On Ramsey size-linear graphs and related questions

Domagoj Bradač*
Lior Gishboliner*
Benny Sudakov*

Abstract

In this paper we prove several results on Ramsey numbers $R(H, F)$ for a fixed graph H and a large graph F, in particular for $F=K_{n}$. These results extend earlier work of Erdős, Faudree, Rousseau and Schelp and of Balister, Schelp and Simonovits on so-called Ramsey size-linear graphs. Among others, we show that if H is a subdivision of K_{4} with at least 6 vertices, then $R(H, F)=O(v(F)+e(F))$ for every graph F. We also conjecture that if H is a connected graph with $e(H)-v(H) \leq\binom{ k+1}{2}-2$, then $R\left(H, K_{n}\right)=O\left(n^{k}\right)$. The case $k=2$ was proved by Erdős, Faudree, Rousseau and Schelp. We prove the case $k=3$.

1 Introduction

For two graphs H and F, the Ramsey number $R(H, F)$ is the smallest N such that for every graph G on N vertices, either G contains a copy of H or its complement \bar{G} contains a copy of F. One of the central problems in graph Ramsey theory is the estimation of Ramsey numbers of complete graphs $R\left(K_{s}, K_{n}\right)$ for s fixed and large n. The classical Erdős-Szekeres [9] theorem implies that $R\left(K_{s}, K_{n}\right)=O\left(n^{s-1}\right)$, and this was improved to $R\left(K_{s}, K_{n}\right)=O\left(n^{s-1} / \log ^{s-2} n\right)$ by a celebrated result of Ajtai, Komlós and Szemerédi [1]. As for lower bounds, Spencer [15] showed that $R\left(H, K_{n}\right)=\tilde{\Omega}\left(n^{m_{2}(H)}\right)^{1}$ for every graph H, where $m_{2}(H)$ is the 2 -density ${ }^{2}$ of H. This in particular implies that $R\left(K_{s}, K_{n}\right)=\tilde{\Omega}\left(n^{(s+1) / 2}\right)$. Kim [13] improved the implied logarithmic term in the case $s=3$, obtaining the tight result $R\left(K_{3}, K_{n}\right)=\Theta\left(n^{2} / \log n\right)$. This was later generalized by Bohman and Keevash [4], who improved the logarithmic term for every s. On the other hand, no improvement to the exponent of n has been obtained for any $s \geq 4$. Very recently, Mubayi and Verstraëte [14] showed that the existence of optimally-dense pseudorandom K_{s}-free graphs would imply that $R\left(K_{s}, K_{n}\right)=\tilde{\Omega}\left(n^{s-1}\right)$, matching the upper bound. This gives some evidence to the conjecture that $R\left(K_{s}, K_{n}\right)=\tilde{\Theta}\left(n^{s-1}\right)$ for every s.

A more general problem is to estimate $R\left(H, K_{n}\right)$ for an arbitrary graph H. It is well-known that $R\left(H, K_{n}\right)=O(n)$ if and only if H is a forest. In fact, when H is a tree, a classical result of Chvátal [7] gives the exact value of $R\left(H, K_{n}\right)$. It is thus natural to ask which graphs satisfy $R\left(H, K_{n}\right)=O\left(n^{k}\right)$ for $k \geq 2$. Erdős, Faudree, Rousseau and Schelp [8] were the first to study this problem, proving several results for the case $k=2$. They proved that $R\left(H, K_{n}\right)=O\left(n^{2}\right)$ for every connected graph H with $e(H)-v(H) \leq 1$. This result is tight, as $e\left(K_{4}\right)-v\left(K_{4}\right)=2$ and $R\left(K_{4}, K_{n}\right)=\tilde{\Omega}\left(n^{5 / 2}\right)$ (by the aforementioned result of Spencer [15]). We propose the following conjecture which generalizes the result of Erdős, Faudree, Rousseau and Schelp.

Conjecture 1. Let $k \geq 1$. For every connected graph H with $e(H)-v(H) \leq\binom{ k+1}{2}-2$, it holds that $R\left(H, K_{n}\right)=O\left(n^{k}\right)$.

Note that $e\left(K_{k+2}\right)-v\left(K_{k+2}\right)=\binom{k+1}{2}-1$. Hence, if the aforementioned conjecture that $R\left(K_{s}, K_{n}\right)=\tilde{\Omega}\left(n^{s-1}\right)$ is true, then the constant $\binom{k+1}{2}-2$ in Conjecture 1 would be best possible. In this paper we prove the first open case of Conjecture 1, namely the case $k=3$.

[^0]

Figure 1: K_{4}^{*}

Theorem 2. Let H be a connected graph with $e(H)-v(H) \leq 4$. Then $R\left(H, K_{n}\right)=O\left(n^{3}\right)$.
In the proof of Theorem 2, we make use of the following claim, which bounds the Ramsey number $R\left(H, K_{n}\right)$ in terms of the treewidth of H. This might be of independent interest. Recall that a graph is called a k-tree if it is K_{k+1} or if it is obtained from a smaller k-tree by adding a new vertex and connecting it to k vertices which form a clique. The treewidth of H, denoted by $\operatorname{tw}(H)$, is the minimal k for which H is a subgraph of a k-tree.

Proposition 1.1. For every fixed graph H, we have $R\left(H, K_{n}\right)=O\left(n^{t w(H)}\right)$.
In addition to proving Conjecture 1 in the case $k=3$, we show that the full conjecture holds if K_{n} is replaced with $K_{n, n}$ (see Proposition 5.6). Along the way we also obtain bounds for $R\left(H, K_{n, n}\right)$ for graphs H with bounded maximum degree or bounded degeneracy; see Corollaries 6 and 7 .

Note that if $R\left(H, K_{n}\right)=O\left(n^{2}\right)$ then this can be written as $R\left(H, K_{n}\right)=O\left(e\left(K_{n}\right)\right)$. This motivated Erdős, Faudree, Rousseau and Schelp [8] to define the so-called Ramsey size-linear graphs. A graph H is called Ramsey size-linear if

$$
\begin{equation*}
R(H, F)=O(e(F)) \tag{1}
\end{equation*}
$$

holds for every graph F with no isolated vertices. This notion was introduced in [8], where the authors established some basic results and raised several intriguing questions. In particular, Erdős, Faudree, Rousseau and Schelp asked whether it is true that every graph H with $m_{2}(H) \leq 2$ is Ramsey size-linear. This would imply that every 2-degenerate graph is Ramsey size-linear. These questions seem to be still out of reach at the moment. Perhaps in light of this, Erdős et al. also asked about specific graphs H. In particular, they asked whether K_{4}^{*}, the graph obtained from K_{4} by subdividing one edge (see Figure 1), is Ramsey size-linear. This question was later reiterated by Balister, Schelp and Simonovits [3]. While we cannot supply an affirmative answer, we can show that (1) at the very least holds for every bipartite graph F.

Theorem 3. For every bipartite graph F with no isolated vertices, it holds that $R\left(K_{4}^{*}, F\right)=O(e(F))$.
The above question of Erdős et al. for K_{4}^{*} motivates the study of Ramsey numbers for subdivisions of K_{4}. Balister, Schelp and Simonovits [3] showed (as part of a more general result) that the graph obtained from K_{4} by subdividing an edge four times is Ramsey size-linear. Here we extend this further, showing that every subdivision of K_{4} other than K_{4}^{*} is Ramsey size linear.

Theorem 4. Every subdivision of K_{4} on at least 6 vertices is Ramsey size-linear.
Theorem 4 is used in the proof of Theorem 2. Indeed, it is well-known that a graph G has treewidth larger than 2 if and only if G contains a K_{4}-subdivision. Combining Theorem 4 with Proposition 1.1 and some additional arguments gives Theorem 2.

The proofs of Theorems 3 and 4 heavily rely on the use of averaging arguments. Theorem 4 additionally uses dependent random choice (see e.g., [10] for a description of this method and a brief history) which can be viewed as a more sophisticated use of averaging and convexity arguments.

The rest of this short paper is organized as follows. Section 2 contains some lemmas used in the proofs of Theorems 3 and 4. We then prove Theorem 3 in Section 3 and Theorem 4 in Section 4. Section 5 contains all results related to Conjecture 1. Finally, the last section includes some
comments and related open questions. We use $\log n$ to denote the natural $\operatorname{logarithm}$ of n. We omit floor and ceiling signs whenever these are not crucial. We use $\delta(G), \Delta(G), d(G)$ to denote the minimum, maximum and average degree of G, respectively. We will frequently use the fact that a graph with n vertices and average degree d contains an independent set of size at least $n /(d+1)$. This is a well-known consequence of Turán's theorem.

2 Preliminary Lemmas

Lemma 2.1. Let $r>0$. Consider a bipartite graph with sides X, Y with $e(X, Y) \leq r|Y|$. Then there are $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ such that $\left|X^{\prime}\right| \geq\lfloor|X| /(r+1)\rfloor,\left|Y^{\prime}\right| \geq\lfloor|Y| /(r+1)\rfloor$ and there are no edges between X^{\prime} and Y^{\prime}.

Proof. By averaging, there is $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right|=\lfloor|X| /(r+1)\rfloor$ such that $e\left(X^{\prime}, Y\right) \leq e(X, Y) /(r+$ $1) \leq r|Y| /(r+1)$. Hence, there are at least $\lfloor|Y| /(r+1)\rfloor$ vertices $y \in Y$ which have no edge to X^{\prime}. Take Y^{\prime} to be the set of these vertices.

In the proof of Theorem 3, it is convenient to assume that the host graph is (almost) regular. The following lemma allows us to assume that the maximum degree is larger than the average degree by no more than a logarithmic factor.

Lemma 2.2. Let G be a graph on $N \geq 12$ vertices. Then there is an induced subgraph G^{\prime} of G with average degree $d\left(G^{\prime}\right)$ such that $\left|V\left(G^{\prime}\right)\right| \geq N / 6$ and $\Delta\left(G^{\prime}\right) \leq d\left(G^{\prime}\right) \cdot \log \left|V\left(G^{\prime}\right)\right|$.

Proof. We run the following process for $2 N / 3$ steps. If the current graph G satisfies $\Delta(G) \leq$ $d(G) \cdot \log |V(G)|$, then stop. Otherwise, take $v \in V(G)$ with $d_{G}(v)>d(G) \cdot \log |V(G)|$, and replace G with $G-v$. Letting d denote the old average degree and $d_{\text {new }}$ the new average degree, we have

$$
\begin{aligned}
d_{\mathrm{new}} & =\frac{d|V(G)|-2 d_{G}(v)}{|V(G)|-1}<\frac{d|V(G)|-2 d \log |V(G)|}{|V(G)|-1}=d \cdot\left(1-\frac{2 \log |V(G)|-1}{|V(G)|-1}\right) \\
& \leq d \cdot\left(1-\frac{2 \log N-1}{N-1}\right),
\end{aligned}
$$

where the last inequality holds because the function $x \mapsto \frac{2 \log x-1}{x-1}$ is decreasing for $x \geq 4$, say, and $|V(G)| \geq N / 3 \geq 4$ (as we only run the process for $2 N / 3$ steps and in each step remove one vertex). So we see that if the process did not stop, then the average degree of the final graph G is at most

$$
(N-1) \cdot\left(1-\frac{2 \log N-1}{N-1}\right)^{2 N / 3} \leq(N-1) \cdot \exp \left(-\frac{2 N / 3 \cdot(2 \log N-1)}{N-1}\right) \leq(N-1) \cdot e^{-\log N}<1
$$

Therefore, the final graph G contains an empty subgraph on at least $|V(G)| / 2=N / 6$ vertices. This subgraph satisfies the assertion of the lemma.

The following lemma shows that if some number of highest-degree vertices of a graph F has already been embedded into the complement \bar{G} of a graph G, and if $N=|V(G)|$ is large enough compared to the average degree of G and the degrees of the vertices already used in the embedding, then one can complete the embedding of F into \bar{G}. The proof uses a basic greedy embedding argument.

Lemma 2.3. Let F be a graph with m edges. Let $0 \leq k \leq|V(F)|$, and let A be the set of the k highestdegree vertices in F. Let G be a graph with N vertices and average degree d. Let $\sigma^{\prime}: A \rightarrow V(G)$ be an embedding of $F[A]$ into \bar{G}. Suppose that

$$
\begin{equation*}
N \geq \frac{4 m}{k+1} \cdot \max \left(\max _{v \in \sigma^{\prime}(A)} d_{G}(v), 2 d\right)+2|V(F)| . \tag{2}
\end{equation*}
$$

Then there is an embedding σ of F into \bar{G} which extends σ^{\prime} (i.e. $\sigma(x)=\sigma^{\prime}(x)$ for every $x \in A$).

Proof. Let W be the set of $v \in V(G)$ with $d_{G}(v) \leq 2 d$. Then $|W| \geq N / 2$. We embed the vertices of $V(F) \backslash A$ one-by-one into W. Let $x \in V(F) \backslash A$. We want to choose $\sigma(x) \in W$ which is different from all previously embedded vertices, such that if $y \in V(F)$ has already been embedded and is adjacent in F to x, then $\sigma(x)$ is not adjacent in G to $\sigma(y)$. If $y \in A$, then the degree of $\sigma(y)$ in G is of course not larger than $\max _{v \in \sigma^{\prime}(A)} d_{G}(v)$. And if $y \notin A$, then $\sigma(y) \in W$ and hence its degree in G is at most $2 d$. The total number of vertices y which we need to consider is $d_{F}(x) \leq 2 m /(k+1)$, where the inequality holds by the choice of A, as $|A|=k$ and $e(F)=m$. So in total, the number of vertices which cannot play the role of $\sigma(x)$ is at most $\frac{2 m}{k+1} \cdot \max \left(\max _{v \in \sigma^{\prime}(A)} d_{G}(v), 2 d\right)+|V(F)|-1<N / 2 \leq|W|$. Hence, there is a suitable choice for $\sigma(x) \in W$.

Corollary 2.4. Let F be a graph with m edges, and let G be a graph with N vertices and average degree $d \leq \sqrt{\frac{N^{2}-2 N \cdot|V(F)|}{48 m}}$. Then \bar{G} contains a copy of F.
Proof. Let W be the set of $v \in V(G)$ with $d_{G}(v) \leq 2 d$. Then $\Delta(G[W]) \leq 2 d$ and $|W| \geq N / 2$. Hence, $G[W]$ contains an independent set I of size $k \geq \frac{N / 2}{2 d+1} \geq \frac{N}{6 d}$. Let A be the set of $\min \{k,|V(F)|\}$ highest-degree vertices of F. Mapping $F[A]$ arbitrarily into I gives an embedding of $F[A]$ into \bar{G}, since I is independent in G. If $A=V(F)$ then we are done. Else, we apply Lemma 2.3 to complete the embedding of F into \bar{G}. We only need to verify the condition (2). Since $I \subseteq W$, all vertices in I have degree at most $2 d$ in G. So for (2) to hold, it suffices that $N \geq \frac{4 m}{N / 6 d} \cdot 2 d+2|V(F)|$, which holds by the assumption of the lemma.

Next, we need a bipartite version of Lemma 2.3.
Lemma 2.5. Let F be a bipartite graph with sides A, B and m edges. Let $k, \ell \geq 0$, let A^{\prime} be the set of the k highest-degree vertices in A, and let B^{\prime} be the set of the ℓ highest-degree vertices in B. Let G be a graph with N vertices and average degree d. Let $\sigma^{\prime}: A^{\prime} \cup B^{\prime} \rightarrow V(G)$ be an embedding of $F\left[A^{\prime} \cup B^{\prime}\right]$ into \bar{G}. Suppose that

$$
\begin{aligned}
& \text { 1. } B^{\prime}=B \text { or } N \geq \frac{2 m}{\ell+1} \cdot \max _{v \in \sigma^{\prime}\left(A^{\prime}\right)} d_{G}(v)+2|V(F)| \text {. } \\
& \text { 2. } A^{\prime}=A \text { or } N \geq \frac{m}{k+1} \cdot \max \left(\max _{v \in \sigma^{\prime}\left(B^{\prime}\right)} d_{G}(v), 2 d\right)+|V(F)| \text {. }
\end{aligned}
$$

Then there is an embedding σ of F into \bar{G} which extends σ^{\prime}.
Proof. Let W be the set of $v \in V(G)$ with $d_{G}(v) \leq 2 d$. Then $|W| \geq N / 2$. We will embed the vertices of $V(F) \backslash\left(A^{\prime} \cup B^{\prime}\right)$ one-by-one. We first embed the vertices of $B \backslash B^{\prime}$ into W. Let $b \in B \backslash B^{\prime}$. We want to choose $\sigma(b) \in W$ such that $\sigma(b)$ is not adjacent in G to $\sigma^{\prime}(a)$ for any $a \in A^{\prime}$ with $(a, b) \in E(F)$, and such that $\sigma(b)$ is different from all previously embedded vertices. We have $d_{F}(b) \leq m /(\ell+1)$, because $b \notin B^{\prime}$ and B^{\prime} is the set of the ℓ highest-degree vertices in B. So the number of vertices which cannot play the role of $\sigma(b)$ is at most $\frac{m}{\ell+1} \cdot \max _{v \in \sigma^{\prime}\left(A^{\prime}\right)} d_{G}(v)+|V(F)|-1<N / 2 \leq|W|$, where the first inequality uses Item 1 . Therefore, there is a suitable choice for $\sigma(b) \in W$.

Suppose now that we have embedded $B \backslash B^{\prime}$, and let us embed the vertices of $A \backslash A^{\prime}$ (here we no longer insist that vertices are embedded into W). Let $a \in A \backslash A^{\prime}$. We need to show that there is $\sigma(a) \in V(G)$ such that $\sigma(a)$ is not adjacent in G to $\sigma(b)$ for any $b \in B$ with $(a, b) \in E(F)$, and such that $\sigma(a)$ is different from all previously embedded vertices. As above, we have $d_{F}(a) \leq m /(k+1)$. For each $b \in B \backslash B^{\prime}$, we have $d_{G}(\sigma(b)) \leq 2 d$ because $\sigma(b) \in W$. Therefore, the number of vertices which cannot play the role of $\sigma(a)$ is at most $\frac{m}{k+1} \cdot \max \left(\max _{v \in \sigma^{\prime}\left(B^{\prime}\right)} d_{G}(v), 2 d\right)+|V(F)|-1<N$, using Item 2. So there is a valid choice for $\sigma(a) \in V(G)$.

Finally, we will need the following well-known result on the independence number of graphs with few triangles, see e.g. [5, Lemma 12.16].

Lemma 2.6. Let G be a graph with N vertices, average degree d, and at most T triangles. Then G contains an independent set of size at least $0.1 \frac{N}{d} \cdot\left(\log d-\frac{1}{2} \log (T / N)\right)$.

3 Proof of Theorem 3

Let us first sketch the proof of Theorem 3 in the case $F=K_{n, n}$. So let G be a graph on $N=C n^{2}$ vertices with no copy of K_{4}^{*}. We need to show that \bar{G} contains a copy of $K_{n, n}$. First, it is easy to see that by deleting some $N / 2$ (say) vertices, we may assume that the minimum degree of G is $\Omega(C n)$. (Else, G contains an independent set of size $2 n$, so \bar{G} contains a $K_{n, n}$, as required.) Let S be the set of pairs of vertices (x, y) such that x, y have at most two common neighbours. Suppose first that there is $x \in V(G)$ such that $S(x):=\{y:(x, y) \in S\}$ has size at least $3 n$. In this case, take disjoint sets $A \subseteq N_{G}(x), B \subseteq S(x)$, each of size $3 n$ (this is possible because $d(x)=\Omega(C n) \geq 6 n$). By the definition of S, each vertex in B has at most two common neighbours with x, hence it has at most two neighbours in A. This allows us to find greedily an $n \times n$ empty bipartite graph between A, B, as required.

So from now on suppose that $|S(x)| \leq 3 n$ for each $x \in V(G)$, implying that $|S| \leq 3 n N / 2$. Now, taking a vertex $v \in V(G)$ at random, we see that the number of pairs $(x, y) \in S$ contained in $N(v)$ is on average at most $3 n$ (each pair from S is counted at most twice when averaging over v, by the definition of S). So fix $v \in V(G)$ with at most $3 n$ pairs $(x, y) \in S$ inside $N(v)$. Recall that $|N(v)|=\Omega(C n)$. We may assume that the average degree inside $N(v)$ is at least $\Omega(C)$, because otherwise $N(v)$ would contain an independent set of size $2 n$, and we would be done. It follows that $G[N(v)]$ contains at least $\sum_{u \in N(v)}\binom{d_{G[N(v)]}(u)}{2}=\Omega\left(C^{3} n\right)$ paths of length two where we used that $\binom{x}{2}$ is convex. Also, each pair x, y can be the endpoints of at most one such path of length two, because otherwise we get a C_{4} inside $N(v)$, and hence a K_{4}^{*} together with v. So in $N(v)$ there are at least $\Omega\left(C^{3} n\right)>3 n$ pairs (x, y) which are the endpoints of a path of length two. Hence, one of these pairs is not in S. Fix such a pair x, y, and let x, z, y be a path of length two inside $N(v)$. Since $(x, y) \notin S$, there is an additional neighbour $u \notin\{v, z\}$ of x, y. Now v, x, y, z, u form a copy of K_{4}^{*}.

Unfortunately, we were not able to adapt the above proof in a clean way to work for every bipartite graph F. Finding such a concise proof of Theorem 3 would be interesting. Instead, to make the proof work for an arbitrary bipartite F, we apply regularization to G via Lemma 2.2, ensuring that the maximum degree is at most a logarithmic factor away from the average degree. This "almost-regularity" of G will be useful when applying Lemmas 2.3 and 2.5 in certain steps of the proof. To compensate for the (extra) logarithmic factor, we use Lemma 2.6. The details follow.

Proof of Theorem 3. Let F be a bipartite graph with sides A, B, having m edges and no isolated vertices. Note that $|V(F)| \leq 2 m$. Let G be a graph on $N=C m$ vertices with no copy of K_{4}^{*}, where C is a large enough constant. Our goal is to show that \bar{G} contains a copy of F. By Lemma 2.2, there is an induced subgraph G^{\prime} of G with $\left|V\left(G^{\prime}\right)\right| \geq N / 6$ and $\Delta\left(G^{\prime}\right) \leq d\left(G^{\prime}\right) \cdot \log \left|V\left(G^{\prime}\right)\right|$. With a slight abuse of notation, we will use the notation G for G^{\prime} and N for $\left|V\left(G^{\prime}\right)\right|$; so $|V(G)|=N$ and $\Delta(G) \leq d(G) \cdot \log N$. Put $d:=d(G)$.

Let S be the set of pairs $(x, y) \in\binom{V(G)}{2}$ with $d_{G}(x, y) \leq 2$. We proceed with several cases.
Case 1: $|S| \geq 2 N d \log N$. For each $x \in V(G)$, let $S(x)$ be the set of $y \in V(G)$ with $d(y) \leq d(x)$ and $(x, y) \in S$. Then $\sum_{x \in V(G)}|S(x)| \geq|S|$. Hence, there is x with $|S(x)| \geq 2 d \log N$. Since $\Delta(G) \leq d \log N$, we have $\left|S(x) \backslash N_{G}(x)\right| \geq d \log N$. Each $y \in S(x)$ has at most 2 neighbours in $N_{G}(x)$, by the definition of S. By Lemma 2.1 with $r=2, X=N_{G}(x)$ and $Y=S(x) \backslash N_{G}(x)$, there exist $X^{\prime} \subseteq N_{G}(x)$ and $Y^{\prime} \subseteq S(x) \backslash N_{G}(x)$ such that $\left|X^{\prime}\right| \geq\left\lfloor d_{G}(x) / 3\right\rfloor,\left|Y^{\prime}\right| \geq\left\lfloor\left|S(x) \backslash N_{G}(x)\right| / 3\right\rfloor \geq$ $\lfloor d \log (N) / 3\rfloor$, and there are no edges in G between X^{\prime} and Y^{\prime}.

Let $A^{\prime} \subseteq A$ be the set of the $k:=\min \left\{\left|Y^{\prime}\right|,|A|\right\}$ highest-degree vertices in A, and let $B^{\prime} \subseteq B$ be the set of the $\ell:=\min \left\{\left|X^{\prime}\right|,|B|\right\}$ highest-degree vertices in B. Map A^{\prime} into Y^{\prime} and B^{\prime} into X^{\prime} arbitrarily. This mapping σ^{\prime} is an embedding of $F\left[A^{\prime} \cup B^{\prime}\right]$ into \bar{G}, because there are no edges in G between X^{\prime} and Y^{\prime}. We now verify that Items 1-2 in Lemma 2.5 hold. All vertices in $\sigma^{\prime}\left(A^{\prime}\right) \subseteq Y^{\prime} \subseteq$ $S(x)$ have degree at most $d_{G}(x)$ by the definition of $S(x)$. Hence (assuming $B^{\prime} \neq B$), we have

$$
\frac{2 m}{\ell+1} \cdot \max _{v \in \sigma^{\prime}\left(A^{\prime}\right)} d_{G}(v) \leq \frac{2 m}{\left|X^{\prime}\right|+1} \cdot d_{G}(x) \leq \frac{2 m}{d_{G}(x) / 3} \cdot d_{G}(x)=6 m .
$$

Also, $|V(F)| \leq 2 m$. Therefore, Item 1 in Lemma 2.5 holds provided that $N \geq 10 m$. Next, (assuming $A^{\prime} \neq A$), we have

$$
\frac{m}{k+1} \cdot \max \left(\max _{v \in \sigma^{\prime}\left(B^{\prime}\right)} d_{G}(v), 2 d\right) \leq \frac{m}{\left|Y^{\prime}\right|+1} \cdot 2 \Delta(G) \leq \frac{m}{d \log (N) / 3} \cdot 2 d \log N \leq 6 m .
$$

So Item 2 in Lemma 2.5 holds as well, provided that $N \geq 8 m$. Hence, \bar{G} contains a copy of F, as required.

Case 2: $\quad|S| \leq 2 N d \log N$ and $d \geq 576 \sqrt{m \log N}$. For each $x \in V(G)$, let $N^{\prime}(x)$ denote the set of neighbours y of x with $d(y) \leq d(x)$, and let $d^{\prime}(x)=\left|N^{\prime}(x)\right|$. Then $\sum_{x \in V(G)} d^{\prime}(x) \geq e(G)=d N / 2$. Let $t(x)$ be the number of pairs $(y, z) \in S$ such that $y, z \in N^{\prime}(x)$. We have $\sum_{x \in V(G)} t(x) \leq 2|S|$, because each pair in S is counted at most twice in this sum, by the definition of S. Observe that

$$
\begin{aligned}
\sum_{x \in V(G)}\left[16 \log N \cdot\left(d^{\prime}(x)-d(x) / 8-d / 8\right)-t(x)\right] & \geq 16 \log N \cdot e(G) / 2-\sum_{x \in V(G)} t(x) \\
& =4 d N \log N-\sum_{x \in V(G)} t(x) \geq 4 d N \log N-2|S| \geq 0 .
\end{aligned}
$$

Hence, there is $x \in V(G)$ with $16 \log N \cdot\left(d^{\prime}(x)-d(x) / 8-d / 8\right)-t(x) \geq 0$. In particular, $d^{\prime}(x) \geq$ $d(x) / 8, d / 8$, and the number $t(x)$ of pairs $(y, z) \in S$ with $y, z \in N^{\prime}(x)$ is at most $16 d^{\prime}(x) \log N$. Fix such x, let $G_{1}:=G\left[N^{\prime}(x)\right]$ and let $d_{1}:=d\left(G_{1}\right)$ be the average degree of G_{1}.

We claim that $d_{1} \leq 6 \sqrt{\log N}$. Suppose otherwise. Then, by convexity, the number of paths of length 2 in G_{1} is at least $\left|N^{\prime}(x)\right| \cdot\binom{6 \sqrt{\log N}}{2}>16 d^{\prime}(x) \log N \geq t(x)$. A pair of vertices from $N^{\prime}(x)$ can be the endpoints of at most one path of length two in G_{1}, because otherwise $G_{1}=G\left[N^{\prime}(x)\right]$ would contain a copy of C_{4}, which together with x would give a copy of K_{4}^{*} in G, a contradiction. So we see that there are more than $t(x)$ pairs $(y, z) \in\binom{N^{\prime}(x)}{2}$ which are the endpoints of a path of length 2 in G_{1}. Hence, there is such a pair (y, z) which does not belong to S. Let w be the middle vertex of the path of length two between y and z in G_{1}. Since $(y, z) \notin S$, there is a common neighbour u of y, z with $u \neq x, w$. Now x, y, z, w, u span a copy of K_{4}^{*}, a contradiction. This proves the claim that $d_{1} \leq 6 \sqrt{\log N}$.

Let $A \subseteq V(F)$ be the set of $k:=\min \left\{d^{\prime}(x) / 3,|V(F)|\right\}$ highest-degree vertices in F. Our goal is to embed $F[A]$ into $\bar{G}\left[N^{\prime}(x)\right]$, and then use Lemma 2.3 to extend this into an embedding of F into \bar{G}. To embed $F[A]$ into $\bar{G}\left[N^{\prime}(x)\right]$, we use Corollary 2.4 with $F[A]$ in the role of F and $G_{1}=G\left[N^{\prime}(x)\right]$ in the role of G. To apply the corollary, we need to verify the condition

$$
\begin{equation*}
d_{1} \leq \sqrt{\frac{\left|V\left(G_{1}\right)\right|^{2}-2\left|V\left(G_{1}\right)\right| \cdot|A|}{48 e(F[A])}} \tag{3}
\end{equation*}
$$

By definition, $|A| \leq d^{\prime}(x) / 3$. Also, $\left|V\left(G_{1}\right)\right|=d^{\prime}(x), d_{1} \leq 6 \sqrt{\log N}$ and $e(F[A]) \leq m$. So the RHS of (3) is at least $\frac{d^{\prime}(x)}{12 \sqrt{m}}$, and hence (3) holds provided that $d^{\prime}(x) \geq 72 \sqrt{m \log N}$, as $d_{1} \leq 6 \sqrt{\log N}$. But $d^{\prime}(x) \geq d / 8 \geq 72 \sqrt{m \log N}$ by the assumption of Case 2, so (3) indeed holds. By Corollary 2.4, there is an embedding σ^{\prime} of $F[A]$ into $\bar{G}\left[N^{\prime}(x)\right]$.

We now use Lemma 2.3 to embed F into \bar{G}. Recall that all vertices in $\sigma^{\prime}(A) \subseteq N^{\prime}(x)$ have degree at most $d(x) \leq 8 d^{\prime}(x)$ in G (by the definition of $N^{\prime}(x)$), and that the average degree of G is $d \leq 8 d^{\prime}(x)$. Also, $k=d^{\prime}(x) / 3$ assuming $A \neq V(F)$, by our choice of k. Therefore, we can bound the first term on the RHS of (2) as follows: $\frac{4 m}{k+1} \cdot\left(\max _{v \in \sigma^{\prime}(A)} d_{G}(v), 2 d\right) \leq \frac{12 m}{d^{\prime}(x)} \cdot 16 d^{\prime}(x)=192 m$. Also, $|V(F)| \leq 2 m$. So (2) holds for $N \geq 196 m$. We conclude that \bar{G} contains a copy of F, as required.

Case 3: $\quad d \leq 576 \sqrt{m \log N}=O(\sqrt{N \log N})($ recall that $N=C m$ so $m \leq N)$. Let W be the set of vertices of G of degree at most $2 d$. Then $|W| \geq N / 2$. Let $d_{0}:=d(G[W])$ be the average degree of $G[W]$. Then $d_{0} \leq \Delta(G[W]) \leq 2 d=O(\sqrt{N \log N})$. We claim that $G[W]$ contains an independent

Figure 2: H_{1}, H_{2}, H_{3} (from left to right)
set I of size $\Omega(d)$. If $d_{0} \leq \sqrt{N / \log N}$ then this holds because then $\frac{|W|}{d_{0}+1}=\Omega(\sqrt{N \log N})=\Omega(d)$. So suppose from now on that $d_{0} \geq \sqrt{N / \log N}$.

Let us bound the number of triangles in $G[W]$. We have $\Delta(G[W]) \leq 2 d=O(\sqrt{N \log N})=$ $N^{1 / 2+o(1)}$. For each vertex x, the neighbourhood of x in G contains no C_{4}, because otherwise G would contain a copy of K_{4}^{*}. Hence, x participates in at most $\Delta(G[W])^{3 / 2} \leq N^{3 / 4+o(1)} \leq d_{0}^{3 / 2+o(1)}$ triangles of $G[W]$. So the overall number of triangles in $G[W]$ is at most $T:=|W| \cdot d_{0}^{3 / 2+o(1)}$. By Lemma 2.6, applied to $G[W]$, there is an independent set I in $G[W]$ of size at least

$$
\begin{aligned}
|I| & \geq 0.1 \frac{|W|}{d_{0}} \cdot\left(\log d_{0}-\frac{1}{2} \log \left(\frac{T}{|W|}\right)\right)=0.1 \frac{|W|}{d_{0}} \cdot\left(\frac{1}{4}-o(1)\right) \log d_{0} \\
& \geq 0.01 \frac{N}{d_{0}} \log d_{0} \geq \Omega(\sqrt{N \log N}) \geq \Omega(d) .
\end{aligned}
$$

Here, the penultimate inequality uses that $d_{0} \leq O(\sqrt{N \log N})$ and that the function $x \mapsto \frac{\log x}{x}$ is decreasing (for $x \geq e$), and the last inequality uses that $d \leq O(\sqrt{N \log N})$.

Let A be the set of the $k:=\min \{|I|,|V(F)|\}$ highest-degree vertices in F. We use Lemma 2.3 to embed F into \bar{G}, starting with an arbitrary embedding of $F[A]$ into I. Recall that all vertices in $I \subseteq W$ have degree at most $2 d$ in G. Hence, assuming $A \neq V(F)$, the RHS of condition (2) is at most $\frac{4 m}{k+1} \cdot 2 d+2|V(F)| \leq \frac{4 m}{|I|} \cdot 2 d+4 m \leq O(m)$, using that $|I|=\Omega(d)$. Therefore, condition (2) holds for $N=C m$, provided that C is large enough compared to the implied constant in the O-notation in the previous sentence. So \bar{G} contains a copy of F. This completes the proof.

4 Proof of Theorem 4

Proof. There are three subdivisions of K_{4} on 6 vertices, and we denote these by H_{1}, H_{2}, H_{3}; see Figure 2. Every subdivision of K_{4} on more than six vertices is a subdivision of H_{i} for some $i=1,2,3$. So let H be a subdivision of H_{1}, H_{2} or H_{3}. Let $h:=|V(H)|$. Fix constants $h \ll C_{0} \ll C_{1} \ll C$, to be chosen implicitly later. Let F be a graph with m edges and no isolated vertices. Let G be a graph on $N=C m$ vertices. We assume that \bar{G} has no copy of F and our goal is to show that G has a copy of H. We begin with some general preparation that will be used in all three cases of H_{1}, H_{2}, H_{3}. Let $d=d(G)$ be the average degree of G. Under the assumption that \bar{G} has no copy of F (and that C is large enough in terms of C_{1}), we now prove the following:
Claim 4.1. The following holds:

1. $d \geq 0.1 N / \sqrt{m} \geq C_{1} \sqrt{N}$.
2. There is no independent set I such that $|I| \geq d / C_{1}$ and all vertices in I have degree at most $C_{1} \cdot|I|$.

Proof. We show that if Item 1 or 2 does not hold, then \bar{G} contains a copy of F. For Item 1, if $d \leq 0.1 N / \sqrt{m}$ then \bar{G} contains a copy of F by Corollary 2.4 , using that $|V(F)| \leq 2 m$. The inequality $0.1 N / \sqrt{m} \geq C_{1} \sqrt{N}$ in Item 1 holds because $C \gg C_{1}$, as $N=C m$. Suppose now that Item 2 fails and let I be as in that item. We apply Lemma 2.3. Take A to be the set of $k=\max \{|I|,|V(F)|\}$
highest-degree vertices in F. Map A arbitrarily into I; this is an embedding of $F[A]$ into \bar{G} because I is independent in G. Let us verify (2) in Lemma 2.3. All vertices in I have degree at most $C_{1} \cdot|I|$. Also, the average degree d of G satisfies $d \leq C_{1} \cdot|I|$. Hence, assuming $A \neq V(F)$, the RHS in (2) is at most $\frac{4 m}{|I|+1} \cdot 2 C_{1} \cdot|I|+2|V(F)| \leq 8 C_{1} m+4 m$. So (2) holds for $N=C m$ if $C \gg C_{1}$.

Let \mathcal{T} be the set of triangles in G. We run the following process. As long as there is an edge e which is contained in at least one and at most C_{0} triangles from \mathcal{T}, we delete from \mathcal{T} all triangles containing e (we do not make any changes to the graph, only to the collection \mathcal{T}). We say that e is eliminated at this step. Note that at a given step of the process, a triangle (still) belongs to \mathcal{T} if and only if none of its edges has been eliminated. At the end of the process, we are left with a collection of triangles \mathcal{T}_{0} with the property that if an edge is contained in a triangle from \mathcal{T}_{0} then it is contained in at least C_{0} such triangles. Let G_{-}be the subgraph of G consisting of all edges which are eliminated during the process. Let G_{+}be the subgraph of the remaining edges, i.e. $E\left(G_{+}\right)=E(G) \backslash E\left(G_{-}\right)$. Note that $e \in E\left(G_{+}\right)$if and only if e is contained in some triangle from \mathcal{T}_{0}. Observe that:
(a) For every $e \in E\left(G_{+}\right)$, there are at least C_{0} triangles in G_{+}containing e.
(b) For every set $B \subseteq E\left(G_{-}\right)$, there is $e \in B$ such that there are at most C_{0} triangles in G which contain e and only use edges from $B \cup E\left(G_{+}\right)$. In particular, the total number of triangles in G containing edges from G_{-}is at most $C_{0} \cdot e(G)$.

Property (a) holds by the definition of G_{+}and the above-mentioned property of \mathcal{T}_{0}. For property (b), take e to be the earliest eliminated edge among the edges in B. Before e is eliminated, all triangles in G which only use edges from $B \cup E\left(G_{+}\right)$are still in \mathcal{T}, because none of the edges in $B \cup E\left(G_{+}\right)$has been eliminated yet (the edges in $E\left(G_{+}\right)$are never eliminated). At the moment that e is eliminated, the number of triangles in \mathcal{T} which contain e must be at most C_{0}.

In what follows, we denote by $N_{+}(x)$ the neighbourhood of x in G_{+}, and by $N_{+}(x, y)$ the common neighbourhood of x, y in G_{+}. When writing $N(x)$, we mean the neighbourhood in G.
Claim 4.2. For every edge $(x, y) \in E\left(G_{+}\right)$, there are paths $P_{1}^{x, y}, \ldots, P_{h}^{x, y}$ in G_{+}of length h, all starting at x and intersecting only at x, such that every vertex on these paths is adjacent to y.

Proof. Put $N=N_{+}(y)$, so $x \in N$. Observe that by Property (a), the graph $G_{+}[N]$ has minimum degree at least C_{0}. Hence, one can greedily find the above paths $P_{1}^{x, y}, \ldots, P_{h}^{x, y}$ inside $N=N_{+}(y) \subseteq$ $N(y)$, provided that C_{0} is large enough in terms of h.

Using Claim 4.2, we can find a copy of H in G by finding copies of H_{1}, H_{2}, H_{3} in G_{+}. Recall that K_{4}^{*} is the subdivision of K_{4} where exactly one edge is subdivided once.
Claim 4.3. Let $K \in\left\{K_{4}, K_{4}^{*}, H_{1}, H_{2}, H_{3}\right\}$, and suppose that H is a subdivision of K. For $e \in E(K)$, let ℓ_{e} be the length of the subdivision path in H replacing e, and let $E_{0}=\left\{e \in E(K): \ell_{e} \geq 2\right\}$. If G contains a copy of K in which all edges from E_{0} are in G_{+}, then G contains a copy of H.

Proof. To obtain a copy of H, we need to replace the edges $e \in E_{0}$ with internally-disjoint paths of appropriate lengths. We find these paths one-by-one. Suppose that the path replacing the edge $(x, y) \in E_{0}$ needs to have length $k \leq h=|V(H)|$. We use the paths $P_{i}^{x, y}$ given by Claim 4.2. One of the paths $P_{i}^{x, y}, 1 \leq i \leq h$, must be internally disjoint from all vertices embedded so far (because $|V(H)|=h)$. Also, since all vertices of this path are adjacent to y, we can shorten it to a path that ends in y and has length exactly k. This gives a copy of H.

Note that H_{1}, H_{2}, H_{3} are subdivisions of K_{4}, K_{4}^{*}, so H is a subdivision of K_{4}, K_{4}^{*} by transitivity. Hence, if $K \in\left\{K_{4}, K_{4}^{*}\right\}$, then the condition " H is a subdivision of K " in Claim 4.3 is always satisfied.

For $v \in V(G)$, let $b(v)$ denote the number of edges $(x, y) \in E\left(G_{-}\right)$with $x, y \in N(v)$. By Property (b),

$$
\begin{equation*}
\sum_{v \in V(G)} b(v) \leq 3 C_{0} \cdot e(G) \tag{4}
\end{equation*}
$$

Indeed, the sum $\sum_{v \in V(G)} b(v)$ counts triangles which contain an edge of G_{-}, and each such triangle is counted at most 3 times.

Claim 4.4. $e\left(G_{+}\right) \geq e(G) / 2$.
Proof. Suppose by contradiction that $e\left(G_{+}\right) \leq e(G) / 2$, and hence $e\left(G_{-}\right) \geq e(G) / 2$. For $v \in V(G)$, let $N^{\prime}(v)$ be the set of vertices u such that $(u, v) \in E\left(G_{-}\right)$and $d(u) \leq d(v)$, and let $d^{\prime}(v)=\left|N^{\prime}(v)\right|$. Then $\sum_{v \in V(G)} d^{\prime}(v) \geq e\left(G_{-}\right) \geq e(G) / 2$. Observe that

$$
\sum_{v \in V(G)}\left(d^{\prime}(v)-d(v) / 16-d / 16-\frac{1}{12 C_{0}} \cdot b(v)\right) \geq e(G) / 2-e(G) / 8-e(G) / 8-\frac{1}{12 C_{0}} \cdot \sum_{v \in V(G)} b(v) \geq 0
$$

where the last inequality uses (4). So there is $v \in V(G)$ such that $d^{\prime}(v) \geq d(v) / 16, d / 16$ and $b(v) \leq 12 C_{0} \cdot d^{\prime}(v)$. In particular, this means that there are at most $12 C_{0} \cdot d^{\prime}(v)$ edges of G_{-}inside $N^{\prime}(v)$. So the average degree of $G_{-}\left[N^{\prime}(v)\right]$ is at most $24 C_{0}$. Hence, there is $A \subseteq N^{\prime}(v)$ which is independent in G_{-}with $|A| \geq d^{\prime}(v) /\left(24 C_{0}+1\right)$. Note that $(v, u) \in E\left(G_{-}\right)$for every $u \in A$, by the definition of $N^{\prime}(v)$.

We claim that the graph $G[A]$ is C_{0}-degenerate. Indeed, given any $S \subseteq A$, apply Property (b) to the set of edges $B:=\{(v, u): u \in S\} \subseteq E\left(G_{-}\right)$, and let $e=(v, u) \in B$ be the edge given by Property (b). Since all edges in $G[S]$ belong to G_{+}, every edge of the form $(u, w) \in E(G[S])$ forms a triangle u, v, w in which $(v, u),(v, w) \in B$ and $(u, w) \in E\left(G_{+}\right)$. By our choice of e, there are at most C_{0} such triangles, so $d_{G[S]}(u) \leq C_{0}$, as required. It follows that $G[A]$ contains an independent set I of size at least $|I| \geq \frac{|A|}{C_{0}+1} \geq \frac{d^{\prime}(v)}{\left(C_{0}+1\right)\left(24 C_{0}+1\right)} \geq d / C_{1}$, as $d^{\prime}(v) \geq d / 16$ (provided $\left.C_{1} \gg C_{0}\right)$. Also, all vertices in $I \subseteq N^{\prime}(v)$ have degree at most $d(v)$ in G, by the definition of $N^{\prime}(v)$, and $d(v) \leq 16 d^{\prime}(v) \leq 16\left(C_{0}+1\right)\left(24 C_{0}+1\right) \cdot|I| \leq C_{1} \cdot|I|$. But this contradicts Item 2 of Claim 4.1.

We now proceed by case analysis over the cases of H_{1}, H_{2}, H_{3}.
Case 1: H is a subdivision of H_{1}. For $v \in V(G)$, denote by $N^{*}(v)$ the set of all $u \in V(G)$ such that $(u, v) \in E\left(G_{+}\right)$and $d(u) \leq d(v)$, and let $d^{*}(v)=\left|N^{*}(v)\right|$. Then $\sum_{v \in V(G)} d^{*}(v) \geq\left|e\left(G_{+}\right)\right| \geq$ $e(G) / 2$, by Claim 4.4. Let $P(v)$ denote the set of pairs $(u, w) \in\binom{N^{*}(v)}{2}$ such that $\left|N_{+}(u, w)\right| \leq C_{0}$ (i.e., u, w have at most C_{0} common neighbours in G_{+}). Let $p(v)=|P(v)|$. Observe that

$$
\begin{equation*}
\sum_{v \in V(G)} p(v) \leq C_{0}\binom{N}{2} \tag{5}
\end{equation*}
$$

because each pair (u, w) is counted at most C_{0} times in the sum on the LHS of (5), by the definition of the sets $P(v)$. Now, note that

$$
\begin{aligned}
& \sum_{v \in V(G)}\left(d^{*}(v)-d(v) / 16-d / 16-\frac{1}{24 C_{0}} \cdot b(v)-\frac{e(G)}{4 C_{0} N^{2}} \cdot p(v)\right)= \\
& \sum_{v \in V(G)} d^{*}(v)-e(G) / 4-\frac{1}{24 C_{0}} \cdot \sum_{v \in V(G)} b(v)-\frac{e(G)}{4 C_{0} N^{2}} \cdot \sum_{v \in V(G)} p(v) \geq \\
& e(G) / 2-e(G) / 4-e(G) / 8-e(G) / 8=0 .
\end{aligned}
$$

Here we used (4) and (5). So there is $v \in V(G)$ such that $d^{*}(v) \geq d(v) / 16, d / 16, b(v) \leq 24 C_{0} \cdot d^{*}(v)$ and

$$
\begin{equation*}
p(v) \leq \frac{4 C_{0} N^{2}}{e(G)} \cdot d^{*}(v)=\frac{8 C_{0} N}{d} \cdot d^{*}(v) \leq \frac{d^{*}(v) \cdot\left(d^{*}(v)-3\right)}{8}, \tag{6}
\end{equation*}
$$

where the last inequality holds if $C_{1} \gg C_{0}$ because $d^{*}(v) \geq d / 16 \geq C_{1} \sqrt{N} / 16$, using Item 1 of Claim 4.1.

Let $A \subseteq N^{*}(v)$ be the set of all $u \in N^{*}(v)$ which participate in at most $\frac{d^{*}(v)-3}{2}$ of the pairs in $P(v)$. Then $p(v) \geq \frac{1}{2}\left(d^{*}(v)-|A|\right) \cdot \frac{d^{*}(v)-3}{2}$, so $|A| \geq d^{*}(v) / 2$ by (6). We claim that $e(G[A])>48 C_{0} \cdot|A|$. Indeed, otherwise $G[A]$ would contain an independent set I of size $|I| \geq \frac{|A|}{96 C_{0}+1} \geq \frac{d^{*}(v)}{2\left(96 C_{0}+1\right)} \geq \frac{d}{C_{1}}$, as $d^{*}(v) \geq d / 16$ and $C_{1} \gg C_{0}$. Also, $I \subseteq N^{*}(v)$ and all vertices in $N^{*}(v)$ have degree at most $d(v) \leq$ $16 d^{*}(v) \leq C_{1} \cdot|I|$ in G. This would contradict Item 2 of Claim 4.1. So indeed $e(G[A])>48 C_{0} \cdot|A|$. On the other hand, $G[A]$ contains at most $b(v)$ edges of G_{-}(by the definition of $b(v)$). Hence, $G[A]$ contains at least $e(G[A])-b(v)>48 C_{0} \cdot|A|-b(v) \geq 48 C_{0} \cdot d^{*}(v) / 2-b(v) \geq 0$ edges of G_{+}.

Fix an edge $\left(u_{1}, u_{2}\right) \in E\left(G_{+}\right)$with $u_{1}, u_{2} \in A$. By the definition of A, each u_{i} participates in at most $\frac{d^{*}(v)-3}{2}$ of the pairs in $P(v)$. Hence, there is $w \in N^{*}(v)$ different from u_{1}, u_{2} such that $\left(u_{1}, w\right),\left(u_{2}, w\right) \notin P(v)$. By the definition of $P(v)$, this means that u_{i}, w have at least C_{0} common neighbours in G_{+}for $i=1,2$. Let z_{i} be a common neighbour of u_{i}, w in G_{+}, such that $v, u_{1}, u_{2}, w, z_{1}, z_{2}$ are all distinct. Then these six vertices form a copy of H_{1} in G_{+}. Now, by Claim 4.3, G contains a copy of H. This concludes the proof in Case 1.

Case 2: H is a subdivision of H_{2}. We have $\sum_{v} d_{+}(v)=2 e\left(G_{+}\right) \geq e(G)$, where the inequality is by Claim 4.4. Sample two distinct vertices $v_{1}, v_{2} \in V(G)$ uniformly at random and let $A=N_{+}\left(v_{1}, v_{2}\right)$ be the common neighbourhood of v_{1}, v_{2} in G_{+}. For each $u \in V(G)$, the probability that $u \in A$ is $\binom{d_{+}(u)}{2} /\binom{N}{2}$. By Jensen's inequality,

$$
\begin{aligned}
\mathbb{E}[|A|] & =\frac{1}{\binom{N}{2}} \cdot \sum_{u}\binom{d_{+}(u)}{2} \geq \frac{N}{\binom{N}{2}} \cdot\binom{\frac{1}{N} \cdot \sum_{u} d_{+}(u)}{2} \geq \frac{N}{\binom{N}{2}} \cdot\binom{e(G) / N}{2} \\
& \geq \frac{2}{N} \cdot \frac{(e(G) / N)^{2}}{4}=\frac{e(G)^{2}}{2 N^{3}} \geq C_{0}^{2}
\end{aligned}
$$

where the last inequality holds because $e(G)=d N / 2, d \geq C_{1} \sqrt{N}$ by Item 1 of Claim 4.1, and $C_{1} \gg C_{0}$.

Let P be the set of pairs of vertices $u_{1}, u_{2} \in A$ such that $\left|N_{+}\left(u_{1}, u_{2}\right)\right| \leq C_{0}$. For a given pair $u_{1}, u_{2} \in V(G)$ with $\left|N_{+}\left(u_{1}, u_{2}\right)\right| \leq C_{0}$, the probability that $u_{1}, u_{2} \in A$ is at most $\binom{C_{0}}{2} /\binom{N}{2}$. Hence, $\mathbb{E}[|P|] \leq\binom{ C_{0}}{2}$. By linearity of expectation, $\mathbb{E}[|A|-|P|] \geq C_{0}^{2} / 2 \geq 3$. Hence, there is a choice of v_{1}, v_{2} for which $|A|-|P| \geq 3$. By removing one vertex from each pair in P, we obtain a subset $A^{\prime} \subseteq A,\left|A^{\prime}\right| \geq 3$, such that no pair of vertices in A^{\prime} belongs to P. Fix distinct $u_{1}, u_{2}, u_{3} \in A^{\prime}$. Since $\left(u_{1}, u_{2}\right) \notin P$, there are more than $C_{0} \geq 4$ common neighbours of u_{1}, u_{2} in G_{+}. Hence, there is $w \notin\left\{v_{1}, v_{2}, u_{3}\right\}$ which is a common neighbour of u_{1}, u_{2} in G_{+}. Now, $v_{1}, v_{2}, u_{1}, u_{2}, u_{3}, w$ form a copy of H_{2} in G_{+}. So by Claim 4.3, G contains a copy of H. This concludes the proof in Case 2 .

Case 3: H is a subdivision of H_{3}. If H is obtained from K_{4} by subdividing at least two edges (some number of times), then H is a subdivision of H_{1} or H_{2}; so such H are already covered by Cases 1-2. Hence, we may assume that H is obtained from K_{4} by subdividing exactly one edge (some number of times). It follows, by Claim 4.3, that if G contains a copy of K_{4} in which at least one edge is in G_{+}, then G contains a copy of H.

Note that H_{3} is obtained from K_{4} by subdividing one edge twice. So H_{3} has three subdivision edges (i.e., the edges of the path replacing the subdivided edge of K_{4}). Denote these edges by e_{1}, e_{2}, e_{3}. We can treat H as a subdivision of H_{3} in which only one of e_{1}, e_{2}, e_{3} is subdivided. Indeed, if e_{i} is replaced in H by a path of length ℓ_{i}, then we can replace just one of e_{1}, e_{2}, e_{3} with a path of length $\ell_{1}+\ell_{2}+\ell_{3}$, and keep the other two edges. This means that if G contains a copy of H_{3} in which all edges except at most two of the edges e_{1}, e_{2}, e_{3} are in G_{+}, then G contains a copy of H (again using Claim 4.3).

Recall that a diamond is the graph consisting of two triangles sharing an edge. A diamond has two vertices of degree 2 and two vertices of degree 3 ; the vertices of degree 2 will be called the tips of the diamond, and the edge connecting the two vertices of degree 3 will be called the middle edge of the diamond.

By Claim 4.4, $e\left(G_{+}\right) \geq e(G) / 2$. By Property (a) above, for every $e \in E\left(G_{+}\right)$there are at least C_{0} triangles in G_{+}containing e. It follows that G_{+}contains at least $e(G) / 2 \cdot\binom{C_{0}}{2} \geq 4 e(G)$ diamonds. For $v \in V(G)$, let $t(v)$ denote the number of diamonds D in G_{+}such that v is a tip of D, and the other tip u of D satisfies $d(u) \leq d(v)$. Then $\sum_{v} t(v) \geq 4 e(G)$. It follows that

$$
\sum_{v \in V(G)}(t(v)-d(v)-d)=\sum_{v \in V(G)} t(v)-4 e(G) \geq 0 .
$$

Hence, there is a vertex v satisfying $t(v) \geq d(v), d$. Fix such a vertex v. By definition, there are diamonds D_{1}, \ldots, D_{r} in $G_{+}, r=t(v)$, such that v is a tip of D_{i}, and the other tip u_{i} of D_{i} satisfies $d\left(u_{i}\right) \leq d(v)($ for $i=1, \ldots, r)$. Let e_{i} be the middle edge of D_{i}. Suppose first that there is $1 \leq i \leq r$ such that $\left(v, u_{i}\right) \in E(G)$. Then the vertices of D_{i} form a K_{4} in which all edges except possibly $\left(v, u_{i}\right)$ are in G_{+}. As we saw above, this implies that G contains a copy of H, completing the proof. So from now on we may assume that v is not connected to any u_{i}. It follows that $\left\{u_{1}, \ldots, u_{r}\right\} \cap \bigcup_{i=1}^{r} e_{i}=\emptyset$, since v is connected with to all vertices of $\bigcup_{i=1}^{r} e_{i}$. Next, suppose that there are $1 \leq i<j \leq r$ such that $u_{i}=u_{j}$. Since $D_{i} \neq D_{j}$, there is $x_{j} \in e_{j}$ such that $x_{j} \notin V\left(D_{i}\right)$. Observe that $V\left(D_{i}\right) \cup\left\{x_{j}\right\}$ spans a copy of K_{4}^{*} in G_{+}. By Claim 4.3, this implies that G contains a copy of H, completing the proof. So from now on we may assume that u_{1}, \ldots, u_{r} are pairwise distinct.

We claim that $U:=\left\{u_{1}, \ldots, u_{r}\right\}$ is not an independent set of G. Indeed, observe that $|U|=r=$ $t(v) \geq d$ and all vertices in U have degree at most $d(v) \leq t(v)=|U|$. So if U were independent then we would get a contradiction to Item 2 of Claim 4.1. Let us then fix $1 \leq i<j \leq r$ such that $\left(u_{i}, u_{j}\right) \in E(G)$. If $e_{i}=e_{j}$ then $e_{i} \cup\left\{u_{i}, u_{j}\right\}$ spans a copy of K_{4} in which all edges except possibly $\left(u_{i}, u_{j}\right)$ are in G_{+}. Again, this implies that G contains a copy of H. Suppose finally that $e_{i} \neq e_{j}$. Let $x_{j} \in e_{j} \backslash V\left(D_{i}\right)$. It is easy to check that $V\left(D_{i}\right) \cup\left\{x_{j}, u_{j}\right\}$ contains a copy of H_{3} in which all edges except possibly (u_{i}, u_{j}) are in G_{+}, and (u_{i}, u_{j}) plays the role of one of the subdivision edges e_{1}, e_{2}, e_{3} (the edges playing the roles of e_{1}, e_{2}, e_{3} in this copy are $\left.\left(v, x_{j}\right),\left(x_{j}, u_{j}\right),\left(u_{j}, u_{i}\right)\right)$. As explained above, this implies that G contains a copy of H. This completes the proof of Case 3 and hence the theorem.

5 On Conjecture 1

This section is broken into several parts. First, we prove Proposition 1.1, which then allows us to prove Theorem 2. Next, we show that Conjecture 1 holds if K_{n} is replaced by $K_{n, n}$ (see Proposition 5.6). To that end, we also study the Ramsey number $R\left(H, K_{n, n}\right)$ for graphs H of bounded maximum degree and for degenerate graphs (see Section 5.3).

5.1 Proof of Proposition 1.1

Here we prove Proposition 1.1, which bounds the Ramsey number $R\left(H, K_{n}\right)$ in terms of the treewidth of H. We refer to [11] for the basic definitions related to treewidth. We will need the following lemma. For a graph G, let $\# K_{r}(G)$ denote the number of r-cliques in G.
Lemma 5.1. For any $r \geq 1$ there is $C_{r}>0$ such that the following holds. If G is a graph on $N \geq C_{r} n^{r}$ vertices with no independent set of size n, then $\# K_{r+1}(G) \geq \frac{N}{C_{r} n^{r}} \cdot \# K_{r}(G)$.
Proof. We will show that one can take $C_{1}=4$ and $C_{r}=8(r+1) \cdot C_{r-1}$ for $r \geq 2$. (We make no effort of optimising the value of C_{r}.) The proof is by induction on r. Suppose first $r=1$. Let d be the average degree of G. We have $n>\alpha(G) \geq \frac{N}{d+1}$, and hence $\frac{2 e(G)}{N}=d>\frac{N}{n}-1 \geq \frac{N}{2 n}$. It follows that $e(G) \geq \frac{N}{4 n} \cdot N$, as required.

Let now $r \geq 2$, and let G be as in the statement of the lemma. By the induction hypothesis, we know that $\# K_{r}(G) \geq \frac{N}{C_{r-1} n^{r-1}} \cdot \# K_{r-1}(G)$. Let \mathcal{C} be the set of all $(r-1)$-cliques X in G such that the number of r-cliques containing X is at least $\frac{r}{2} \cdot \frac{N}{C_{r-1} n^{r-1}}$. Observe that the number of r-cliques which do not contain any $(r-1)$-clique from \mathcal{C} is at most

$$
\frac{1}{r} \cdot \# K_{r-1}(G) \cdot \frac{r}{2} \cdot \frac{N}{C_{r-1} n^{r-1}} \leq \frac{1}{2} \cdot \# K_{r}(G)
$$

Hence there are at least $\frac{1}{2} \cdot \# K_{r}(G) r$-cliques which contain some $(r-1)$-clique from \mathcal{C}.
For each $X \in \mathcal{C}$, let $N(X)$ be the set of vertices y such that $X \cup\{y\}$ is an r-clique. By definition,

$$
|N(X)| \geq \frac{r}{2} \cdot \frac{N}{C_{r-1} n^{r-1}} \geq 4 n
$$

By the case $r=1$ of the lemma, applied to the graph $G[N(X)]$, we have $e(N(X)) \geq \frac{|N(X)|^{2}}{4 n}$. Summing over all $X \in \mathcal{C}$, we see that

$$
\begin{aligned}
\binom{r+1}{2} \cdot \# K_{r+1}(G) & \geq \sum_{X \in \mathcal{C}} e(N(X)) \geq \sum_{X \in \mathcal{C}} \frac{|N(X)|^{2}}{4 n} \geq \frac{1}{4 n} \cdot \frac{r}{2} \cdot \frac{N}{C_{r-1} n^{r-1}} \cdot \sum_{X \in \mathcal{C}}|N(X)| \\
& \geq \frac{r}{8} \cdot \frac{N}{C_{r-1} n^{r}} \cdot \frac{\# K_{r}(G)}{2}=\binom{r+1}{2} \cdot \frac{N}{C_{r} n^{r}} \cdot \# K_{r}(G) .
\end{aligned}
$$

A tree-decomposition of a graph H is a tree T with nodes X_{1}, \ldots, X_{t}, called bags, where each X_{i} is a subset of $V(H)$ such that for every $v \in V(H)$, the bags containing v form a subtree of T and for every edge $u v \in E(H)$, there exists a bag X_{i} containing both u and v. The treewidth of H is defined as the minimum size of the largest bag in a tree-decomposition of H minus 1 (see e.g. [11]).

In the proof of Proposition 1.1, it is convenient to work with a tree-decomposition of H in which all bags have size $\operatorname{tw}(H)+1$, and every two adjacent bags intersect in $\operatorname{tw}(H)$ vertices. It is well-known that such a tree decomposition always exists, see e.g. [11, Lemma 2].

Lemma 5.2 ([11]). Let H be a graph with $r:=t w(H)$. Then there is a tree-decomposition of H in which every bag has size $r+1$ and every two adjacent bags intersect in r vertices.

We are now ready to prove Proposition 1.1, which we restate here for convenience.
Proposition 1.1. For every fixed graph H, we have $R\left(H, K_{n}\right)=O\left(n^{t w(H)}\right)$.
Proof. Put $r:=\operatorname{tw}(H)$. Take a tree-decomposition of H with the properties guaranteed in Lemma 5.2 ; let T be the corresponding tree, and let $B(t)$ be the bag corresponding to $t \in V(T)$. Let H^{\prime} be the graph obtained by making each bag $B(t)$ a clique; so $V\left(H^{\prime}\right)=V(H)$ and H^{\prime} contains H as a subgraph. We will show that $R\left(H^{\prime}, K_{n}\right)=O\left(n^{r}\right)$. Let G be a graph on $N=C n^{r}$ vertices with no independent set of size n. By Lemma 5.1, if C is large enough then $\# K_{r+1}(G)>(v(H)-r-1) \cdot \# K_{r}(G)$. We now run the following process with sets $\mathcal{C}_{r+1}, \mathcal{C}_{r}$. Initialize \mathcal{C}_{r+1} to be the set of all $(r+1)$ cliques in G, and \mathcal{C}_{r} to be the set of all r-cliques in G. As long as there is $X \in \mathcal{C}_{r}$ such that the number of $Y \in \mathcal{C}_{r+1}$ containing X is at most $v(H)-r-1$, delete X from \mathcal{C}_{r} and delete all such Y from \mathcal{C}_{r+1}. The number of elements of \mathcal{C}_{r+1} deleted throughout the process is at most $\# K_{r}(G) \cdot(v(H)-r-1)<\# K_{r+1}(G)$. Hence, the terminal set \mathcal{C}_{r+1} is non-empty. By construction, this set has the property that for every $Y \in \mathcal{C}_{r+1}$ and every $X \subseteq Y,|X|=r$, there are at least $v(H)-r$ sets $Y^{\prime} \in \mathcal{C}_{r+1}$ which contain X.

Fix an order t_{1}, \ldots, t_{m} of $V(T)$ such that t_{i} has exactly one neighbour in $\left\{t_{1}, \ldots, t_{i-1}\right\}$. We now embed $B\left(t_{1}\right), \ldots, B\left(t_{m}\right)$ one-by-one, such that the image of each $B\left(t_{i}\right)$ equals some $Y_{i} \in \mathcal{C}_{r+1}$. Fix an arbitrary $Y_{1} \in \mathcal{C}_{r+1}$ and embed $B\left(t_{1}\right)$ onto Y_{1}. For $i \geq 2$, suppose that we already embedded $B\left(t_{1}\right), \ldots, B\left(t_{i-1}\right)$. There is a unique $1 \leq j \leq i-1$ such that t_{j} is a neighbour of t_{i}. By the definition of tree-decomposition, we have $B\left(t_{i}\right) \cap\left(B\left(t_{1}\right) \cup \cdots \cup B\left(t_{i-1}\right)\right)=B\left(t_{i}\right) \cap B\left(t_{j}\right)$. By our choice of the tree-decomposition and of H^{\prime}, the intersection $B\left(t_{i}\right) \cap B\left(t_{j}\right)$ is an r-clique. Hence, there is a unique vertex $v \in B\left(t_{i}\right) \backslash B\left(t_{j}\right)$. Let $X \subseteq Y_{j}$ be the r-clique playing the role of $B\left(t_{i}\right) \cap B\left(t_{j}\right)$. There are at least $v(H)-r$ different $(r+1)$-cliques $Y \in \mathcal{C}_{r+1}$ containing X; hence for one of these Y, the (unique) vertex in $Y \backslash X$ is "new", i.e. not contained in $Y_{1} \cup \cdots \cup Y_{i-1}$. We can now embed $B\left(t_{i}\right)$ onto $Y_{i}:=Y$, mapping v to this new vertex. This completes the proof.

5.2 Proof of Theorem 2

The following lemma, appearing in [8], allows us to assume that H is 2 -connected. For completeness, we include a proof.

Lemma 5.3 ([8]). Let H be a graph obtained from graphs H_{1}, H_{2} by gluing them together along a vertex. Then for every graph $F, R(H, F)=O\left(R\left(H_{1}, F\right)+R\left(H_{2}, F\right)\right)$.

Proof. Put $M=\max \left\{R\left(H_{1}, F\right), R\left(H_{2}, F\right)\right\}$, and let G be a graph on $N=\left(\left|V\left(H_{1}\right)\right|+1\right) \cdot M$ vertices such that \bar{G} contains no copy of F. We can then find in G vertex-disjoint copies $H_{1}^{(1)}, \ldots, H_{1}^{(M)}$ of H_{1}. Let v be the unique common vertex of H_{1} and H_{2}. For $i=1, \ldots, M$, let $v^{(i)}$ be the vertex of $H_{1}^{(i)}$ playing the role of v. The subgraph of G induced on $\left\{v^{(1)}, \ldots, v^{(M)}\right\}$ contains a copy H_{2}^{\prime} of H_{2}. Let $1 \leq i \leq M$ such that $v^{(i)}$ plays the role of v in H_{2}^{\prime}. Then $H_{1}^{(i)} \cup H_{2}^{\prime}$ form a copy of H.

Corollary 5 ([8]). Let H be a graph with biconnected components H_{1}, \ldots, H_{m}. Then for every graph $F, R(H, F)=O\left(R\left(H_{1}, F\right)+\cdots+R\left(H_{m}, F\right)\right)$.
Proof of Theorem 2. By Corollary 5, we may assume that H is 2-connected. Indeed, let H_{1}, \ldots, H_{m} be the biconnected components of H. By Corollary 5, it is enough to prove that $R\left(H_{i}, K_{n}\right)=O\left(n^{3}\right)$ for every $i=1, \ldots, m$. Also, $e\left(H_{i}\right)-v\left(H_{i}\right) \leq e(H)-v(H) \leq 4$, because H is connected. Hence, from now on we assume that H is 2-connected.

Suppose first that $v(H) \leq 5$. In this case we show that $\operatorname{tw}(H) \leq 3$, which would imply that $R\left(H, K_{n}\right)=O\left(n^{3}\right)$ by Proposition 1.1. If $v(H)=4$ then $\operatorname{tw}(H) \leq \operatorname{tw}\left(K_{4}\right)=3$. If $v(H)=5$ then $e(H) \leq v(H)+4=9$, so H is contained in $K_{5}-e$. Note that $K_{5}-e$ is obtained by gluing two copies of K_{4} along a triangle. It is now easy to see that $\mathrm{tw}\left(K_{5}-e\right) \leq 3$, as required.

For the rest of the proof, suppose that $v(H) \geq 6$. If $\Delta(H) \leq 2$ then H is a cycle or a path, and it is well-known that in this case $R\left(H, K_{n}\right)=O\left(n^{2}\right)$ (for example, this follows from the case $k=2$ of Conjecture 1, which was proved in [8]). Let $v \in V(H)$ be a vertex of maximum degree, $d_{H}(v) \geq 3$. Let $H^{\prime}=H-v$. Note that H^{\prime} is connected because H is 2-connected. Also, $e\left(H^{\prime}\right)-v\left(H^{\prime}\right)=$ $\left(e(H)-d_{H}(v)\right)-(v(H)-1)=e(H)-v(H)-d_{H}(v)+1 \leq 5-d_{H}(v)$.

We claim that $R\left(H^{\prime}, K_{n}\right)=O\left(n^{2}\right)$. If $d_{H}(v) \geq 4$ then $e\left(H^{\prime}\right)-v\left(H^{\prime}\right) \leq 1$, so $R\left(H^{\prime}, K_{n}\right)=O\left(n^{2}\right)$ follows from the case $k=2$ of Conjecture 1, which was proved in [8]. Suppose now that $d_{H}(v)=3$, so $e\left(H^{\prime}\right)-v\left(H^{\prime}\right) \leq 2$. If $\operatorname{tw}\left(H^{\prime}\right) \leq 2$ then $R\left(H^{\prime}, K_{n}\right)=O\left(n^{2}\right)$ by Proposition 1.1, so suppose that $\operatorname{tw}\left(H^{\prime}\right)>2$. It is known (see e.g. [6]) that a graph has treewidth larger than 2 if and only if it contains a subdivision of K_{4}. So H^{\prime} contains a subdivision S of K_{4}. Observe that $e(S)-v(S)=2$ (this holds for every subdivision of K_{4}). This implies that $e\left(H^{\prime}\right)-v\left(H^{\prime}\right)=2$, and that every 2connected component of H^{\prime} other than S is a singleton (this can also be stated as saying that the 2-core of H^{\prime} is S). It now follows from Corollary 5 that $R\left(H^{\prime}, K_{n}\right)=O\left(R\left(S, K_{n}\right)\right)$. Now, if $v(S) \geq 6$ then by Theorem 4 we have $R\left(S, K_{n}\right)=O\left(n^{2}\right)$ and hence $R\left(H^{\prime}, K_{n}\right)=O\left(n^{2}\right)$. So suppose that $v(S) \leq 5$. If $v(S)=4$, namely $S \cong K_{4}$, then, since H is connected and has maximum degree 3, it holds that $H \cong K_{4}$, in contradiction to $v(H) \geq 6$. If $v(S)=5$ then $S \cong K_{4}^{*}$. Note that K_{4}^{*} has four vertices of degree 3 and one vertex of degree 2 . Let u be this vertex of degree 2 in S. We have $V(H) \backslash V(S) \neq \emptyset$ because $v(H) \geq 6$. Also, there are no edges in H between $V(S) \backslash\{u\}$ and $V(H) \backslash V(S)$, because the vertices in $V(S) \backslash\{u\}$ have degree 3 in S and $\Delta(H)=3$. So u is a cut vertex of H, in contradiction to the fact that H is 2-connected. This proves that $R\left(H^{\prime}, K_{n}\right)=O\left(n^{2}\right)$.

Now let G be a graph on $N=C n^{3}$ vertices with no independent set of size n. There exists $x \in$ $V(G)$ with $d(x) \geq C n^{2}-1$. By choosing C large enough, we can make sure that $d(x) \geq R\left(H^{\prime}, K_{n}\right)$. Then, $G[N(x)]$ contains a copy of H^{\prime}. Together with x, we get a copy of H, as required.

5.3 On the Ramsey number $R\left(H, K_{n, n}\right)$

We begin by proving upper bounds on $R\left(H, K_{n, n}\right)$ for graphs H with $\Delta(H)=r$ and for r-degenerate H. Both of our results follow from Lemma 5.5 below. First, we need the following definition.

Definition 5.4. We say that a graph H is r-strongly-degenerate if there exists an ordering v_{1}, \ldots, v_{h} of its vertices such that for all $i \in[h]$ one of the following holds:
a) $\left|N\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}\right| \leq r-1$, or
b) $d\left(v_{i}\right) \leq r$.

Equivalently, a graph H is r-strongly-degenerate if its subgraph induced by the set of vertices with degree larger than r is $(r-1)$-degenerate.
Lemma 5.5. For any r-strongly-degenerate graph H on h vertices, $R\left(H, K_{n, n}\right) \leq h^{2} n^{r}$.
Proof. Let u_{1}, \ldots, u_{h} be an ordering of the vertices of H certifying that H is r-strongly-degenerate. We denote $d_{i}(j)=\left|N_{H}\left(u_{j}\right) \cap\left\{u_{1}, \ldots, u_{i-1}\right\}\right|$. Consider an arbitrary graph G on $N=h^{2} n^{r}$ vertices. We show how to find either a copy of H or a copy of $\overline{K_{n, n}}$. Split the vertex-set into h parts V_{1}, \ldots, V_{h} each of size $h n^{r}$. We will try to find an embedding $\phi: H \rightarrow V$ such that $\phi\left(u_{j}\right) \in V_{j}$, for all $j \in[h]$. For this purpose, we will maintain sets $A_{i, j}$ into which we can embed the vertices, starting with $A_{1, j}=V_{j}, j \in[h]$. We will maintain the following. For any $1 \leq i \leq j \leq h$,

$$
\begin{equation*}
\left|A_{i, j}\right| \geq h \cdot n^{r-d_{i}(j)} \tag{7}
\end{equation*}
$$

which is trivially satisfied for $i=1$.
Next we describe how to embed H. Suppose we have embedded u_{1}, \ldots, u_{i-1} and we wish to embed u_{i}. First suppose there exists a vertex $v \in A_{i, i}$ satisfying $\left|N(v) \cap A_{i, j}\right| \geq h n^{r-d_{i+1}(j)}$, for all $j>i$ such that $\left(u_{i}, u_{j}\right) \in E(H)$. Then, we set $\phi\left(u_{i}\right)=v$ and update the sets as follows:

$$
A_{i+1, j}= \begin{cases}A_{i, j} \cap N(v) & \text { if }\left(u_{i}, u_{j}\right) \in E(H), \\ A_{i, j} & \text { otherwise } .\end{cases}
$$

It directly follows that (7) is still satisfied.
If we can embed all h vertices in this manner, we obtain a copy of H. Hence, for some i, there is no vertex $v \in A_{i, i}$ satisfying $\left|N(v) \cap A_{i, j}\right| \geq n^{r-d_{i+1}(j)}$, for all $j>i$ such that $\left(u_{i}, u_{j}\right) \in E(H)$. Since $A_{i, i} \neq \emptyset$ (by (7)), u_{i} has a neighbour u_{j} in H with $j>i$. By definition of an r-strongly-degenerate graph, it follows that $d_{i}(i) \leq r-1$ so $\left|A_{i, i}\right| \geq h n$ by (7). By the pigeonhole principle, there is an index $k>i$ such that for at least n vertices $v \in A_{i, i}$ we have $\left|N(v) \cap A_{i, k}\right|<h n^{r-d_{i+1}(k)}$. Let $S \subseteq A_{i, i}$ be a set of n such vertices and let $R=A_{i, k} \backslash \bigcup_{v \in S} N(v)$. By assumption $\left|N(v) \cap A_{i, k}\right| \leq h n^{r-d_{i+1}(k)}-1$ for every $v \in S$. Note that $d_{i+1}(k)=1+d_{i}(k)$ since $\left(u_{i}, u_{k}\right) \in E(H)$. Therefore,

$$
|R| \geq\left|A_{i, k}\right|-n \cdot\left(h n^{r-d_{i+1}(k)}-1\right) \geq h n^{r-d_{i}(k)}-n \cdot\left(h n^{r-d_{i+1}(k)}-1\right)=n .
$$

By construction, $G[R, S]$ is empty which completes the proof.
Note that every graph with maximum degree r is r-strongly-degenerate, and every r-degenerate graph is $(r+1)$-strongly-degenerate. Hence, we have the following corollaries.
Corollary 6. For any graph $H, R\left(H, K_{n, n}\right)=O\left(n^{\Delta(H)}\right)$.
Corollary 7. For any r-degenerate graph $H, R\left(H, K_{n, n}\right)=O\left(n^{r+1}\right)$.
Finally, we show that Conjecture 1 holds if K_{n} is replaced with $K_{n, n}$.
Proposition 5.6. Let $k \geq 1$. For every connected graph H with $e(H)-v(H) \leq\binom{ k+1}{2}-2$ it holds that $R\left(H, K_{n, n}\right)=O\left(n^{k}\right)$.

Proof. The proof is by induction on k. As in the proof of Theorem 2, we may assume that H is 2 -connected due to Corollary 5. If $\Delta(H) \leq k$ then we are done by Corollary 6 . Else, let $v \in V(H)$ with $d(v) \geq k+1$, and let $H^{\prime}=H-v$. Then $e\left(H^{\prime}\right)-v\left(H^{\prime}\right) \leq e(H)-(k+1)-v(H)+1 \leq$ $\binom{k}{2}-2$. Also, H^{\prime} is connected because H is 2 -connected. So by the induction hypothesis, we have $R\left(H^{\prime}, K_{n, n}\right)=O\left(n^{k-1}\right)$. Now let G be a graph on $N=C n^{k}$ vertices with no $\overline{K_{n, n}}$. Then G has no independent set of size $2 n$. Hence, there exists $x \in V(G)$ with $d(x) \geq \frac{1}{2} C n^{k-1}-1$. By choosing C large enough, we can make sure that $d(x) \geq R\left(H^{\prime}, K_{n, n}\right)$. Then $G[N(x)]$ contains a copy of H^{\prime}, which gives a copy of H together with x.

6 Concluding remarks and open problems

- It is worth mentioning an intriguing conjecture of Alon, Krivelevich and Sudakov [2], that $R\left(H, K_{n}\right) \leq n^{O(r)}$ for every graph H with $\Delta(H) \leq r$. Using the dependent random choice method, [2] showed that $R\left(H, K_{n}\right)=O\left(n^{(2 r-k+2) \cdot(k-1) / 2}\right)$, where $k=\chi(H)$. So in the worst case $k=r$, the exponent is quadratic in r. The problem for $K_{n, n}$ (in place of K_{n}) turned out to be much easier and is resolved in Corollary 6.
- In Corollary 7 we showed that $R\left(H, K_{n, n}\right)=O\left(n^{r+1}\right)$ for an r-degenerate graph H. Can this be improved to $O\left(n^{r}\right)$? In particular, it would be very interesting to show that $R\left(H, K_{n, n}\right)=$ $O\left(n^{2}\right)$ for every 2-degenerate graph H.
- Balister et al. [3] asked whether it is true that if H is 2-connected and has minimum degree 3, then H is not Ramsey size-linear. A recent result of Janzer [12] gives a negative answer to this question. Indeed, [12] constructed 2 -connected 3 -regular bipartite graphs H which have Turán number at most $O\left(n^{3 / 2}\right)$ (in fact, at most $O\left(n^{4 / 3+\varepsilon}\right)$). Erdős et al. [8] observed that a bipartite graph H with Turán number at most $O\left(n^{3 / 2}\right)$ is Ramsey size-linear. Hence, the graphs of [12] are Ramsey size-linear.
- Theorem 3 implies that $R\left(K_{4}^{*}, K_{n, n}\right)=O\left(n^{2}\right)$. For K_{n}, it is not difficult to prove that $R\left(K_{4}^{*}, K_{n}\right)=O\left(n^{5 / 2}\right)$. Indeed, suppose that G has $N=C n^{5 / 2}$ vertices and no independent set of size n. We may assume that $\delta(G) \geq \Omega(N / n)$, and then the average degree inside each neighbourhood is $\Omega\left(N / n^{2}\right)$. Also, each neighbourhood is C_{4}-free or else G contains K_{4}^{*} and we are done. It follows that there are at least $N \cdot \Omega(N / n) \cdot \Omega\left(N / n^{2}\right)^{2} \geq c N^{4} / n^{5} 4$-tuples x, y, z, w with $x \sim y, z, w$ and $y \sim z, w$. Here c is some small absolute constant. On the other hand, the number of such 4 -tuples x, y, z, w with $d(z, w) \leq 2$ is at most $4\binom{N}{2} \leq 2 N^{2}$. For $N=C n^{5 / 2}$ with large enough C (compared to c), we have $c N^{4} / n^{5}>2 N^{2}$, so there is a 4 -tuple x, y, z, w with $d(z, w) \geq 3$. This gives a K_{4}^{*}. It would be interesting to reduce the exponent $5 / 2$, hopefully all the way to 2 .

Acknowledgments: The authors thank the anonymous referees for their careful reading of the paper and useful suggestions which improved the presentation.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980), no. 3, 354-360.
[2] N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramseytype questions. Combinatorics, Probability and Computing, 12(5-6), 477-494, 2003.
[3] P. N. Balister, R. H. Schelp and M. Simonovits, A note on Ramsey size-linear graphs. Journal of Graph Theory, 39(1), 1-5, 2002.
[4] T. Bohman and P. Keevash, The early evolution of the H-free process, Invent. Math. 181 (2010), no. 2, 291-336.
[5] B. Bollobás, Random graphs (No. 73). Cambridge university press, 2001.
[6] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theoretical computer science, 209(1-2), pp.1-45, 1998.
[7] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
[8] P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Ramsey size linear graphs. Combinatorics, Probability and Computing, 2(4), 389-399, 1993.
[9] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[10] J. Fox and B. Sudakov, Dependent Random Choice, Random Structures and Algorithms 38 (2011), 1-32.
[11] D. J. Harvey and D. R. Wood, Parameters tied to treewidth. Journal of Graph Theory, 84(4), 364-385, (2017).
[12] O. Janzer, Disproof of a conjecture of Erdős and Simonovits on the Turán number of graphs with minimum degree 3 , arXiv preprint arXiv:2109.06110, 2021.
[13] J. H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$, Random Structures Algorithms 7 (1995), no. 3, 173-207.
[14] D. Mubayi and J. Verstraëte, A note on pseudorandom Ramsey graphs, arXiv preprint arXiv:1909.01461, 2019.
[15] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977/78), no. 1, 69-76.

[^0]: ${ }^{*}$ Department of Mathematics, ETH, Zürich, Switzerland. Research supported in part by SNSF grant 200021_196965. Email: \{domagoj.bradac, lior.gishboliner, benjamin.sudakov\}@math.ethz.ch.
 ${ }^{1}$ As customary, for two functions f, g, we write $g(n)=\tilde{\Omega}(f(n))$ to mean that $g(n) \geq f(n) / \operatorname{polylog}(n), g(n)=$ $\tilde{O}(f(n))$ to mean that $g(n) \leq f(n) \cdot \operatorname{polylog}(n)$, and $g(n)=\tilde{\Theta}(f(n))$ to mean that $f(n) / \operatorname{polylog}(n) \leq g(n) \leq f(n)$. polylog (n).
 ${ }^{2}$ The 2-density $m_{2}(H)$ is defined as the maximum of $\frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}$ over all subgraphs H^{\prime} of H with at least 3 vertices.

