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Abstract

We complete the characterization of the digraphs D for which the induced D-removal lemma
has polynomial bounds, answering a question of Alon and Shapira. We also study the analogous
problem for k-colored complete graphs. In particular, we prove a removal lemma with polynomial
bounds for Gallai colorings.

1 Introduction

In this paper we are concerned with binary combinatorial objects, such as graphs, digraphs and
k-colored graphs. A removal lemma is a statement of the following form: Suppose that G,F are
binary combinatorial objects of the same type, where we think of G as large and of F as small and
fixed. For every ε > 0 there is δ = δ(ε) > 0, such that if G contains at most δnv(F ) (induced) copies
of F , then G can be made (induced) F -free by changing at most εn2 entries in its adjacency matrix,
where n = v(G).

The first result of this type was the famous triangle removal lemma of Ruzsa and Szemerédi [16],
which states that if an n-vertex graph contains at most δ(ε)n3 triangles, then it can be made triangle-
free by deleting at most εn2 edges. This result played a key role in the development of extremal
combinatorics, and its proof is one of the first applications of the celebrated Szemerédi regularity
lemma [17]. The original proof generalizes from triangles to arbitrary graphs, giving the graph
removal lemma. Later, Alon, Fischer, Krivelevich and Szegedy [3] proved an analogous result for
induced subgraphs, the so-called induced removal lemma. This result states that if a graph contains
at most δ(ε)nv(F ) induced copies of F , then it can be made induced F -free by adding/deleting at
most εn2 edges. Analogous results have later been proved for other combinatorial structures, such as
digraphs [7] and ordered graphs [2]. In another direction, the induced removal lemma was generalized
to arbitrary hereditary graph properties [6].

A common feature of all of the above results is that their proof uses Szemerédi’s regularity
lemma or a generalization thereof. Consequently, these proofs give quite weak, tower-type (or worse)
bounds on δ(ε). For example, in the case of the graph removal lemma, the best known bound [9]
is 1/δ ≤ tower(O(log 1/ε)), where tower(x) is a tower of x exponents. For the induced removal
lemma and for other structures (e.g. ordered graphs), the best known general bounds are even
worse, see e.g. [8] for the state of the art. However, for particular graphs F , better bounds are
known. This has raised the natural question of characterizing the cases where one can prove a

∗ETH Zurich. Email: lior.gishboliner@math.ethz.ch.

1

http://arxiv.org/abs/2201.11447v2


removal lemma with polynomial bounds, i.e. when 1/δ can be taken to be polynomial in 1/ε. The
first result of this type was obtained by Alon [1], who proved that for a graph F , the F -removal
lemma has polynomial bounds if and only if F is bipartite. Later, Alon and Shapira [5] obtained a
nearly complete characterization for the induced case, showing that the induced F -removal lemma
has polynomial bounds if F ∈ {P2, P3, P2, P3}, and that it does not have polynomial bounds if
F /∈ {P2, P3, P2, P3, P4, C4, C4}, where Pk and Ck are the path and cycle with k vertices, respectively,
and F denotes graph complement. The case of P4 was later settled by Alon and Fox [4]. The author
and Shapira [12] proved an exponential bound for the case of C4. For similar results for certain
families of graph properties, see [13].

Similar characterizations of polynomial removal lemmas were also obtained for other combinato-
rial structures, e.g. for tournaments [10] and for digraphs [7]. In particular, Alon and Shapira [7]
characterized the digraphs D for which the D-removal lemma has polynomial bounds, and asked for
a characterization in the induced case. They showed [5] that the induced D-removal lemma does
not have polynomial bounds whenever v(D) ≥ 5. Here we answer their question by completing the
characterization. Before stating our results, let us introduce the following commonly used termi-
nology: for a graph/digraph F , we say that (induced) F -freeness is easily testable if the (induced)
F -removal lemma has polynomial bounds, and otherwise we say that it is hard to test (or just hard).
This terminology comes from the field of property testing, where the goal is to design fast algorithms
which distinguish between graphs satisfying a certain property and graphs which are ε-far from the
property. The efficiency of such testers is measured by the number of queries they make to the input
graph, and for many properties one can design testers whose query complexity is independent of the
size of the input, i.e. depends only on ε. For hereditary graph properties, the query complexity of
the best (one-sided error) tester is essentially given by the function δ(ε) in the corresponding removal
lemma. We refer the reader to the book [14] for an introduction to property testing.

The following theorem gives the characterization of digraphs D for which the induced D-removal
lemma has polynomial bounds.

Theorem 1. For a digraph D, induced D-freeness is easily testable if and only if v(D) = 2.

Observe that the “if” part of Theorem 1 is trivial.

Induced digraphs can encode 3-colored complete graphs, where the color of a pair {i, j} is the
number of directed edges between i and j, namely 0, 1 or 2 (as in [7], we allow anti-parallel edges,
but not parallel edges). By k-colored complete graph we mean a coloring of the edges of a complete
graph with k colors. So in particular, a graph can be thought of as a 2-colored complete graph. The
removal lemma generalizes in a straightforward manner to k-colored complete graphs (where instead
of edge addition/deletion, one speaks of edge color changes).

Now, given a digraph D, let C(D) denote the corresponding 3-colored complete graph; namely,
C(D) has the same vertex-set as D, and the color of a pair {i, j} is the number of edges in D
between i and j (either 0, 1 or 2). Note that the map D 7→ C(D) is not one-to-one. Indeed, if D′ is
obtained from D by reversing the direction of some single edges (i.e. edges (i, j) ∈ E(D) for which
(j, i) /∈ E(D)), then C(D′) = C(D).

Two subgraphs of a graph/digraph/k-colored graph are called pair-disjoint if they share at most
one vertex. Throughout the paper, we will use the obvious fact that if a graph/digraph/k-colored
graph G contains εn2 pair-disjoint (induced) copies of F , then one must add/delete/change the color
of at least εn2 edges in order to make G (induced) F -free. By a hardness construction for (induced)
F -freeness, we mean a graph G which contains a collection of εn2 (induced) pair-disjoint copies of F ,
but only δnv(F ) (induced) copies of F overall, where δ ≪ poly(ε) (namely, δ goes to 0 faster than any
polynomial in ε). So a hardness construction (for every ε and n) shows that (induced) F -freeness is

2



hard to test. The following (almost immediate) proposition shows that for a digraph D, a hardness
construction for C(D)-freeness implies a hardness construction for induced D-freeness.

Proposition 1.1. Let D be a digraph. For ε, δ > 0 and n ≥ 1, suppose that there is a 3-colored
complete graph G on n vertices which contains εn2 pair-disjoint copies of C(D), but only δnv(D)

copies of C(D) overall. Then there is a digraph G′ on n vertices which contains εn2 induced pair-
disjoint copies of D, but only δnv(D) induced copies of D overall.

Proof. Choose G′ such that C(G′) = G, and such that each of the εn2 pair-disjoint copies of C(D)
in G makes an induced copy of D in G′. �

Proposition 1.1 suggests the problem of characterizing the easily testable 3-colored complete
graphs. It turns out that here the situation is somewhat different from that of induced digraphs:
while all induced digraphs on at least 3 vertices are hard (by Theorem 1), there is a 3-colored complete
graph on 3 vertices which is easily testable, namely the rainbow triangle. This assertion is the main
part of our next result, which characterizes the easily testable 3-colored complete graphs:

Theorem 2. Let F be a 3-colored complete graph. Then F -freeness is easily testable if and only if
v(F ) = 2 or F is the rainbow triangle.

The main part in the proof of Theorem 2 is to show that the property of having no rainbow
triangles is easily testable. This is done in Section 2. The structure of 3-colored complete graphs
with no rainbow triangles (also called Gallai colorings) was described by a fundamental result of
Gallai [11] (see also [15]). This result states that if G has no rainbow triangles, then G is obtained
from a 2-colored complete graph by replacing each vertex with a 3-colored complete graph without
rainbow triangles (and replacing edges with complete bipartite graphs of the same color). Moreover,
every 3-colored complete graph obtained in this way has no rainbow triangles. This structure result
(stated below as Lemma 2.1) will play a key role in the proof.

There are two digraphs D for which C(D) is the rainbow triangle. Let us denote them by D1,D2.
Even though the rainbow triangle is easily testable, it turns out that induced Di-freeness is hard to
test for each i = 1, 2. Theorem 2 does imply however that the property of avoiding both D1,D2 as
induced subdigraphs is easily testable. These digraphs D1,D2 are the only cases of Theorem 1 which
are not covered by using Theorem 2 and Proposition 1.1.

To complement Theorem 2, we show that for k ≥ 4, there are no non-trivial easily testable
k-colored complete graphs.

Proposition 1.2. Let k ≥ 4 and let F be a k-colored complete graph. Then F -freeness is easily
testable if and only if v(F ) = 2.

The proof of the hardness direction of Theorems 1-2 and Proposition 1.2 appears in Section 3.

2 Testing for Gallai colorings

In this section we prove that the property of having no rainbow triangles is easily testable. We
restate this result as follows.

Theorem 3. Let ε > 0 be small enough, and let G be an n-vertex 3-colored complete graph with at
most ε36n3 rainbow triangles. Then G can be made rainbow-triangle-free by changing the color of at
most εn2 edges.
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The proof is similar in spirit to the argument used by Alon and Fox [4] to show that the property
of being a cograph (or, equivalently, of having no induced path on four vertices) is easily testable. We
now introduce the necessary definitions. Let P = (V1, . . . , Vm) be a vertex-partition of a 3-colored
complete graph. For colors a, b ∈ [3], we say that P is (a, b)-monochromatic if each of the bipartite
graphs (Vi, Vj) is monochromatic in color a or in color b. Denote by E(P) the set of all edges which
go between the sets V1, . . . , Vm, and put e(P) := |E(P)| =

∑

1≤i<j≤m |Vi||Vj |. We say that P is
ε-close to being (a, b)-monochromatic if one can turn P into an (a, b)-monochromatic partition by
changing the color of at most ε · e(P) of the edges in E(P). Gallai [11, 15] proved the following
fundamental fact about colorings with no rainbow triangles.

Lemma 2.1 ([11, 15]). If G is a 3-colored complete graph with |V (G)| ≥ 2 and with no rainbow
triangles, then there exist two colors a, b ∈ [3] such that G admits an (a, b)-monochromatic partition
(with at least two parts). Conversely, if P is an (a, b)-monochromatic partition of G (for some two
colors a, b), and G[X] has no rainbow triangles for every X ∈ P, then G has no rainbow triangles.

Before proceeding, let us prove the following very simple lemma:

Lemma 2.2. Let m,d, a1, . . . , ap ≥ 0 such that a1+ · · ·+ap = m and ai ≤ m−d for every 1 ≤ i ≤ p.
Then

∑

1≤i<j≤p aiaj > d · m−d
2 .

Proof. Without loss of generality, assume that a1 ≤ · · · ≤ ap. Let 1 ≤ i ≤ p be minimal with
a1 + · · ·+ ai ≥ d. We have i ≤ p− 1, because otherwise we would have ap > m− d, a contradiction.
Note that ai+1+· · ·+ap ≥ ai+1 ≥ ai and ai+1+· · ·+ap = m−(a1+· · ·+ai) = m−(a1+· · ·+ai−1)−ai >
m− d−ai. Summing these two inequalities and dividing by 2, we obtain that ai+1+ · · ·+ap >

m−d
2 .

Now,
∑

1≤i<j≤p aiaj ≥ (a1 + · · · + ai) · (ai+1 + · · ·+ ap) > d · m−d
2 , as required. �

The main step in the proof of Theorem 3 is the following approximate version of Lemma 2.1. It
states that if a 3-colored complete graph G has few rainbow triangles, then for some two colors a, b,
G has a partition which is close to being (a, b)-monochromatic.

Lemma 2.3. Let ε > 0 be small enough, and let G be an n-vertex 3-colored complete graph with at
most ε33n3 rainbow triangles. Then there exist two colors a, b ∈ [3] and a partition P of V (G) which
is ε-close to being (a, b)-monochromatic.

Proof. We will denote the color of an edge {x, y} by c(x, y). Let di(x) be the degree of x in color
i (for i ∈ [3]). If there is a vertex x and a color i ∈ [3] such that di(x) ≥ (1 − ε)(n − 1), then the
partition {x}, V (G) \ {x} satisfies the requirement in the lemma. So from now on, suppose that
di(x) < (1− ε)(n − 1) for every vertex x and color i ∈ [3].

If there are less than ε
(n
2

)

edges of some color i ∈ [3], then we can take P to be the partition of
V (G) into singletons (taking a, b to be the two colors which are not i). So we may assume that for
each color i ∈ [3], there are at least ε

(n
2

)

edges of color i.

For a color i ∈ [3], let SMALLi be the set of all vertices v with di(v) ≤ ε2

128n. Note that
|SMALLi| ≤ (1− ε

2 )n because otherwise there would be less than ε
(n
2

)

edges in color i. Set

s :=
128 log(2000/ε2)

ε2
,

δ :=
ε2

64s2
,
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k :=
128

ε2
,

and

t :=
2(k + s log s)

δ
.

Note that s = Õ( 1
ε2
), δ = Ω̃(ε6) and t = Õ( 1

ε8
). We will later use the fact that

2ke−δt ≪ s−s, (1)

which easily follows from our choice of t. Here, the ≪ means that the left-hand side is smaller than
C times the right hand side for a fixed constant C, provided that ε is small enough.

Sample s + kt vertices of G uniformly at random and independently. Let S be the set of the
first s vertices, T1 be the set of the next t vertices, T2 the set of the next t, and so on. Put
T := T1 ∪ · · · ∪Tk and R := S ∪T . Let E0 be the event that G[R] contains no rainbow triangles. We
have |R| = s+ kt = Õ( 1

ε10
) ≤ 1

2ε11
, say, where the last inequality holds if ε is small enough. Since G

contains at most ∆ := ε33n3 rainbow triangles, the probability that G[R] contains a rainbow triangle

is at most
(|R|

3

)

·∆ · 6 · 1
n3 ≤ |R|3∆

n3 ≤ 1
8 . Namely, P[E0] ≥

7
8 .

Say that a vertex v ∈ V (G) is bad if there is a color i ∈ [3] such that v /∈ SMALLi, and yet v has
no neighbour of color i in S. Observe that if v ∈ V (G) \ SMALLi, then the probability that v has

no color-i neighbour in S is at most (1 − ε2/128)s ≤ e−sε2/128 = ε2

2000 . Hence, the expected number

of bad vertices is at most 3 · ε2

2000 · n ≤ ε2

512n. Let E1 be the event that there are at most ε2

128n bad
vertices. By Markov’s inequality, P[E1] ≥

3
4 .

Let Z be the set of all vertices v such that all edges between v and S have the same color.
For a vertex v, recall that di(v) < (1 − ε)(n − 1) ≤ n − 1 − εn/2 for every color i. Hence,
P[v ∈ Z] ≤ 3 · (1−ε/2)s ≤ 3e−εs/2. It follows that E[|Z|] ≤ 3e−εs/2n, and hence P[|Z| ≥ 24e−εs/2n] ≤
1
8 by Markov’s inequality. Let E2 be the event that T ∩ Z = ∅. By the union bound, we have

P[T ∩Z 6= ∅] ≤ kt · |Z|/n. So if |Z| ≤ 24e−εs/2n, then P[T ∩Z 6= ∅] ≤ kt ·24e−εs/2 ≤ 1
8 , where the last

inequality holds for ε small enough, as eεs/2 is (at least) exponential in 1/ε, while kt is polynomial
in 1/ε. So overall, P[E2] ≥

3
4 .

For a partition S = U1 ∪ · · · ∪Up and for a set X ⊇ S, we say that a partition X = W1 ∪ · · · ∪Wq

(where q ≥ p) extends (U1, . . . , Up) if Wi ∩ S = Ui for every 1 ≤ i ≤ p.

Suppose that E0 and E2 happened. Since E0 happened, by Lemma 2.1 there exists an (a, b)-
monochromatic partition R = W1 ∪ · · · ∪ Wq, q ≥ 2, for some two colors a, b. Let Ui := Wi ∩ S,
and suppose without loss of generality that U1, . . . , Up are the nonempty sets among U1, . . . , Uq. We
claim that p ≥ 2. Indeed, if p = 1 then S ⊆ W1. But then, for any w ∈ W2, we have that all
edges between w and S have the same color. This however implies that w ∈ Z, contradicting that
E2 happened. So we see that if E0 and E2 happened, then there exist two colors a, b, a partition
S = U1∪· · ·∪Up with p ≥ 2, and an (a, b)-monochromatic partition R = W1∪· · ·∪Wq which extends
(U1, . . . , Up). The main step in the proof is to establish the following:

Main Claim. Fix any choice of S and suppose that E1 happened. Then, either there is a partition
P as in the statement of the lemma, or with probability larger than 3

4 the following holds: for every
two colors a, b ∈ [3] and for every (a, b)-monochromatic partition S = U1 ∪ · · · ∪Up with p ≥ 2, there
is no (a, b)-monochromatic partition of R which extends (U1, . . . , Up).

Proof. Fix two colors (a, b) and an (a, b)-monochromatic partition S = U1 ∪ · · · ∪ Up with p ≥ 2.
Without loss of generality, suppose that a = 1, b = 2. For 1 ≤ i < j ≤ p, let ci,j ∈ {1, 2} be the color of
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the monochromatic bipartite graph (Ui, Uj). Let A be the event that there is a (1, 2)-monochromatic
partition of R which extends (U1, . . . , Up). We will show that either there is a partition P as in the
statement of the lemma, or P[A] ≪ s−s. We then take the union bound over all at most 3 · ss choices
of a, b and (U1, . . . , Up), to get the required result.

Let us define sets V
(ℓ)
i , 1 ≤ ℓ ≤ k and 1 ≤ i ≤ p, as follows. The definition is by induction on

ℓ. For 1 ≤ i ≤ p, define V
(1)
i as the set of vertices x ∈ V (G) \ S such that there is an edge of color

3 between x and Ui. Since E1 happened, all but at most ε2

128n of the vertices in V (G) \ SMALL3

belong to V
(1)
1 ∪ · · ·∪V

(1)
p . Hence, |V

(1)
1 ∪ · · ·∪V

(1)
p | ≥ n−|SMALL3|−

ε2

128n ≥ ε
2n−

ε2

128n ≥ ε
4n. Now

let 2 ≤ ℓ ≤ k, and suppose we already defined V
(ℓ−1)
1 , . . . , V

(ℓ−1)
p . For 1 ≤ i ≤ p, let V

(ℓ)
i be the set

of all x ∈ V (G) \ S such that either x ∈ V
(ℓ−1)
i , or there are at least δn edges of color 3 between x

and V
(ℓ−1)
i , or for each color c ∈ {1, 2}, there are at least δn edges of color c between x and V

(ℓ−1)
i .

Claim 2.4. Let 1 ≤ ℓ ≤ k, 1 ≤ i ≤ p and x ∈ V
(ℓ)
i . Then with probability at least 1−(2ℓ−2)e−δt over

the choice of T1, . . . , Tℓ−1, the following holds: if (W1, . . . ,Wq) is a (1, 2)-monochromatic partition
of S ∪ T1 ∪ · · · ∪ Tℓ−1 ∪ {x} which extends (U1, . . . , Up), then x ∈ Wi.

Proof. We prove the statement by induction on ℓ. For ℓ = 1, it follows immediately from the

definition of the set V
(1)
i that if (W1, . . . ,Wq) is a (1, 2)-monochromatic partition of S ∪ {x} which

extends (U1, . . . , Up), then x ∈ Wi (with probability 1). Let now ℓ ≥ 2, and let x ∈ V
(ℓ)
i . If x ∈ V

(ℓ−1)
i ,

then the assertion follows from the induction hypothesis. Otherwise, either there are at least δn edges

of color 3 between x and V
(ℓ−1)
i , or for each color c ∈ {1, 2}, there are at least δn edges of color c

between x and V
(ℓ−1)
i . We will assume that the latter case holds; the former case can be handled

similarly (and more easily). So for each c = 1, 2, let Yc ⊆ V
(ℓ−1)
i be a set of at least δn vertices

which are connected to x in color c. The probability that Tℓ−1 ∩ Y1 = ∅ or Tℓ−1 ∩ Y2 = ∅ is at most
2(1−δ)t ≤ 2e−δt. Suppose that Tℓ−1∩Y1 6= ∅ and Tℓ−1∩Y2 6= ∅, and fix vertices yc ∈ Tℓ−1∩Yc, c = 1, 2.
By the induction hypothesis, with probability at least 1−2 · (2ℓ−1−2)e−δt = 1− (2ℓ−4)e−δt over the
choice of T1, . . . , Tℓ−2, the following holds: for every (1, 2)-monochromatic partition (W1, . . . ,Wq) of
S ∪ T1 ∪ · · · ∪ Tℓ−2 ∪ {y1, y2} which extends (U1, . . . , Up), it holds that y1, y2 ∈ Wi. Assume that this
event holds. Let (W1, . . . ,Wq) be a (1, 2)-monochromatic partition of S ∪T1 ∪ · · · ∪Tℓ−1∪{x} which
extends (U1, . . . , Up). We have that y1, y2 ∈ Wi and {x, y1}, {x, y2} have different colors. Hence, x
must be in Wi as well. The probability that this fails is at most 2e−δt + (2ℓ − 4)e−δt = (2ℓ − 2)e−δt,
as required. �

Claim 2.5. Let 1 ≤ ℓ ≤ k and 1 ≤ i ≤ p and suppose that |V
(ℓ)
i | ≥ (1− ε

2 )n. Then P[A] ≪ s−s.

Proof. For convenience, let us assume that i = 1. Fix a vertex u ∈ U2. By our assumption,
there are at least ε(n − 1) − |S| ≥ 3ε

4 n vertices x ∈ V (G) \ S such that the color of {x, u} is not

c1,2. Since |V
(ℓ)
1 | ≥ (1 − ε

2)n, at least ε
4n of these vertices are in V

(ℓ)
1 . The probability that Tk

contains no such vertex x ∈ V
(ℓ)
1 is at most (1 − ε

4)
t ≤ e−εt/4. Suppose that Tk contains such a

vertex x. By Claim 2.4, with probability at least 1− (2k − 2)e−δt over the choice of T1, . . . , Tk−1, it
holds that if (W1, . . . ,Wq) is a (1, 2)-monochromatic partition of S ∪ T1 ∪ · · · ∪ Tk−1 ∪ {x} extending
(U1, . . . , Up), then x ∈ W1. Assume that this event happens; we show that then A fails. Indeed,
suppose by contradiction that (W1, . . . ,Wq) is a (1, 2)-monochromatic partition of R = S∪T1∪· · ·∪Tk

extending (U1, . . . , Up). We have x ∈ Tk, so x ∈ W1. However, the color of {x, u} is not c1,2,
contradicting the fact that the bipartite graph (W1,W2) is monochromatic with color c1,2. It follows
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that P[A] ≤ e−εt/4+(2k−2)e−δt ≤ 2ke−δt ≪ s−s, where the last inequality holds by (1). This proves
the claim. �

Claim 2.6. Let 1 ≤ ℓ ≤ k and 1 ≤ i < j ≤ p, and suppose that there are at least δn2 edges between

V
(ℓ)
i and V

(ℓ)
j whose color is not ci,j. Then P[A] ≪ s−s.

Proof. The probability that Tk contains no edge {vi, vj} ∈ E(V
(ℓ)
i , V

(ℓ)
j ) with c(vi, vj) 6= ci,j, is at

most (1−2δ)t/2 ≤ e−δt. Suppose that Tk contains such an edge {vi, vj}. By applying Claim 2.4 to vi
and vj, we get the following: with probability at least 1−2·(2k−2)e−δt over the choice of T1, . . . , Tk−1,
it holds that if (W1, . . . ,Wq) is a (1, 2)-monochromatic partition of S ∪ T1 ∪ · · · ∪ Tk−1 ∪ {vi, vj}
extending (U1, . . . , Up), then vi ∈ Wi and vj ∈ Wj . But c(vi, vj) 6= ci,j, contradicting the fact that
the bipartite graph (Wi,Wj) should be monochromatic in color ci,j . The probability of failure is at
most e−δt + 2 · (2k − 2)e−δt ≤ 2 · 2ke−δt ≪ s−s, where the last inequality holds by (1). �

Put V (ℓ) := V
(ℓ)
1 ∪ · · · ∪ V

(ℓ)
p . By construction, we have V (ℓ) ⊆ V (ℓ+1) for every ℓ ≥ 1. By our

choice of k, there must be some 1 ≤ ℓ ≤ k − 1 such that |V (ℓ+1)| ≤ |V (ℓ)| + ε2

128n. From now on we
fix such an ℓ. By Claims 2.5 and 2.6, we may assume that:

(a) |V
(ℓ)
i | ≤ (1− ε

2)n for every 1 ≤ i ≤ p.

(b) For every pair 1 ≤ i < j ≤ p, all but at most δn2 of the edges between V
(ℓ)
i and V

(ℓ)
j have color ci,j.

We would like the sets V
(ℓ)
1 , . . . , V

(ℓ)
p to be pairwise disjoint; to this end, if an element belongs to

several of these sets, then we place it in one of them arbitrarily, removing it from all others. Items
(a)-(b) continue to hold. This also does not change V (ℓ).

Recall that |V (ℓ)| ≥ |V (1)| ≥ ε
4n. Put V ′ := V (ℓ+1) \ V (ℓ) and note that |V ′| ≤ ε2

128n by our

choice of ℓ. Also, set X := V (G) \ (S ∪ V (ℓ) ∪ V ′) = V (G) \ (S ∪ V (ℓ+1)). Observe that by
definition, if x ∈ X then for every 1 ≤ i ≤ p, all but at most 2δn of the edges between x and

V
(ℓ)
i have the same color cx,i ∈ {1, 2} (because x /∈ V (ℓ+1)). Consider the partition P of V (G)

having the following parts: V
(ℓ)
1 , . . . , V

(ℓ)
p ; V ′ ∪S; and the vertices of X as singletons. We claim that

e(P) ≥ ε
16n

2. Indeed, first note that |V (ℓ)| + |X| = n − |V ′ ∪ S| ≥ (1 − ε
8)n, say. If |X| ≥ ε

8n then

e(P) ≥ |V (ℓ)| · |X| ≥ (n − ε
8n − |X|) · |X| ≥ (n − ε

4n) ·
ε
8n ≥ ε

16n
2. On the other hand, if |X| ≤ ε

8n

then |V (ℓ)| ≥ (1− ε
4 )n. Now, as |V

(ℓ)
i | ≤ (1− ε

2)n for every 1 ≤ i ≤ p, we get from Lemma 2.2 (with

parameters m = (1− ε
4)n and d = ε

4n) that e(P) ≥
∑

1≤i<j≤p |V
(ℓ)
i | · |V

(ℓ)
j | ≥ ε

4n ·
(1− ε

2
)n

2 ≥ ε
16n

2. So

indeed e(P) ≥ ε
16n

2 in both cases.

We now modify at most ε · e(P) of the edges in E(P) to turn P into a (1, 2)-monochromatic
partition. The changes we make are as follows:

• For every 1 ≤ i < j ≤ p, make (V
(ℓ)
i , V

(ℓ)
j ) monochromatic in color ci,j . This is a total of at

most
(p
2

)

· δn2 ≤ s2δn2 = ε2

64n
2 edge changes altogether.

• For each x ∈ X and 1 ≤ i ≤ p, make all edges between x and V
(ℓ)
i have the same color

cx,i ∈ {1, 2}; this can be done with at most 2δn edge changes. Thus, this step requires at most

n · p · 2δn ≤ 2sδn2 ≤ ε2

64n
2 edge changes altogether.
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• Change the color of all color-3 edges inside X. Recall that all but at most ε2

128n of the vertices

in X are in SMALL3, because X ∩ V (1) = ∅ and as E1 happened. Recall also that each vertex
in SMALL3 is incident to at most ε2

128n edges of color 3. Hence, this step requires at most
ε2

128n · |X|+ |X| · ε2

128n ≤ ε2

64n
2 edge changes.

• Color all edges between V ′ ∪ S and V (G) \ (V ′ ∪ S) with color 1 (say). This step requires at

most |V ′ ∪ S| · n ≤ ε2

64n
2 edge changes.

The total number of edge changes in the above four items is at most ε2

16n
2 ≤ ε · e(P). After these

changes, P is (1, 2)-monochromatic. This proves the main claim. �

Let us now complete the proof of Lemma 2.3 using the main claim. Suppose by contradiction
that there is no partition P of V (G) as in the statement of the lemma. Then by the main claim,
and as P[E1] ≥ 3/4, we have the following: with probability larger than 1/2, there does not exist
an (a, b)-monochromatic partition S = U1 ∪ · · · ∪ Up, where p ≥ 2, and an (a, b)-monochromatic
partition of R which extends (U1, . . . , Up). On the other hand, we saw that such partitions S =
U1 ∪ · · · ∪ Up and R = W1 ∪ · · · ∪Wq do exist if E0 and E2 happen, which has probability at least
1/2 as P[E0],P[E2] ≥ 3/4. This contradiction completes the proof. �

Proof of Theorem 3. We decompose G by repeatedly applying Lemma 2.3. It is convenient to
describe the decomposition using a tree, where each node corresponds to a subset of V (G). The
root is V (G). At each step, if there is a leaf X with |X| ≥ εn, then apply Lemma 2.3 to G[X].
As ε33|X|3 ≥ ε36n3, we know that G[X] contains at most ε33|X|3 rainbow triangles. Thus, Lemma
2.3 gives a partition PX of X which is ε-close to being (a, b)-monochromatic, for some two colors
a, b ∈ [3]. Now add all the sets Y ∈ PX as children of X. When this process stops, every leaf
is of size at most εn. For each non-leaf X, turn PX into an (a, b)-monochromatic partition (for
the two suitable colors a, b) by changing the colors of at most ε · e(P) of the edges in E(P). This
requires in total at most ε

(

n
2

)

≤ εn2/2 edge changes altogether. Next, for each leaf X, make G[X]
rainbow-triangle-free. This requires at most

∑

X leaf

(

|X|

2

)

≤
εn− 1

2
·
∑

X leaf

|X| ≤ εn2/2

additional edge changes. So the total number of edge-changes is at most εn2. After these edge-
changes, the resulting 3-colored complete graph has no rainbow triangles, by the “conversely” part
of Lemma 2.1. This completes the proof. �

3 Lower Bounds

In this section we prove the “only if” parts of Theorems 1 and 2 and of Proposition 1.2. The proofs
use Behrend-type constructions, similarly to [1, 5]. Due to this similarity, we will be somewhat brief.
We need the following simple lemma.

Lemma 3.1. For d ≥ 2 and r ≥ 2d, there is a collection R ⊆ [r]d, |R| ≥ (r/2)2, such that any two
d-tuples in R agree on at most one coordinate.

Proof. Let p be a prime such that r/2 < p ≤ r; such a prime exists by Bertrand’s postulate.
For a, b ∈ Fp, let xa,b ∈ F

d
p be the d-tuple xa,b(i) = a + (i − 1)b, i = 1, . . . , d. Observe that for
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(a1, b1) 6= (a2, b2), there is at most one 1 ≤ i ≤ d with xa1,b1(i) = xa2,b2(i). Indeed, if there are two
such 1 ≤ i < j ≤ d, then a1 + (i− 1)b1 = a2 + (i− 1)b2 and a1 + (j − 1)b1 = a2 + (j − 1)b2. Solving
this system of equations gives a1 = a2 and b1 = b2, a contradiction. Here we use the fact that i 6≡ j
(mod p), which follows from p > r/2 ≥ d. �

Lemma 3.2. Let k ≥ 2, let F be a k-colored complete graph, and suppose that there is a triangle
in F whose edges avoid one of the colors. Then for every small enough ε > 0 and large enough n,
there is an n-vertex k-colored complete graph G which contains εn2 pair-disjoint copies of F , but
only εΩ(log 1/ε)nv(F ) copies of F altogether.

Proof. Put f = v(F ) and suppose that V (F ) = [f ]. Without loss of generality, suppose that F has
a triangle whose edges avoid the color k. By [5, Lemma 4.1], for every m ≥ 1, there is a set S ⊆ [m] of
size at least m/eC

√
logm, such that for all 1 ≤ p, q ≤ f−1, there is no solution to ps1+qs2 = (p+q)s3

with distinct s1, s2, s3 ∈ S. Let m be the maximal integer satisfying e−C
√
logm ≥ 4f4ε. It is easy

to check that m ≥ (1/ε)Ω(log 1/ε). Let S ⊆ [m] be as above; so |S| ≥ 4f4εm. Define a k-colored
complete graph H consisting of f disjoint sets V1, . . . , Vf , where Vi = [i · m]. So v(H) =

(

f+1
2

)

m,
and hence f2m/2 ≤ v(H) ≤ f2m. For each x ∈ [m] and s ∈ S, add a copy Fx,s of F in which
vi := x + (i − 1)s ∈ Vi plays the role of i for every i ∈ [f ] = V (F ). All edges in H which do not
belong to any of the copies Fx,s (in particular, the edges inside the sets V1, . . . , Vf ) are colored with
color k. We claim that the copies Fx,s, (x, s) ∈ [m]×S, are pair-disjoint. Indeed, if Fx1,s1 and Fx2,s2

have the same vertex in Vi and Vj , then x1+(i−1)s1 = x2+(i−1)s2 and x1+(j−1)s1 = x2+(j−1)s2.
Solving this system of equations, we get that x1 = x2 and s1 = s2. So we conclude that the copies
Fx,s are indeed pair-disjoint. The number of these copies is m|S| ≥ 4f4εm2.

Next, we bound the number of triangles in H which avoid the color k. Such a triangle cannot
contain two vertices from the same Vi, since the edges inside V1, . . . , Vf are colored with color k. Let
1 ≤ a < b < c ≤ f , and let x ∈ Va, y ∈ Vb, z ∈ Vc be a triangle avoiding the color k. By construction,
there are s1, s2, s3 ∈ S such that y − x = (b − a)s1, z − y = (c − b)s2 and z − x = (c − a)s3. So,
setting p := b − a and q := c − b, we have ps1 + qs2 = (p + q)s3. By our choice of S, we have
s1 = s2 = s3 =: s. So each such triangle is determined by the choice of x ∈ Va and s. There are
|Va| = a ·m ≤ f ·m choices for x and |S| ≤ m choices for s. Hence, the total number of triangles in
H avoiding the color k is at most

(f
3

)

· fm · |S| ≤ f4m2.

Now let G be the n
v(H) -blowup of H, where all edges inside the blowup of each Vi are colored

with k. Each copy of F in H gives rise to ( n
2v(H) )

2 pair-disjoint copies of F in G, by Lemma 3.1

with parameters r = n
v(H) and d = f . Hence, G contains a collection of 4f4εm2 · ( n

2v(H) )
2 ≥ εn2

pair-disjoint copies of F . To complete the proof, we bound the total number of copies of F in G.
Each copy of F must contain a triangle which avoids the color k. Each triangle avoiding the color
k in G must come from a triangle avoiding the color k in H. The number of such triangles in H is
at most f4m2, and each of these triangles in H gives rise to ( n

v(H) )
3 such triangles in G. Hence, the

total number of triangles in G avoiding the color k is at most f4m2 · ( n
v(H) )

3 ≤ f4m2 · ( 2n
f2m

)3 ≤ n3

m . It

follows that the number of copies of F in G is at most n3

m ·nf−3 = nf

m ≤ εΩ(log 1/ε) ·nf , as required. �

Lemma 3.2 immediately implies that for k ≥ 4, every k-colored complete graph with at least 3
vertices is hard. For k = 3, observe that if F is a 3-colored complete graph and two of the edges
incident to some v ∈ V (F ) have the same color, then F has a triangle avoiding one of the colors.
If v(F ) ≥ 5 then every vertex v is like that (since there are at least 4 edges incident to v and only
3 colors). If v(F ) = 3 then such a vertex exists unless F is a rainbow triangle. And if v(F ) = 4
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then such a vertex exists unless each color spans a matching of size 2. Let F4 denote this 3-colored
complete graph; namely, V (F4) = {a1, a2, a3, a4}; {a1, a2}, {a3, a4} have color 1; {a1, a4}, {a2, a3}
have color 2; and {a1, a3}, {a2, a4} have color 3. To complete the proof of Theorem 2, we now
describe a variant of the above construction suited for F4.

Lemma 3.3. For every small enough ε > 0 and large enough n, there is an n-vertex 3-colored
complete graph G which contains εn2 pair-disjoint copies of F4, but only εΩ(log 1/ε)n4 copies of F4

altogether.

Proof. By [1, Lemma 3.1], for every m ≥ 1, there is a set S ⊆ [m] of size at least m/eC
√
logm

containing no solution to s1+ s2+ s3 = 3s4 with distinct s1, s2, s3, s4. Let m be the maximal integer
satisfying e−C

√
logm ≥ 400ε. It is easy to check that m ≥ (1/ε)Ω(log 1/ε). Let S ⊆ [m] be as above; so

|S| ≥ 400εm. Define a 3-colored complete graph H consisting of 4 disjoint sets V1, V2, V3, V4, where
Vi = [i · m]; so v(H) = 10m. For each x ∈ [m] and s ∈ S, add a copy Fx,s of F4 on the vertices
vi = x+ (i− 1)s ∈ Vi, where vi plays the role of ai for each 1 ≤ i ≤ 4. All edges not participating in
one of these copies are colored with color 3. Observe that all edges between V1 and V3 and between
V2 and V4 have color 3. As before, the copies Fx,s are pair-disjoint. Their number is m|S| ≥ 400εm2.

Observe that if F is a copy of F4 in H, then F must contain one vertex from each of the sets
V1, . . . , V4. Indeed, note that for every pair 1 ≤ i < j ≤ 4, the edges in Vi ∪ Vj use only two colors.
So |V (F ) ∩ (Vi ∪ Vj)| ≤ 2 for all i, j (since every triangle in F4 is rainbow). Hence, |V (F ) ∩ Vi| = 1
for every 1 ≤ i ≤ 4. It is now easy to see that every copy of F4 in H is of the form v1, . . . , v4, where
vi ∈ Vi plays the role of ai. Fix such a copy v1, . . . , v4. By construction, there must be s1, s2, s3, s4
such that v2− v1 = s1, v3− v2 = s2, v4− v3 = s3 and v4− v1 = 3s4. So s1+ s2+ s3 = 3s4, and hence
s1 = s2 = s3 = s4 by our choice of S. It follows that the number of copies of F4 in H is m|S| ≤ m2.

Let G be the n
v(H) -blowup of H, where all edges inside the blowup of each Vi are colored with color

3. Each copy of F4 in H gives rise to ( n
2v(H) )

2 pair-disjoint copies of F4 in G by Lemma 3.1. Hence,

G contains a collection of 400εm2 · ( n
2v(H) )

2 = εn2 pair-disjoint copies of F4. Let us now upper-bound
the total number of copies of F4 in G. By the same argument as above, every copy of F4 in G must
be of the form v1, . . . , v4 with vi belonging to the blowup of Vi and playing the role of ai in the copy.
So every copy of F4 in G corresponds to a copy of F4 in H. On the other hand, every copy of F4 in H
gives rise to ( n

v(H) )
4 copies of F4 in G. So overall, there are at most m2 · ( n

v(H) )
4 ≤ n4

m ≤ εΩ(log 1/ε)n4

copies of F4 in G, as required. �

To complete the proof of Theorem 1, we need to handle the two digraphs D whose corresponding
3-colored complete graph C(D) is the rainbow triangle. These digraphs are obtained from each other
by reversing the direction of all edges. So by symmetry, it remains to handle just one of them. Let
then D3 be the digraph with vertices a1, a2, a3 and edges (a1, a3), (a2, a3), (a3, a2).

Lemma 3.4. For every small enough ε > 0 and large enough n, there is an n-vertex digraph G which
contains εn2 pair-disjoint induced copies of D3, but only εΩ(log 1/ε)n3 induced copies of D3 altogether.

Proof. By [1, Lemma 3.1], for every m ≥ 1, there is a set S ⊆ [m] of size at least m/eC
√
logm

containing no solution to s1 + s2 = 2s3 with distinct s1, s2, s3. Let m be the maximal integer
satisfying e−C

√
logm ≥ 144ε. It is easy to check that m ≥ (1/ε)Ω(log 1/ε). Let S ⊆ [m] be as above;

so |S| ≥ 144εm. Define a digraph H consisting of 3 disjoint sets V1, V2, V3, where Vi = [i · m]; so
v(H) = 6m. For each x ∈ [m] and s ∈ S, add a copy Dx,s of D3 on the vertices v1 = x ∈ V1,
v2 = x+ s ∈ V2, v3 = x + 2s ∈ V3, where vi plays the role of ai for each 1 ≤ i ≤ 3. For all pairs of
vertices {x, y} not participating in one of these copies, put exactly one edge between x and y, and
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if x ∈ V1, y ∈ V3 then direct this edge from y to x. This way, the only edges going from V1 to V3

are those participating in one of the copies Dx,s. Note that, in particular, each of the sets V1, V2, V3

spans a tournament. As before, the copies Dx,s are pair-disjoint. Their number is m|S| ≥ 144εm2.

It is easy to check that every induced copy of D3 in H must be of the form v1, v2, v3 with vi ∈ Vi

playing the role of ai. If v1, v2, v3 is such a copy, then by construction there are s1, s2, s3 ∈ S with
v2 − v1 = s1, v3− v2 = s2 and v3 − v1 = 2s3. So s1+ s2 = 2s3, implying that s1 = s2 = s3. It follows
that H contains at most |S|m ≤ m2 induced copies of D3.

Let G be the n
v(H) -blowup of H, where the blowup of each Vi is a tournament. Every induced

copy of D3 in H gives rise to ( n
2v(H) )

2 pair-disjoint induced copies of D3 in G, by Lemma 3.1. Hence,

G contains a collection of 144εm2 · ( n
2v(H) )

2 = εn2 pair-disjoint induced copies of D3. On the other
hand, it is easy to see that every induced copy of D3 in G corresponds to an induced copy of D3 in
H, so overall G has at most m2 · ( n

v(H) )
3 ≤ n3

m ≤ εΩ(log 1/ε)n3 induced copies of D3. �
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