order).

Now, since e(0, t) lies in the upper half-plane for all t ∈ [0, L], and e(0,0) = (1,0)
and e(0, L) = (−1,0), it follows that θ(0, L) = θ(0,0)+ π. Similarly, e(s, L) is in the
lower half-plane for all s ∈ [0, L], and e(L, L) is again equal to (1,0), hence

θ(L, L) = θ(0, L) + π = θ(0,0) + 2π.

Since s 7→ θ(s, s) is an angle function for s 7→ e(s, s) = c′(s), this shows that
%c = 1. �

Total curvature of closed curves

Now let c : [0, L] → R2 (L > 0) be a C2 curve of constant speed one with Frenet
frame (e1, e2). If θ : [0, L] → R is continuous and e1(s) = (cos θ(s), sin θ(s)), then
θ is continuously differentiable, and

e ′1(s) = θ
′(s)(− sin θ(s),cos θ(s)) = θ ′(s)e2(s).
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On the other hand, e ′1(s) = κor(s)e2(s) by the first Frenet equation, thus θ ′ = κor.
The total curvature of c therefore satisfies∫ L

0
κor(s) ds =

∫ L

0
θ ′(s) ds = θ(L) − θ(0).

If c is C2-closed and simple, then Theorem 1.6 asserts that |θ(L) − θ(0)| = 2π, thus∫ L

0
|κor(s)| ds ≥

����∫ L

0
κor(s) ds

���� = 2π.

Equality holds if and only if κor does not change sign, that is, κor ≥ 0 or κor ≤ 0.
This in turn holds if and only if c is convex, that is, the trace c([0, L]) is the boundary
of a convex set C ⊂ R2 (exercise).

We now turn to curves in Rn for n ≥ 3. If c ∈ Cn(I,Rn) is a Frenet curve
parametrized by arc length, then κ1 = |c′′ |. It is thus consistent to define the
curvature of an arbitrary unit speed curve c ∈ C2(I,Rn) by

κ := |c′′ |.

1.7 Theorem (Fenchel–Borsuk) Suppose that c : [0, L] → Rn is a C2-closed unit
speed curve whose trace is not contained in a 2-dimensional plane. Then∫ L

0
κ(s) ds > 2π.

This is due to Fenchel [Fe1929] for n = 3 and to Borsuk [Bo1947] in the
general case. Fáry [Fa1949] and Milnor [Mi1950] showed independently that the
total curvature of a knotted curve in R3 is even > 4π, thus answering a question
raised by Borsuk.

Proof : It suffices to show the conclusion for n = 3,4, . . . under the assumption that
the trace of c is not contained in an (n − 1)-dimensional plane.

The derivative of c, viewed as a (C1) curve c′ : [0, L] → Sn−1 into the unit
sphere, is called the tangent indicatrix of c. Clearly∫ L

0
κ(s) ds =

∫ L

0
|c′′(s)| ds = L(c′).

For every fixed unit vector e ∈ Sn−1,∫ L

0
〈c′(s), e〉 ds = 〈c(L), e〉 − 〈c(0), e〉 = 0,

and 〈c′, e〉 cannot be constantly zero, for then im(c) would be contained in a
hyperplane orthogonal to e; thus 〈c′, e〉 must change sign. This shows that no
closed hemisphere of Sn−1 contains the entire trace of the tangent indicatrix. It now
follows from the next proposition that L(c′) > 2π. �
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1.8 Proposition If c : [a, b] → Sn−1 ⊂ Rn is a closed curve whose trace is not
contained in a closed hemisphere, then L(c) > 2π.

Note that here c is merely continuous.

Proof : �
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2 Surfaces

Submanifolds and immersions

We now consider m-dimensional surfaces in Rn.

2.1 Definition (submanifold) A subset M ⊂ Rn is a (smooth) m-dimensional
submanifold of Rn if for every point p ∈ M there exist an open neighborhood
V ⊂ Rn of p and a C∞ diffeomorphism ϕ : V → ϕ(V) onto an open set ϕ(V) ⊂ Rn

such that ϕ(M ∩ V) = (Rm × {0}) ∩ ϕ(V).

The number k := n − m is called the codimension of M in Rn, and ϕ is a
submanifold chart (Schnittkarte) of M . Submanifolds of class Cq, 1 ≤ q ≤ ∞, are
defined analogously.

Now let W ⊂ Rn be an open set, and let F : W → Rk be a differentiable map.
A point p ∈ W is called a regular point of F if the differential dFp is surjective,
otherwise p is called a singular or critical point of F. A point x ∈ Rk is a regular
value of F if all points p ∈ F−1{x} are regular; otherwise, if F−1{x} contains a
singular point, x is a singular or critical value of F. Note that, according to this
definition, every x ∈ Rk \ F(W) is a regular value of F.

2.2 Theorem (regular value theorem) If W ⊂ Rn is open and F ∈ C∞(W,Rk),
and if x ∈ F(W) is a regular value of F, then M := F−1{x} is a submanifold of Rn

of dimension m := n − k ≥ 0 (thus the codimension of M equals k).

Proof : We assume that x = 0. Let p ∈ M = F−1{0}. Since dFp is surjective, it
follows from Theorem A.2 (implicit function theorem, surjective form) that there
exist open neighborhoods U ⊂ Rn−k × Rk of (0,0) and V ⊂ W of p and a C∞

diffeomorphism ψ : U → V such that ψ(0,0) = p and

(F ◦ ψ)(x, y) = y for all (x, y) ∈ U.

Then ϕ := ψ−1 : V → U is a submanifold chart of M around p: ϕ(M∩V) equals the
set of all (x, y) ∈ U such that ψ(x, y) ∈ M = F−1{0} and thus y = (F ◦ψ)(x, y) = 0.

�

The following alternative notion of surface extends the concept of a regular
(parametrized) curve to higher dimensions.

2.3 Definition (immersion) A map f ∈ C∞(U,Rn) from an open set U ⊂ Rm

into Rn is called an immersion if for all x ∈ U the differential dfx : Rm → Rn is
injective.

2.4 Theorem (immersion theorem) Let f ∈ C∞(U,Rn) be an immersion of the
open set U ⊂ Rm. Then, for every point x ∈ U, there exists an open neighborhood
Ux ⊂ U of x such that f (Ux) is an m-dimensional submanifold of Rn.
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Proof : We suppose that x = 0 ∈ U and f (0) = p. Since df0 is injective, it follows
from Theorem A.2 (implicit function theorem, injective form) that there exist open
neighborhoodsV ⊂ Rn of p andW ⊂ U ×Rn−m of (0,0) and a C∞ diffeomorphism
ϕ : V → W such that ϕ(p) = (0,0) and

(ϕ ◦ f )(x) = (x,0) whenever (x,0) ∈ W .

Put U0 := {x ∈ U : (x,0) ∈ W} and M := f (U0). Then ϕ is a (global) submanifold
chart for M , since ϕ(M ∩ V) = ϕ( f (U0)) = U0 × {0}. �

In general, even if an immersion is injective, its image need not be a submanifold.
For example, the trace of the injective regular curve

c : (0,2π) → R2, c(t) = (sin(t), sin(2t)),

has the shape of the∞ symbol. However, the following holds.

2.5 Theorem (local parametrizations) The set M ⊂ Rn is an m-dimensional sub-
manifold of Rn if and only if for every point p ∈ M there exist open sets U ⊂ Rm

and V ⊂ Rn and an immersion f : U → Rn such that p ∈ f (U) = M ∩ V and
f : U → M ∩ V is a homeomorphism.

Then f is called a local parametrization, and f −1 : M ∩ V → U a chart of M
around p.

Proof : �

2.6 Lemma (parameter transformation) Let M ⊂ Rn be an m-dimensional sub-
manifold, and suppose that fi : Ui → f (Ui) ⊂ M , i = 1,2, are two local
parametrizations with V := f1(U1) ∩ f2(U2) , ∅. Then ϕ := f −1

2 ◦ f1 : f −1
1 (V) →

f −1
2 (V) is a C∞ diffeomorphism.

Proof : �

2.7 Definition (tangent space, normal space) The tangent space T Mp of an m-
dimensional submanifold M ⊂ Rn in the point p ∈ M is defined as T Mp :=
dfx(Rm) ⊂ Rn for some (and hence any) local parametrization f : U → f (U) ⊂ M
with f (x) = p. The orthogonal complement T M⊥p of T Mp in Rn is the normal
space of M in p.

The tangent spaceT Mp is an m-dimensional linear subspace ofRn, whereas the
normal spaceT M⊥p is a linear subspace ofRn of dimension equal to the codimension
k := n − m of M .
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2.8 Definition (differentiable map, differential) Amap F : M → Rl from a sub-
manifold M ⊂ Rn into Rl is differentiable at the point p ∈ M if for some (and
hence any) local parametrization f : U → f (U) ⊂ M with f (x) = p the composi-
tion F ◦ f : U → Rl is differentiable at x ∈ U. The differential of F : M → Rl at p
is then defined as the unique linear map dFp : T Mp → Rl for which the chain rule

d(F ◦ f )x = dFp ◦ dfx

holds. For 1 ≤ q ≤ ∞, mappings F : M → Rl of class Cq, F ∈ Cq(M,Rl), are
defined accordingly.

In order to determine dFp(v) it is often convenient to represent the vector
v ∈ T Mp as the velocity c′(0) of a differentiable curve c : (−ε, ε) → M ⊂ Rl with
c(0) = p; then

dFp(c′(0)) = (F ◦ c) ′(0).

If F : M → Rl takes values in a submanifold Q of Rl, then it follows that
dFp(T Mp) ⊂ TQF(p).

Orientability and the separation theorem

2.9 Definition (orientability) A submanifold M ⊂ Rn is orientable if there exists
a system { fα : Uα → fα(Uα) ⊂ M}α∈A of local parametrizations of M such that⋃
α∈A fα(Uα) = M and every parameter transformation f −1

β ◦ fα with α, β ∈ A and
fα(Uα) ∩ fβ(Uβ) , ∅ satisfies det(d( f −1

β ◦ fα)x) > 0 everywhere on its domain. A
maximal such system is called an orientation of M , and every local parametrization
belonging to it is then said to positively oriented.

2.10 Proposition (orientable hypersurfaces) A submanifold M ⊂ Rm+1 of codi-
mension one is orientable if and only if there exists a continuous unit normal vector
field on M , that is, a continuous map N : M → Sm with N(p) ∈ T M⊥p for all p ∈ M .

Such a map N is called a Gauss map of M .

Proof : �

2.11 Theorem (separation theorem) Suppose that ∅ , M ⊂ Rm+1 is a compact
and connected m-dimensional submanifold. Then Rm+1 \ M has precisely two
connected components, a bounded and an unbounded one, M is the boundary of
each of them, and M is orientable.

Proof : Since M is a submanifold of codimension 1, it follows that for every point
p ∈ M there exist an open set V ⊂ Rm+1 and a smooth curve c : [−1,1] → V with
c(0) = p and c′(0) < T Mp such that V \ M has exactly two connected components

11



containing c([−1,0)) and c((0,1]), respectively (use a submanifold chart). We claim
that c(−1) and c(1) lie in different connected components ofRm+1 \M . Otherwise,
therewould exist aC∞-closed curve c̄ : [−1,2] → Rm+1 with c̄(0) = p, c̄ ′(0) < T Mp

and c̄(t) < M for t , 0; this would, however, contradict the homotopy invariance
of the intersection number modulo 2, which we will prove later in Theorem 9.12.
Hence, every point p ∈ M is a boundary point of two distinct connected components
of Rm+1 \ M .

Now let p ∈ M be fixed, an let q ∈ M be any other point. Then p ∈ ∂A∩∂B and
q ∈ ∂Aq ∩ ∂Bq for some connected components A , B and Aq , Bq of Rm+1 \M .
Since M is connected and locally path connected, M is path connected, thus there
exists a curve cq : [0,1] → M from p to q. Let Nq : [0,1] → Rm+1 be a continuous
unit vector field along cq normal to M . For a sufficiently small ε > 0, the traces of
the curves c±q : t 7→ cq(t) ± εNq(t) are in Rm+1 \ M . It follows that either Aq = A
and Bq = B, or Aq = B and Bq = A. Since M is bounded, the assertions about
the connected components of Rm+1 \ M are now clear. Furthermore, M admits a
Gauss map (pointing everywhere into A, for example), and thus M is orientable by
Proposition 2.10. �

Theorem 2.11 holdsmore generally for the case that ∅ , M ⊂ Rm+1 is the image
of a compact and connected m-dimensional topological manifold (Definition 8.1)
under a continuous and injective map [Br1911b]. This is the Jordan–Brouwer
separation theorem, which generalizes the Jordan curve theorem. In the latter, M
is a Jordan curve in R2, that is, the image of a simply closed curve c : [0,1] → R2.

12



3 Intrinsic geometry of surfaces

First fundamental form

3.1 Definition (first fundamental form) The first fundamental form g of a sub-
manifold M ⊂ Rn assigns to each point p ∈ M the inner product gp on T Mp

defined by
gp(X,Y ) := 〈X,Y〉

for X,Y ∈ T Mp. (Thus gp is just the restriction of the standard inner product 〈· , ·〉
of Rn to T Mp ×T Mp.) The first fundamental form g of an immersion f : U → Rn

of an open set U ⊂ Rm assigns to each x ∈ U the inner product gx on Rm defined
by

gx(ξ, η) := 〈dfx(ξ), dfx(η)〉

for ξ, η ∈ Rm.

The first fundamental form g is also called the (Riemannian) metric of M
or f , respectively. The matrix (gi j(x)) of gx with respect to the canonical basis
(e1, . . . , em) of Rm is given by

gi j(x) = gx(ei, ej) = 〈dfx(ei), dfx(ej)〉 =
〈
∂ f
∂xi
(x),

∂ f
∂x j
(x)

〉
,

where gi j ∈ C∞(U). We will often write this relation briefly as gi j = 〈 fi, fj〉.
Now let M ⊂ Rn be a submanifold, and suppose that f : U → f (U) ⊂ M is a

local parametrization (in particular, an immersion). The first fundamental forms of
f and M are related as follows: if x ∈ U and f (x) = p, then dfx is an isometry of
the Euclidean vector spaces (Rm,gx) and (T Mp,gp). The set U ⊂ Rm, equipped
with the first fundamental form of f , constitutes a “model” for f (U) ⊂ M , in which
all quantities belonging to the intrinsic geometry of f (U) ⊂ M can be computed.

Examples

1. Norms and angles: for X,Y ∈ T Mp, x := f −1(p), and the corresponding
vectors ξ := (dfx)−1(X) and η := (dfx)−1(Y ) in Rm,

|X | =
√
gp(X,X) =

√
gx(ξ, ξ) =: |ξ |gx ,

cos ∠(X,Y ) =
gp(X,Y )
|X | |Y |

=
gx(ξ, η)

|ξ |gx |η |gx

.

2. Length of a C1 curve c : I → f (U) ⊂ M: if γ := f −1 ◦ c : I → U is the
corresponding curve in U, then c′(t) = dfγ(t)(γ′(t)) and hence

L(c) =
∫
I

|c′(t)| dt =
∫
I

|γ′(t)|gγ(t ) dt.

13



3. The m-dimensional area of a Borel set B ⊂ f (U) ⊂ M is computed as

A(B) :=
∫
f −1(B)

√
det(gi j(x)) dx ∈ [0,∞];

recall that the Gram determinant

det(gi j(x)) = det
(
〈 fi(x), fj(x)〉

)
equals the square of the volume of the parallelepiped spanned by the vectors
fi(x) =

∂ f

∂xi
(x) for i = 1, . . . ,m. The area A(B) is independent of the choice

of f and is also denoted by
∫
B

dA.

In order to compute the m-dimensional area of a compact region K ⊂ M ,
one chooses finitely many local parametrizations fα : Uα → fα(Uα) ⊂ M
and Borel sets Bα ⊂ fα(Uα) such that K =

⋃
α Bα is a partition (that is, a

decomposition into pairwise disjoint sets). The area

A(K) =
∑
α

A(Bα) =
∑
α

∫
f −1
α (Bα)

√
det(gαi j(x)) dx

turns out to be independent of the choices made. Here, gα denotes the first
fundamental form of fα. For a continuous function b : K → R,∫

K

b dA :=
∑
α

∫
f −1
α (Bα)

b ◦ fα(x)
√

det(gαi j(x)) dx

then defines the surface integral of b over K .

3.2 Definition (isometries) Two submanifolds M ⊂ Rn and M̃ ⊂ Rñ with first
fundamental forms g and g̃ are called isometric if there exists a diffeomorphism
F : M → M̃ such that

gp(X,Y ) = g̃F(p)(dFp(X), dFp(Y ))

for all p ∈ M and X,Y ∈ T Mp. For open sets U,Ũ ⊂ Rm, two immersions
f : U → Rn and f̃ : Ũ → Rñ with first fundamental forms g and g̃ are called
isometric if there exists a diffeomorphism ψ : U → Ũ such that

gx(ξ, η) = g̃ψ(x)(dψx(ξ), dψx(η))

for all x ∈ U and ξ, η ∈ Rm.

The above relations are briefly expressed as g = F∗ḡ and g = ψ∗g̃, respectively;
g equals the pull-back of g̃ under the isometry. Note that ψ∗g̃ is just the first
fundamental form of the immersion f̃ ◦ ψ, as

g̃(dψ(ξ), dψ(η)) = 〈d f̃ ◦ dψ(ξ), d f̃ ◦ dψ(η)〉 = 〈d( f̃ ◦ ψ)(ξ), d( f̃ ◦ ψ)(η)〉.

In particular, if f = f̃ ◦ ψ is a reparametrization of f̃ , then f and f̃ are isometric.
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Covariant derivative

Let f : U → Rn be an immersion of the open set U ⊂ Rm. The vectors

fk(x) =
∂ f
∂xk
(x), k = 1, . . . ,m,

form a basis of the tangent space dfx(Rm) of f at x. We now consider second
derivatives

fi j(x) :=
∂2 f

∂x j∂xi
(x)

of f , which need no longer be tangential. The tangential part has a unique repre-
sentation (

fi j(x)
)T
=

m∑
k=1
Γ
k
i j(x) fk(x).

The C∞ functions Γki j = Γ
k
ji : U → R are the Christoffel symbols of f .

3.3 Lemma (Christoffel symbols) Let f ∈ C∞(U,Rn) be an immersion of the
open set U ⊂ Rm. Then

Γ
k
i j =

1
2

m∑
l=1

gkl
(
∂gjl

∂xi
+
∂gil

∂x j
−
∂gi j

∂xl

)
,

where (gkl) denotes the matrix inverse to (gi j).

Proof : Since
∂

∂xi
〈 fj, fl〉 = 〈 fji, fl〉 + 〈 fj, fli〉,

∂

∂x j
〈 fi, fl〉 = 〈 fi j, fl〉 + 〈 fi, fl j〉,

∂

∂xl
〈 fi, fj〉 = 〈 fil, fj〉 + 〈 fi, fjl〉,

it follows that

1
2

(
∂gjl

∂xi
+
∂gil

∂x j
−
∂gi j

∂xl

)
= 〈 fl, fi j〉 =

〈
fl, ( fi j)T

〉
=

m∑
k=1
Γ
k
i jglk .

By solving this equation for Γki j we get the result. �

In the case m = 2 the expression for Γki j has a simpler form, as then always at
least two of the indices i, j, l agree. If we use Gauss’s notation

E := g11, F := g12 = g21, G := g22

and the abbreviations D := EG − F2 and Ei := ∂E
∂xi

, etc., then(
Γ1

11 Γ1
12 Γ1

22
Γ2

11 Γ2
12 Γ2

22

)
=

1
2D

(
G −F
−F E

) (
E1 E2 2F2 − G1

2F1 − E2 G1 G2

)
.
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3.4 Definition (covariant derivative, parallel vector field) Let M ⊂ Rn be an m-
dimensional submanifold. Suppose that c : I → M is a curve and X : I → Rn is
a C1 tangent vector field of M along c, that is, X(t) ∈ T Mc(t) for all t ∈ I. The
covariant derivative D

dt X of X is the vector field along c defined by

D
dt

X(t) := ÛX(t)T ∈ T Mc(t)

for t ∈ I. Then X is said to be parallel along c if, for all t ∈ I, D
dt X(t) = 0, that is,

ÛX(t) ∈ T M⊥
c(t)

.

3.5 Theorem (covariant derivative) Let M be an m-dimensional submanifold of
Rn with first fundamental form g. Suppose that c : I → M is aC1 curve, X,Y : I →
Rn are two C1 tangent vector fields of M along c, and λ : I → R is a C1 function.
Then:

(1)
D
dt
(X + Y ) =

D
dt

X +
D
dt

Y,
D
dt
(λ X) = Ûλ X + λ

D
dt

X;

(2)
d
dt
g(X,Y ) = g

( D
dt

X,Y
)
+ g

(
X,

D
dt

Y
)
;

(3) if c(I) ⊂ f (U) for some local parametrization f : U → f (U) ⊂ M , and if
γ = (γ1, . . . , γm) : I → U and ξ = (ξ1, . . . , ξm) : I → Rm are the curve and
vector field such that c = f ◦ γ and X(t) = dfγ(t)(ξ(t)), then

D
dt

X =
m∑
k=1

(
Ûξk +

m∑
i, j=1

ξi Ûγ j
Γ
k
i j ◦ γ

)
∂ f
∂xk
◦ γ.

Proof : �

Item (3), together with Lemma 3.3, shows that the covariant derivative can be
computed entirely in terms of the first fundamental form and is thus intrinsic. Note
also that if X,Y are parallel along c, then gc(t)(X(t),Y (t)) is constant, as

d
dt
g(X,Y ) = g

( D
dt

X,Y
)
+ g

(
X,

D
dt

Y
)
= 0

by property (2); in particular |X | =
√
g(X,X) is constant.

3.6 Theorem (existence and uniqueness of parallel vector fields) Let M ⊂ Rn

be a submanifold, and let c : I → M be a C1 curve with 0 ∈ I. Then for every
vector X0 ∈ T Mc(0) there is a unique parallel tangent vector field X : I → Rn of M
along c with X(0) = X0.

Proof : �
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Geodesics

3.7 Definition (geodesics) Let M ⊂ Rn be a submanifold. A smooth curve c : I →
M is a geodesic in M if Ûc is parallel along c, that is, D

dt Ûc = 0 on I; equivalently,
Üc(t) ∈ T M⊥

c(t)
for all t ∈ I.

Every geodesic c : I → M has constant speed | Ûc |, because

d
dt
g( Ûc, Ûc) = 2g

( D
dt
Ûc, Ûc

)
= 0.

If f : U → f (U) ⊂ M is a local parametrization and γ = (γ1, . . . , γm) : I → U is a
smooth curve, then c := f ◦ γ : U → M is a geodesic if and only if

Üγk +

m∑
i, j=1
Ûγi Ûγ j

Γ
k
i j ◦ γ = 0

on I for k = 1, . . . ,m. Accordingly, we may also speak of a geodesic γ in U with
respect to the metric g, or of a geodesic c = f ◦ γ relative to a general immersion
f : U → Rn.

3.8 Theorem (existence and uniqueness of geodesics) Let M ⊂ Rn be a sub-
manifold, and let p ∈ M and X ∈ T Mp. Then there exist a unique geodesic
c : I → M with c(0) = p and Ûc(0) = X defined on a maximal open interval I
around 0.

Proof : �

3.9 Theorem (Clairaut’s relation) Let c : I → M be a non-constant geodesic on
a surface of revolution M ⊂ R3. For t ∈ I let r(t) > 0 be the distance of c(t)
to the axis of rotation, and let θ(t) ∈ [0, π] denote the angle between Ûc(t) and the
oriented parallel through c(t) (that is, the circle generated by the rotation). Then
r(t) cos θ(t) is constant.

Proof : �

3.10 Theorem (first variation of arc length) Let M ⊂ Rn be a submanifold, and
let c0 : [a, b] → M be a smooth curve of constant speed | Ûc0 | = λ > 0. If c : (−ε, ε)×
[a, b] → M is a smooth variation of c0, cs(t) := c(s, t), with variation vector field
Vs(t) := V(s, t) := ∂c

∂s (s, t), then

d
ds

���
s=0

L(cs) =
1
λ

(
g
(
V0(t), Ûc0(t)

) ���b
a
−

∫ b

a

g
(
V0(t),

D
dt
Ûc0(t)

)
dt

)
.

Proof : �

17



The variation c of c0 is called proper if cs(a) = c0(a) and cs(b) = c0(b) for
all s ∈ (−ε, ε). It follows from Theorem 3.10 that a non-constant smooth curve
c0 : [a, b] → M is a geodesic if and only if c0 is parametrized proportionally to
arc length and d

ds

��
s=0L(cs) = 0 for every proper variation c of c0. In particular, if

a smooth curve c0 : [a, b] → M of constant speed has minimal length among all
smooth curves from p = c0(a) to q = c0(b), then c0 is a geodesic.
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4 Curvature of hypersurfaces

In this chapter we consider m-dimensional surfaces of codimension 1.

Second fundamental form

If M ⊂ Rm+1 is an m-dimensional orientable submanifold, then a Gauss map N of
M is a continuous map N : M → Sm such that N(p) ∈ T M⊥p for all p ∈ M (recall
Proposition 2.10). If M is connected, then there are precisely two choices for N , and
if M is compact in addition, wemay speak of the inner or outerGaussmap according
to Theorem 2.11. If f : U → Rm+1 is an immersion of an open set U ⊂ Rm, then
a Gauss map ν of f is a continuous map ν : U → Sm with ν(x) ∈ dfx(Rm)⊥ for all
x ∈ U. For m = 2, the standard choice is ν = ( f1 × f2)/| f1 × f2 | (vector product).
Note that since M and f are smooth, so are the Gauss maps.

In the following, we tacitly assume that for M and f as above a Gauss map is
chosen. We now consider the differential

dNp : T Mp → TSm
N (p) = T Mp or dνx : Rm → TSm

ν(x) = dfx(Rm)

for p ∈ M or x ∈ U, respectively.

4.1 Definition (shape operator) For p ∈ M , the linear map

Lp : T Mp → T Mp, Lp := −dNp,

is called the shape operator of M at p. For x ∈ U, the linear map

Lx : Rm → Rm, Lx := −(dfx)−1 ◦ dνx,

is the shape operator of the immersion f at x (here (dfx)−1 : dfx(Rm) → Rm is the
inverse of the differential viewed as a map dfx : Rm → dfx(Rm) onto its image).
In either case, this is also called the Weingarten map.

Note that if f is a local parametrization of M with f (x) = p and ν = N ◦ f ,
then the two shape operators are conjugate: Lx = (dfx)−1 ◦ Lp ◦ dfx .

4.2 Lemma (self-adjoint) For p ∈ M , the shape operator Lp is self-adjoint with
respect to gp, thus

gp(X, Lp(Y )) = gp(Lp(X),Y )

for all X,Y ∈ T Mp. For an immersion f : U → Rn and x ∈ U, the shape operator
Lx is self-adjoint with respect to gx , thus

gx(ξ, Lx(η)) = gx(Lx(ξ), η)

for all ξ, η ∈ Rm.
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Proof : For p ∈ M , choose a local parametrization f : U → f (U) ⊂ M of M with
f (x) = p. Put ν := N ◦ f . Then dνx = dNp ◦ dfx , and the partial derivatives of f
and ν satisfy dNp( fj(x)) = νj(x), thus

gp
(
fi(x), Lp( fj(x))

)
= −〈 fi(x), νj(x)〉.

Furthermore, 〈 fi j, ν〉 + 〈 fi, νj〉 = ∂
∂x j 〈 fi, ν〉 = 0, thus

gp
(
fi(x), Lp( fj(x))

)
= 〈 fi j(x), ν(x)〉

is symmetric in i and j. Since f1(x), . . . , fm(x) is a basis of T Mp, this shows that
Lp is self-adjoint with respect to gp.

Similarly, for an immersion f : U → Rn and x ∈ U,

gx(ei, Lx(ej)) = −〈 fi(x), νj(x)〉 = 〈 fi j(x), ν(x)〉

is symmetric in i and j. �

4.3 Definition (second fundamental form) The second fundamental form h of a
submanifold M ⊂ Rm+1 assigns to every point p ∈ M the symmetric bilinear form
hp on T Mp defined by

hp(X,Y ) := gp(X, Lp(Y )) = −〈X, dNp(Y )〉

for X,Y ∈ T Mp. The second fundamental form h of an immersion f : U → Rm+1

of an open set U ⊂ Rm assigns to every point x ∈ U the symmetric bilinear form
hx on Rm defined by

hx(ξ, η) := gx(ξ, Lx(η)) = −〈dfx(ξ), dνx(η)〉

for ξ, η ∈ Rm.

The matrix (hi j(x)) of hx with respect to the canonical basis (e1, . . . , em) ofRm

is given by
hi j(x) = −〈 fi(x), νj(x)〉 = 〈 fi j(x), ν(x)〉.

We let (hik(x)) denote the matrix of Lx with respect to (e1, . . . , em); by the defini-
tions, (gi j)(h j

k) = (hik) and hence (hik) = (gi j)(hjk), thus

hik =
m∑
j=1

gi jhjk .
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Curvature of hypersurfaces

The following lemma yields a geometric interpretation of the second fundamental
form.

4.4 Lemma (normal curvature) Suppose that M ⊂ Rm+1 is an m-dimensional
submanifold with Gauss map N , and X ∈ T Mp is a unit vector. Then

hp(X,X) = 〈c′′(0),N(p)〉

for every smooth curve c : (−ε, ε) → M with c(0) = p and c′(0) = X .

The curve c can be chosen such that it parametrizes the intersection of M with
the normal plane p + span(X,N(p)) in a neighborhood of p. Then hp(X,X) =
〈c′′(0),N(p)〉 equals the oriented curvature κor(0) of c in this plane with positively
oriented basis (X,N(p)). For this reason, hp(X,X) is called the normal curvature
of M in direction X .

Proof : Note that

hp(X,X) = −〈X, dNp(X)〉 = −〈c′(0), (N ◦ c)′(0)〉,

furthermore 〈c′, (N ◦ c)′〉 + 〈c′′,N ◦ c〉 = 〈c′,N ◦ c〉′ = 0, thus

hp(X,X) = 〈c′′(0), (N ◦ c)(0)〉 = 〈c′′(0),N(p)〉

as claimed. �

Since the shape operator Lp is self-adjoint with respect to gp, it possesses m
real eigenvalues κ1 ≤ . . . ≤ κm, and there exists an orthornormal basis (X1, . . . ,Xm)

of T Mp such that Lp(Xj) = κjXj , thus

hp(Xi,Xj) = gp(Xi, Lp(Xj)) = κjδi j .

In particular, κj is the normal curvature of M in direction Xj .

4.5 Definition (principal curvatures) The m real eigenvalues κ1 ≤ . . . ≤ κm of
Lp are called principal curvatures of M at p. Every eigenvector X of Lp with
|X | = 1 is called a principal curvature direction.

Analogously, for an immersion f : U → Rm+1 and a point x ∈ U, the shape
operator Lx has m real eigenvalues κ1 ≤ . . . ≤ κm, the principal curvatures of f ,
and there exists an orthonormal basis (ξ1, . . . , ξm) of Rm with respect to gx such
that Lx(ξj) = κjξj and hx(ξi, ξj) = κjδi j .

A point x ∈ U is called an umbilical point of f if κ1(x) = . . . = κm(x) =: λ;
equivalently, Lx = λ idRm .
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4.6 Theorem (umbilical points) Let f : U → Rm+1 be an immersion of a con-
nected open set U ⊂ Rm for m ≥ 2. If every point x ∈ U is an umbilical point of
f , then the image f (U) is contained in an m-plane or an m-sphere.

Proof : �

4.7 Definition (Gauss curvature, mean curvature) Let M ⊂ Rm+1 be an m-
dimensional submanifold. For p ∈ M ,

K(p) := det(Lp)

is called the Gauss–Kronecker curvature, in the case m = 2 the Gauss curvature,
of M at p, and

H(p) :=
1
m

trace(Lp)

is the mean curvature curvature of M at p.

For an immersion f : U → Rm+1 and a point x ∈ U, one defines analogously
K(x) := det(Lx) and H(x) := 1

m trace(Lx). Then

K = κ1 · . . . · κm = det(hik) = det((gi j)(hjk)) =
det(hi j)
det(gi j)

,

mH = κ1 + . . . + κm = trace(hik) =
∑
i

hi i =
∑
i, j

gi jhji .

Gauss’s theorema egregium

In the following we write again fi for ∂ f

∂xi
and fi j for ∂2 f

∂x j∂xi
, etc.

4.8 Lemma (derivatives of Gauss frame) For an immersion f : U → Rm+1 of an
open set U ⊂ Rm with Gauss map ν : U → Sm, the partial derivatives of fi and ν
satisfy

(1) (Gauss formula)

fi j =
m∑
k=1
Γ
k
i j fk + hi jν (i, j = 1, . . . ,m),

(2) (equation of Weingarten)

νk = −

m∑
i=1

hik fi = −
m∑

i, j=1
gi jhjk fi (k = 1, . . . ,m).

Proof : �
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These equations correspond to the Frenet equations of curve theory. For exam-
ple, when m = 2, they can be written in matrix form as

∂

∂xk
©­­«

f1
f2
ν

ª®®¬ =
©­­«
Γ1

1k Γ2
1k h1k

Γ1
2k Γ2

2k h2k
−h1

k −h2
k 0

ª®®¬
©­­«

f1
f2
ν

ª®®¬ .
We will now consider second derivatives of the vector fields fk . The identity

fki j = fk ji results in the following equations in the coefficients of the first and
second fundamental forms.

4.9 Theorem (integrability conditions) If f : U → Rm+1 is an immersion of an
open set U ⊂ Rm, then the following equations hold for all i, j, k:

(1) (Gauss equations)

Rs
ki j = hs

ihk j − hs
jhki =

m∑
l=1

gsl
(
hlihk j − hl jhki

)
(s = 1, . . . ,m),

where

Rs
ki j :=

∂

∂xi
Γ
s
k j −

∂

∂x j
Γ
s
ki +

m∑
r=1

(
Γ
r
k jΓ

s
ri − Γ

r
kiΓ

s
r j

)
,

(2) (Codazzi–Mainardi equation)

∂

∂xi
hk j −

∂

∂x j
hki +

m∑
r=1

(
Γ
r
k jhri − Γ

r
kihr j

)
= 0.

For fixed indices i, j, k, the system (1) is equivalent to

Rlki j :=
m∑
s=1

glsRs
ki j = hlihk j − hl jhki = det

(
hli hl j
hki hk j

)
(l = 1, . . . ,m).

Proof : �

The coefficients Rs
ki j or Rlki j are the components of the Riemann curvature

tensor of f (see Differential Geometry II). The Gauss equations for m = 2 readily
imply the following fundamental result.

4.10 Theorem (Gauss’s theorema egregium) Let f : U → R3 be an immersion
of an open set U ⊂ R2. Then the Gauss curvature of f is given by

K =
R1212

det(gi j)
,

in particular K is intrinsic, that is, computable entirely in terms of the first funda-
mental form.
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Proof : By the definiton of K and the Gauss equations as stated after Theorem 4.9,

K =
det(hi j)
det(gi j)

=
R1212

det(gi j)
,

and R1212 is computable entirely in terms of g. �

In his fundamental investigation [Ga1828], Gauss derived the completely ex-
plicit formula

K =
1

4D2
(
E(G 2

1 − G2 A) + F(E1G2 − 2E2G1 + AB) + G(E 2
2 − E1B)

)
−

1
2D

(
E22 − 2F12 + G11

)
.

Here we are using the same notation as after Lemma 3.3, together with the abbre-
viations A := 2F1 − E2 and B := 2F2 − G1.

4.11 Theorem (g and h determine f ) Suppose that U ⊂ Rm is a connected open
set and f , f̃ : U → Rm+1 are two immersions with Gauss maps ν, ν̃ : U → Sm

such that ( f1, . . . , fm, ν) and ( f̃1, . . . , f̃m, ν̃) are positively oriented. If g = g̃ and
h = h̃ onU, then f and f̃ agree up to an orientation preserving Euclidean isometry
B : Rm+1 → Rm+1, that is, f̃ = B ◦ f .

Proof : �

Given symmetric C∞ matrix functions (gi j(·)) and (hi j(·)) on an open set U ⊂
Rm such that (gi j(x)) is positive definite for every x ∈ U, does there exist an
immersion with these fundamental forms? The fundamental theorem of local
surface theory due to O. Bonnet asserts that if (gi j) and (hi j) satisfy the integrability
conditions of Theorem 4.9, then for all x0 ∈ U, p0 ∈ R

m+1, and b1, . . . , bm ∈ Rm+1

with 〈bi, bj〉 = gi j(x0) there exists a connected open neighborhood U ′ of x0 in U
and precisely one immersion f : U ′ → Rm+1 such that f (x0) = p0, fi(x0) = bi
for i = 1, . . . ,m, (gi j) is the first fundamental form of f , and (hi j) is the second
fundamental form of f with respect to the Gauss map ν : U ′ → Sm for which
(b1, . . . , bm, ν(x0)) is positively oriented. (See [Ku] for a sketch of the proof.) Note
that the uniqueness assertion follows from Theorem 4.11.
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5 Special classes of surfaces

Geodesic parallel coordinates

In the following we will denote points in U ⊂ R2 by (u, v) rather than x = (x1, x2),
and partial derivatives of functions on U by a respective subscript u or v.

5.1 Proposition (geodesic parallel coordinates, Fermi coordinates) Let I, J ⊂
R be two open intervals, and let f be an immersion of U := I × J into R3.
Then the following holds.

(1) The first fundamental form of f satisfies g12 = g21 = 0 and g22 = 1 if and
only if the curves v 7→ f (u0, v) ( for fixed u0) are unit speed geodesics that
intersect the curves u 7→ f (u, v0) ( for fixed v0) orthogonally.

(2) If g11 =: E , g12 = g21 = 0 and g22 = 1, then the Gauss curvature of f is
given by

K = −
(
√

E)vv
√

E
=

E 2
v

4E2 −
Evv

2E
.

(3) If, in addition, 0 ∈ J and u 7→ f (u,0) is a unit speed geodesic, then E(u,0) =
1, Eu(u,0) = Ev(u,0) = 0, and Γki j(u,0) = 0 for all i, j, k and u ∈ I.

Coordinates as in (1) and (2) or as in (3) are called geodesic parallel coordinates
or Fermi coordinates, respectively. For example, if v 7→ (r(v), z(v)) is a unit speed
curve in R2 with r > 0, defined on some interval J, then the surface of revolution
f : R × J → R3 defined by

f (u, v) := (r(v) cos(u),r(v) sin(u), z(v))

is an immersion in geodesic parallel coordinates with g11 = r2 and K = − r′′

r .

Proof : �

5.2 Theorem (existence of geodesic parallel coordinates) Suppose that M ⊂ R3

is a 2-dimensional submanifold and

f : {(u,0) ∈ R2 : u ∈ (−ε, ε)} → M

is a regular C∞ curve. Then there exists a δ ∈ (0, ε) such that f can be extended to
a local parametrization f of M on U := (−δ, δ)2 with g12 = g21 = 0 and g22 = 1.

In particular, by choosing the initial curve u 7→ f (u,0) to be a geodesic, we
obtain local Fermi coordinates.

Proof : �
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Surfaces with constant Gauss curvature

For κ ∈ R, we define the functions csκ, snκ : R→ R by

csκ(s) :=


cos(
√
κs) if κ > 0,

1 if κ = 0,
cosh(

√
|κ |s) if κ < 0;

snκ(s) :=


1√
κ

sin(
√
κs) if κ > 0,

s if κ = 0,
1√
|κ |

sinh(
√
|κ |s) if κ < 0.

This is a fundamental system of solutions of the equation f ′′ + κ f = 0 with
csκ(0) = 1, cs ′κ(0) = 0 and snκ(0) = 0, sn ′κ(0) = 1.

5.3 Theorem (constant curvature in Fermi coordinates) If f : U → R3 is an
immersion of U = I × J in Fermi coordinates with constant Gauss curvature
K ≡ κ ∈ R, then E(u, v) = g11(u, v) = csκ(v)2 for all (u, v) ∈ U.

Proof : By Proposition 5.1,

(
√

E)vv + κ
√

E = 0,

furthermore
√

E(u,0) = 1 and (
√

E)v(u,0) = Ev(u,0)/(2
√

E(u,0)) = 0. It follows
that
√

E(u, v) = csκ(v) for all (u, v) ∈ U. �

5.4 Theorem (constant Gauss curvature) Let M, M̄ ⊂ R3 be two surfaces with
Gauss curvatures K : M → R and K̄ : M̄ → R. Then the following are equivalent:

(1) K ≡ k ≡ K̄ for some constant k ∈ R;

(2) For every pair of points p ∈ M and p̄ ∈ M̄ there exist an open neighborhood
U ⊂ R2 of 0 and local parametrizations f : U → f (U) ⊂ M and f̄ : U →
f̄ (U) ⊂ M̄ such that f (0) = p, f̄ (0) = p̄, and g = ḡ on U; that is, M and M̄
are everywhere locally isometric.

Proof :
�

Ruled surfaces

Suppose that c : I → R3 is a C2 curve and X : I → R3 is a nowhere vanishing C2

vector field, where X(s) is viewed as a vector at the point c(s). A map of the form

f : I × J → R3, f (s, t) = c(s) + tX(s),
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for some interval J ⊂ R, is called a ruled surface, regardless of the fact that f
is possibly not regular (immersive). The curve c is called a directrix of f , and
the lines f ◦ β with β(t) := (s0, t) (for fixed s0) are called the rulings of f . The
latter are asymptotic curves of f , that is, h( Ûβ, Ûβ) = 0, because h22 = 〈 f22, ν〉 = 0.
Intuitively, f is a surface generated by the motion of a line in R3. In regions where
f is immersive, the Gauss curvature satisfies

K =
det(hi j)
det(gi j)

=
−h2

12
det(gi j)

≤ 0,

with K ≡ 0 if and only if the Gauss map ν is (locally) constant along the rulings:
h12 = −〈 f1, ν2〉 = 0 is equivalent to ν2 = 0, because 〈ν, ν2〉 = 0 and 〈 f2, ν2〉 =

−h22 = 0.

5.5 Theorem (rulings in flat surfaces) Suppose that V ⊂ R2 is an open set, and
f̃ : V → R3 is an immersion with vanishing Gauss curvature K̃ ≡ 0 and without
planar points (that is, points where both principal curvatures are zero). Then f̃
can everywhere locally be reparametrized as a ruled surface.

The proof uses Lemma A.5.

Proof : �

Minimal surfaces

An m-dimensional submanifold M ⊂ Rm+1 or an immersion f : U → Rm+1 of an
open set U ⊂ Rm is called minimal if its mean curvature H is identically zero.

5.6 Theorem (first variation of area) Let U ⊂ Rm be an open set, and let
f : U → Rm+1 be an immersion with Gauss map ν : U → Sm and finite m-
dimensional area

A( f ) =
∫
U

dA =
∫
U

√
det(gi j(x)) dx < ∞.

If ϕ : U → R is a smooth function with compact support, then

d
ds

���
s=0

A( f + s ϕ ν) = −m
∫
U

ϕH dA.

In particular, f is minimal if and only if d
ds

��
s=0 A( f + s ϕ ν) = 0 for all such

functions ϕ.

Proof : �

A parametrized surface f : U → R3 is called isothermal or conformal if (gi j) =
λ2(δi j) for some function λ : U → R; equivalently, f is angle preserving (exercise).

27



5.7 Proposition (isothermal minimal surface) Let U ⊂ R2 be an open set, and
let f : U → R3 be an immersion with Gauss map ν : U → S2. If f is isothermal,
(gi j) = λ

2(δi j), then
∆ f := f11 + f22 = 2λ2H ν;

thus f is minimal if and only if the coordinate functions f 1, f 2, f 3 are harmonic.

Proof : �

For the next result we use the following notation. Let U ⊂ R2 be an open
set, and let f ∈ C∞(U,R3), f (u, v) = ( f 1(u, v), f 2(u, v), f 3(u, v)). We view U as a
subset of C and define ϕ = (ϕ1, ϕ2, ϕ3) : U → C3 by

ϕk(u + iv) :=
∂ f k

∂u
(u, v) − i

∂ f k

∂v
(u, v),

k = 1,2,3. Here f is not assumed to be an immersion, nevertheless we may say that
f is conformal or minimal (meaning that H = 0 at points where f is immersive).

5.8 Theorem (complexification) With the above notation, the following holds.

(1) The map f is conformal if and only if
∑3

k=1(ϕ
k)2 = 0 on U.

(2) If f is conformal, then f is an immersion if and only if
∑3

k=1 |ϕ
k |2 > 0 on U

and f is minimal if and only if ϕ1, ϕ2, ϕ3 are holomorphic.

(3) If U ⊂ C is a simply connected open set, and if ϕ1, ϕ2, ϕ3 : U → C are
holomorphic functions such that

∑3
k=1(ϕ

k)2 = 0 and
∑3

k=1 |ϕ
k |2 > 0 on U,

then the map f = ( f 1, f 2, f 3) : U → R3 defined by

f k(u, v) := Re
∫ u+iv

z0

ϕk(z) dz

for any z0 ∈ U is a conformal and minimal immersion.

Proof : �

How does one find such functions ϕ1, ϕ2, ϕ3? Suppose that F : U → C is
holomorphic, G : U → C ∪ {∞} is meromorphic, and FG2 is holomorphic. Put

ϕ1 :=
1
2

F(1 − G2), ϕ2 :=
i
2

F(1 + G2), ϕ3 := FG;

then it follows that
∑3

k=1(ϕ
k)2 = 0, and ϕ1, ϕ2, ϕ3 are holomorphic. By inserting

these functions ϕk into the above definition of f k one obtains the so-called Weier-
strass representation of a minimal surface f . Every non-planar minimal surface
can locally be written in this form.
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Surfaces of constant mean curvature

5.9 Theorem (Alexandrov–Hopf) Suppose that ∅ , M ⊂ Rm+1 is a compact and
connected m-dimensional submanifold with constant mean curvature H. Then M
is a sphere of radius 1/|H |.

The theorem is no longer true for immersed surfaces in R3. This was shown by
Wente [We1986], who constructed an immersed torus of constant mean curvature.

Proof : �
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6 Global surface theory

The Gauss–Bonnet theorem

6.1 Definition (geodesic curvature) Suppose that f : U → R3 is an immersion
of an open set U ⊂ R2 and γ : I → U is a C2 curve such that c := f ◦ γ
is parametrized by arc length. Put ē1(s) := c′(s) and choose ē2(s) such that
(ē1(s), ē2(s)) is a positively oriented orthonormal basis of dfγ(s)(R2) (equivalent to
( f1 ◦ γ(s), f2 ◦ γ(s))). Then

κg(s) := 〈ē ′1(s), ē2(s)〉 =
〈 D

ds
c′(s), ē2(s)

〉
defines the geodesic curvature of c at s (relative to f ).

If ν = ( f1 × f2)/| f1 × f2 | is the Gauss map of f , then there is a decomposition

c′′ = 〈c′′, ē1〉 ē1 + 〈c′′, ē2〉 ē2 + 〈c′′, ν ◦ γ〉 ν ◦ γ

where 〈c′′, ē1〉 = 〈c′′, c′〉 = 0 and 〈c′′, ν ◦ γ〉 =: κn is the normal curvature of c
relative to f (compare Lemma 4.4). Thus c′′ = κg ē2 + κn ν ◦ γ and

κ2 = |c′′ |2 = κ 2
g + κ

2
n ,

where κ is the curvature of c as a space curve.

6.2 Lemma (geodesic curvature in geodesic parallel coordinates) Suppose that
f : U → R3 is an immersion with g12 = g21 = 0 and g22 = 1, γ : I → U is a C2

curve, and c := f ◦ γ is parametrized by arc length. Write γ(s) = (u(s), v(s)), and
let ϕ : I → R be a continuous function such that

γ′(s) = (u′(s), v′(s)) =
(

cos(ϕ(s))√
g11(γ(s))

, sin(ϕ(s))
)

for all s ∈ I. Then

κg(s) = ϕ′(s) −
∂
√
g11

∂v
(γ(s)) u′(s)

for all s ∈ I.

Proof : �

6.3 Theorem (Gauss–Bonnet, local version) Let M ⊂ R3 be a surface. Suppose
that D̄ ⊂ M is a compact set homeomorphic to a disk such that ∂D̄ is the trace of
a piecewise smooth, simple closed unit speed curve c : [0, L] → M , with exterior
angles α1, . . . , αr ∈ [−π, π] at the vertices of D̄. Let κg(s) = 〈c′′(s), ē2(s)〉 denote
the geodesic curvature of c (where c′′(s) exists) with respect to the normal ē2(s)
pointing to the interior of D̄. Then∫

D̄

K dA +
∫ L

0
κg(s) ds +

r∑
i=1

αi = 2π.
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By definition, the exterior angle αi ∈ [−π, π] at a vertex of D̄ is the complement
αi = π − βi of the [0,2π] valued interior angle βi of D̄. If the boundary of D̄ is
piecewise geodesic, then βi ∈ (0,2π) and αi ∈ (−π, π).

Proof : �

6.4 Theorem (Gauss, theorema elegantissimum) For a geodesic triangle D̄ ⊂
M with interior angles β1, β2, β3 ∈ (0,2π),∫

D̄

K dA = β1 + β2 + β3 − π.

Proof : This is a direct corollary of Theorem 6.3, as 2π − (α1 + α2 + α3) =

β1 + β2 + β3 − π. �

Now let M ⊂ R3 be a compact (and hence orientable) surface. A poly-
gonal decomposition of M is a cover of M by finitely many compact subsets
D̄j ⊂ M homeomorphic to a disk, with piecewise smooth boundary ∂D̄j (like D̄
in Theorem 6.3), such that D̄j ∩ D̄k is either empty, or a singleton corresponding
to a common vertex, or a common edge of D̄j and D̄k whenever j , k. If each
D̄j is a (not necessarily geodesic) triangle, then the decomposition is called a
triangulation of M . If V,E,F are the number of vertices, edges, and faces in a
polygonal decomposition, respectively, then the integer

χ(M) = V − E + F

is the Euler characteristic of M .

6.5 Theorem (Gauss–Bonnet, global version) If M ⊂ R3 is a compact surface,
then ∫

M

K dA = 2π χ(M).

Proof : �

The Poincaré index theorem

We now discuss another interpretation of χ(M) in terms of vector fields.
First let ξ : U → R2 be a continuous vector field on an open set U ⊂ R2. Sup-

pose that x is an isolated zero of ξ, and pick a radius r > 0 such that the closed disk
B(x,r) ⊂ U contains no other zeros of ξ. Let γ : [0,2π] → R2 be the parametriza-
tion of ∂B(x,r) defined by γ(t) = x + r(cos(t), sin(t)), and let ϕ : [0,2π] → R

be a continuous function such that ξ(γ(t))/|ξ(γ(t))| = (cos(ϕ(t)), sin(ϕ(t))) for all
t ∈ [0,2π]. Then ϕ(2π) − ϕ(0) = 2πI(x) for some integer I(x) = Iξ (x) called the
index of ξ at x, which is independent of r by continuity. This number agrees with
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the mapping degree deg(F) (discussed later in Section 9 for the case of smooth
maps between manifolds) of the map

F : S1 → S1, F(e) =
ξ(x + re)
|ξ(x + re)|

.

This second definition of the index generalizes readily to higher dimensions.
If ψ : U → V is C1 diffeomorphism onto on open set V ⊂ R2, and if η is the

continuous vector field on V such that η(ψ(x)) = dψx(ξ(x)) for all x ∈ U, then it
can be shown that Iη(ψ(x)) = Iξ (x) for every isolated zero x of ξ (see, for example,
[Mi], pp. 33–35). For a surface M ⊂ R3 and a continuous (tangent) vector field
X : M → R3 with an isolated zero at p ∈ M , the index I(p) = IX(p) is then defined
via a local parametrization f of M around p such that IX(p) := Iξ ( f −1(p)) for the
corresponding vector field ξ with dfx(ξ(x)) = X( f (x)).

6.6 Theorem (Poincaré index theorem) Let M ⊂ R3 be a compact C1 surface,
and let X be a continuous vector field on M with only finitely many zeros p1, . . . , pk .
Then

k∑
i=1

I(pi) = χ(M).

See [Po1885], Chapitre XIII. This was generalized to arbitrary dimensions by
Hopf [Ho1927b].

Proof : �
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7 Hyperbolic space

Spacelike hypersurfaces in Lorentz space

We consider Rm+1 together with the non-degenerate symmetric bilinear form

〈x, y〉L :=
( m∑
i=1

xiyi
)
− xm+1ym+1,

called Lorentz product. The pair

Rm,1 := (Rm+1, 〈 · , · 〉L)

is called Minkowski space or Lorentz space. A vector v ∈ Rm,1 is spacelike if
〈v, v〉L > 0 or v = 0, timelike if 〈v, v〉L < 0, and lightlike or a null vector if
〈v, v〉L = 0 and v , 0. The set of all null vectors is the nullcone. A differentiable
curve c : I → Rm,1 is spacelike, timelike, or a null curve if all tangent vectors c′(t)
have the respective character.

A submanifold M ⊂ Rm,1 is spacelike if each tangent space T Mp is, that
is, all vectors v ∈ T Mp are spacelike; equivalently, the first fundamental form
gp := 〈 · , · 〉L |TMp×TMp is positive definite.

7.1 Definition (hyperbolic space) The spacelike hypersurface

Hm := {p ∈ Rm,1 : 〈p, p〉L = −1, pm+1 > 0},

together with its first fundamental form g, is called hyperbolic m-space.

The set Hm is the upper half of the two-sheeted hyperboloid given by the
equation (pm+1)2 = 1 +

∑m
i=1(p

i)2. For p ∈ Hm, the tangent space THm
p equals

the m-dimensional linear subspace ofRm,1 determined by the equation 〈p, v〉L = 0,
similarly as for the sphere Sm ⊂ Rm+1.

We now consider an arbitrary spacelike hypersurface Mm ⊂ Rm,1. If U ⊂ Rm

is an open set and f : U → f (U) ⊂ M is a local (or global) parametrization of
M , then the first fundamental form of f is given by gi j = 〈 fi, fj〉L. All intrinsic
concepts and formulae discussed earlier, involving solely the first fundamental form,
remain valid and unchanged for M (or f ): Christoffel symbols, covariant derivative,
parallelism, geodesics, and the formula

K =
R1212

det(gi j)
,

which is now adopted as a definition of the Gauss curvature in the case m = 2.
Furthermore, there exists a well-defined Gauss map

N : Mm → Hm
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such that 〈v,N(p)〉L = 0whenever v ∈ T Mp. For f as abovewe put again ν := N◦ f .
The shape operator and the second fundamental form h of M or f are then defined
as in Section 4. Lemma 4.8 and Theorem 4.9 remain valid as well, except for two
sign changes, due to the fact that 〈ν, ν〉L = −1:

fi j =
m∑
k=1
Γ
k
i j fk − hi jν

for i, j = 1, . . . ,m, and

Rs
ki j = −(hs

ihk j − hs
jhki) = −

m∑
l=1

gsl
(
hlihk j − hl jhki

)
for s = 1, . . . ,m, where the expression of Rs

ki j in terms of the Christoffel symbols
remains unchanged. For fixed i, j, k, this system is equivalent to

Rlki j :=
m∑
s=1

glsRs
ki j = −(hlihk j − hl jhki) = − det

(
hli hl j
hki hk j

)
for l = 1, . . . ,m.

Geometry of hyperbolic space

In the special case that M = H2 ⊂ R2,1, the Gauss map is just given by N(p) = p,
thus Lp = −dNp = − idTH2

p
and det(Lp) = 1. It follows that the Gauss curvature of

H2 is

K =
R1212

det(gi j)
= −

det(hi j)
det(gi j)

= −1.

The Lorentz group is defined by

O(m,1) := {A ∈ GL(m + 1,R) : 〈Ax, Ay〉L = 〈x, y〉L}.

For A ∈ O(m,1) and p ∈ Hm, Ap ∈ ±Hm. One puts

O(m,1)+ := {A ∈ O(m,1) : A(Hm) = Hm}.

Thus, for A ∈ O(m,1)+, the restriction A|Hm : Hm → Hm is an isometry.

7.2 Theorem (homogeneity) Suppose that p,q ∈ Hm, (v1, . . . , vm) is an orthonor-
mal basis of THm

p , and (w1, . . . ,wm) is an orthonormal basis of THm
q . Then there

exists an A ∈ O(m,1)+ such that Ap = q and Avi = wi for i = 1, . . . ,m.

Proof : �
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Let p ∈ Hm, and let v ∈ THm
p be such that 〈v, v〉L = 1. The unit speed geodesic

c : R→ Hm with c(0) = p and c′(0) = v is given by

c(s) = cosh(s) p + sinh(s) v;

the trace of c is the intersection of Hm with the linear plane spanned by p and v.
The distance of two points p,q in Hm satisfies

cosh(d(p,q)) = −〈p,q〉L.

Models of hyperbolic space

In the following we let U := {x ∈ Rm : |x | < 1} denote the open unit ball in Rm.
The (Beltrami–)Klein model (U, ḡ) of Hm is obtained via the global parametrization

f̄ : U → Hm, f̄ (x̄) :=
1√

1 − | x̄ |2
(x̄,1);

f̄ is the inclusion map U → U × {1} ⊂ Rm × R followed by the radial projection
to Hm. The first fundamental form of f̄ is given by

ḡi j(x̄) =
〈

f̄i(x̄), f̄j(x̄)
〉
L =

1
1 − | x̄ |2

δi j +
1

(1 − | x̄ |2)2
x̄i x̄ j,

and the distance between two points x̄, ȳ in (U, ḡ) satisfies

cosh(dḡ(x̄, ȳ)) =
1 − 〈x̄, ȳ〉√

1 − | x̄ |2
√

1 − | ȳ |2
.

In this model, the trace of any non-constant geodesic γ : R → (U, ḡ) is simply a
chord of U, because inward radial projection maps geodesic lines in Hm to chords
in U × {1}.

The Poincaré model (U,g) of Hm is obtained similarly via the “stereographic
projection”

f : U → Hm, f (x) :=
1

1 − |x |2
(2x,1 + |x |2);

the three points (0,−1), (x,0), f (x) ∈ Rm × R are aligned. The first fundamental
form of f is given by

gi j(x) = 〈 fi(x), fj(x)〉L =
4

(1 − |x |2)2
δi j,

thus (U,g) is a conformal model. The distance between x, y ∈ (U,g) satisfies

cosh(dg(x, y)) = 1 +
2|x − y |2

(1 − |x |2)(1 − |y |2)
.
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If x, x̄ ∈ U are two points with the same images f (x) = f̄ (x̄) in Hm, then a
computation shows that the point σ(x̄) := (x̄,

√
1 − | x̄ |2) ∈ Sm ⊂ Rm+1 lies on the

line through (0,−1) and (x,0). The map σ sends any chord of U to a semicircle
orthogonal to ∂Sm

+ in the upper hemisphere Sm
+ ⊂ Sm, and the inward stereographic

projection with respect to (0,−1)maps this semicircle to an arc of a circle inU×{0}
orthogonal to ∂U × {0} = ∂Sm

+ . Hence, geodesic lines in (U,g) are represented by
arcs of circles orthogonal to ∂U.

Another conformal model of Hm is the halfspace model (U+,g+), where U+ :=
{x ∈ Rm : xm > 0}. Inversion in the sphere in Rm with center −em and radius

√
2,

restricted to U+, yields the diffeomorphism

ψ : U+ → U, ψ(x) =
2

|x + em |2
(x + em) − em.

Let g be the Riemannian metric of the Poincaré model as above. Then g+ := ψ∗g
is given by

g+i j(x) =
1
(xm)2

δi j .

Now let m = 2. Then, up to reparametrization, the unit speed geodesics γ : R →
(U+,g+) are of the form

γ(s) =
(
a + r tanh(s),

r
cosh(s)

)
or γ(s) = (a, es)

for a ∈ R and r > 0. In the first case, the trace of γ is a semicircle of Euclidean
radius r orthogonal to ∂U+. The group GL(2,R) acts on U+ ⊂ C as follows:(

a b
c d

)
acts as z 7→

az + b
cz + d

or z 7→
az̄ + b
cz̄ + d

if the determinant ad − bc is positive or negative, respectively. These are precisely
the orientation preserving or reversing isometries of (U+,g), respectively. The
kernel of the action is {λI : λ , 0}, thus the isometry group of (U+,g) is isomorphic
to PGL(2,R) = GL(2,R)/{λI : λ , 0} (exercise).

Hilbert’s theorem

We conclude this section with the following famous result [Hi1901].

7.3 Theorem (Hilbert) There is no isometricC3 immersion of the hyperbolic plane
into R3, in particular there is no C3 submanifold in R3 isometric to H2.

By contrast, it follows from a theorem of Nash and Kuiper [Ku1955] that Hm

admits an isometric C1 embedding into Rm+1!

Proof : �
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Differential Topology

8 Differentiable manifolds

Differentiable manifolds and maps

We start with a topological notion.

8.1 Definition (topological manifold) An m-dimensional topological manifold M
is aHausdorff topological spacewith countable basis (that is, M is second countable)
and the property that for every point p ∈ M there exists a homeomorphism ϕ : U →
ϕ(U) from an open neighborhood U ⊂ M of p onto an open set ϕ(U) ⊂ Rm. Then
ϕ = (ϕ,U) is called a chart or coordinate system of M .

A system of charts Φ = {(ϕα,Uα)}α∈A (where A is any index set) forms an
atlas of the topological manifold M if

⋃
α∈A Uα = M . For α, β ∈ A, the (possibly

empty) homeomorphism

ϕβα := ϕβ ◦ ϕ−1
α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ)

is called the coordinate change between ϕα and ϕβ .
For 1 ≤ r ≤ ∞, the atlas {ϕα}α∈A is a Cr atlas of M if every coordinate

change ϕβα is aCr map. Since (ϕβα)−1 = ϕαβ , it then follows that every coordinate
change is a Cr diffeomorphism. More generally, we call two charts (ϕ,U), (ψ,V) of
a topological manifold Cr compatible if ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is a Cr

diffeomorphism.

8.2 Definition (differentiable manifold) For 1 ≤ r ≤ ∞, a differentiable structure
of class Cr or Cr structure on a topological manifold is a maximal Cr atlas, that is,
a Cr atlas not contained in a bigger one. A differentiable manifold of class Cr or a
Cr manifold is a topological manifold equipped with a Cr structure.

We use the word “smooth” as a synonym of C∞. If we speak of a chart
of a differentiable manifold M , then we always mean a chart belonging to the
differentiable structure of M .

Every Cr atlas Φ of a topological manifold M is contained in a unique Cr

structure Φ̄, namely the set of all charts of M that are Cr compatible with all charts
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in Φ. However, there exist compact topological manifolds that do not admit any C1

structure [Ke1960]!
Now let 1 ≤ r < s ≤ ∞. Then every Cs structure is a Cr atlas and is thus

contained in a unique Cr structure; in this sense, every Cs manifold is also a
Cr manifold. Conversely, every Cr structure contains a Cs structure, and this
Cs structure is unique up to Cs diffeomorphism (see Definition 8.3 below and
Theorem 2.9, Chapter 1, in [Hi] for the proof). In so far there is no essential
difference between the classes Cr and Cs for 1 ≤ r < s ≤ ∞.

8.3 Definition (differentiable map, diffeomorphism) Let M,N be two Cr mani-
folds, 1 ≤ r ≤ ∞. A map F : M → N is r times continuously differentiable, briefly
Cr , if for every point p ∈ M there exist a chart (ϕ,U) of M with p ∈ U and a chart
(ψ,V) of N with F(U) ⊂ V such that the map

ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V)

is Cr . This composition is called a local representation of F around p. The map
F : M → N is a Cr diffeomorphism if F is bijective and both F,F−1 are Cr .

Ist F : M → N is a Cr map, then clearly every local representation of F is Cr ,
because coordinate changes of M and N are Cr .

On Rm, the atlas consisting solely of the identity map idRm determines the
usual smooth structure on Rm. On R, the atlases Φ = {idR} and Ψ = {ψ}, where
ψ(x) = x3, determine different smooth structures Φ̄ and Ψ̄ since idR and ψ are not
C1 compatible; however, F := ψ−1 : (R, Ψ̄) → (R, Φ̄) is a diffeomorphism since
the representation ψ ◦ F ◦ (idR)−1 equals idR. In fact, it is not difficult to show that
any two differentiable structures on R are diffeomorphic (exercise).

By contrast, there exist topological manifolds that admit different diffeomor-
phism classes of smooth structures! For example, there are precisely 28 such classes
on the 7-dimensional sphere S7 [Mi1956], [Mi1959]. On Rm, exotic smooth struc-
tures exist only for m = 4.

8.4 Definition (tangent space) Let M be an m-dimensional Cr manifold, 1 ≤ r ≤
∞, and let p ∈ M . On the set of all pairs (ϕ, ξ), where ϕ is a chart of M around p
and ξ ∈ Rm, we define an equivalence relation such that (ϕ, ξ) ∼p (ψ,η) if and only
if

d(ψ ◦ ϕ−1)ϕ(p)(ξ) = η.

The tangent space T Mp of M at p is the set of all equivalence classes. We write
[ϕ, ξ]p ∈ T Mp for the class of (ϕ, ξ).

For a fixed chart ϕ around p we define the map

dϕp : T Mp → Rm, dϕp([ϕ, ξ]p) := ξ.
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Since [ϕ, ξ]p = [ϕ,η]p if and only if ξ = η, this is a well-defined bijection, which
thus induces the structure of an m-dimensional vector space on T Mp, such that dϕp
is a linear isomorphism. If ψ is another chart around p and (ϕ, ξ) ∼p (ψ,η), then

dψp ◦ (dϕp)−1(ξ) = dψp([ϕ, ξ]p) = dψp([ψ,η]p) = η

= d(ψ ◦ ϕ−1)ϕ(p)(ξ).

Since d(ψ ◦ ϕ−1)ϕ(p) is an isomorphism of Rm, it follows that the linear structure
of T Mp is independent of the choice of the chart ϕ.

The tangent bundle of a Cr manifold M is the (disjoint) union

T M :=
⋃
p∈M

T Mp

together with the projection π : T M → M that maps every tangent vector [ϕ, ξ]p to
its footpoint p. The set T M has the structure of a 2m-dimensional Cr−1 manifold.
If (ϕ,U) is a chart of M , then

Tϕ : TU =
⋃
p∈U

T Mp → ϕ(U) ×Rm ⊂ Rm ×Rm

[ϕ, ξ]p 7→ (ϕ(p), ξ) = (ϕ(p), dϕp([ϕ, ξ]p))

is a corresponding natural chart of T M . The coordinate change Tψ ◦ (Tϕ)−1 maps
the pair (x, ξ) ∈ Rm ×Rm to (ψ ◦ ϕ−1(x), d(ψ ◦ ϕ−1)x(ξ)).

For a C1 map F : M → N , the differential of F at p ∈ M is the unique linear
map

dFp : T Mp → T NF(p)

such that for every local representation H := ψ ◦ F ◦ ϕ−1 of F around p the chain
rule

dFp = (dψF(p))
−1 ◦ dHϕ(p) ◦ dϕp

holds, that is, dFp([ϕ, ξ]p) = [ψ, dHϕ(p)(ξ)]F(p) for all ξ ∈ Rm. Note that for
F = ϕ and ψ = idRm , this gives dϕp([ϕ, ξ]p) = [idRm, ξ]ϕ(p) = ξ, where the
second equality reflects the identification TRm

ϕ(p)
= Rm; thus our notation for the

previously defined map dϕp is justified.

Partition of unity

Let again M be aCr manifold, 0 ≤ r ≤ ∞. A family ofCr functions λα : M → [0,1]
indexed by a set A is called a Cr partition of unity if every point p ∈ M has a
neighborhood in which all but finitely many λα are constantly zero and if∑

α∈A

λα(p) = 1
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for all p ∈ M . Given a collection of open sets covering M , a partition of unity
{λα}α∈A is subordinate to this open cover if for every α ∈ A the support spt(λα) =
{p ∈ M : λα(p) , 0} of λα is contained entirely in one of the sets of the cover.

8.5 Theorem (partition of unity) For every open cover of a Cr manifold M , 0 ≤
r ≤ ∞, there exists a subordinate Cr partition of unity.

Proof : Among the (open) sets of a countable basis of the topology of M , let
E1,E2, . . . be those with compact closure. Every point p ∈ M has a compact
neighborhood N , which is closed since M is Hausdorff, and there is a set E in the
above basis such that p ∈ E ⊂ N; thus the closure of E is compact. This shows
that

⋃∞
j=1 Ej = M . Now we define recursively a nested sequence of open subsets

of M such that D−1 := ∅, D0 := ∅, D1 := E1, and for i = 1,2, . . ., Di+1 is the union
of Ei+1 with finitely many of the sets Ej covering the (compact) closure Di. Then⋃∞

i=1 Ci = M , where Ci := Di \ Di−1 is compact, and Wi := Di+1 \ Di−2 is an open
neighborhood of Ci intersecting at most two more of these compact sets.

Let now {Vβ}β∈B be an open cover of M . For every point p ∈ Ci there is a chart
(ϕ,U) of M with ϕ(p) = 0 ∈ Rm and ϕ(U) = U(3) = {x ∈ Rm : |x | < 3} such
that U ⊂ Vβ ∩Wi for some β ∈ B. Hence, there is a finite family {(ϕα,Uα)}α∈Ai

of such charts such that {ϕ−1
α (U(1))}α∈Ai is an open cover of Ci. Repeating this

construction for every index i, and assuming that Ai ∩ Aj = ∅ whenever i , j, we
get an atlas {(ϕα,Uα)}α∈A of M with A =

⋃∞
i=1 Ai such that {Uα}α∈A is a locally

finite open refinement of {Vβ}β∈B.
Finally, choose a C∞ function τ : U(3) → [0,1] such that τ |U(1) ≡ 1 and

spt(τ) = U(2). For every index α ∈ A, define the Cr function λ̃α : M → [0,1] such
that λ̃α = τ ◦ϕα onUα = ϕ

−1
α (U(3)) and λ̃α ≡ 0 on M \Uα. Since {ϕ−1

α (U(1))}α∈A
covers M and {Uα}α∈A is locally finite, it follows that the sum S :=

∑
α∈A λ̃α is

everywhere greater than or equal to 1 and finite. Now put λα := 1
S λ̃α. �

Submanifolds and embeddings

8.6 Definition (submanifold) Let N be an n-dimensional C∞ manifold. A subset
M ⊂ N is an m-dimensional submanifold of N if for every point p ∈ M there is
chart ψ : V → ψ(V) ⊂ Rn = Rm ×Rn−m of N such that p ∈ V and

ψ(M ∩ V) = ψ(V) ∩ (Rm × {0}).

Such charts are called submanifold charts, and k := n−m is the codimension of M
in N .

The restrictions ψ |M∩V of all submanifold charts (ψ,V) of M form a C∞ atlas
of M , thus M is itself a C∞ manifold.

40



Let F : N → Q be aC1 map between two manifolds. A point p ∈ N is a regular
point of F if the differential dFp is surjective; otherwise p is a singular or critical
point of F. A point q ∈ Q is a regular value of F if all p ∈ F−1{q} are regular
points of F, otherwise q is a singular or critical value of F.

8.7 Theorem (regular value theorem) Let F : Nn → Qk be a C∞ map. If q ∈
F(N) is a regular value of F, then M := F−1{q} is a submanifold of N of dimension
dim(M) = n − k ≥ 0.

Proof : �

AC∞ map F : M → N between twomanifolds is an immersion or a submersion
if, for all p ∈ M , the differential dFp is injective or surjective, respectively. An
embedding F : M → N is an immersion with the property that F : M → F(M) is
a homeomorphism.

8.8 Theorem (image of an embedding) If F : M → N is an embedding, then the
image F(M) is a submanifold, and F : M → F(M) is a diffeomorphism.

Conversely, if M ⊂ N is a submanifold, then the inclusion map i : M → N is
an embedding.

Proof : �

8.9 Theorem (embedding theorem) For every compact C∞ manifold Mm there
exist n ∈ N and an embedding F : M → Rn.

This theorem also holds for n = 2m + 1, see [Hi], and even for n = 2m and M
possibly non-compact [Wh1944].

Proof : Since M is compact, there exists a finite atlas {(ϕα,Uα)}α=1,...,l such
that ϕα(Uα) = U(3) = {x ∈ Rm : |x | < 3} and

⋃
α ϕ
−1
α (U(1)) = M . Choose

C∞ functions λα : M → [0,1] with value 1 on ϕ−1
α (U(1)) and support ϕ−1

α (U(2))
(compare the proof of Theorem 8.5). Define fα : M → Rm such that fα = λαϕα
on Uα and fα ≡ 0 ∈ Rm otherwise. Now put n := lm + l and consider the C∞ map

F : M → Rn, F := ( f1, . . . , fl, λ1, . . . , λl).

To show that F is an immersion, let p ∈ M . There is an α such that p ∈
ϕ−1
α (U(1)), thus λα ≡ 1 and fα ≡ ϕα in a neighborhood of p. Then the Jacobi

matrix of F ◦ ϕ−1
α at the point ϕα(p), the n × m-matrix(

∂(Fi ◦ ϕ−1
α )

∂x j
(ϕα(p))

)
,

41



contains an Im (identity matrix) block because F(α−1)m+k = ϕ k
α for k = 1, . . . ,m.

Hence d(F ◦ ϕ−1
α )ϕα(p) has rank m is thus injective, and so is dFp.

To show that F : M → F(M) is a homeomorphism, suppose first that F(p) =
F(q) for some p,q ∈ M . Then there is an α such that λα(p) = λα(q) = 1, in
particular p,q ∈ Uα, and

ϕα(p) = λα(p) ϕα(p) = fα(p) = fα(q) = λα(q) ϕα(q) = ϕα(q).

Thus p = q. Now F is a continuous bijective map from the compact space M onto
the Hausdorff space F(M) ⊂ Rm and, hence, a homeomorphism. �

Tangent vectors as derivations

Let M be a C∞ manifold and p ∈ M . A linear functional X : C∞(M) → R on the
algebra of real-valued smooth functions on M is called a derivation at p if for all
f ,g ∈ C∞(M) the product rule (or Leibniz rule)

X( f g) = X( f )g(p) + f (p)X(g)

holds. It follows from this identity that X( f ) = X( f̃ ) whenever f ≡ f̃ in a
neighborhood of p: if g := f − f̃ and h ∈ C∞(M) is such that h(p) = 1 and
spt(h) ⊂ g−1{0}, then

0 = X(0) = X(gh) = X(g)h(p) + g(p)X(h) = X(g) = X( f ) − X( f̃ ).

Hence every derivation X at p has a unique extension, still denoted by X , to the set
of functions

C∞(M)p := { f ∈ C∞(U) : U ⊂ M an open neighborhood of p}

such that X( f ) = X( f̃ ) whenever f , f̃ ∈ C∞(M)p agree in a neighborhood of
p. For the constant function on M with value c ∈ R, X(c) = c X(1) = 0 since
X(1) = X(1 · 1) = X(1) · 1 + 1 · X(1).

For any chart (ϕ,U) of Mm around p there are canonical derivations
∂
∂ϕ1

��
p
, . . . , ∂

∂ϕm

��
p
at p, defined by

∂

∂ϕ j

���
p
( f ) :=

∂ f
∂ϕ j
(p) :=

∂( f ◦ ϕ−1)

∂x j
(ϕ(p)).

8.10 Theorem (derivations) The set of all derivations at p ∈ Mm is an m-
dimensional vector space. If ϕ is a chart around p, then the canonical derivations
∂
∂ϕ1

��
p
, . . . , ∂

∂ϕm

��
p
constitute a basis, and every derivation X at p satisfies

X =
m∑
j=1

X(ϕ j)
∂

∂ϕ j

���
p
.
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Proof : �

For a C∞ manifold Mm, we now identify the tangent vector X ∈ T Mp (Defini-
tion 8.4) with the derivation X at p defined by

X( f ) := dfp(X) ∈ TR f (p) = R.

It is not difficult to check that then for every chart ϕ around p and every ξ =

(ξ1, . . . , ξm) ∈ Rm, the vector X = [ϕ, ξ]p corresponds to the derivation

X =
m∑
j=1

ξ j
∂

∂ϕ j

���
p
.
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9 Transversality

The Morse–Sard theorem

A cube C ⊂ Rm of edge length s > 0 and volume |C | = sm is a set isometric to
[0, s]m. A set A ⊂ Rm hasmeasure zero or is a nullset if for every ε > 0 there exists
a sequence of cubes Ci ⊂ Rm such that A ⊂

⋃
i Ci and

∑
i |Ci | < ε . The union of

countably many nullsets is a nullset.
If V ⊂ Rm is an open set and F : V → Rm a C1 map, and if A ⊂ V has measure

zero, then F(A) has measure zero. To prove this, note first that V is the union of
countably many compact balls Bk . Then each set A∩ Bk lies in the interior of some
compact subset of V , on which F is Lipschitz continuous, and it follows easily that
F(A ∩ Bk) has measure zero.

9.1 Definition (measure zero) A subset A of a differentiable manifold Mm has
measure zero or is a nullset if for every chart (ϕ,U) of M the set ϕ(A ∩U) ⊂ Rm

has measure zero.

It follows from the aforementioned properties that A ⊂ M has measure zero if
ϕ(A∩U) has measure zero for every chart (ϕ,U) from a fixed countable atlas of M .

9.2 Theorem (Morse–Sard) If F : Mm → Nn is aCr mapwith r > max{0,m−n},
then the set of singular values of F has measure zero in N .

See [Mo1939] (n = 1, r = m) and [Sa1942]. For example, the set of singu-
lar values of a C2 function F : R2 → R has measure zero (and thus F−1{t} is a
1-dimensional submanifold for almost every t ∈ R). The differentiability assump-
tion seems stronger than necessary, but indeed Whitney [Wh1935] constructed an
example of a C1 function F : R2 → R that is non-constant on a compact connected
set of singular points.

Note that if n = 0, then there are no singular values in N by definition, whereas
if m = 0, then F(M) is a countable set. In the general case, the theorem follows
easily from the corresponding result for a Cr map F from on open set U ⊂ Rm to
Rn, because M and N have countable atlases. Then, in the case that m < n and
r = 1, the proof is simple: U × {0} ⊂ Rm × Rn−m is a nullset in Rm × Rn−m,
thus the C1 map F̃ : U × Rn−m → Rn, F̃(p, x) := F(p), takes it to the nullset
F̃(U × {0}) = F(U) in Rn.

We now prove the result for m ≥ n ≥ 1 and r = ∞.

Proof : It suffices to consider a C∞ map F = (F1, . . . ,Fn) : U → Rn on an open
set U ⊂ Rm. Let Σ ⊂ U be the set of singular points of F. Furthermore, for
l = 1,2, . . . , let Zl denote the set of all points x ∈ U where all partial derivaties of
F up to order l vanish, that is,

Fi
j1,..., jk

(x) :=
∂kFi

∂x j1∂x j2 . . . ∂x jk
(x) = 0
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for all k ∈ {1, . . . , l}, i ∈ {1, . . . ,n} and j1, . . . , jk ∈ {1, . . . ,m}. This gives a
sequence Σ ⊃ Z1 ⊃ Z2 ⊃ . . . of closed subsets of U. We now fix l ≥ 1 as the
smallest integer strictly bigger than m

n − 1.
We show that F(Zl) has measure zero. Let C ⊂ U be a cube of side length s.

By virtue of Taylor’s formula of order l and the compactness of C,

F(y) = F(x) + R(x, y)

for all x ∈ C ∩ Zl and y ∈ C, where |R(x, y)| ≤ c |x − y |l+1 for some constant c
depending only on F and C. Consider a subdivision of C into Nm cubes of side
length s/N . If C ′ is one of these cubes and x is a point in C ′∩ Zl, then F(C ′) lies in
the closed ball with center F(x) and radius c(

√
ms/N)l+1. Hence F(C ∩ Zl) can be

covered by Nm cubes with total volume Nm
(
2c(
√

ms/N)l+1)n. Since n(l + 1) > m,
this quantity tends to 0 as N →∞. It follows that F(Zl) has measure zero.

If m = n = 1, then Σ = Z1 = Zl, hence F(Σ) has measure zero. We now
proceed by induction and complete the argument for m ≥ 2, m ≥ n ≥ 1 and r = ∞
assuming that the set of singular values of every C∞ map G : M ′ → N ′ between
manifolds of dimension dim(M ′) = m − 1 ≥ dim(N ′) ≥ 1 has measure zero.

First we consider F(Zk \ Zk+1) for any k ≥ 1. For every x ∈ Zk \ Zk+1,
there exist a k-fold partial derivative f := Fi

j1,..., jk
: U → R and a further index

j ∈ {1, . . . ,m} such that fj(x) := ∂ f

∂x j (x) , 0. Then fj(y) , 0 for all y in an open
neighborhood V ⊂ U \ Zk+1 of x. Thus the (smooth) function f |V is everywhere
regular, in particular the set M ′ := f −1{0} ∩ V , which contains Zk ∩ V , is an
(m − 1)-dimensional submanifold. Every point y ∈ Zk ∩ V ⊂ Σ is also a singular
point of F |M′, hence F(Zk∩V) has measure zero inRn by the induction hypothesis,
or by the remark preceding the proof if m − 1 < n. It follows that F(Zk \ Zk+1) has
measure zero for every k ≥ 1.

Since F(Z1) = F(Zl) ∪
⋃l−1

k=1 F(Zk \ Zk+1) has measure zero, it remains to
consider the set F(Σ \ Z1). If n = 1, then Σ = Z1 and we are done. Now let n ≥ 2.
At every point x ∈ Σ \ Z1 at least one partial derivative Fi

j is non-zero. To simplify
the notation we assume that Fi

m(x) , 0. Then x is a regular point of the map

ϕ : U → Rm, ϕ(y) := (y1, . . . , ym−1,Fi(y)).

Hence there exists an open neighborhood V ⊂ U \ Z1 of x such that ϕ|V is a
diffeomorphismonto an open setW ⊂ Rm, and there is awell-definedmapG : W →
Rn such that F |V = G ◦ ϕ|V . For all y ∈ V ,

G(y1, . . . , ym−1,Fi(y)) = G(ϕ(y)) = (F1(y), . . . ,Fn(y)),

thus G preserves some coordinate. Hence, if y ∈ V ∩Σ is a singular point of F with
Fi(y) = t ∈ R, then ϕ(y) = (y1, . . . , ym−1, t) is a singular point of G as well as of
the restriction of G to Mt := W ∩ (Rm−1 × {t}), and F(y) = G(ϕ(y)) is a singular
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value of G |Mt . Therefore, by the induction hypothesis, the set F(V ∩Σ)∩ {z ∈ Rn :
zi = t} has (n − 1)-dimensional (Lebesgue) measure zero. By Fubini’s theorem,
the measurable (in fact, σ-compact) set F(V ∩ Σ) has n-dimensional measure zero.
It follows that also F(Σ \ Z1) has measure zero. �

Manifolds with boundary

Next we introduce manifolds with boundary.
A halfspace of Rm is a set of the form

H = {x ∈ Rm : λ(x) ≥ 0}

for a linear function λ : Rm → R. Note that, according to this definition, also
H = Rm is a halfspace (take λ ≡ 0). The boundary ∂H of H = {λ ≥ 0} is the
kernel of λ if λ . 0 and empty otherwise.

An m-dimensional topological manifold M with boundary is a Hausdorff space
with countable basis of the topology and the following property: for every point p ∈
M there exist a homeomorphism ϕ : U → ϕ(U) ⊂ H from an open neighborhoodU
of p onto an open subset ϕ(U) of a halfspace H ⊂ Rm (with the induced topolopy).
Then ϕ = (ϕ,U) is a chart of M . The notions of a Cr atlas, Cr structure and Cr

manifold with boundary are then defined in analogy with the boundary-free case.
Here, a coordinate change

ϕβα := ϕβ ◦ ϕ−1
α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ)

is a Cr map between open subsets in halfspaces of Rm; this means that ϕβα admits
an extension to a Cr map between open subsets of Rm.

The boundary of M is the set

∂M := {p ∈ M : ϕ(p) ∈ ∂H for some chart ϕ : U → ϕ(U) ⊂ H around p}.

It follows that if p ∈ ∂M , then ϕ(p) ∈ ∂H for every chart ϕ : U → ϕ(U) ⊂ H around
p. For topological manifolds with boundary this is a consequence of the theorem
on invariance of the domain [Br1911a]: If V ⊂ Rm is open and h : V → Rm is an
injective continuous map, then h(V) ⊂ Rm is open. In the Cr case, r ≥ 1, one may
more easily use the inverse function theorem. The boundary ∂M of a Cr manifold
Mm with boundary, r ≥ 0, is in a natural way an (m − 1)-dimensional Cr manifold
(without boundary), and M \ ∂M is a manifold as well. According to the above
definition, every manifold M is also a manifold with boundary, where ∂M = ∅.

Example Suppose that N is a manifold, f : N → R is a smooth function, and
y ∈ R is a regular value of f . Then M := f −1([y,∞)) is a manifold with boundary
∂M = f −1{y}: by Theorem 8.7, f −1{y} is a submanifold of N of codimension 1,
and the restriction of any submanifold chart ψ : V → ψ(V) ⊂ Rn to V ∩ M is a
chart for M around boundary points.
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Let now Mm be a Cr manifold with boundary, 1 ≤ r ≤ ∞. For p ∈ M ,
the tangent space T Mp of M at p is defined as in Definition 8.4 (note that d(ψ ◦
ϕ−1)ϕ(p) is defined on all of Rm also if p ∈ ∂M). For p ∈ ∂M , the tangent space
T(∂M)p of ∂M at p is in a canonical way an (m − 1)-dimensional subspace of
T Mp. Differentiable maps F : M → N between manifolds with boundary and the
differential dFp : T Mp → T NF(p) are again defined as in the boundary-free case.

The following statement generalizes Theorem 8.7.

9.3 Theorem (regular value theorem, manifolds with boundary) Let F : N →
Q be a C∞ map, where Nn is a manifold with boundary and Qk is a manifold. If
q ∈ F(N) is a regular value of F |N\∂N as well as of F |∂N , then M := F−1{q} is a
manifold with boundary, dim(M) = n − k ≥ 0, and ∂M = M ∩ ∂N .

Note that the assumption on q is stronger than saying that q ∈ F(N) is a regular
value of F, because ∂N is only (n− 1)-dimensional. The set M ∩ ∂N is non-empty
if and only if q ∈ F(∂N); in this case, it follows from the assumption that n− 1 ≥ k
and hence dim(M) ≥ 1.

Proof : �

Acontinuousmap F : M → A from a topological space M to a subspace A ⊂ M
such that F(p) = p for all p ∈ A is called a retraction of M onto A.

9.4 Theorem (boundary is not a retract) Let M be a compact C∞ manifold with
boundary. Then there is no smooth retraction of M onto ∂M .

In the proof of this result and subsequently wewill make use of the classification
of compact 1-dimensional manifolds with boundary: every such (C∞) manifold is
diffeomorphic to a disjoint union of finitely many circles S1 and intervals [0,1]. For
a proof of this intuitive fact we refer to the Appendix in [Mi].

Proof : Suppose to the contrary that there exists a smooth retraction F : M → ∂M .
By Theorem 9.2 there exists a regular value q ∈ ∂M of F |M\∂M . Since F is a re-
traction, q is also a regular value of F |∂M = id∂M . It follows from Theorem 9.3 that
F−1{q} is a compact 1-dimensional manifold with boundary F−1{q} ∩ ∂M = {q}.
This contradicts the fact that by the aforementioned classification, such manifolds
have an even number of boundary points. �

9.5 Theorem (Brouwer fixed point theorem) Every continuous map G : Bm →

Bm = {x ∈ Rm : |x | ≤ 1} has a fixed point.

Proof : �
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Mapping degree

Let F,G : M → N be two C∞ maps. A C∞ map H : M × [0,1] → N with
H(·,0) = F and H(·,1) = G is called a smooth homotopy from F to G. We write
F ∼ G and call F and G smoothly homotopic if such a map H exists. This defines
an equivalence relation on C∞(M,N). Transitivity is most easily shown using the
following reparametrization trick: if H is a smooth homotopy from F to G, and
τ : [0,1] → [0,1] is a smooth function that is constantly 0 on [0, 1

3 ] and 1 on [ 23,1],
then H̃(p, t) := H(p, τ(t)) defines a smooth homotopy such that H̃(· , t) = F for
t ∈ [0, 1

3 ] and H̃(· , t) = G for t ∈ [23,1].
A smooth homotopy H : M × [0,1] → N from F to G with the additional

property that H(· , t) : M → N is a C∞ diffeomorphism for all t ∈ [0,1] is called a
smooth smooth isotopy between (the diffeomorphisms) F and G.

9.6 Lemma (isotopies) If N is a connected manifold, then for every pair of points
q,q′ ∈ N there is a smooth isotopy H : N × [0,1] → N with H(·,0) = idN and
H(q,1) = q′.

Proof : �

Let now F : M → N be a C∞ map between two manifolds of the same di-
mension. If q ∈ N is a regular value of F, then F−1{q} is a (possibly empty)
0-dimensional submanifold of M , hence a discrete set. If M is compact, then the
number #F−1{q} of points in F−1{q} is finite.

9.7 Theorem (mapping degree modulo 2) Suppose that M,N are two manifolds
of the same dimension, M is compact, and N is connected.

(1) If F,G : M → N are smoothly homotopic, and if q ∈ N is a regular value of
both F and G, then #F−1{q} ≡ #G−1{q} (mod 2).

(2) If F : M → N is a C∞ map, and if q,q′ ∈ N are two regular values of F,
then #F−1{q} ≡ #F−1{q′} (mod 2).

The mapping degree modulo 2 of F is the number

deg2(F) := (#F−1{q} mod 2) ∈ {0,1};

by (2), it does not depend on the choice of the regular value q. Furthermore, by (1),
it is invariant under smooth homotopies, that is, deg2(F) = deg2(G) if F ∼ G.

Proof : �
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If M and N are oriented manifolds of the same dimension, M compact and N
connected, then the mapping degree deg(F) ∈ Z of a smooth map F : M → N is
defined as

deg(F) :=
∑

p∈F−1 {q }

sgn(dFp)

for any regular value q ∈ N of F, where

sgn(dFp) :=

{
+1 if dFp is orientation preserving,
−1 otherwise

(note that for every regular point p ∈ M , the differential dFp : T Mp → T NF(p) is
an isomorphism, since dim(M) = dim(N)). Similarly as for deg2 one can show that
deg(F) does not depend on the choice of q and that deg(F) = deg(G) if F ∼ G.

9.8 Theorem (hairy ball theorem) The sphere Sm admits a nowhere vanishing
tangent vector field if and only if m is odd.

Proof : Let α : Sm → Sm be the antipodal map p 7→ −p. We show first that
deg(α) = (−1)m+1. If p ∈ Sm and (v1, . . . , vm) is a positively oriented basis of
TSm

p (no matter how Sm is oriented), then (v1, . . . , vm) is negatively oriented as
a basis of TSm

−p, because N(−p) = −N(p) for any Gauss map. Furthermore,
dαp(vi) = −vi (note that α is the restriction of a linear map). Thus dαp preserves
orientation if and only if m is odd. Since α is a diffeomorphism, it follows that
deg(α) = sgn(dαp) = (−1)m+1.

Suppose now that X is a nowhere zero smooth tangent vector field on Sm. We
can assume that |X | ≡ 1. Then

H(p, s) := cos(s) p + sin(s) X(p)

defines a smooth homotopy H : Sm × [0, π] → Sm from id to α. By the homotopy
invariance of the degree, 1 = deg(id) = deg(α) = (−1)m+1, so m is odd. Conversely,
if m = 2k − 1, then

X(p) := (p2,−p1, p4,−p3, . . . , p2k, p2k−1)

defines a nowhere vanishing (unit) vector field on Sm ⊂ R2k . �

An important result about the mapping degree is the following theorem due to
Hopf [Ho1927a]: for a compact, connected, oriented manifold M of dimension m,
two maps F,G : M → Sm are homotopic if and only if deg(F) = deg(G). For a
non-orientable manifold M , an analogous result holds with deg2 instead of deg.
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Transverse maps and intersection number

Let Ll and Nn be two manifolds, and let Mm ⊂ Nn be a submanifold. A C∞ map
F : L → N is said to be transverse to M if

T Mq + dFp(T Lp) = T Nq

whenever p ∈ L and F(p) =: q ∈ M .
Note that if M = {q}, then F is transverse to M if and only if q is a regular

value of F. The following statement generalizes Theorem 9.3 further.

9.9 Theorem (transverse maps) Suppose that Ll is a manifold with boundary, Nn

is amanifold, Mm ⊂ Nn is a submanifold of codimension k := n−m, and F : L → N
is a C∞ map with F(L)∩M , ∅. If F |L\∂L and F |∂L are both transverse to M , then
F−1(M) is manifold with boundary F−1(M) ∩ ∂L, and dim(F−1(M)) = l − k ≥ 0.

Thus F−1(M) has the same codimension in L as M in N . The set F−1(M) ∩ ∂L
is non-empty if and only if F(∂L) ∩ M , ∅; then l − 1 ≥ k by the assumption on
F |∂L , and hence dim(F−1(M)) ≥ 1.

Proof : �

9.10 Theorem (parametric transversality theorem) Suppose that L,V,N are
manifolds, M ⊂ N is a submanifold, and H : L × V → N is a C∞ map trans-
verse to M . Then, for almost every v ∈ V , the map

Hv := H(· , v) : L → N

is tranverse to M , that is, the set {v ∈ V : Hv is not transverse to M} has measure
zero in V .

Furthermore, for fixed manifolds L,N and a submanifold M ⊂ N , the set of
all C∞ maps F : L → N transverse to M is dense in C∞(L,N) with respect to the
compact-open (“weak”) C∞ topology on C∞(L,N), see Theorem 2.1, Chapter 3,
in [Hi].

Proof : �

9.11 Theorem (homotopy to a transverse map) If F : L → N is a C∞ map and
M ⊂ N is a submanifold, then there exists a smooth homotopy H : L × [0,1] → N
from F = H(· ,0) to a map F̃ = H(· ,1) transverse to M .

Proof : �
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9.12 Theorem (intersection number modulo 2) Suppose that Ll,Nn are two
manifolds, L is compact, and Mm is a submanifold and a closed subset of N
such that l + m = n. If F,G : L → N are smoothly homotopic and both tranverse
to M , then #F−1(M) ≡ #G−1(M) (mod 2).

Note that since l + m = n and F−1(M) is compact, the number #F−1(M) is
finite.

Proof : �

Let again L,N and M be given as in Theorem 9.12, and let F : L → N be an
arbitrary C∞ map. By Theorem 9.11 there exists a map F̃ : L → N that is smoothly
homotopic to F and transverse to M . By virtue of Theorem 9.12, the number

#2(F,M) := (#F̃−1(M) mod 2) ∈ {0,1}

is independent of the choice of F̃ and invariant under smooth homotopies of F;
it is called the intersection number modulo 2 of F with M . An application is
Theorem 2.11.
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10 Vector bundles, vector fields and flows

Vector bundles

10.1 Definition (smooth vector bundle) A (real, smooth) vector bundlewith fiber
dimension k, or briefly a k-plane bundle, is a triple (π,E,M) such that π : E → M
is a smooth map between manifolds and

(1) for every point p ∈ M , the fiber Ep := π−1{p} has the structure of a k-
dimensional (real) vector space;

(2) for every point q ∈ M there exist an open neighborhood U ⊂ M of q and a
C∞ diffeomorphism ψ : π−1(U) → U ×Rk such that ψ |Ep : Ep → {p} ×Rk

is a linear isomorphism for every p ∈ U.

One calls E the total space, M the base space, and π the bundle projection.
Condition (2) is called the axiom of local triviality, and a pair (ψ,U) as above is
called a bundle chart or a local trivialization around q.

Topological vector bundles are defined analogously, except that then the pro-
jection is merely a continuous map between topological spaces (not necessarily
topological manifolds) and bundle charts are homeomorphisms.

A k-plane bundle (π,E,M) is called trivial if there exists a global bundle
chart ψ : E → M × Rk . For every manifold M there is the trivial Rk-bundle
π : M ×Rk → M over M with π(p, ξ) = p for all (p, ξ) ∈ M ×Rk (the identity map
on M ×Rk is a global bundle chart).

A C∞ map s : M → E is called a section of the vector bundle π : E → M if
π ◦ s = idM , that is, s(p) ∈ Ep for all p ∈ M . The set of all sections is denoted
by Γ(E) or Γ∞(E), to emphasize that smooth maps are meant. Every vector bundle
π : E → M admits the zero section with s(p) = 0 ∈ Ep for all p ∈ M . Note that if
(ψ,U) is a bundle chart, then s |U = ψ−1 ◦ i for i : U → U ×Rk , i(p) = (p,0), thus s
is indeed a smooth map.

10.2 Definition (bundle map) Let π : E → M and π′ : E ′ → M ′ be two vector
bundles. A C∞ map F̃ : E → E ′ is called a bundle map if F̃ maps fibers isomor-
phically onto fibers, that is, F̃ induces a map F : M → M ′ such that F ◦ π = π′ ◦ F̃
and F̃ |Ep : Ep → E ′

F(p)
is an isomorphism for all p ∈ M . If F is a diffeomorphism,

then F̃ is a bundle equivalence. If M = M ′ and F = idM , then F̃ is a bundle
isomorphism.

Note that the map F : M → M ′ induced by a bundle map F̃ : E → E ′ is smooth
as well, because F = π′ ◦ F̃ ◦ s for the zero section s of E .

10.3 Proposition (trivial vector bundle) A k-plane bundle π : E → M is trivial
if and only if it admits k everywhere linearly independent sections.
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Proof : Suppose first that there exist sections s1, . . . , sk ∈ Γ(E) such that
s1(p), . . . , sk(p) are linearly independent for every p ∈ M . Let ψ : E → M × Rk

be the map that sends every linear combination
∑k

i=1 ξ
isi(p) to (p, ξ). Since the si

are smooth, it follows that ψ−1 is smooth. Furthermore, since ψ−1 maps each fiber
{p} × Rk isomorphically onto Ep, all (p,0) ∈ M × Rk are regular points of ψ−1,
thus ψ−1 maps an open neighborhood of M × {0} diffeomorphically into E , and it
then follows easily that ψ−1 and ψ are global diffeomorphisms.

Conversely, given a global bundle chart ψ : E → M×Rk , the sections s1, . . . , sk
defined by si(p) := ψ−1(p, ei) are everywhere linearly independent. �

Let π : E → M be a k-plane bundle, and let {(ψα,Uα)}α∈A be a bundle atlas,
that is, a family of bundle charts such that

⋃
α∈A Uα = M . Every chart is of the form

ψα = (π |π−1(Uα)
,gα) for a C∞ map gα : π−1(Uα) → Rk , where gα |Ep : Ep → Rk

is a linear isomorphism for every p ∈ Uα. Thus, for every pair of indices α, β ∈ A
there is a C∞ map

gβα : Uα ∩Uβ → GL(k,R), gβα(p) = gβ |Ep ◦ (gα |Ep )
−1.

The family {gβα} satisfies the so-called cocyle condition

gαα(p) = idRk , gγβ(p) ◦ gβα(p) = gγα(p) (p ∈ Uα ∩Uβ ∩Uγ).

If G is a subgroup of GL(k,R), and if E admits a bundle atlas with transition maps
gβα : Uα ∩ Uβ → G, then E is called a vector bundle with structure group G.
Conversely, given an open cover {Uα}α∈A of M and a family {gβα} of C∞ maps
gβα : Uα∩Uβ → GL(k,R) satisfying the above cocycle condition, one can construct
a corresponding k-plane bundle over M from these data.

The cotangent bundle

Next we discuss the cotangent bundle T M∗ of an m-dimensional manifold M . The
total space

T M∗ =
⋃
p∈M

T M∗p

is the (disjoint) union of the dual spaces

T M∗p = {λ : T Mp → R : λ is linear},

and π : T M∗ → M is given by π(λ) = p for λ ∈ T M∗p. If (ϕ,U) is a chart of M ,
then

ψ(λ) =

(
π(λ),

m∑
i=1

λ
( ∂

∂ϕi

���
π(λ)

)
ei

)
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defines a corresponding bundle chart ψ : π−1(U) → U × Rm of T M∗. For p ∈ U,
the differentials dϕ1

p, . . . , dϕ
m
p : T Mp → R constitute the basis of T M∗p dual to

∂
∂ϕ1

��
p
, . . . , ∂

∂ϕm

��
p
, as

dϕip
( ∂

∂ϕ j

���
p

)
=
∂ϕi

∂ϕ j
(p) = δij .

The maps dϕi : p 7→ dϕip are sections of TU∗. A global section ω ∈ Γ(T M∗),
p 7→ ωp ∈ T M∗p, is called a covector field or a 1-form on M . With respect to the
chart (ϕ,U), every such ω has a unique local representation

ω|U =

m∑
i=1

ωi dϕi

for the C∞ functions ωi : U → R defined by ωi(p) = ωp

(
∂
∂ϕi

��
p

)
. In particular, for

any f ∈ C∞(M), the differential df : p 7→ dfp is a 1-form with local representation

df |U =
m∑
i=1

∂ f
∂ϕi

dϕi,

since dfp
(
∂
∂ϕi

��
p

)
=

∂ f

∂ϕi (p).

Constructions with vector bundles

10.4 Definition (pull-back bundle) Suppose that π′ : E ′ → M ′ is a k-plane bun-
dle and F : M → M ′ is a C∞ map from another manifold M into M ′. The k-plane
bundle π : F∗E ′→ M with total space

F∗E ′ := {(p, v) ∈ M × E ′ : π′(v) = F(p)}

and projection (p, v) 7→ p is called the pull-back bundle of π′ and F or the bundle
induced by π′ and F.

The map F̃ : F∗E ′ → E ′, F̃(p, v) = v ∈ E ′
F(p)

, is a bundle map over F. If
(ψ ′,U ′) is a bundle chart for E ′, ψ ′ = (π′,g′), then

ψ : π−1(U) → U ×Rk, ψ(p, v) = (p,g′(v)),

is a corresponding bundle chart for F∗E ′ over U := F−1(U ′). If {(ψ ′α,U ′α)} is a
bundle atlas of E ′ with transition maps g′βα : U ′α ∩U ′β → GL(k,R), then this gives
a bundle atlas {(ψα,Uα)} of E with transitions maps

gβα = g′βα ◦ F : Uα ∩Uβ → GL(k,R).

Note that if E ′ = T M ′, then a section s ∈ Γ(F∗T M ′), s(p) = (p,X(p)), corresponds
to a vector field along F, as X(p) ∈ T M ′

F(p)
for all p ∈ M .
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10.5 Definition (Whitney sum) Suppose that π : E → M and π′ : E ′ → M are
vector bundles of rank k and k ′, respectively, over the same base space M . The
Whitney sum or direct sum of π and π′ is the vector bundle π̄ : E ⊕ E ′→ M of rank
k + k ′ with total space

E ⊕ E ′ = {(v, v′) ∈ E × E ′ : π(v) = π′(v′)}

and projection (v, v′) 7→ π(v) = π′(v′); that is, (E ⊕ E ′)p = Ep ⊕ E ′p.

If ψ = (π,g) and ψ ′ = (π′,g′) are bundle charts of E and E ′, respectively, over
the same open set U ⊂ M , then

ψ̄ : π̄−1(U) → U ×Rk+k′, ψ̄(v, v′) = (π̄(v, v′),g(v),g′(v′)),

is a bundle chart for E ⊕ E ′. Transition maps satisfy

ḡβα(p) = gβα(p) ⊕ g′βα(p) ∈ GL(k + k ′,R).

The bundles E ⊕ E ′ and E ′ ⊕ E are isomorphic, and

(E ⊕ E ′) ⊕ E ′′ = E ⊕ (E ′ ⊕ E ′′).

However, E ⊕ E ′′ � E ′ ⊕ E ′′ does in general not imply that E � E ′.

If π : E → M and π′ : E ′ → M are again given as in Definition 10.5, then one
may similarly form the tensor product π̄ : E ⊗ E ′ → M of π and π′ (of rank kk ′)
with fibers (E ⊗ E ′)p = Ep ⊗ E ′p and transitions maps satisfying

ḡβα(p) = gβα(p) ⊗ g′βα(p) ∈ GL(kk ′,R)

(see Appendix C).

10.6 Definition (tensor bundle, tensor field) Let M be an m-dimensional mani-
fold. The bundle

Tr ,sM := T M ⊗ · · · ⊗ T M︸              ︷︷              ︸
r

⊗T M∗ ⊗ · · · ⊗ T M∗︸                 ︷︷                 ︸
s

of rank mr+s with fibers Tr ,sMp = (T Mp)r ,s is called the (r, s)-tensor bundle over
M . An (r, s)-tensor field T on M is a section T ∈ Γ(Tr ,sM).

Note that T1,0M = T M and T0,1M = T M∗. By convention, T0,0M = C∞(M).
In a chart (ϕ,U) of M , the tensor field T ∈ Γ(Tr ,sM) has a unique representation

T |U =
∑

T i1...ir
j1... js

∂

∂ϕi1
⊗ · · · ⊗

∂

∂ϕir
⊗ dϕ j1 ⊗ · · · ⊗ dϕ js

for C∞ functions T i1...ir
j1... js

: U → R.
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Now let T : (Γ(T M))s → Γ(T M) be a multilinear (s-linear) map. We say
that T defines a (1, s)-tensor field if for all p ∈ M , the value of the vector field
T(X1, . . . ,Xs) at p depends only on X1(p), . . . ,Xs(p); that is, we get an s-linear map
Tp : (T Mp)

s → T Mp or, equivalently, an (1 + s)-linear map

T ′p : T M∗p × (T Mp)
s → R, T ′p(λ, v1, . . . , vs) = λ(Tp(v1, . . . , vs)),

hence a tensor T ′p ∈ T1,sMp over T Mp.

10.7 Theorem (tensor fields) An s-linear map T : (Γ(T M))s → Γ(T M) defines a
(1, s)-tensor field if and only if T is C∞(M)-homogeneous in every argument, that
is,

T(X1, . . . ,Xi−1, f Xi,Xi+1, . . . ,Xs) = f T(X1, . . . ,Xs)

for any f ∈ C∞(M).

The theorem also holds in the following form for (r, s)-tensor fields: An (r + s)-
linear map T : (Γ(T M∗))r × (Γ(T M))s → C∞(M) defines an (r, s)-tensor field if
and only if T is C∞(M)-homogeneous in every argument.

Proof : �

Vector fields and flows

Let X ∈ Γ(T M) be a vector field on a manifold M . A curve c : (a, b) → M is an
integral curve of X if

Ûc(t) = Xc(t)

for all t ∈ (a, b).

10.8 Theorem (local flow) For all p ∈ M there exist an open neighborhoodU of p
and an ε > 0 such that for all q ∈ U there is a unique integral curve cq : (−ε, ε) → M
of X with cq(0) = q. The map Φ : (−ε, ε) × U → M , Φ(t,q) = Φt (q) := cq(t), is
C∞.

Proof : Choose a chart (ψ,V) of M around p. A curve c : (a, b) → V is an integral
curve of X if and only if γ := ψ ◦ c is an integral curve of the vector field ξ on
ψ(V) defined by ξψ(p) := dψp(Xp), that is, Ûγ(t) = ξγ(t) for all t ∈ (a, b). Now the
result follows from the theorem on existence, uniqueness, and smooth dependence
on initial conditions of solutions to ordinary differential equations. �

The map Φ is called a local flow of X around p. It follows from the uniqueness
assertion in Theorem 10.8 that

Φ
t (Φs(q)) = Φs+t (q)
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whenever s, t, s + t ∈ (−ε, ε) and q,Φs(q) ∈ U. Then, for any open neighborhood
V ⊂ U of q with Φs(V) ⊂ U, Φs |V is a C∞ diffeomorphism from V onto Φs(V),
because Φ−s ◦ Φs |V = Φ

0 |V = idV .
A vector field X on M is completely integrable if for all q ∈ M there exists

an integral curve cq : R → M of X with cq(0) = q. Then X induces a global
flow Φ : R × M → M and a corresponding 1-parameter family of diffeomorphisms
{Φt }t∈R.

10.9 Proposition (complete integrability) Every vector field X ∈ Γ(T M) with
compact support is completely integrable.

Proof : For all p ∈ M there is a local flow Φ : (−εp, εp) × Up → M of X . Then
finitely many neighborhoods Up1, . . . ,Upk cover the compact support of X . For
ε := min{εpi : i = 1, . . . , k}, it follows that Φ is defined on (−ε, ε) × M , where
Φt (p) = p for all t if X(p) = 0. Writing any t ∈ R as t = j · ε2 + r with j ∈ Z and
r ∈ [0, ε2 ), we conclude that Φ

t = Φr ◦ (Φε/2)j is the time t flow of X . �

10.10 Lemma (flow-box) If X ∈ Γ(T M), p ∈ M , and Xp , 0, then there exists a
chart (ϕ,U) around p such that X |U = ∂

∂ϕ1 .

Proof : This follows from the corresponding Euclidean result, Lemma A.4. �

The Lie bracket

Let X,Y ∈ Γ(T M). For f ∈ C∞(M), the function Y ( f ) ∈ C∞(M) maps q ∈ M to
Yq( f ) = dfq(Yq) ∈ R. For all p ∈ M ,

[X,Y ]p( f ) := Xp(Y ( f )) − Yp(X( f )) ( f ∈ C∞(M))

defines a derivation at p. This yields a vector field [X,Y ] ∈ Γ(T M), called the Lie
bracket of X and Y . Briefly, [X,Y ] = XY − Y X .

10.11 Theorem (Lie bracket) For X,Y, Z ∈ Γ(T M) and f ,g ∈ C∞(M), the fol-
lowing properties hold:

(1) [X,Y ] is bilinear, and [Y,X] = −[X,Y ];

(2) [ f X,gY ] = f g[X,Y ]+ f X(g)Y − gY ( f )X , in particular [ f X,Y ] = f [X,Y ] −
Y ( f )X and [X,gY ] = g[X,Y ] + X(g)Y ,

(3) [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (Jacobi identity).

Proof : �
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For a chart (ϕ,U) and f ∈ C∞(M),

∂

∂ϕi

(
∂

∂ϕ j
( f )

)
=

∂

∂ϕi

(
∂( f ◦ ϕ−1)

∂x j
◦ ϕ

)
=
∂2( f ◦ ϕ−1)

∂xi ∂x j
◦ ϕ,

thus
[
∂
∂ϕi ,

∂
∂ϕ j

]
= 0. It follows from this fact and properties (1) and (2) above that

if X |U =
∑

i X i ∂
∂ϕi and Y |U =

∑
j Y j ∂

∂ϕ j , then

[X,Y ]|U =
∑
i, j

(
X i ∂Y j

∂ϕi
∂

∂ϕ j
− Y j ∂X i

∂ϕ j

∂

∂ϕi

)
=

∑
i

(∑
j

X j ∂Y i

∂ϕ j
− Y j ∂X i

∂ϕ j

)
∂

∂ϕi
.

The following results relates Lie brackets to flows.

10.12 Theorem (Lie derivative) If Φ is a local flow of X around p, then

[X,Y ]p = lim
t→0

d(Φ−t )(YΦt (p)) − Yp
t

=
d
dt

���
t=0

d(Φ−t )(YΦt (p)).

The right side of this identity is called the Lie derivative of Y in direction of X
at the point p and is denoted by (LXY )p; thus [X,Y ] = LXY .

Proof : �

Let N be an n-dimensional manifold. An m-dimensional C∞ distribution ∆ on
N assigns to each p ∈ N an m-dimensional linear subspace ∆p ⊂ T Np such that
for every point p ∈ N there exist an open neighborhood U ⊂ N of p and vector
fields X1, . . . ,Xm ∈ Γ(TU) with ∆q = span(X1(q), . . . ,Xm(q)) for all q ∈ U. The
distribution ∆ is called involutive or completely integrable if for all vector fields
X,Y ∈ Γ(T N) with Xp,Yp ∈ ∆p for all p ∈ N , also [X,Y ]p ∈ ∆p for all p ∈ N .
An injective immersion I : M → N of an m-dimensional manifold M is called an
integral manifold of ∆ if dIp(T Mp) = ∆p for all p ∈ M . The theorem of Frobenius
says that for every p ∈ N there exists an integral manifold of ∆ through p if and
only if ∆ is involutive.
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11 Differential forms

Basic definitions

Let M be a C∞ manifold of dimension m. For p ∈ M , Λs(T M∗p) denotes the vector
space of alternating s-linear maps (T Mp)

s → R (see Appendix C), and

Λs(T M∗) :=
⋃
p∈M

Λs(T M∗p)

denotes the corresponding bundle.

11.1 Definition (differential form) A differential form of degree s or an s-form on
M is a (smooth) section of Λs(T M∗). We will denote the vector space of s-forms
on M more briefly by Ωs(M) := Γ(Λs(T M∗)).

By convention, Λ0(T M∗p) = R, hence Ω0(M) = C∞(M). Recall also that
Λs(T M∗p) has dimension

(m
s

)
, in particular Ωs(M) = {0} for s > m.

For ω ∈ Ωs(M) and θ ∈ Ωt (M), the exterior product

ω ∧ θ ∈ Ωs+t (M)

is defined by (ω ∧ θ)p := ωp ∧ θp for all p ∈ M (see Definition C.3). Note that

θ ∧ ω = (−1)stω ∧ θ,

in particular ω ∧ω = 0 if s is odd. The exterior product is bilinear and associative.
For f ∈ C∞(M) = Ω0(M) and ω ∈ Ωs(M), f ∧ ω = fω.

In a chart (ϕ,U), a form ω ∈ Ωs(M) has the representation

ω |U =
∑

1≤i1<...<is ≤m
ωi1...is dϕi1 ∧ . . . ∧ dϕis

with components ωi1...is = ω
(
∂

∂ϕi1 , . . . ,
∂

∂ϕis

)
∈ C∞(U).

Recall that for f ∈ C∞(M), the pointwise differential p 7→ dfp is a 1-form
df ∈ Γ(T M∗) = Γ(Λ1(T M∗)) = Ω1(M).

11.2 Theorem (exterior derivative) There exists a unique sequence of linear op-
erators

d : Ωs(M) → Ωs+1(M), s = 0,1, . . . ,

with the following properties:

(1) for f ∈ Ω0(M) = C∞(M), df is the differential of f , thus df (X) = X( f ) for
X ∈ Γ(T M);

(2) d ◦ d = 0;

59



(3) d(ω ∧ θ) = dω ∧ θ + (−1)sω ∧ dθ for ω ∈ Ωs(M) and θ ∈ Ωt (M).

Proof : �

The operators d are local, that is, (dω)|U = d(ω |U ) whenever ω ∈ Ωs(M) and
U ⊂ Rm is open. In a chart (ϕ,U),

dω |U =
∑

1≤i1<...<is ≤m
dωi1...is ∧ dϕi1 ∧ . . . ∧ dϕis .

11.3 Theorem (exterior derivative, coordinate-free) For a formω ∈ Ωs(M) and
vector fields X1, . . . ,Xs+1 ∈ Γ(T M),

dω(X1, . . . ,Xs+1) =

s+1∑
i=1
(−1)i+1Xi

(
ω(X1, . . . , X̂i, . . . ,Xs+1)

)
+

∑
1≤i< j≤s+1

(−1)i+jω
(
[Xi,Xj],X1, . . . , X̂i, . . . , X̂j, . . . ,Xs+1

)
;

here, X̂i signifies that the entry Xi does not occur.

In particular, if ω ∈ Ω1(M), then

dω(X,Y ) = X(ω(Y )) − Y (ω(X)) − ω([X,Y ]).

Proof : �

For a C∞ map F : N → M and ω ∈ Ωs(M), the pull-back form F∗ω ∈ Ωs(N)
is defined by

(F∗ω)p
(
v1, . . . , vs

)
:= ωF(p)

(
dFp(v1), . . . , dFp(vs)

)
for p ∈ N and v1, . . . , vs ∈ T Np. If f ∈ C∞(M) = Ω0(M), then F∗ f := f ◦ F.

11.4 Proposition (pull-back of forms) For a C∞ map F : N → M and forms
ω ∈ Ωs(M) and θ ∈ Ωt (M),

(1) F∗(ω ∧ θ) = F∗ω ∧ F∗θ,

(2) F∗(dω) = d(F∗ω).

Proof : Exercise. �
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Integration of forms

Let M be an oriented manifold of dimension m. A set M ′ ⊂ M is measurable
if ϕ(M ′ ∩ U) ⊂ Rm is (Lebesgue) measurable for every chart (ϕ,U) of M . A
measurable decomposition of M is a countable family {Mα}α∈A of measurable
subsets of M such that

(1) M \
⋃
α∈A Mα has measure zero (Definition 9.1), and

(2) Mα ∩ Mβ has measure zero whenever α , β.

For every atlas of M there is a measurable decomposition {Mα}α∈A of M such that
every set Mα is contained in the domain of some chart of the atlas.

Let now ω ∈ Ωm(M) be a form of degree m = dim(M), and let (ϕ,U) be a
positively oriented chart of M . Then

ω |U = ω
ϕ dϕ1 ∧ . . . ∧ dϕm

for ωϕ = ω
(
∂
∂ϕ1 , . . . ,

∂
∂ϕm

)
∈ C∞(U). If (ψ,V) is another positively oriented chart

and H := ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is the change of coordinates, then by
applying ω |V = ωψ dψ1 ∧ . . . ∧ dψm to ∂

∂ϕ1 , . . . ,
∂

∂ϕm one gets that

ωϕ(p) = ωψ(p) det
(
∂ψi

∂ϕ j
(p)

)
= ωψ(p) det JH (ϕ(p))

for all p ∈ U ∩ V , where the Jacobi determinant is positive.
Now let M ′ ⊂ U be a measurable set. The form ω is integrable over M ′ if the

integral of
��ωϕ ◦ ϕ−1

�� over ϕ(M ′) is finite; then∫
M′
ω :=

∫
ϕ(M′)

ωϕ ◦ ϕ−1 dx

defines the integral of ω over M ′. If (ψ,V) is another positively oriented chart with
M ′ ⊂ V and H is the change of coordinates, then it follows that∫

ψ(M′)
ωψ ◦ ψ−1 dy =

∫
ϕ(M′)

ωψ ◦ ϕ−1 |det JH | dx =
∫
ϕ(M′)

ωϕ ◦ ϕ−1 dx

by the change of variables formula and the aforementioned transformation rule for
the coefficients of ω.

11.5 Definition (integral of a form) The form ω ∈ Ωm(M) is integrable over M
if there exist a measurable decomposition {Mα}α∈A and positively oriented charts
(ϕα,Uα) of M with Mα ⊂ Uα such that∑

α∈A

∫
ϕα(Mα)

��ωϕα ◦ ϕ−1
α

�� dx < ∞.
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In this case, ∫
M

ω :=
∑
α∈A

∫
Mα

ω =
∑
α∈A

∫
ϕα(Mα)

ωϕα ◦ ϕ−1
α dx

defines the integral of ω over M .

The integral is independent of the choices of (ϕα,Uα) and Mα. Forms with
compact support are integrable: this clearly holds if spt(ω) lies in the domain of a
single chart, and in the general case one may use a partition of unity to write ω as
a sum of finitely many forms with this property.

If ω is integrable over M , and N is another oriented m-dimensional manifold
and F : N → M is a diffeomorphism, then∫

N

F∗ω = ε
∫
M

ω

where ε = 1 if F is orientation preserving and ε = −1 otherwise. Furthermore, if
N is compact and M is connected, and F : N → M is an arbitrary C∞ map, then
one can show that

∫
N

F∗ω = deg(F)
∫
M
ω.

11.6 Theorem (Stokes) Let Mm be an oriented manifold with (possibly empty)
boundary ∂M , and let ω ∈ Ωm−1(M) be an (m − 1)-form with compact support.
Then ∫

M

dω =
∫
∂M

ω

(precisely,
∫
M

dω =
∫
∂M

i∗ω for the inclusion map i : ∂M → M).

Here the boundary ∂M is equipped with the induced orientation: a ba-
sis (v1, . . . , vm−1) of T(∂M)p ⊂ T Mp is positively oriented if and only if
(v, v1, . . . , vm−1) is positively oriented in T Mp for every vector v in the “outer”
connected component of T Mp \ T(∂M)p.

Proof : �

A volume form ω on Mm is a nowhere vanishing m-form, that is, ωp , 0 ∈
Λm(T M∗p) for all p ∈ M .

11.7 Theorem (volume form) There exists a volume form on M if and only if M
is orientable.

Proof : Exercise. �
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Integration without orientation

If V is an m-dimensional (real) vector space and 0 , ω ∈ Λm(V∗), then

|ω | : V × · · · × V → [0,∞), |ω |(v1, . . . , vm) := |ω(v1, . . . , vm)|,

is called a volume element on V . Now let M be an m-dimensional manifold. A
(C∞) volume element dµ on M assigns to every point p ∈ M a volume element dµp
on T Mp such that, for every chart (ϕ,U) of M ,

dµ|U = %ϕ
��dϕ1 ∧ . . . ∧ dϕm

��
for some C∞ density function %ϕ : U → (0,∞). (The notation dµ stems from
measure theory and is unrelated to the exterior derivative of differential forms.) If
(ψ,V) is another chart and H = ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is the coordinate
change, then

%ϕ(p) = %ψ(p) |det JH (ϕ(p))|

for all p ∈ U ∩ V , similarly as for the coefficients of m-forms.
If dµ is a volume element on M and M is orientable, then there exists a volume

form ω ∈ Ωm(M) with dµ = |ω|. For a non-orientable M , such a form exists only
locally, due to Theorem 11.7.

From a volume element dµ on M one obtains a measure µ on (the σ-algebra of
measurable subsets of) M as follows: if {Mα}α∈A is a measurable decomposition
of M such that for every α there is a chart (ϕα,Uα) with Mα ⊂ Uα, then

µ(B) :=
∑
α

∫
ϕα(B∩Mα)

%ϕα ◦ ϕ−1
α dx

for every measurable set B ⊂ M . It follows from the change of variable formula
and the above transformation rule for the densities that the measure is well-defined.
Now, if f : M → R is a measurable function, then the meaning of

∫
M

f dµ results
from this measure. However, the integral can also be defined directly in terms of
the volume element dµ: f is integrable if∫

M

| f | dµ :=
∑
α

∫
ϕα(Mα)

(| f | %ϕα ) ◦ ϕ−1
α dx < ∞;

the same formula with f in place of | f | then defines the integral
∫
M

f dµ.
For a Riemannian manifold (Mm,g), the volume element dµg induced by g is

given in a chart (ϕ,U) by

dµg |U :=
√

det(gϕi j) |dϕ
1 ∧ . . . ∧ dϕm |,

where g |U =
∑
g
ϕ
i j dϕi ⊗ dϕ j .

63



De Rham cohomology

A form ω ∈ Ωs(M) is closed if dω = 0. The form ω is called exact if there exists a
θ ∈ Ωs−1(M) such that ω = dθ; furthermore, by convention, 0 ∈ C∞(M) = Ω0(M)
is the only exact 0-form. Every m-form on an m-dimensional manifold M is closed,
because Ωm+1(M) = {0}. Since d ◦ d = 0, every exact form is closed.

11.8 Definition (de Rham cohomology) For s ≥ 0, the quotient vector space

Hs
dR(M) :=

{ω ∈ Ωs(M) : ω is closed}
{ω ∈ Ωs(M) : ω is exact}

is called the de Rham cohomology of M in degree s. For a closed form ω ∈ Ωs(M),

[ω] := {ω′ ∈ Ωs(M) : ω′ − ω is exact} ∈ Hs
dR(M)

denotes the cohomology class of ω. Two forms ω,ω′ ∈ Ωs(M) are cohomologous
if [ω] = [ω′].

The dimension bs(M) := dim Hs
dR(M) is called the s-th Betti number of M , and

χ(M) :=
m∑
s=0
(−1)s bs(M)

is the Euler characteristic of M . If every closed s-form is exact, then Hs
dR(M) is a

trivial (one-point) vector space, which will be denoted by 0. The subscript dR will
often be omitted in the following.

Examples

1. H0(M) = { f ∈ C∞(M) : df = 0} is the vector space of the locally constant
functions on M . If M has a finite number k of connected components, then
H0(M) ' Rk (isomorphic).

2. On M = R2 \ {(0,0)},

ω =
−y

x2 + y2 dx +
x

x2 + y2 dy

defines a 1-form that is closed but not exact; in particular, H1(M) , 0.
Locally, ω agrees with the differential dϕ of a polar angle ϕ with respect to
the origin (0,0), but ϕ cannot be defined continuously on all of M .

In the following, M,N are two manifolds and F ∈ C∞(N,M). For s ≥ 0, the
pull-back operator F∗ : Ωs(M) → Ωs(N) induces a well-defined linear map

F∗ : Hs(M) → Hs(N), F∗[ω] = [F∗ω].
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If L is another manifold and G ∈ C∞(M, L), then

F∗ ◦ G∗ = (G ◦ F)∗ : Hs(L) → Hs(N);

in particular, Hs(M) and Hs(N) are isomorphic if F is a diffeomorphism.

11.9 Theorem (Poincaré lemma) If F,G ∈ C∞(N,M) are smoothly homotopic,
F ∼ G, then the induced maps F∗,G∗ : Hs(M) → Hs(N) agree in every degree
s ≥ 0.

Proof : �

Two manifolds M and M̄ are called (smoothly) homotopy equivalent if there
exist smooth maps F̄ : M → M̄ and F : M̄ → M such that F ◦ F̄ ∼ idM and
F̄ ◦ F ∼ idM̄ ; then F and F̄ are (smooth) homotopy equivalences inverse to each
other. The manifold M is (smoothly) contractible if idM is smoothly homotopic
to a constant map M → {p0} ⊂ M; this is the case if and only if M is homotopy
equivalent to a one-point space.

11.10 Corollary (1) If M and M̄ are homotopy equivalent, then Hs(M) '
Hs(M̄) for all s ≥ 0.

(2) If M is contractible, then H0(M) ' R and Hs(M) = 0 for s ≥ 1.

Proof : �

If M is a manifold and U,V ⊂ M are two open sets with U ∪V = M , then there
exists a long exact sequence

0→H0(M) → H0(U) ⊕ H0(V) → H0(U ∩ V) → . . .

. . .→Hs(M) → Hs(U) ⊕ Hs(V) → Hs(U ∩ V)

→Hs+1(M) → Hs+1(U) ⊕ Hs+1(V) → Hs+1(U ∩ V) → . . .

(thus the image of each of these linear maps equals the kernel of the following one),
theMayer–Vietoris sequence, which constitutes a very useful tool to determine the
de Rham cohomology.

Example The sphere Sm ⊂ Rm+1 (m ≥ 1) is covered by the two open sets
U := Sm \ {−em+1} and V := Sm \ {em+1}, both of which are contractible, and
U ∩ V is homotopy equivalent to Sm−1. By Corollary 11.10, for all s ≥ 1, both
Hs(U) ⊕ Hs(V) and Hs+1(U) ⊕ Hs+1(V) are trivial, hence the map

Hs(Sm−1) ' Hs(U ∩ V) → Hs+1(M) = Hs+1(Sm)
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in the Mayer–Vietoris sequence is injective as well as surjective. Hence, for
m, s ≥ 1, the recursion formula Hs+1(Sm) ' Hs(Sm−1) holds. Furthermore, since
H0(Sm) ' R and H0(U) ⊕ H0(V) ' R2, one obtains the exact sequence

0→ R→ R2 → H0(U ∩ V) → H1(Sm) → 0.

If m = 1, then H0(U ∩ V) ' R2 and hence H1(S1) ' R, and if m ≥ 2, then
H0(U ∩ V) ' R and thus H1(Sm) = 0. It follows that Hs(Sm) ' R for s ∈ {0,m}
and Hs(Sm) = 0 otherwise.

We mention two other important results, in both of which M is a compact
oriented manifold (without boundary) of dimension m, and s ∈ {0,1, . . . ,m}.

The Poincaré duality theorem says that the bilinear form

( · , · ) : Hs(M) × Hm−s(M) → R, ([ω], [θ]) :=
∫
M

ω ∧ θ

(which is well-defined by the theorem of Stokes), is non-degenerate. This yields
an isomorphism Hs(M) ' (Hm−s(M))∗, which assigns to [ω] the linear form
[θ] 7→ ([ω], [θ]). For example, if M is connected, then this implies that Hm(M) '
H0(M) ' R.

Nowwe letH(∞)s (M,R) denote the smooth singular homology of M . An element
[σ] of the vector space H(∞)s (M,R) is a homology class {σ′ : σ′ − σ = ∂τ} of
smooth singular s-chains σ′ with real coefficients and ∂σ′ = 0. It can be shown
that the bilinear form

( · , · ) : Hs
dR(M) × H(∞)s (M,R) → R, ([ω], [σ]) :=

∫
σ
ω,

is non-degenerate. (It follows from the generalized theorem of Stokes for smooth
singular s-chains that it is well-defined.) This yields a canonical isomorphism
Hs
dR(M) ' (H

(∞)
s (M,R))∗, sending [ω] to the linear form [σ] 7→ ([ω], [σ]). Further-

more there are canonical isomorphisms (H(∞)s (M,R))∗ ' Hs
(∞)
(M,R) ' Hs(M,R)

to the smooth singular cohomology and the usual singular cohomology, respec-
tively. In particular Hs

dR(M) and Hs(M,R) are isomorphic; this is the theorem of
de Rham.
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12 Lie groups

Lie groups and Lie algebras

A topological group (G, ·) is a group endowed with a topology such that the map

G × G→ G, (g, h) 7→ gh−1,

is continuous (equivalently, both the group multiplication G ×G→ G and the map
G→ G sending each group element to its inverse are continuous).

12.1 Definition (Lie group) A Lie group (G, ·) is a group with the structure of a
C∞ manifold such that the map G × G→ G, (g, h) 7→ gh−1, is C∞.

Examples

1. Rm with vector addition;

2. C∗ = C \ {0} with complex multiplication;

3. S1 ⊂ C∗.

4. If G,H are Lie groups, then the product manifold G × H, equipped with the
multiplication (g, h)(g′, h′) := (gg′, hh′), is a Lie group.

5. Tm = S1 × . . . × S1 (m factors).

6. GL(n,R) = {A ∈ Rn×n : det(A) , 0} with matrix multiplication; likewise,
GL(n,C).

7. GL(n,R) ×Rn, equipped with the multiplication

(A, v)(B,w) := (AB, Aw + v),

is (isomorphic to) the Lie group of affine transformations gA,v : x 7→ Ax + v
of Rn.

Let G,G′ be two Lie groups. A Lie group homomorphism F : G → G′ is a
C∞ group homomorphism; a Lie group isomorphism is, in addition, a (C∞) dif-
feomorphism (and hence also a group isomorphism). A Lie group homomorphism
F : G → G′ is also called a representation of G in G′, in particular when G′ is
GL(n,R) or GL(n,C).

In the following, (G, ·) denotes a Lie group with neutral element e. For every
g ∈ G, the left multiplication

Lg : G→ G, Lg(h) := gh,

is a diffeomorphism of G with inverse (Lg)
−1 = Lg−1 . Likewise, the right multipli-

cation Rg : G→ G, Rg(h) = hg, is a diffeomorphism.
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12.2 Lemma Let (G, ·) be a connected Lie group, and letU ⊂ G be a neighborhood
of e. Then U generates G, that is, every g ∈ G can be written as a product
g = g1 . . . gk of finitely many elements of U.

Proof : We assume thatU is open. Then it follows inductively thatUk = {g1 . . . gk :
g1, . . . ,gk ∈ U} is open for every k ≥ 1: if Uk is open, then so is Ukg = Rg(Uk)

for all g ∈ U, hence Uk+1 =
⋃

g∈U Ukg is open. Therefore V :=
⋃∞

k=1 Uk+1 is
open. On the other hand, if g ∈ G \V , then gh ∈ G \V for all h ∈ U, for otherwise
g ∈ V h−1 = V ; so gU = Lg(U) is an open neighborhood of g disjoint from V . Thus
G \ V is open as well. Since e ∈ V and G is connected, it follows that V = G, that
is, U generates G. �

For a general Lie group G, the connected component containing the neutral
element is usually denoted by G0. For g ∈ G, the diffeomorphisms Lg and Rg map
G0 onto the connected component ofG containing g. ThusG0 is a normal subgroup
of G whose cosets are the connected components of G. The quotient G/G0 is a
countable group (and thus a 0-dimensional Lie group with the discrete topology).

12.3 Definition (Lie algebra) A Lie algebra V over R is a vector space over R
together with a bilinear map [ · , · ] : V × V → V , the Lie bracket of V , such that for
all X,Y, Z ∈ V ,

(1) [Y,X] = −[X,Y ] (anti-commutativity);

(2) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity).

Examples

1. Any vector space V (over R) with the trivial bracket [ · , · ] ≡ 0 (abelian Lie
algebra).

2. The vector space Γ(T M) of C∞ vector fields on a manifold M with the Lie
bracket [X,Y ]( f ) := X(Y ( f )) − Y (X( f )).

3. Rn×n with [A,B] := AB − BA (matrix multiplication).

4. R3 with the vector product [X,Y ] := X × Y .

5. Any 2-dimensional vector space with basis (X,Y ) and the bracket defined by
[X,X] := 0, [Y,Y ] := 0, −[Y,X] = [X,Y ] := Y , and bilinear extension.

Let V,V ′ be two Lie algebras. A Lie algebra homomorphism L : V → V ′ is a
linearmap such that L[X,Y ] = [LX, LY ] for all X,Y ∈ V ; aLie algebra isomorphism
is, in addition, a linear isomorphism.
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A vector field X on a Lie group G is called left-invariant if

Lg∗X = X ◦ Lg

for all g ∈ G, that is, Lg∗Xh := d(Lg)h(Xh) = Xgh for all g, h ∈ G. For every vector
X0 ∈ TGe there exists a unique left-invariant vector field X with Xe = X0, defined
by

Xg := Lg∗X0;

then Lg∗Xh = Lg∗Lh∗X0 = (Lg ◦ Lh)∗X0 = Lgh∗X0 = Xgh for all h ∈ H. Left-
invariant vector fields are C∞, and if X,Y are left-invariant, then [X,Y ] is left-
invariant (exercise). Thus the left-invariant vector fields constitute a Lie subalgebra
of (Γ(TG), [ · , · ]).

12.4 Definition (Lie algebra of a Lie group) The Lie algebra g of a Lie group G
is the vector space TGe with the bracket defined by

[X0,Y0] := [X,Y ]e

for all X0,Y0 ∈ TGe, where X,Y denote the left-invariant vector fields on G such
that Xe = X0 and Ye = Y0.

Examples

1. The Lie algebra of G = GL(n,R) is the vector space TGe = gl(n,R) = Rn×n.
If A ∈ gl(n,R), and if c : (−ε, ε) → GL(n,R) is a smooth curve with c(0) = e
and c′(0) = A, then

Lg∗A = Lg∗(c′(0)) = (Lg ◦ c)′(0) = gc′(0) = gA ∈ TGg

for all g ∈ GL(n,R); hence g 7→ gA is the corresponding left-invariant vector
field, viewed as a map from G to Rn×n. For A,B ∈ gl(n,R) and Xg := gA
and Yg := gB, the Lie bracket is given by

[A,B] = [X,Y ]e = AB − BA (matrix product).

To see this, let ϕik : GL(n,R) → R denote the global coordinate function
that assigns to g the matrix entry gik . The vector Yg ∈ TGg, applied as a
derivation to ϕik , returns the corresponding matrix entry of Yg = gB, thus

Yg(ϕik) = (gB)ik =
n∑
j=1

gi jbjk =

n∑
j=1

bjk ϕ
i j(g).

Likewise, Xe(ϕ
i j) = A(ϕi j) = ai j and (AB)(ϕik) = (AB)ik , hence

Xe(Y (ϕik)) =
n∑
j=1

bjk A(ϕi j) =
n∑
j=1

ai jbjk = (AB)(ϕik).

Since this holds for all i, k ∈ {1, . . . ,n} and also with interchanged roles of A
and B, this gives the result.
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2. The Lie algebra of GL(n,C) is the vector space gl(n,C) = Cn×n with the
bracket given by [A,B] = AB − BA as above.

3. SL(n,R) = {g ∈ GL(n,R) : det(g) = 1}, dimension n2 − 1,

sl(n,R) = {A ∈ Rn×n : trace(A) = 0}.

4. SL(n,C) = {g ∈ GL(n,C) : det(g) = 1}, dimension 2(n2 − 1),

sl(n,C) = {A ∈ Cn×n : trace(A) = 0}.

5. O(n) = {g ∈ GL(n,R) : ggt = e}, SO(n) = O(n) ∩ SL(n,R), dimension
1
2 n(n − 1),

o(n) = so(n) = {A ∈ Rn×n : A = −At}.

6. U(n) = {g ∈ GL(n,C) : gḡt = e}, dimension n2,

u(n) = {A ∈ Cn×n : A = −Āt}.

SU(n) = U(n) ∩ SL(n,C), dimension n2 − 1,

su(n) = u(n) ∩ sl(n,C).

7. Affine group G = GL(n,R) ×Rn, (g, v)(h,w) = (gh,gw + v),

g = Rn×n ×Rn, [(A, v), (B,w)] = (AB − BA, Aw − Bv).

8. The vector spaceH = {a+bi+c j+dk : a, b, c, d ∈ R} of quaternions, whose
non-commuting imaginary units i, j, k satisfy the relations i2 = j2 = k2 =

i j k = −1 and hence

i j = − ji = k, j k = −k j = i, ki = −ik = j,

forms a division algebra with norm ‖a+bi+c j+dk ‖ = (a2+b2+c2+d2)1/2.
The sphere S3 ⊂ R4 may be viewed as the set

{a + bi + c j + dk ∈ H : ‖a + bi + c j + dk ‖ = 1}

of unit quaternions and thus inherits the structure of a Lie group. The
corresponding Lie algebra s3 is spanned by i, j, k, where

[i, j] = i j − ji = 2k, [ j, k] = 2i, [k, i] = 2 j .

The quotient group S3/{1,−1} is a Lie group diffeomorphic to RP3.
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If F : G → G′ is a Lie group homomorphism or isomorphism, then the dif-
ferential dFe : TGe → TG′e is a Lie algebra homomorphism or isomorphism,
respectively (exercise).

Example The Lie groups S3 and SU(2) are isomorphic, furthermore S3/{1,−1} is
isomorphic zu SO(3). In particular, the Lie algebras s3, su(2), so(3) are mutually
isomorphic (exercise).

Let G be a Lie group. A pair (H, i), where H is a Lie group and i : H → G is
a Lie group homomorphism and an injective immersion, is called a Lie subgroup
of G; i(H) is a subgroup of G, but in general i is not a homeomorphism onto i(H)
with respect to the topology induced by G.

Example For α ∈ R \Q, the map

i : (R,+) → (T2 = R2/Z2,+), t 7→ (t, αt) mod Z2,

is an injective immersion but not an embedding. In fact, i(R) is dense in T2.

Using the theorem of Frobenius (see page 58) and Lemma 12.2 one can show
that if h′ ⊂ g is a Lie subalgebra of the Lie algebra of a Lie group G, then there
exists a connected Lie subgroup i : H → G with die(h) = h′, and every other
connected Lie subgroup ĩ : H̃ → G with dĩe(h̃) = h′ is of the form ĩ = i ◦ F for
some Lie group isomorphism F : H̃ → H.

Exponential map

12.5 Proposition Left-invariant vector fields are completely integrable. The inte-
gral curves c : R → G with c(0) = e are precisely the Lie group homomorphisms
(R,+) → G.

Proof : Let X be a left-invariant vector field on G.
There exist an ε > 0 and an integral curve c : (−ε, ε) → G of X with c(0) = e.

Then, for every g ∈ G, the left-translate gc = Lg ◦ c is an integral curve of X with
gc(0) = g, because

(gc)′(t) = Lg∗c′(t) = Lg∗Xc(t) = Xgc(t) for all t ∈ (−ε, ε)

by the product rule and the left-invariance of X . Thus the flow Φ of X is defined on
(−ε, ε) ×G byΦt (g) = gc(t), and it then follows as in the proof of Proposition 10.9.
that X is completely integrable.

Let now c : R → G be the integral curve with c(0) = e, thus Φt (e) = c(t) for
all t ∈ R. Then, for s ∈ R and g := c(s),

c(s)c(t) = gc(t) = Φt (g) = Φt (Φs(e)) = Φs+t (e) = c(s + t),
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so c is a homomorphism from (R,+) into G. Conversely, suppose that c : (R,+) →
G is a Lie group homomorphism with c′(0) = Xe. Then c(s+ t) = c(s)c(t) = gc(t),
and by taking the derivative at t = 0 one gets that c′(s) = Lg∗c′(0) = Xg = Xc(s),
showing that c is an integral curve. �

12.6 Definition (exponential map) The exponential map of G is the map

exp: TGe → G, exp(Xe) := c(1),

where c : R → G is the integral curve of the left-invariant vector field X (or,
equivalently, the Lie group homomorphism (R,+) → G) with c′(0) = Xe.

Notice that then
exp(tXe) = c(t) for all t ∈ R,

since the integral curve through e of the left-invariant vector field X̃ := tX is given
by s 7→ c̃(s) := c(ts), so that exp(tXe) = exp(X̃e) = c̃(1) = c(t). It follows in
particular that

exp(sXe) exp(tXe) = c(s)c(t) = c(s + t) = exp((s + t)Xe)

and exp(tXe)
−1 = c(t)−1 = c(−t) = exp(−tXe).

Furthermore, exp is smooth. To see this, consider the vector fieldV on G×TGe

defined by V(g,Xe) := (gXe,0) ∈ TGg ×TGe, whose integral curve through (g,Xe)

is t 7→ (g exp(tXe),Xe). Thus the flow of V satisfies Φt (g,Xe) = (g exp(tXe),Xe)

for all t ∈ R, and if π : G × TGe → G denotes the canonical projection, then
exp(Xe) = π ◦ Φ

1(e,Xe), which depends smoothly on Xe.
The differential d exp0 : T(TGe)0 = TGe → TGe is the identity map, as

d exp0(Xe) =
d
dt

��
t=0 exp(tXe) = c′(0) = Xe. In particular, the restriction of exp

to a suitable open neighborhood of 0 in TGe is a diffeomorphism onto an open
neighborhood of e in G.

Let now F : G → G′ be a Lie group homomorphism. Then, as mentioned
earlier, the differential dFe : TGe → TG′e is a Lie algebra homomorphism. Fur-
thermore, the map t 7→ F ◦expG(tXe) is a homomorphism (R,+) → G′ with initial
vector dFe(Xe), hence it agrees with t 7→ expG′(t dFe(Xe)). For t = 1, this shows
that

F ◦ expG = expG
′

◦ dFe .

Next, consider GL(n,C) with the matrix exponential function

A 7→ eA :=
∞∑
k=0

1
k!

Ak

on Cn×n = gl(n,C). The following properties hold:

72



(1) BeAB−1 = eBAB−1 for all B ∈ GL(n,C);

(2) det(eA) = etrace(A) , 0, in particular eA ∈ GL(n,C);

(3) if A,B ∈ Cn×n and [A,B] = AB − BA = 0, then eA+B = eAeB.

Let A ∈ gl(n,C). Since [sA, t A] = 0 for s, t ∈ R, it follows from (2) and (3) that
c : t 7→ et A is a homomorphism from (R,+) into G, and c′(0) = A. Hence, the Lie
group exponential map

exp: gl(n,C) → GL(n,C)

agrees with the matrix exponential A 7→ exp(A) = eA.
Let again G be an arbitrary Lie group. According to the Campbell–Baker–

Hausdorff formula, for two vectors X,Y ∈ TGe in a sufficiently small neighborhood
of 0, the identity exp(X) exp(Y ) = exp(S(X,Y )) holds, where

S(X,Y ) = X + Y +
1
2
[X,Y ] +

1
12
[X, [X,Y ]] +

1
12
[Y, [Y,X]] + . . .

is a convergent series of nested Lie brackets satisfying S(Y,X) = −S(−X,−Y ) (there
is an explicit form due to Dynkin (1947)). The formula is particularly useful for
nilpotent Lie groups, for which S terminates.
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Appendix

A Analysis

In the following statements and proofs, all diffeomorphisms are of class C∞.

A.1 Theorem (inverse function theorem) Suppose that W ⊂ Rn is an open set,
F ∈ C∞(W,Rn), p ∈ W , F(p) = 0, and dFp is bĳective. Then there exist open
neighborhoods V ⊂ W of p and U ⊂ Rn of 0 such that F |V is a diffeomorphism
from V onto U.

A.2 Theorem (implicit function theorem, surjective form) Suppose that W ⊂

Rn is an open set, F ∈ C∞(W,Rk), p ∈ W , F(p) = 0, and dFp is surjective.
Then there exist open neighborhoods U ⊂ Rn−k ×Rk of (0,0) and V ⊂ W of p and
a diffeomorphism ψ : U → V such that ψ(0,0) = p and

(F ◦ ψ)(x, y) = y

for all (x, y) ∈ U (canonical projection).

Proof : After a linear change of coordinates onRn we can assume that dFp maps the
subspace {0} × Rk ⊂ Rn bijectively onto Rk . Then, for q = (q1, . . . ,qn) ∈ W and
q′ := (q1, . . . ,qn−k), put F̃(q) := (q′,F(q)). This defines a map F̃ ∈ C∞(W,Rn−k ×

Rk), and dF̃p is bijective. By Theorem A.1 there exist open neighborhoods V ⊂ W
of p and U ⊂ Rn−k × Rk of (0,0) such that F̃ |V is a diffeomorphism from V onto
U. Let ψ :=

(
F̃ |V

)−1. For (x, y) ∈ U and ψ(x, y) =: q, (q′,F(q)) = F̃(q) = (x, y),
in particular (F ◦ ψ)(x, y) = F(q) = y. �

A.3 Theorem (implicit function theorem, injective form) Suppose that U ⊂

Rm is an open set, f ∈ C∞(U,Rn), 0 ∈ U, f (0) = p, and df0 is injective.
Then there exist open neighborhoods V ⊂ Rn of p and W ⊂ U × Rn−m of (0,0)
and a diffeomorphism ϕ : V → W such that ϕ(p) = (0,0) and

(ϕ ◦ f )(x) = (x,0)

for all (x,0) ∈ W (canonical inclusion).
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Proof : We can assume that the subspace {0} × Rn−m ⊂ Rn is complementary to
the image of df0. Define f̃ ∈ C∞(U × Rn−m,Rn) by f̃ (x, y) := f (x) + (0, y) for
(x, y) ∈ U × Rn−m. The differential d f̃0 is bijective. By Theorem A.1 there exist
open neighborhoods W ⊂ U × Rn−m of (0,0) and V ⊂ Rn of p such that f̃ |W is a
diffeomorphism from W onto V . Let ϕ :=

(
f̃ |W

)−1. For (x,0) ∈ W , f (x) = f̃ (x,0),
hence (ϕ ◦ f )(x) = (x,0). �

We state two useful facts about smooth vector fields.

A.4 Lemma (flow box) Suppose that X : V → Rm is a vector field on a neighbor-
hood V of 0 in Rm, and X(0) , 0. Then there exist an open neighborhood W ⊂ V
of 0 and a diffeomorphism ψ : W → ψ(W) ⊂ Rm such that dψy(X(y)) = e1 for all
y ∈ W .

Proof : We can assume that X(0) = e1. There exist an open set V ′ in {0} ×Rm−1 ⊂

Rm with 0 ∈ V ′ ⊂ V and an ε > 0 such that for every x ∈ V ′ there is an integral
curve cx : (−ε, ε) → Rm of X with cx(0) = x, and the map (t, x) 7→ cx(t) on
(ε, ε) × V ′ is C∞ (compare Theorem 10.8). Then the map sending x + te1 to cx(t)
for every (t, x) ∈ (ε, ε) × V ′ is also C∞ and furthermore regular at 0, because
Ûc0(0) = X(0) = e1 and cx(0) = x for all x ∈ V ′. Hence the restriction of this map
to a suitable neighborhood of 0 is a diffeomorphism whose inverse ψ : W → ψ(W)
satisfies ψ(y) = x + te1 and dψy(X(y)) = dψy( Ûcx(t)) = e1 for all y = cx(t) ∈ W . �

A.5 Lemma (parametrization by flow lines) Suppose that X1,X2 : V → R2 are
two vector fields on a neighborhood V of 0 in R2, and X1(0),X2(0) are linearly
independent. Then there exist an open set U ⊂ R2 and a diffeomorphism ϕ : U →
ϕ(U) ⊂ V with 0 ∈ ϕ(U) such that

∂ϕ

∂xi
(x) = λi(x) Xi(ϕ(x))

for all x ∈ U and some functions λi : U → R, i = 1,2.

Proof : Since Xi(0) , 0 for i = 1,2, by LemmaA.4 there exist an open neighborhood
W ⊂ V of 0 and diffeomorphisms ψi = (ψ1

i ,ψ
2
i ) : W → ψi(W) ⊂ R2 such that

d(ψi)y(Xi(y)) = ei for all y ∈ W . Then h1 := ψ1
2 and h2 := ψ2

1 are regular
functions onW whose level curves are flow lines of X2 and X1, respectively. Define
h := (h1, h2) : W → R2. Since X1(0),X2(0) are linearly independent and h1, h2

are regular at 0, whereas d(h1)0(X2(0)) = 0 and d(h2)0(X1(0)) = 0, it follows that
d(hi)0(Xi(0)) , 0 for i = 1,2, thus h is regular at 0. Hence, the restriction of h to
a suitable neighborhood of 0 has an inverse ϕ as claimed, mapping horizontal and
vertical lines to flow lines of X1 and X2, respectively. �
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B General topology

B.1 Definition (topology, topological space) Let M be a set. A topology on M is
a collection of subsets of M , called open sets, with the following properties:

(1) ∅ and M are open;

(2) the union of arbitrarily many open sets is open;

(3) the intersection of finitely many open sets is open.

A topological space is a set equipped with a topology.

Examples

1. Let (M, d) be a metric space. With respect to the topology induced by d, a
set U ⊂ M is open if and only if for all p ∈ U there is an r > 0 such that
B(p,r) = {q ∈ M : d(p,q) < r} ⊂ U.

2. The usual topology onRm is induced by the standard metric d(x, y) = |x− y |.

3. The trivial topology on a set M consists only of ∅ and M , whereas the discrete
topology on M is the entire power set.

A subset A of a topological space M is called closed if the complement M \ A
is open; thus ∅ and M are both open and closed.

Amap f : M → N between two topological spaces is continuous if f −1(V) ⊂ M
is open for every open set V ⊂ N . The map f is a homeomorphism if f is bijective
and both f and f −1 are continuous.

B.2 Definition (induced topology) Let N be a topological space, and let M ⊂ N
be a subset. The induced topology or subspace topology on M consists of all sets
U ⊂ M of the form U = M ∩ V where V is open in N .

B.3 Definition (compactness) A topological space M is compact if every open
cover of M has a finite subcover; that is, whenever

⋃
α∈A Uα = M for open sets

Uα ⊂ M and an index set A, there exists a finite set B ⊂ A such that
⋃
β∈B Uβ = M .

If M is compact and f : M → N is continuous, then f (M) is a compact subspace
of N . If M is compact and A is closed in M , then A is a compact subspace of M .

A set U ⊂ M is called a neighborhood of a point p ∈ M if there exists an open
set V with p ∈ V ⊂ U.

B.4 Definition (Hausdorff space) A topological space M is called a Hausdorff
space if for every pair of distinct points p,q ∈ M there exist disjoint neighborhoods
U of p and V of q.
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Every metric space is a Hausdorff space.

B.5 Lemma If M is a Hausdorff space and A ⊂ M is a compact subspace, then A
is closed in M .

It follows easily that every continuous bijectivemap f : M → N from a compact
space M onto a Hausdorff space N is a homeomorphism.

B.6 Definition (basis, subbasis) Let M be a topological space. A collection B of
open sets is called a basis of the topology if every open set can be written as a union
of sets in B. A collection S of open sets is a subbasis of the topology if every open
set is a union of sets that are intersections of finitely many sets in S.

Examples

1. The set of all open balls forms a basis of the topology of a metric space.

2. The set of all open balls B(x,r)with x ∈ Qm and r ∈ Q, r > 0, is a countable
basis of the usual topology on Rm.

B.7 Definition (product topology) Let M,N be two topological spaces. The prod-
uct topology on M × N is the topology for which the sets of the form U × V where
U is open in M and V is open in N constitute a basis.

B.8 Definition (quotient topology) Suppose that M is a topological space, ∼ is
an equivalence relation on M , and π : M → M/∼ is the projection onto the set of
equivalence classes. The quotient topology on M/∼ consists of all sets V ⊂ M/∼
for which π−1(V) is open in M .

A topological space M is called connected if ∅ and M are the only open and
closed subsets of M . A topological space M is path connected if for every pair of
points p,q ∈ M there is a path from p to q (that is, a continuous map c : [0,1] → M
with c(0) = p and c(1) = q), and M is locally path connected if every point p ∈ M
has a neighborhood that is path connected in the induced topology. Every path
connected space is connected. The subspace

{(x, sin(1/x)) : x ∈ R, x > 0} ∪ {(0, y) : y ∈ [−1,1]}

of R2 is connected but not path connected. Every connected and locally path
connected space is (globally) path connected.
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C Multilinear algebra

LetV,V1, . . . ,Vn andW be vector spaces (overR). We denote by L(V ; W) the vector
space of linear maps from V to W . A map

f : V1 × . . . × Vn → W

is multilinear or n-linear if for every index i ∈ {1, . . . ,n} and for fixed vectors
vj ∈ Vj , j , i, the map

v 7→ f (v1, . . . , vi−1, v, vi+1, . . . , vn)

from Vi to W is linear. We let L(V1, . . . ,Vn; W) denote the vector space of all such
n-linear maps.

C.1 Theorem (tensor product) Given vector spacesV1, . . . ,Vn, there exist a vector
space T and an n-linear map τ ∈ L(V1, . . . ,Vn;T) with the following property: for
every n-linear map f ∈ L(V1, . . . ,Vn; W) into any vector space W there is a unique
linear map g ∈ L(T ; W) such that f = g ◦ τ.

This property characterizes the pair (τ,T) uniquely up to a linear isomorphism;
(τ,T) is called the tensor product of V1, . . . ,Vn, and one writes

V1 ⊗ . . . ⊗ Vn := T , v1 ⊗ . . . ⊗ vn := τ(v1, . . . , vn).

The unique assignment f 7→ g given by the theorem is a linear isomorphism

L(V1, . . . ,Vn; W) � L(V1 ⊗ . . . ⊗ Vn; W).

For every permutation σ of {1, . . . ,n} there exists a linear isomorphism

V1 ⊗ . . . ⊗ Vn � Vσ(1) ⊗ . . . ⊗ Vσ(n)

mapping v1 ⊗ . . . ⊗ vn to vσ(1) ⊗ . . . ⊗ vσ(n). For m < n,

(V1 ⊗ . . . ⊗ Vm) ⊗ (Vm+1 ⊗ . . . ⊗ Vn) � V1 ⊗ . . . ⊗ Vn.

For every vector space V the scalar multiplication is a bilinear map R × V → V ;
this induces an isomorphism

R ⊗ V � V

mapping a ⊗ v to av. If V � V1 ⊕ V2 (direct sum), then

V ⊗W � (V1 ⊗W) ⊕ (V2 ⊗W).

The construction of the tensor product is natural in the following sense: if linear
maps fj : Vj → V ′j are given, j = 1, . . . ,n, then there exists a unique linear map
f1 ⊗ . . . ⊗ fn : V1 ⊗ . . . ⊗ Vn → V ′1 ⊗ . . . ⊗ V ′n such that

( f1 ⊗ . . . ⊗ fn)(v1 ⊗ . . . ⊗ vn) = f1(v1) ⊗ . . . ⊗ fn(vn)
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whenever vj ∈ Vj for j = 1, . . . ,n.
We now assume that the vector spaces V,V1, . . . ,Vn are finite dimensional. If

Bj is a basis of Vj for j = 1, . . . ,n, then the products b1 ⊗ . . . ⊗ bn with bj ∈ Bj

constitute a basis of V1 ⊗ . . . ⊗ Vn. In particular,

dim(V1 ⊗ . . . ⊗ Vn) = dim(V1) · · · dim(Vn).

We let V∗ := L(V ;R) denote the dual space of V . The map v 7→ ṽ ∈ (V∗)∗,
ṽ(λ) := λ(v), is a canonical isomorphism V � V∗∗. If λj ∈ V∗j , j = 1, . . . ,n, then
λ1 ⊗ . . . ⊗ λn ∈ V∗1 ⊗ . . . ⊗ V∗n may also be viewed as the tensor product

λ1 ⊗ . . . ⊗ λn : V1 ⊗ . . . ⊗ Vn → R ⊗ . . . ⊗ R � R

of the linear maps λj : Vj → R described above; this yields an isomorphism

V∗1 ⊗ . . . ⊗ V∗n � (V1 ⊗ . . . ⊗ Vn)
∗.

Note that
(λ1 ⊗ . . . ⊗ λn)(v1 ⊗ . . . ⊗ vn) = λ1(v1) · · · λn(vn).

An (r, s)-tensor over V is an element of

Vr ,s := V ⊗ . . . ⊗ V︸        ︷︷        ︸
r

⊗V∗ ⊗ . . . ⊗ V∗︸           ︷︷           ︸
s

� (V∗ ⊗ . . . ⊗ V∗︸           ︷︷           ︸
r

⊗V ⊗ . . . ⊗ V︸        ︷︷        ︸
s

)∗

� {T : V∗ × . . . × V∗︸           ︷︷           ︸
r

×V × . . . × V︸        ︷︷        ︸
s

→ R : T ist (r + s)-linear}.

Note that dim(Vr ,s) = dim(V)r+s, V1,0 = V , V0,1 = V∗, and one puts V0,0 := R. If
(e1, . . . , em) is a basis of V and (ε1, . . . , εm) is the dual basis of V∗, ε i(ej) = δij , then
T ∈ Vr ,s possesses the representation

T =
m∑

j1,..., jr ,i1,...,is=1
T j1... jr
i1...is

ej1 ⊗ . . . ⊗ ejr ⊗ ε
i1 ⊗ . . . ⊗ ε is

with components T j1... jr
i1...is

∈ R.

In the following, V0,s will always be identified with the vector space
L(V, . . . ,V ;R) of s-linear maps A : V × . . . × V → R. For A ∈ V0,s and B ∈ V0,t ,
the tensor product A ⊗ B ∈ V0,s+t is then given by the simple formula

A ⊗ B (v1, . . . , vs+t ) = A(v1, . . . , vs) B(vs+1, . . . , vs+t )

for v1, . . . , vs+t ∈ V .
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C.2 Theorem (alternating multilinear maps) For A ∈ V0,s, the following prop-
erties are equivalent:

(1) A is alternating, that is, A(v1, . . . , vs) = 0 whenever vi = vj for two indices
i , j;

(2) A ist skew-symmetric, that is, A(vτ(1), . . . , vτ(s)) = −A(v1, . . . , vs) for every
transposition τ of {1, . . . , s};

(3) A(v1, . . . , vs) = 0 whenever v1, . . . , vs are linearly dependent;

(4) A(v1, . . . , vs) = det(aij) A(w1, . . . ,ws) if vj =
∑s

i=1 aijwi for j = 1, . . . , s.

We write Λs(V∗) for the vector space of alternating (0, s)-tensors over V , and
we put Λ0(V∗) := R. Note that Λs(V∗) = {0} for s > m = dim(V).

C.3 Definition (exterior product) For A ∈ Λs(V∗) and B ∈ Λt (V∗), the exterior
product (or wedge product) A ∧ B ∈ Λs+t (V∗) is defined by

A ∧ B(v1, . . . , vs+t ) :=
∑

σ∈Ss ,t

sgn(σ) A(vσ(1), . . . , vσ(s)) B(vσ(s+1), . . . , vσ(s+t))

for v1, . . . , vs+t ∈ V , where Ss,t denotes the set of all permutations σ ∈ Ss+t such
that σ(1) < . . . < σ(s) and σ(s + 1) < . . . < σ(s + t).

The map ∧ : Λs(V∗) × Λt (V∗) → Λs+t (V∗) is bilinear, and

B ∧ A = (−1)st A ∧ B,

in particular A ∧ A = 0 if A ∈ Λs(V∗) and s is odd. For A ∈ Λs(V∗), B ∈ Λt (V∗),
and C ∈ Λu(V∗),

(A ∧ B) ∧ C = A ∧ (B ∧ C).

If λ1, . . . , λs ∈ Λ1(V∗) = V∗, then λ1 ∧ . . . ∧ λs ∈ Λs(V∗) is given by

(λ1 ∧ . . . ∧ λs)(v1, . . . , vs) =
∑
σ∈Ss

sgn(σ) λ1(vσ(1)) · · · λs(vσ(s))

= det(λi(vj))

for v1, . . . , vs ∈ V .
Now let {e1, . . . , em} be a basis of V , and let {ε1, . . . , εm} be the dual basis

of V∗. For 1 ≤ i1 < . . . < is ≤ m and 1 ≤ j1, . . . , js ≤ m,

(ε i1 ∧ . . . ∧ ε is )(ej1, . . . , ejs )

=
∑
σ∈Ss

sgn(σ) δi1jσ(1) · · · δ
is
jσ(s)

=

{
sgn(σ) if ( jσ(1), . . . , jσ(s)) = (i1, . . . , is),
0 if { j1, . . . , js} , {i1, . . . , is}.
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The set
{ε i1 ∧ . . . ∧ ε is : 1 ≤ i1 < . . . < is ≤ m}

forms a basis of Λs(V∗), in particular dim(Λs(V∗)) =
(m
s

)
.
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