Maximal Chordal Subgraphs

Lior Gishboliner* Benny Sudakov*

Abstract

A chordal graph is a graph with no induced cycles of length at least 4. Let $f(n, m)$ be the maximal integer such that every graph with n vertices and m edges has a chordal subgraph with at least $f(n, m)$ edges. In 1985 Erdős and Laskar posed the problem of estimating $f(n, m)$. In the late '80s, Erdős, Gyárfás, Ordman and Zalcstein determined the value of $f\left(n, n^{2} / 4+1\right)$ and made a conjecture on the value of $f\left(n, n^{2} / 3+1\right)$. In this paper we prove this conjecture and answer the question of Erdős and Laskar, determining $f(n, m)$ asymptotically for all m and exactly for $m \leq n^{2} / 3+1$.

1 Introduction

One of the central questions in extremal combinatorics can be formulated as follows. Given a graph G and a property \mathcal{P}, what is the maximal subgraph of G one can find which satisfies this property. The study of this problem goes back to the work of Turán in 1941, whose theorem states that the largest subgraph of the n-vertex complete graph with no clique of size $k+1$ is the complete k-partite graph with sides as equal as possible. This graph is called the Turán graph. We denote it by $T_{k}(n)$ and its size by $t_{k}(n)$. Turán's theorem is the starting point of extremal graph theory and has inspired extensive research. One such research direction studies which other (more elaborate) structures must appear in a graph with more than $t_{k}(n)$ edges. For example, a series of works determined how many $(k+1)$-cliques must exist in a graph with $t_{k}(n)+a$ edges (for a suitable range of a) $[7,11,15]$. Other examples are results on finding many $(k+1)$-cliques which share one or more vertices [$7,5,14,8$], and results on finding $(k+1)$-cliques with large degree sum $[3,4,12,1]$.

In this paper we study the Turán type problem for chordal graphs. A graph is called chordal if it contains no induced cycle of length at least 4. Chordal graphs are one of the most studied classes in graph theory and have numerous applications, for example in semidefinite optimization (see the survey [16]) and evolutionary trees (see [6]). In 1985, Erdős and Laskar [10] asked to determine the maximum integer $f(n, m)$ such that every graph with n vertices and m edges contains a chordal subgraph with at least $f(n, m)$ edges. To put this question under the umbrella of classical extremal graph theory, one needs to consider equivalent definitions of chordal graphs. It is well-known that a graph is chordal if and only if it can be constructed from a single-vertex graph by repeatedly adding a vertex and connecting it to a clique of the current graph ${ }^{1}$ (this is called a perfect elimination ordering). So if G is a triangle free, then every chordal subgraph of G must be a forest. More generally, if G has no cliques of size $k+1$, then every chordal subgraph of G has at most $(k-1)(n-k+1)+\binom{k-1}{2}=(k-1) n-\binom{k}{2}$ edges. In particular, this bound applies to k-partite graph. Another way of proving this bound for k-partite graphs is to observe that if G is k-partite with parts V_{1}, \ldots, V_{k} and H is a chordal subgraph of G, then $e_{H}\left(V_{i}, V_{j}\right) \leq\left|V_{i}\right|+\left|V_{j}\right|-1$ for every $i<j$ (because a chordal subgraph of a bipartite graph must be a forest). Hence, $e(H) \leq \sum_{i<j}\left(\left|V_{i}\right|+\left|V_{j}\right|-1\right)=(k-1) n-\binom{k}{2}$.

The above discussion shows that if $m \leq t_{k}(n)$ then $f(n, m) \leq(k-1) n-\binom{k}{2}$. It is natural to guess that the value of $f(n, m)$ "jumps" as m increases from $t_{k}(n)$ to $m=t_{k}(n)+1$, because at this point the graph must contain $(k+1)$-cliques. Erdős and Laskar [10] proved that this is indeed the case for $k=2$, showing that $f\left(n, t_{2}(n)+1\right) \geq(1+\varepsilon) n$. In the late 80 's, Erdős, Gyárfás, Ordman and Zalcstein [9] determined the value of $f\left(n, t_{2}(n)+1\right)$ exactly for even n, showing that $f\left(n, \frac{n^{2}}{4}+1\right)=\frac{3 n}{2}-1$. This bound is achieved by the

[^0]

Figure 1: The construction showing optimality of Theorem 2
graph $T_{2}(n)+e$, obtained by adding an edge to the Turán graph $T_{2}(n)$. It is natural to conjecture that for every k and n, the value of $f\left(n, t_{k}(n)+1\right)$ is determined by $T_{k}(n)+e$, which is the graph obtained by adding an edge to a largest class of $T_{k}(n)$. It is not hard to check that the largest chordal subgraph of $T_{k}(n)+e$ has $k n-\left\lceil\frac{n}{k}\right\rceil+2-\binom{k+1}{2}$ edges. So we get the following conjecture.
Conjecture 1.1. $f\left(n, t_{k}(n)+1\right)=k n-\left\lceil\frac{n}{k}\right\rceil+2-\binom{k+1}{2}$.
The authors of [9] only studied Conjecture 1.1 in the cases $k=2,3$, although they very likely had the full conjecture in mind. Erdős et al. proved that $f\left(n, t_{3}(n)+1\right) \geq 7 n / 3-6$ and asked to determine $f\left(n, t_{3}(n)+1\right)$. This question was later mentioned again in the problem survey of Gyárfás [13]. Answering this question, we resolve Conjecture 1.1 for the case $k=3$.

Theorem 1. $f\left(n, t_{3}(n)+1\right)=3 n-\left\lceil\frac{n}{3}\right\rceil-4$.
Our next result proves Conjecture 1.1 asymptotically for every k. In fact, we go a step further and determine $f(n, m)$ asymptotically for every value of m, answering the question of Erdős and Laskar.

Theorem 2. Let $k, n \geq 1$ and $t_{k}(n)+1 \leq m \leq t_{k+1}(n)$. Set $a=m-t_{k}(n)$. Then

$$
f(n, m)=(k-1 / k) n+\sqrt{2(k+1) a / k}-\binom{k+1}{2}-O(\sqrt{n}) .
$$

The construction giving the upper bound in Theorem 2 is to take an (unbalanced) complete k-partite graph with $k-1$ smaller classes of the same size and one bigger class, and to add a balanced complete bipartite graph inside the bigger class. One then needs to optimize the sizes of the classes and the size of the complete bipartite graph so as to minimize the size of chordal subgraphs. It is best to take the $k-1$ smaller classes of size $\frac{n-k}{r}$, the bigger class of size $\frac{n+(k-1) r}{k}$ and the complete bipartite of size $r \times r$, where $r:=\sqrt{\frac{2 k a}{k+1}}$. See Figure 1, and see Section 2 for the details.

For $k=1,2$, we can go a step further and determine $f(n, m)$ exactly. This is done in the following two theorems.

Theorem 3. Let $n \geq 1$ and $m \leq t_{2}(n)$. Then $f(n, m)=\min _{r: t_{2}(r) \geq m} r-1$.
For $n \geq 1$ and $m \geq t_{2}(n)+1$, let $g_{2}(n, m)$ be the minimum of $2 n-t+r$, taken over all pairs $t, r \geq 0$ satisfying $t(n-t)+t_{2}(r) \geq m$.
Theorem 4. Let $n \geq 1$ and $t_{2}(n)+1 \leq m \leq t_{3}(n)$. Then $f(n, m)=g_{2}(n, m)-3$.
The extremal construction for Theorem 4 is given by taking a $t \times(n-t)$ complete bipartite graph and placing a complete bipartite graph with r vertices inside the side of size t.

1.1 Proof ideas

Recall that a graph is chordal if and only if it can be obtained from the one-vertex graph by repeatedly adding simplicial vertices, i.e. vertices whose neighbourhood is a clique. In particular, adding simplicial vertices to a chordal graph keeps it chordal. We will often use this fact (implicitly) to claim that certain graphs are chordal.

Let us first recall the argument used by Erdős et al. [9] to prove Conjecture 1.1 for $k=2$ (and n even). Let G be a graph with n vertices and $n^{2} / 4+1$ edges, and let x, y, z be a triangle in G. We need to show that G has a chordal subgraph H with at least $3 n / 2-1$ edges. If $d(x)+d(y)+d(z) \geq 3 n / 2+2$, then take H to be the subgraph consisting of all edges touching x, y, z. Suppose now that $d(x)+d(y)+d(z) \leq 3 n / 2+1$. Then by averaging, we can assume without loss of generality that $d(x)+d(y) \leq n$. Deleting x, y, we get a graph with at least $n^{2} / 4+1-(n-1) \geq(n-2)^{2} / 4+1$ edges. By induction, this graph contains a chordal subgraph H^{\prime} with at least $3(n-2) / 2-1$ edges. Adding the edges $x y, x z, y z$ gives the required chordal subgraph H.

Our proof of Theorem 4 is also based on this inductive argument, but with two key differences. First, we need a relation between $g_{2}(n, m)$ and $g_{2}\left(n^{\prime}, m^{\prime}\right)$ (for $n^{\prime}=n-2$, say), so that the induction can be carried through when deleting vertices. And second, it turns out that the induction scheme of deleting two vertices does not work to give the correct bound on $f(n, m)$ for all m in the range of Theorem 4. Instead, we sometimes need to delete just one vertex and then add two edges when adding the vertex back. To this end, we need to know that the deleted vertex has two neighbours which form an edge in the chordal subgraph H^{\prime} that we find using induction. To guarantee this, we strengthen the induction hypothesis to say that not only does G contain a chordal subgraph with the correct number of edges, but that any given triangle in G can be included in such a chordal subgraph.

The idea of strengthening the induction hypothesis is also used in the proof of Theorem 1. Here we show that every K_{4} can be included in a chordal subgraph with the correct number of edges. This proof has a more involved case analysis. It would be interesting to find a shorter proof.

The proof of Theorem 2 is based on induction as well. Here, instead of deleting only a few vertices, we delete a large number of vertices. To give the general idea, we sketch first the proof in the case $m=t_{3}(n)+1$. So let G be a graph with n vertices $t_{3}(n)+1$ edges. We need to show that G has a chordal subgraph H with at least $\frac{8 n}{3}-6-C \sqrt{n}$ edges. Let us assume first that $e(G) \geq t_{3}(n)+2 n$. By a theorem of Faudree [12] (see also $[3,1]$), there is a triangle $x, y, z \in V(G)$ with $d(x)+d(y)+d(z) \geq 6 e(G) / n \geq 2 n+12$. In particular, x, y, z have at least 12 common neighbours. Let w_{1}, \ldots, w_{7} be seven of them. If $d(x)+d(y)+d(z)+d\left(w_{i}\right) \geq \frac{8 n}{3}-C \sqrt{n}$ for some i, then take H to be the subgraph consisting of all edges touching x, y, z, w_{i}. This H is chordal and $e(H)=d(x)+d(y)+d(z)+d\left(w_{i}\right)-6$, so we are done. Suppose then that $d(x)+d(y)+d(z)+d\left(w_{i}\right) \leq \frac{8 n}{3}-C \sqrt{n}$ for every i. In particular, $d\left(w_{i}\right) \leq \frac{2 n}{3}-C \sqrt{n}$. Assume that $d(x) \geq d(y) \geq d(z)$, so that $d(x) \geq \frac{2 n}{3}$ and hence $d(y)+d(z)+d\left(w_{i}\right) \leq 2 n-C \sqrt{n}$ for each i. Delete $y, z, w_{1}, \ldots, w_{7}$ to get a graph G^{\prime} on $n-9$ vertices. It is easy to see that $e\left(G^{\prime}\right)$ is well above $t_{3}(n-9)+1$. So by the induction hypothesis, there exists a chordal subgraph H^{\prime} of G^{\prime} with $e\left(H^{\prime}\right) \geq \frac{8(n-9)}{3}-6-C \sqrt{n}$ edges. Now add back the vertices $y, z, w_{1}, \ldots, w_{7}$, and add to H^{\prime} the edges of the triangle x, y, z and the edges between x, y, z and w_{1}, \ldots, w_{7}. This is a total of 24 edges. So $e(H)=e\left(H^{\prime}\right)+24 \geq \frac{8 n}{3}-6-C \sqrt{n}$, as required. It is also easy to see that H is chordal (if we add the new vertices in the order $y, z, w_{1}, \ldots, w_{7}$, then we always add a simplicial vertex). The number 7 was chosen here so that the number of edges added would be large enough for the induction to carry through. But the key point is that such a number must exist. Indeed, each w_{i} contributes 3 edges to H. On the other hand, the term $\frac{8 n}{3}$ suggests that it is enough to add $\frac{8}{3}$ edges per vertex on average. So by adding 3 edges per vertex, we are gaining over the required bound.

It now remains to handle the case that $e(G) \leq t_{3}(n)+2 n$. Here we proceed as follows. If the minimum degree of the graph is at least $\frac{2 n}{3}-\sqrt{n}$, then take a 4-clique x, y, z, w and take H to be the subgraph consisting of edges touching x, y, z, w. Else, delete a vertex of minimum degree and continue with the remaining graph. After $O(\sqrt{n})$ steps, we get a graph with $n^{\prime}=n-O(\sqrt{n})$ vertices and at least $t_{3}\left(n^{\prime}\right)+2 n^{\prime}$ edges, so we can apply the first case.

To prove the general case of Theorem 2 we find a $(k-1)$-clique x_{1}, \ldots, x_{k-1} and a forest F inside $N\left(x_{1}, \ldots, x_{k-1}\right)$ such that F has few components. We delete $V(F)$ and x_{2}, \ldots, x_{k-1} and apply induction to find a chordal subgraph H^{\prime}. We then add to H^{\prime} the edges of the clique x_{1}, \ldots, x_{k-1}, the edges of F, and
the edges between $V(F)$ and x_{1}, \ldots, x_{k-1}. Note that when adding back the vertices of F one by one, most vertices contribute k edges: one edge in F and $k-1$ edges to x_{1}, \ldots, x_{k-1} (this fails once for each connected component of F, and this is why we want the number of components to be small). On the other hand, the main term in Theorem 2 is $(k-1 / k) n$, which suggests that each vertex adds $k-1 / k$ edges on average. So again we are gaining over the required bound (at least if we ignore the second term $\sqrt{2(k+1) a / k}$ for the moment). A somewhat lengthy calculation shows that this argument indeed works for any value of a.

The rest of this short paper is organized as follows. Theorem 2 is proved in Section 2, Theorem 3 in Section 3, Theorem 4 in Section 4 and Theorem 1 in Section 5.

2 Proof of Theorem 2

In this section we prove Theorem 2. We begin with the upper bound. Here we use the following construction. For simplicity, assume that n is divisible by $k, k+1$. For general n the construction is essentially the same (and, since we are only interested in an approximate result, we are allowed a small error due to divisibility issues). Fix $k \geq 1$ and $m \leq t_{k+1}(n)=\frac{k n^{2}}{2(k+1)}$, so that $a:=m-t_{k}(n) \leq \frac{k n^{2}}{2(k+1)}-\frac{(k-1) n^{2}}{2 k}=\frac{n^{2}}{2 k(k+1)}$. Set $r:=\sqrt{\frac{2 k a}{k+1}} \leq \frac{n}{k+1}$. Consider a complete k-partite graph with sides $X, Y_{1}, \ldots, Y_{k-1}$ such that $|X|=\frac{n+(k-1) r}{k}$ and $\left|Y_{i}\right|=\frac{n-r}{k}$ for every $1 \leq i \leq k-1$. Place an $r \times r$ complete bipartite graph with sides A, B inside X. This is possible as $2 r \leq \frac{n+(k-1) r}{k}$. The resulting graph G has

$$
\begin{aligned}
e(G) & =(k-1) \cdot \frac{n+(k-1) r}{k} \cdot \frac{n-r}{k}+\binom{k-1}{2}\left(\frac{n-r}{k}\right)^{2}+r^{2}=\frac{(k-1) n^{2}}{2 k}+\frac{(k+1) r^{2}}{2 k} \\
& =\frac{(k-1) n^{2}}{2 k}+a=t_{k}(n)+a=m
\end{aligned}
$$

Let H be a chordal subgraph of G. We have $e_{H}(A, B) \leq|A|+|B|-1=2 r-1, e_{H}\left(A, Y_{i}\right) \leq|A|+\left|Y_{i}\right|-1$, $e_{H}\left(X \backslash A, Y_{i}\right) \leq|X|-|A|+\left|Y_{i}\right|-1$ and $e_{H}\left(Y_{i}, Y_{j}\right) \leq\left|Y_{i}\right|+\left|Y_{j}\right|-1$, because each of these bipartite graphs is induced in G, so its intersection with H is a forest. So

$$
\begin{aligned}
e(H) & \leq 2 r-1+(k-1)|X|-2(k-1)+2 \sum_{i=1}^{k-1}\left|Y_{i}\right|+\sum_{1 \leq i<j \leq k-1}\left(\left|Y_{i}\right|+\left|Y_{j}\right|-1\right) \\
& =k n-|X|+2 r-\binom{k+1}{2}=(k-1 / k) n+\frac{(k+1) r}{k}-\binom{k+1}{2} \\
& =(k-1 / k) n+\sqrt{2(k+1) a / k}-\binom{k+1}{2}
\end{aligned}
$$

giving the upper bound on $f(n, m)$ for Theorem 2. We now prove the lower bound, which we restate for convenience as follows.

Theorem 5. For every $k \geq 1$ there is $C=C(k)$ such that the following holds. Let $n, a \geq 1$, and let G be a graph with n vertices and at least $t_{k}(n)+a$ edges. Then G has a chordal subgraph with at least $(k-1 / k) n+\sqrt{2(k+1) a / k}-C \sqrt{n}-\binom{k+1}{2}$ edges.

For the proof of Theorem 5 we need two lemmas. The following lemma uses an argument originally used by Edwards [3, 4] and Faudree [12] (see also [1]) to find cliques with a large degree sum.
Lemma 2.1. Let $k, n, a \geq 1$ and let G be a graph with n vertices and at least $\frac{(k-1) n^{2}}{2 k}+a$ edges. Consider the following process: for $i=1,2, \ldots$, take x_{i} to be a vertex of maximum degree among all vertices in $N\left(x_{1}, \ldots, x_{i-1}\right)$. Then this process continues for at least k steps, and $N\left(x_{1}, \ldots, x_{k-1}\right)$ contains at least a edges.

Proof. We prove the lemma by induction on k. The base case $k=1$ is trivial. Let $k \geq 2$. By the induction hypothesis, the process continues for at least $k-1$ steps. It remains to show that $N\left(x_{1}, \ldots, x_{k-1}\right)$ contains
at least a edges, because this would also imply that $N\left(x_{1}, \ldots, x_{k-1}\right) \neq \emptyset$ and hence the process continues for at least k steps. For $1 \leq i \leq k-1$, let S_{i} be the set of vertices which are adjacent to x_{1}, \ldots, x_{i-1} but not adjacent to x_{i}. In particular, S_{1} is just the set of vertices not adjacent to x_{1} and $x_{i} \in S_{i}$ for all i. Then $V(G)=S_{1} \cup \cdots \cup S_{k-1} \cup N\left(x_{1}, \ldots, x_{k-1}\right)$. Put $S:=S_{1} \cup \cdots \cup S_{k-1}, N:=N\left(x_{1}, \ldots, x_{k-1}\right), s_{i}:=\left|S_{i}\right|, s=|S|$ and $d_{i}:=d\left(x_{i}\right)$. Note that $s_{i} \leq n-d_{i}$. Also, all vertices in S_{i} have degree at most d_{i}. We have

$$
\begin{equation*}
e(N, S)+2 e(S)=\sum_{v \in S} d(v) \leq \sum_{i=1}^{k-1} s_{i} \cdot d_{i} \leq \sum_{i=1}^{k-1} s_{i}\left(n-s_{i}\right) \tag{1}
\end{equation*}
$$

Since $e(G)=e(N)+e(S)+e(N, S)$, we have $2 e(S)=2 e(G)-2 e(N)-2 e(N, S)$. Plugging this into (1) and rearranging, we get

$$
\begin{equation*}
e(N) \geq e(G)-\frac{1}{2} e(N, S)-\frac{1}{2} \cdot \sum_{i=1}^{k-1} s_{i}\left(n-s_{i}\right) \tag{2}
\end{equation*}
$$

We have $e(N, S) \leq|N| \cdot|S|=(n-s) s$. Also, by Cauchy-Schwarz, $\sum_{i=1}^{k-1} s_{i}\left(n-s_{i}\right)=n s-\sum_{i=1}^{k-1} s_{i}^{2} \leq n s-\frac{s^{2}}{k-1}$. Plugging this into (2) gives

$$
e(N) \geq e(G)-\frac{1}{2}(n-s) s-\frac{1}{2}\left(n s-\frac{s^{2}}{k-1}\right)=e(G)-n s+\frac{k s^{2}}{2(k-1)} .
$$

The maximum of $n s-\frac{k s^{2}}{2(k-1)}$ is obtained at $s=\frac{(k-1) n}{k}$ and equals $\frac{(k-1) n^{2}}{2 k}$. Hence, $e(N) \geq e(G)-\frac{(k-1) n^{2}}{2 k} \geq a$, as required.

Lemma 2.2. Let G be a graph with n vertices and a edges. Let $s \geq 1$ and suppose that $a \geq 2 s^{2}$. Then G contains a forest F with s vertices and at least $s-1-\frac{s n}{a}$ edges.

Proof. Let C_{1}, \ldots, C_{m} be the connected components of G with $\left|C_{1}\right| \geq \cdots \geq\left|C_{m}\right|$. Let $\ell \geq 1$ be the minimal integer satisfying $\left|C_{1}\right|+\cdots+\left|C_{\ell}\right| \geq s$. If $\ell \leq 1+\frac{s n}{a}$ then take F to be a forest contained in $C_{1} \cup \cdots \cup C_{\ell}$ having s vertices and ℓ connected components. Suppose now by contradiction that $\ell>1+\frac{s n}{a}$. Set $r=\left|C_{1}\right|+\cdots+\left|C_{\ell-1}\right|$. Then $r<s$ and $\left|C_{\ell-1}\right| \leq \frac{r}{\ell-1}$. We have $e(G) \leq\binom{ r}{2}+\sum_{i=\ell}^{m}\binom{\left|C_{i}\right|}{2}$. By convexity, the sum $\sum_{i=\ell}^{m}\binom{\left|C_{i}\right|}{2}$ is maximized when all except maybe one of the $\left|C_{i}\right|$'s are equal to their maximal value, which is $\frac{r}{\ell-1}$. So $e(G) \leq\binom{ r}{2}+\left\lceil\frac{n-r}{r /(\ell-1)}\right\rceil \cdot\binom{r /(\ell-1)}{2} \leq\binom{ r}{2}+\left(1+\frac{n-r}{r /(\ell-1)}\right) \cdot\binom{r /(\ell-1)}{2} \leq\binom{ r}{2}+\binom{r /(\ell-1)}{2}+\frac{n r}{2(\ell-1)}<2\binom{s}{2}+\frac{s n}{2 s n / a} \leq a$, where the last inequality uses $a \geq 2 s^{2}$. We got a contradiction to $e(G)=a$.

Proof of Theorem 5. The proof is by induction on n. Fix constants $k \ll c \ll c_{1} \ll C$, to be chosen implicitly later. Suppose first that $a \leq(c k+1)^{2} n$. In this case we proceed as follows. If $\delta(G) \geq\left\lfloor\frac{(k-1) n}{k}\right\rfloor-c_{1} \sqrt{n}$, then take a $(k+1)$-clique $x_{1}, \ldots, x_{k+1} \in V(G)$ and take H to consist of all edges that touch x_{1}, \ldots, x_{k+1}. Then H is chordal and

$$
\begin{aligned}
e(H) & =\sum_{i=1}^{k+1} d\left(x_{i}\right)-\binom{k+1}{2} \geq(k+1) \cdot\left(\frac{(k-1) n}{k}-2 c_{1} \sqrt{n}\right)-\binom{k+1}{2} \\
& =(k-1 / k) n-2(k+1) c_{1} \sqrt{n}-\binom{k+1}{2} \geq(k-1 / k) n+\sqrt{2(k+1) a / k}-C \sqrt{n}-\binom{k+1}{2}
\end{aligned}
$$

where the last inequality holds as $C \gg c_{1}, c$ and $a \leq(c k+1)^{2} n$. Suppose now that there is $v \in V(G)$ with $d(v) \leq\left\lfloor\frac{(k-1) n}{k}\right\rfloor-c_{1} \sqrt{n}$. Let $G^{\prime}=G-v$. Then $e\left(G^{\prime}\right) \geq t_{k}(n)+a-\left\lfloor\frac{(k-1) n}{k}\right\rfloor+c_{1} \sqrt{n}=t_{k}(n-1)+a+c_{1} \sqrt{n}$. By the induction hypothesis with parameter $a^{\prime}=a+c_{1} \sqrt{n}, G^{\prime}$ contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq$ $(k-1 / k)(n-1)+\sqrt{2(k+1) a^{\prime} / k}-C \sqrt{n}-\binom{k+1}{2}$. As $(k-1 / k)(n-1) \geq(k-1 / k) n-k$, it suffices to show that $\sqrt{2(k+1) a^{\prime} / k} \geq \sqrt{2(k+1) a / k}+k$. Squaring, we get $2(k+1) / k \cdot\left(a+c_{1} \sqrt{n}\right)=2(k+1) a^{\prime} / k \geq$ $2(k+1) a / k+2 k \sqrt{2(k+1) a / k}+k^{2}$. Cancelling the term $2(k+1) a / k$ from both sides and rearranging, we see that it is enough to have $c_{1} \sqrt{n} \geq \frac{k^{2}}{k+1} \sqrt{2(k+1) a / k}+\frac{k^{3}}{2(k+1)}$, which holds because $a \leq(c k+1)^{2} n$ and $c_{1} \gg c$.

For the rest of the proof we assume that $a \geq(c k+1)^{2} n$. Note that $e(G) \geq t_{k}(n)+a \geq \frac{(k-1) n^{2}}{2 k}+\frac{a}{2}$ because $t_{k}(n) \geq \frac{(k-1) n^{2}}{2 k}-O_{k}(1)$ and $a \geq c \gg k$. Let x_{1}, \ldots, x_{k-1} be as in Lemma 2.1 and put $N=N\left(x_{1}, \ldots, x_{k-1}\right)$. By Lemma 2.1 we have $e(N) \geq \frac{a}{2}$. Also, the choice of x_{1}, \ldots, x_{k-1} in Lemma 2.1 implies that $d(y) \leq d\left(x_{k-1}\right) \leq$ $\cdots \leq d\left(x_{1}\right)$ for every $y \in N$. For convenience, we set

$$
d_{0}:=\frac{(k-1) n}{k}+\sqrt{\frac{2 a}{k(k+1)}}-c \sqrt{n} .
$$

Claim 2.3. If the statement of the theorem does not hold, then $G[N]$ contains a forest F with $v(F)=\lfloor\sqrt{n}\rfloor$, $e(F) \geq v(F)-1-\frac{2 n^{3 / 2}}{a}$, and

$$
\begin{equation*}
\sum_{y \in V(F)} d(y) \leq v(F) \cdot d_{0}+n / k \tag{3}
\end{equation*}
$$

Proof. We consider two cases. Suppose first that there is $x_{k} \in N$ such that $d\left(x_{k}\right) \geq d_{0}$. Then $d\left(x_{i}\right) \geq d_{0}$ for every $1 \leq i \leq k-1$. Hence, $d\left(x_{1}\right)+\cdots+d\left(x_{k}\right) \geq k \cdot d_{0}$. This means that x_{1}, \ldots, x_{k} have at least

$$
k d_{0}-(k-1) n=\sqrt{\frac{2 k a}{(k+1)}}-c k \sqrt{n} \geq \sqrt{a}-c k \sqrt{n} \geq \sqrt{n}
$$

common neighbours, where the last inequality holds by the assumption $a \geq(c k+1)^{2} n$. Take F to be the star whose center is x_{k} and whose leaves are $\lfloor\sqrt{n}\rfloor-1$ common neighbours of x_{1}, \ldots, x_{k}. Let $y \in N\left(x_{1}, \ldots, x_{k}\right)$. If $d(y) \geq d_{0}$ then

$$
d\left(x_{1}\right)+\cdots+d\left(x_{k}\right)+d(y) \geq(k+1) d_{0}=(k-1 / k) n+\sqrt{2(k+1) a / k}-(k+1) c \sqrt{n}
$$

and then the subgraph consisting of all edges touching $\left\{x_{1}, \ldots, x_{k}, y\right\}$ is a chordal graph with at least $(k-$ $1 / k) n+\sqrt{2(k+1) a / k}-(k+1) c \sqrt{n}-\binom{k+1}{2}$ edges, so the assertion of the theorem holds. Hence, we may assume that $d(y) \leq d_{0}$ for every $y \in N\left(x_{1}, \ldots, x_{k}\right)$. This means that $\sum_{v \in V(F)} d(v) \leq d\left(x_{k}\right)+(v(F)-1) \cdot d_{0} \leq$ $n / k+v(F) \cdot d_{0}$, as required by the claim. Also, F has the right number of edges, as $e(F)=v(F)-1$.

The second case is that $d(y) \leq d_{0}$ for every $y \in N$. Since $e(N) \geq \frac{a}{2} \geq 2 n$, we can apply Lemma 2.2 to $G[N]$ with parameters $\frac{a}{2}$ and $s=\lfloor\sqrt{n}\rfloor$ to obtain a forest F with $\lfloor\sqrt{n}\rfloor$ vertices and at least $v(F)-1-\frac{2 n^{3 / 2}}{a}$ edges. All vertices in F have degree at most d_{0}, so (3) holds.

We continue with the proof of the theorem. Let F be the forest given by Claim 2.3. Let G^{\prime} be the graph obtained from G by deleting the $t:=k-2+v(F)$ vertices $T:=\left\{x_{2}, \ldots, x_{k-1}\right\} \cup V(F)$. By (3), we have

$$
\sum_{v \in T} d(v) \leq d\left(x_{2}\right)+\cdots+d\left(x_{k-1}\right)+v(F) \cdot d_{0}+n / k \leq(v(F)+k-2) \cdot d_{0}+n=t \cdot d_{0}+n
$$

Using that $e(G) \geq t_{k}(n)+a \geq \frac{(k-1) n^{2}}{2 k}-O_{k}(1)+a$, we see that

$$
\begin{aligned}
e\left(G^{\prime}\right) \geq e(G)-t \cdot d_{0}-n & \geq \frac{(k-1) n^{2}}{2 k}-O_{k}(1)+a-t \cdot d_{0}-n \\
& =\frac{(k-1)(n-t)^{2}}{2 k}+\frac{(k-1) n t}{k}-\frac{(k-1) t^{2}}{2 k}-O_{k}(1)+a-t \cdot d_{0}-n \\
& =\frac{(k-1)(n-t)^{2}}{2 k}-O_{k}(1)+a-\frac{(k-1) t^{2}}{2 k}-t \cdot \sqrt{\frac{2 a}{k(k+1)}}+c t \sqrt{n}-n \\
& \geq t_{k}(n-t)+a-\frac{(k-1) t^{2}}{2 k}-t \cdot \sqrt{\frac{2 a}{k(k+1)}}+\frac{c}{2} t \sqrt{n}
\end{aligned}
$$

where the last inequality uses that $t \geq\lfloor\sqrt{n}\rfloor$ and $c \gg k$, so that $\frac{c}{2} t \sqrt{n} \geq O_{k}(1)+n$. Set

$$
a^{\prime}:=a-\frac{(k-1) t^{2}}{2 k}-t \cdot \sqrt{\frac{2 a}{k(k+1)}}+\frac{c}{2} t \sqrt{n}
$$

so that $e\left(G^{\prime}\right) \geq t_{k}(n-t)+a^{\prime}$. We have $a^{\prime} \geq 1$ because $t \leq \sqrt{n}+k-2, a \geq c^{2} n$ (say) and $c \gg k$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} of size at least $e\left(H^{\prime}\right) \geq(k-1 / k) \cdot(n-t)+$ $\sqrt{2(k+1) a^{\prime} / k}-C \sqrt{n-t}-\binom{k+1}{2}$. Let H be the subgraph of G obtained by adding to H^{\prime} the edges of the clique x_{1}, \ldots, x_{k-1}, the edges between x_{1}, \ldots, x_{k-1} and $V(F)$ and the edges of F. Then H is chordal. So to complete the proof, it suffices to verify that $e(H) \geq(k-1 / k) n+\sqrt{2(k+1) a / k}-C \sqrt{n}-\binom{k+1}{2}$.

By the definition of H, we have $e(H)=e\left(H^{\prime}\right)+\binom{k-1}{2}+(k-1) \cdot v(F)+e(F)$. Note that we have $(k-1) \cdot v(F)+e(F) \geq k \cdot v(F)-1-\frac{2 n^{3 / 2}}{a}=k \cdot(t-k+2)-1-\frac{2 n^{3 / 2}}{a}$. So $\binom{k-1}{2}+(k-1) \cdot v(F)+e(F) \geq$ $t k-\frac{(k+1)(k-2)}{2}-1-\frac{2 n^{3 / 2}}{a}$. For convenience, set $h:=\frac{(k+1)(k-2)}{2}+1+\frac{2 n^{3 / 2}}{a}$. So

$$
\begin{equation*}
e(H) \geq(k-1 / k) \cdot(n-t)+\sqrt{2(k+1) a^{\prime} / k}-C \sqrt{n-t}-\binom{k+1}{2}+t k-h . \tag{4}
\end{equation*}
$$

So it remains to verify that the right-hand side of (4) is at least as large as $(k-1 / k) n+\sqrt{2(k+1) a / k}-$ $C \sqrt{n}-\binom{k+1}{2}$. Cancel the terms $(k-1 / k) n,\binom{k+1}{2}$ which appear in both expressions. Also, we may drop the terms $C \sqrt{n-t}, C \sqrt{n}$. After rearranging, we get the inequality $\sqrt{2(k+1) a^{\prime} / k} \geq \sqrt{2(k+1) a / k}-\frac{t}{k}+h$. By squaring and plugging in the value of a^{\prime}, we get:

$$
\begin{align*}
& \frac{2(k+1)}{k} \cdot\left(a-\frac{(k-1) t^{2}}{2 k}-t \cdot \sqrt{\frac{2 a}{k(k+1)}}+\frac{c}{2} t \sqrt{n}\right) \geq \tag{5}\\
& \frac{2(k+1) a}{k}+\frac{t^{2}}{k^{2}}+h^{2}-\frac{2 t}{k} \cdot \sqrt{\frac{2(k+1) a}{k}}+2 h \cdot \sqrt{\frac{2(k+1) a}{k}}-\frac{2 t h}{k}
\end{align*}
$$

Both sides of the inequality (5) have the terms $\frac{2(k+1)}{k} a$ and $-\frac{2 t}{k} \cdot \sqrt{\frac{2(k+1) a}{k}}$. We can also drop the negative term $\frac{2 t h}{k}$ on the right-hand side. After rearranging, we get the inequality

$$
\begin{equation*}
\frac{2(k+1)}{k} \cdot \frac{c}{2} t \sqrt{n} \geq t^{2}+h^{2}+2 h \cdot \sqrt{\frac{2(k+1) a}{k}} \tag{6}
\end{equation*}
$$

We have $t \leq \sqrt{n}+k$ and $h \leq O_{k}(1)+\frac{2 n^{3 / 2}}{a} \leq O_{k}(1)+\sqrt{n}$, so $t^{2}, h^{2} \leq O_{k}(n)$. Also, $h \cdot \sqrt{a} \leq\left(O_{k}(1)+\frac{2 n^{3 / 2}}{a}\right) \cdot \sqrt{a} \leq$ $O_{k}(n)+\frac{2 n^{3 / 2}}{\sqrt{a}}=O_{k}(n)$, as $n \leq a \leq n^{2}$. So the right-hand side of (6) is $O_{k}(n)$. On the other hand, the left-hand side is larger than $\frac{c n}{2}$ because $t \geq\lfloor\sqrt{n}\rfloor \geq \sqrt{n} / 2$. So (6) holds because $c \gg k$, as required.

3 Proof of Theorem 3

For the upper bound, let $r \geq 1$ be the minimal integer satisfying $t_{2}(r) \geq m$, and take G to be $T_{2}(r)$ with $n-r$ isolated vertices. Then $e(G) \geq m$, but every chordal subgraph of G has at most $r-1$ edges. For the lower bound, we prove by induction on the number of vertices that every graph G with m edges has a chordal subgraph H with at least $g_{1}(m)-1$ edges, where $g_{1}(m):=\min _{r: t_{2}(r) \geq m} r$. For $m=0$, the assertion is trivial. Suppose $m \geq 1$ and let $x y \in E(G)$. Fix r such that $g_{1}(m)=r$. If $d(x)+d(y) \geq r$ then take H to be the subgraph consisting of all edges touching x, y. This graph is chordal and has $d(x)+d(y)-1$ edges. Suppose now that $d(x)+d(y) \leq r-1$; without loss of generality, $d(x) \leq\left\lfloor\frac{r-1}{2}\right\rfloor$. Let $G^{\prime}=G-x$. Then $e\left(G^{\prime}\right)=m-d(x) \geq m-\left\lfloor\frac{r-1}{2}\right\rfloor$. We claim that $e\left(G^{\prime}\right)>t_{2}(r-2)$. Indeed, if $e\left(G^{\prime}\right) \leq t_{2}(r-2)$ then $m \leq t_{2}(r-2)+\left\lfloor\frac{r-1}{2}\right\rfloor=t_{2}(r-1)$, in contradiction to the choice of r. So $g_{1}\left(e\left(G^{\prime}\right)\right) \geq r-1$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with at least $r-2$ edges. Now, $H^{\prime}+\{x y\}$ is a chordal subgraph of G with at least $r-1$ edges, as required.

4 Proof of Theorem 4

Recall that for $n \geq 1$ and $m \geq t_{2}(n)+1$, we define $g_{2}(n, m):=\min _{t, r}(2 n-t+r)$, where the minimum is taken over all integers $t, r \geq 0$ satisfying $t(n-t)+t_{2}(r) \geq m$.

We start by proving the upper bound in Theorem 4. First we claim that $g_{2}(n, m) \leq 2 n$. Observe that for $t=r=\left\lceil\frac{2 n}{3}\right\rceil$ we have $t(n-t)+t_{2}(r)=t_{3}(n) \geq m$. So $g_{2}(n, m) \leq 2 n-t+r=2 n$, as required.

Now take t, r such that $t(n-t)+t_{2}(r) \geq m$ and $g_{2}(n, m)=2 n-t+r$. Since $g_{2}(n, m) \leq 2 n$, we have $t \geq r$. Take a complete bipartite graph with sides X of size t and Y of size $n-t$, and add a copy of $T_{2}(r)$ with sides A, B inside X. The resulting graph G has $t(n-t)+t_{2}(r) \geq m$ edges. Let H be a chordal subgraph of G. Then $e_{H}(A, B) \leq|A|+|B|-1=r-1, e_{H}(A, Y) \leq|A|+|Y|-1$ and $e_{H}(X \backslash A, Y) \leq|X|-|A|+|Y|-1$, because each of these bipartite graphs is induced in G, so its intersection with H is a forest. Overall, we got that $e(H) \leq r-1+|X|+2|Y|-2=2 n-t+r-3=g_{2}(n, m)-3$. This shows that $f(n, m) \leq g_{2}(n, m)-3$, as required. To prove the lower bound in Theorem 4, we prove the following stronger claim.

Theorem 6. Let G be a graph with n vertices and $m \geq t_{2}(n)+1$ edges, and let x, y, z be a triangle in G. Then G has a chordal subgraph with at least $g_{2}(n, m)-3$ edges which contains the edges $x y, x z, y z$.

We need the following facts about the numbers $g_{2}(n, m)$.
Lemma 4.1. In the definition of $g_{2}(n, m)$, we may assume that $-\frac{1}{2} \leq 2 t-n-\frac{r}{2} \leq \frac{1}{2}$.
Proof. Fix t, r which achieve the minimum in the definition of $g_{2}(n, m)$; so $t(n-t)+t_{2}(r) \geq m$ and $g_{2}(n, m)=$ $2 n-t+r$. Put $h(t, r):=2 t-n-\frac{r}{2}$. If $h(t, r) \in\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$ then we are done. If not, we try replacing (t, r) with $(t-1, r-1)$ or $(t+1, r+1)$. Suppose first that $h(t, r) \geq 1$. Replace (t, r) with $(t-1, r-1)$. We have $2 n-(t-1)+(r-1)=2 n-t+r$ and $(t-1)(n-t+1)+t_{2}(r-1)=t(n-t)+t_{2}(r)-n+2 t-\left\lfloor\frac{r}{2}\right\rfloor-1 \geq$ $t(n-t)+t_{2}(r) \geq m$, where the penultimate inequality uses $h(t, r) \geq 1$. So $(t-1, r-1)$ also achieves the minimum in the definition of $g_{2}(n, m)$. Moreover, $h(t-1, r-1)=2(t-1)-n-\frac{r-1}{2}=h(t, r)-\frac{3}{2}$. So as long as $h(t, r) \geq 1$, we can replace (t, r) with $(t-1, r-1)$ and decrease h by $\frac{3}{2}$. At the last step, we decrease h to be in $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$.

Similarly, suppose that $h(t, r) \leq-1$. Replace (t, r) with $(t+1, r+1)$. We have $2 n-(t+1)+(r+1)=2 n-t+r$ and $(t+1)(n-t-1)+t_{2}(r+1)=t(n-t)+t_{2}(r)+n-2 t+\left\lceil\frac{r}{2}\right\rceil-1 \geq t(n-t)+t_{2}(r) \geq m$, where the penultimate inequality uses $h(t, r) \leq-1$. So $(t+1, r+1)$ also achieves the minimum in the definition of $g_{2}(n, m)$. Also, $h(t+1, r+1)=2(t+1)-n-\frac{r+1}{2}=h(t, r)+\frac{3}{2}$. So as long as $h(t, r) \leq-1$, we can replace (t, r) with $(t+1, r+1)$ and increase h by $\frac{3}{2}$. At the last step, we increase h to be in $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$.

Lemma 4.2. For $n \geq 1$ and $m \geq t_{2}(n)+2$, it holds that $g_{2}(n, m-1) \geq g_{2}(n, m)-1$.
Proof. Let t, r be such that $t(n-t)+t_{2}(r) \geq m-1$ and $2 n-t+r=g_{2}(n, m-1)$. Since $m-1 \geq t_{2}(n)+1$ we have $r \geq 2$. Thus $t(n-t)+t_{2}(r+1) \geq m$, so $g_{2}(n, m) \leq 2 n-t+(r+1)=g_{2}(n, m-1)+1$, as required.

Lemma 4.3. The following holds for every $n \geq 3$.

1. If $m \geq t_{2}(n)+1$ then $m-n+1 \geq t_{2}(n-2)+1$ and $g_{2}(n-2, m-n+1) \geq g_{2}(n, m)-3$.
2. If $m \geq t_{2}(n)+2$ then $m-n \geq t_{2}(n-2)+1$ and $g_{2}(n-2, m-n) \geq g_{2}(n, m)-4$.

Proof. The first part in both items follows from $t_{2}(n-2)=t_{2}(n)-n+1$. Let t, r such that $t(n-2-t)+t_{2}(r) \geq$ $m-n+1$ and $g_{2}(n-2, m-n+1)=2(n-2)-t+r$. We have $(t+1)(n-1-t)+t_{2}(r)=t(n-2-t)+n-1+t_{2}(r) \geq m$. Hence, $g_{2}(n, m) \leq 2 n-(t+1)+r=g_{2}(n-2, m-n+1)+3$. This proves the first item. For the second item, $g_{2}(n-2, m-n) \geq g_{2}(n-2, m-n+1)-1 \geq g_{2}(n, m)-4$, where the first equality uses Lemma 4.2 since $m-n+1 \geq t_{2}(n-2)+2$.

Lemma 4.4. Let $n \geq 1$ and $m \geq t_{2}(n)+1$, and let $d \geq 0$ be an integer satisfying $3 d \leq g_{2}(n, m)-1$. Then $m-d \geq t_{2}(n-1)+1$ and $g_{2}(n-1, m-d) \geq g_{2}(n, m)-2$.

Proof. First we show that $m-d>t_{2}(n-1)$. Set $a:=m-t_{2}(n)$. Since $3 d \leq g_{2}(n, m)-1$, it is enough to show that

$$
\begin{equation*}
g_{2}(n, m)<3\left(m-t_{2}(n-1)\right)+1=3 \cdot\left\lfloor\frac{n}{2}\right\rfloor+3 a+1 \tag{7}
\end{equation*}
$$

For $a=1, g_{2}(n, m)=n+\left\lfloor\frac{n}{2}\right\rfloor+2<3 \cdot\left\lfloor\frac{n}{2}\right\rfloor+4$, and the last expression equals the right-hand side of (7). Suppose now that $a \geq 2$. Set $k=\left\lceil\sqrt{\frac{a}{3}}\right\rceil$, so that $3 k^{2} \geq a$. Set $t:=\left\lfloor\frac{n}{2}\right\rfloor+k$ and $r:=4 k$. Then $t_{2}(r)=4 k^{2}$ and $t(n-t)=\left(\left\lfloor\frac{n}{2}\right\rfloor+k\right)\left(\left\lceil\frac{n}{2}\right\rceil-k\right) \geq t_{2}(n)-k^{2}$, so $t(n-t)+t_{2}(r) \geq t_{2}(n)+3 k^{2} \geq t_{2}(n)+a=m$. Hence, $g_{2}(n, m) \leq 2 n-t+r=2 n-\left\lfloor\frac{n}{2}\right\rfloor+3 k \leq 3 \cdot\left\lfloor\frac{n}{2}\right\rfloor+2+3 k$. So to prove (7), it suffices to show that $3 k+1<3 a$. As $k \leq \sqrt{\frac{a}{3}}+1$, it suffices to show that $3\left(\sqrt{\frac{a}{3}}+1\right)<3 a-1$. Rearranging and squaring, we get the inequality $9 a^{2}-27 a+16>0$, which holds for all $a \geq 3$. For $a=2$ we simply note that $k=1$ and so $3 k+1=4<6=3 a$.

Now we show that $g_{2}(n-1, m-d) \geq g(n, m)-2$. Fix t, r that achieve the minimum in the definition of $g_{2}(n, m)$; so $t(n-t)+t_{2}(r) \geq m$ and

$$
\begin{equation*}
g_{2}(n, m)=2 n-t+r=3 t-2 \cdot\left(2 t-n-\frac{r}{2}\right) . \tag{8}
\end{equation*}
$$

By Lemma 4.1, we may assume that $-\frac{1}{2} \leq 2 t-n-\frac{r}{2} \leq \frac{1}{2}$. Fix also t^{\prime}, r^{\prime} such that $t^{\prime}\left(n-1-t^{\prime}\right)+t_{2}\left(r^{\prime}\right) \geq m-d$ and $g_{2}(n-1, m-d)=2(n-1)-t^{\prime}+r^{\prime}$. Suppose by contradiction that $g_{2}(n-1, m-d) \leq g_{2}(n, m)-3$. Then $2(n-1)-t^{\prime}+r^{\prime} \leq 2 n-t+r-3$, so $t^{\prime}-t \geq r^{\prime}-r+1$. Put $c:=t^{\prime}-t$, so that $r^{\prime} \leq r+c-1$. Then $t_{2}\left(r^{\prime}\right) \leq t_{2}(r+c-1)$. So we can write

$$
\begin{align*}
m-d & \leq t^{\prime}\left(n-1-t^{\prime}\right)+t_{2}\left(r^{\prime}\right) \leq(t+c)(n-t-c-1)+t_{2}(r+c-1) \\
& =t(n-t)+c n-(2 c+1) t-(c+1) c+t_{2}(r+c-1) \tag{9}
\end{align*}
$$

Since (t, r) achieves the minimum in the definition of $g_{2}(n, m)$, we must have $m-1 \geq t(n-t)+t_{2}(r-1)$, so $t(n-t) \leq m-1-t_{2}(r-1)$. Plugging this into (9) and rearranging, we get $d \geq t+c(2 t-n)+(c+1) c+1-$ $t_{2}(r+c-1)+t_{2}(r-1)$. Note that $t_{2}(r+c-1)-t_{2}(r-1) \leq \frac{(r+c-1)^{2}}{4}-\frac{(r-1)^{2}-1}{4}=\frac{c r}{2}+\frac{(c-1)^{2}}{4}$. So we get

$$
\begin{equation*}
d \geq t+c\left(2 t-n-\frac{r}{2}\right)+(c+1) c+1-\frac{(c-1)^{2}}{4} \tag{10}
\end{equation*}
$$

We now complete the proof by considering the three possible values of $2 t-n-\frac{r}{2}$. Suppose first that $2 t-n-\frac{r}{2}=0$. Then $g_{2}(n, m)=3 t$ by (8). By (10), we have $d \geq t+(c+1) c+1-\frac{(c-1)^{2}}{4}=t+\frac{3}{4}(c+1)^{2} \geq$ $t=g_{2}(n, m) / 3$, in contradiction to our assumption on d.

Suppose now that $2 t-n-\frac{r}{2}=\frac{1}{2}$. Then $g_{2}(n, m)=3 t-1$ by (8). By (10), we have $d \geq t+\frac{c}{2}+(c+1) c+$ $1-\frac{c^{2}-2 c+1}{4}=t+\frac{3 c^{2}}{4}+2 c+\frac{3}{4}>t-1$, where the last inequality holds for every c. So $d \geq t$ and hence $3 d \geq 3 t \geq g_{2}(n, m)$, a contradiction.

Finally, suppose that $2 t-n-\frac{r}{2}=-\frac{1}{2}$. Then $g_{2}(n, m)=3 t+1$ by (8). By (10), we have $d \geq t-\frac{c}{2}+$ $(c+1) c+1-\frac{c^{2}-2 c+1}{4}=t+\frac{3 c^{2}}{4}+c+\frac{3}{4}>t$, where the last inequality holds for every c. So $d \geq t+1$ and hence $3 d \geq 3 t+3 \geq g_{2}(n, m)$, a contradiction.

Proof of Theorem 6. The proof is by induction on n. The base cases $n=1,2$ are trivial because for these n there is no graph on n vertices with $t_{2}(n)+1$ edges. The case $n=3$ is also easy to verify. So from now on let $n \geq 4$. Let x, y, z be a triangle in G. We consider several cases. After dealing with each case, we will assume in all subsequent cases that this case does not hold.

Case 1: $\quad d(x)+d(y)+d(z) \geq g_{2}(n, m)$. In this case, take H to be the graph consisting of all edges touching x, y, z. This graph is chordal and clearly contains the edges of the triangle x, y, z. Also, $e(H)=d(x)+d(y)+$ $d(z)-3 \geq g_{2}(n, m)-3$, as required.

Case 2: There are distinct $u, v \in\{x, y, z\}$ such that $d(u)+d(v) \leq n$. Without loss of generality, suppose that $u=x, v=y$. Let $G^{\prime}=G-\{x, y\}$. Then $e\left(G^{\prime}\right)=e(G)-d(x)-d(y)+1 \geq m-n+1$. By the induction hypothesis (applied to any arbitrary triangle in G^{\prime}), G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq$
$g_{2}(n-2, m-n+1)-3 \geq g_{2}(n, m)-6$, by Lemma 4.3. Let $H:=H^{\prime}+\{x y, x z, y z\}$. Then H is chordal, contains the edges of the triangle x, y, z, and satisfies $e(H)=e\left(H^{\prime}\right)+3 \geq g_{2}(n, m)-3$.

We claim that if cases $1-2$ do not hold then $m \geq t_{2}(n)+2$. Indeed, suppose by contradiction that $m=t_{2}(n)+1$. We have $g_{2}\left(n, t_{2}(n)+1\right)=2 n-\left\lceil\frac{n}{2}\right\rceil+2$. Since case 1 does not hold, $d(x)+d(y)+d(z) \leq$ $g_{2}\left(n, t_{2}(n)+1\right)-1 \leq \frac{3 n}{2}+1$. But then there are distinct $u, v \in\{x, y, z\}$ with $d(u)+d(v) \leq \frac{2}{3} \cdot\left(\frac{3 n}{2}+1\right) \leq n+\frac{2}{3}$. Hence $d(u)+d(v) \leq n$, contradicting that case 2 does not hold. So $m \geq t_{2}(n)+2$.

Case 3: There are distinct $u, v \in\{x, y, z\}$ such that the edge $u v$ is on exactly one triangle (namely the triangle $x, y, z)$. Without loss of generality, suppose that $u=x, v=y$. Since case 2 does not hold, we have $d(x)+d(y) \geq n+1$. On the other hand, since $x y$ is on exactly one triangle, it must be that $d(x)+d(y)=n+1$, $N(x) \cap N(y)=\{z\}$ and every vertex in $V(G) \backslash\{x, y, z\}$ is adjacent to exactly one of x, y. Let $G^{\prime}=G-\{x, y\}$. Then $e\left(G^{\prime}\right)=e(G)-d(x)-d(y)+1=m-n$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{2}(n-2, m-n)-3 \geq g_{2}(n, m)-7$, by Lemma 4.3. So it is enough to show that G contains a chordal graph H which contains the edges of the triangle x, y, z and satisfies $e(H)=e\left(H^{\prime}\right)+4$. Suppose first that z is isolated in H^{\prime}. We claim that there exists $w \in N_{G}(z) \backslash\{x, y\}$. Indeed, if not, then $d_{G}(z)=2$. Also, as $d(x)+d(y)=n+1$, we have $d(x) \leq\left\lfloor\frac{n+1}{2}\right\rfloor$ or $d(y) \leq\left\lfloor\frac{n+1}{2}\right\rfloor$. Suppose this holds for y. Then $d(y)+d(z) \leq\left\lfloor\frac{n+1}{2}\right\rfloor+2 \leq n$ for $n \geq 4$, so case 2 holds, contradiction. This proves our claim that there exists $w \in N_{G}(z) \backslash\{x, y\}$. Now take $H=H^{\prime}+\{z w, x y, x z, y z\}$. It is easy to check that H is chordal.

Suppose now that z is not isolated in H^{\prime}, and let $w \in V(G) \backslash\{x, y, z\}$ such that $z w \in E\left(H^{\prime}\right)$. As mentioned above, w is adjacent in G to either x or y; without loss of generality it is adjacent to x. Take $H=H^{\prime}+\{x w, x y, x z, y z\}$. It is easy to check that H is chordal.

Case 4: Cases 1-3 do not hold. Since case 1 does not hold, we have $d(x)+d(y)+d(z) \leq g_{2}(n, m)-1$. Assume that $d:=d(x) \leq d(y) \leq d(z)$; then $3 d \leq g_{2}(n, m)-1$. Since case 3 does not hold, there exists $w \in V(G) \backslash\{x\}$ which is a common neighbour of y, z. Set $G^{\prime}=G-\{x\}$. We have $e\left(G^{\prime}\right)=m-d$. By the induction hypothesis, G^{\prime} has a chordal subgraph H^{\prime} which contains the edges of the triangle y, z, w and satisfies $e\left(H^{\prime}\right) \geq g_{2}(n-1, m-d)-3 \geq g_{2}(n, m)-5$, by Lemma 4.4. Let $H=H^{\prime}+\{x y, x z\}$. Then H is chordal, contains the edges of the triangle x, y, z, and satisfies $e(H)=e\left(H^{\prime}\right)+2 \geq g_{2}(n, m)-3$, as required.

5 Proof of Theorem 1

For convenience, put $g_{3}(n):=3 n-\left\lceil\frac{n}{3}\right\rceil+2$. We prove Theorem 1 in the following stronger form.
Theorem 7. Let G be a graph with n vertices and $t_{3}(n)+1$ edges, and let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a 4-clique in G. Then G has a chordal subgraph with at least $g_{3}(n)-6$ edges which contains the edges of the clique X.

We need some simple facts on the numbers $t_{3}(n)$ and $g_{3}(n)$.
Lemma 5.1. For every $n \geq 5$, it holds that $t_{3}(n)-t_{3}(n-1)=\left\lfloor\frac{2 n}{3}\right\rfloor, t_{3}(n)-t_{3}(n-2)=\left\lfloor\frac{4 n}{3}\right\rfloor-1$, $t_{3}(n)-t_{3}(n-3)=2 n-3, t_{3}(n)-t_{3}(n-4)=g_{3}(n)-7$.

Proof. For $i=1,2,3, T_{3}(n-i)$ is obtained from $T_{3}(n)$ by deleting one vertex from each of the i largest classes of $T_{3}(n)$. For $i=1$, the deleted vertex has degree $\left\lfloor\frac{2 n}{3}\right\rfloor$. For $i=2$, the sum of degrees of the deleted vertices is $\left\lfloor\frac{4 n}{3}\right\rfloor$, and these vertices are adjacent. For $i=3$, the sum of degrees of the deleted vertices is $2 n$, and they form a triangle. Finally, $t_{3}(n)-t_{3}(n-4)=t_{3}(n)-t_{3}(n-1)+t_{3}(n-1)-t_{3}(n-4)=\left\lfloor\frac{2 n}{3}\right\rfloor+2(n-1)-3=$ $3 n-\left\lceil\frac{n}{3}\right\rceil-5=g_{3}(n)-7$.

Lemma 5.2. For every $n \geq 5$, it holds that $g_{3}(n)-g_{3}(n-1)=3$ if $n \equiv 0,2(\bmod 3)$ and $g_{3}(n)-g_{3}(n-1)=2$ if $n \equiv 1(\bmod 3)$. Hence, $g_{3}(n)-g_{3}(n-2) \leq 6, g_{3}(n)-g_{3}(n-3)=8$ and $g_{3}(n)-g_{3}(n-4) \leq 11$.

Proof. $g_{3}(n)-g_{3}(n-1)=3-\left\lceil\frac{n}{3}\right\rceil+\left\lceil\frac{n-1}{3}\right\rceil$, and it is easy to see that $\left\lceil\frac{n}{3}\right\rceil-\left\lceil\frac{n-1}{3}\right\rceil$ equals 0 if $n \equiv 0,2(\bmod 3)$ and equals 1 if $n \equiv 1(\bmod 3)$.

We also need the following simple lemma saying that in a graph with $t_{3}(n)+1$ edges, we can find two 4 -cliques sharing 3 vertices. This fact is originally due to Dirac [2]. For completeness, we include a proof.

Lemma 5.3. A graph G with $n \geq 5$ vertices and $t_{3}(n)+1$ edges has two 4 -cliques sharing 3 vertices.
Proof. The proof is by induction on n. For the base case $n=5$, take a 4 -clique and notice that the remaining vertex must send at least 3 edges to this 4 -clique as $t_{3}(5)+1=9$. Let $n \geq 6$. Take a 4 -clique x_{1}, \ldots, x_{4}. If there is a vertex outside of x_{1}, \ldots, x_{4} which has three neighbours in x_{1}, \ldots, x_{4} then we are done. Else, $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \leq 2 n+4$, so there is $i \in[4]$ such that $d\left(x_{i}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+1 \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, where the last inequality holds for all $n \geq 6$. So $G^{\prime}:=G-x_{i}$ has at least $t_{3}(n-1)+1$ edges, and we can apply induction.

Proof of Theorem 7. The proof is by induction on n. The claim is trivial if $n \leq 4$ so suppose that $n \geq 5$. We proceed by a sequence of claims.
Claim 5.4. We may assume that there exists $y \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to at least 3 of the vertices x_{1}, \ldots, x_{4}.

Proof of Claim 5.4. Suppose that there is no such y. We will show that the assertion of Theorem 7 holds. For $0 \leq j \leq 2$, let A_{j} be the set of vertices in $V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which are adjacent to j of the vertices x_{1}, \ldots, x_{4}, and let $a_{j}=\left|A_{j}\right|$. Then $a_{0}+a_{1}+a_{2}=n-4$ and $a_{1}+2 a_{2}=d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)-12$. So

$$
\begin{equation*}
d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)=n+8+a_{2}-a_{0} . \tag{11}
\end{equation*}
$$

We consider three cases:

Case 1: $0<a_{2} \leq n-5$. Then $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \leq 2 n+3$ by (11). Let G^{\prime} be the graph obtained from G by deleting x_{2}, x_{3}, x_{4} and all edges touching x_{1}. Then $v\left(G^{\prime}\right)=n-3$ and $e\left(G^{\prime}\right)=e(G)-\left(d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)\right)+6 \geq$ $e(G)-2 n+3=t_{3}(n)+1-2 n+3=t_{3}(n-3)+1$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$. Take $z \in A_{2}$, and assume without loss of generality that z is adjacent to x_{1}, x_{2}. Let $H=H^{\prime}+\left\{x_{1} z, x_{2} z\right\}+\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$. Then $e(H)=e\left(H^{\prime}\right)+8 \geq g_{3}(n-3)+8-6=g_{3}(n)-6$. Also, H is chordal: adding $x_{1} z$ to H^{\prime} keeps it chordal because x_{1} is isolated in H^{\prime}, and then by adding x_{2}, x_{3}, x_{4} in this order we always add a simplicial vertex.

Case 2: $a_{2}=n-4$. Then every vertex outside of $\left\{x_{1}, \ldots, x_{4}\right\}$ is adjacent to two of the vertices x_{1}, \ldots, x_{4}. By (11), $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)=2 n+4$. Pick an arbitrary $v \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ and suppose without loss of generality that v is adjacent to x_{1}. Let G^{\prime} be the graph obtained from G by deleting x_{2}, x_{3}, x_{4} and all edges touching x_{1} except for $x_{1} v$. Then $v\left(G^{\prime}\right)=n-3$ and $e\left(G^{\prime}\right)=e(G)-\left(d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)\right)+7=e(G)-2 n+3=$ $t_{3}(n-3)+1$. Pick an arbitrary 4 -clique y_{1}, \ldots, y_{4} in G^{\prime}. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$ such that H^{\prime} contains the edges of the clique y_{1}, \ldots, y_{4}. Each y_{i} has two neighbours in x_{1}, \ldots, x_{4}. By pigeonhole, two of the y_{i} 's have a common neighbour. Without loss of generality, we may assume that y_{1}, y_{2} are both adjacent to x_{k} for some $k \in[4]$. Suppose that y_{1} is also adjacent to x_{ℓ}. Let $H:=H^{\prime}-x_{1} v+\left\{x_{k} y_{1}, x_{k} y_{2}, x_{\ell} y_{1}\right\}+\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$, see Figure 2(a). Then $e(H) \geq e\left(H^{\prime}\right)+8$ (since we add 9 edges and delete at most 1), so $e(H) \geq g_{3}(n-3)+8-6=g_{3}(n)-6$. Also, $H^{\prime}-x_{1} v$ is chordal because x_{1} is a leaf or an isolated vertex in H^{\prime}. Now observe that H is chordal: adding first x_{k}, then x_{ℓ} and then the other two vertices among x_{1}, \ldots, x_{4}, we add a simplicial vertex at each step.

Case 3: $a_{2}=0$. Then there are at most $n-4$ edges between x_{1}, \ldots, x_{4} and $V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$. Also, $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \leq n+8$ by (11). Let G^{\prime} be the graph obtained from G by deleting x_{2}, x_{3}, x_{4} and all edges touching x_{1}. Then $v\left(G^{\prime}\right)=n-3$ and $e\left(G^{\prime}\right) \geq e(G)-(n+2)=t_{3}(n)+1-(n+2)=t_{3}(n-3)+1+n-5$. Note that $n \geq 8$ because else $e(G) \leq\binom{ n-4}{2}+n-4+6<t_{3}(n)$ (where the last inequality holds for $n \leq 7$), a contradiction. So $v\left(G^{\prime}\right) \geq 5$. By Lemma 5.3, there are distinct $v_{1}, v_{2}, w_{1}, w_{2}, w_{3} \in V\left(G^{\prime}\right)$ such that $v_{i}, w_{1}, w_{2}, w_{3}$ is a 4 -clique for $i=1,2$. Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by deleting all edges touching v_{1}. Then $v\left(G^{\prime \prime}\right)=n-3$ and $e\left(G^{\prime \prime}\right) \geq e\left(G^{\prime}\right)-(n-5)$ because v_{1} is not adjacent in G^{\prime} to x_{1} or to itself, leaving
$n-5$ potential neighbours. So $e\left(G^{\prime \prime}\right) \geq t_{3}(n-3)+1$. By the induction hypothesis, $G^{\prime \prime}$ contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$, such that H^{\prime} contains the edges of the clique v_{2}, w_{1}, w_{2}, w_{3}. Let $H=H^{\prime}+\left\{v_{1} w_{i}: 1 \leq i \leq 3\right\}+\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$. Then $e(H)=e\left(H^{\prime}\right)+9 \geq g_{3}(n)-6$ and it is easy to check that H is chordal.

Claim 5.5. We may assume that for every $i \in[4]$, the following holds. If $d\left(x_{i}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$, then there is $y \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ such that y is adjacent to x_{i} and to at least two vertices in $X \backslash\left\{x_{i}\right\}$.

Proof of Claim 5.5. Without loss of generality, $i=1$. Suppose that $d\left(x_{1}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ but there is no y as above. We will show that the assertion of Theorem 7 holds. For $0 \leq j \leq 3$, let A_{j} be the set of vertices $z \in V(G) \backslash\left\{x_{2}, x_{3}, x_{4}\right\}$ which are adjacent to exactly j of the vertices x_{2}, x_{3}, x_{4}, and let $a_{j}=\left|A_{j}\right|$. Note that $x_{1} \in A_{3}$. By Claim 5.4, we may assume that there exists $z \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to three of the vertices x_{1}, \ldots, x_{4}. By assumption, these three vertices cannot include x_{1}, so we must have $z \in A_{3}$. Hence, $A_{3} \backslash\left\{x_{1}\right\} \neq \emptyset$.

We have $a_{0}+a_{1}+a_{2}+a_{3}=n-3$ and $a_{1}+2 a_{2}+3 a_{3}=d\left(x_{2}\right)+d\left(x_{3}\right)+d\left(x_{4}\right)-6$. So $a_{2}+2 a_{3}=$ $d\left(x_{2}\right)+d\left(x_{3}\right)+d\left(x_{4}\right)-n-3+a_{0}$. By assumption, there is no $y \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to x_{1} and belongs to $A_{2} \cup A_{3}$. Hence, $d\left(x_{1}\right) \leq n-a_{2}-a_{3}=2 n-d\left(x_{2}\right)-d\left(x_{3}\right)-d\left(x_{4}\right)+3+a_{3}-a_{0}$. So we get

$$
\begin{equation*}
d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \leq 2 n+3+a_{3}-a_{0} \tag{12}
\end{equation*}
$$

Pick a set of edges F as follows:

- Suppose first that $a_{0}=0$. We claim that $A_{1} \cup A_{2} \neq \emptyset$. Indeed, if $A_{1} \cup A_{2}=\emptyset$ then $A_{3}=$ $V(G) \backslash\left\{x_{2}, x_{3}, x_{4}\right\}$. But then $N\left(x_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}$ so $d\left(x_{1}\right)=3$. On the other hand, $d\left(x_{1}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ by assumption. So $\left\lfloor\frac{2 n}{3}\right\rfloor \leq 2$, which is false for every $n \geq 5$. Now pick an arbitrary $v \in A_{1} \cup A_{2}$, and suppose without loss of generality that v is adjacent to x_{4}. Take F to be the set of all edges between x_{4} and $N\left(x_{4}\right) \backslash\left(A_{3} \cup\left\{x_{2}, x_{3}, v\right\}\right)$. Note that $|F|=d\left(x_{4}\right)-a_{3}-3$.
- If $a_{0} \geq 1$ then F is the set of all edges between x_{4} and $N\left(x_{4}\right) \backslash\left(A_{3} \cup\left\{x_{2}, x_{3}\right\}\right)$. Then $|F|=d\left(x_{4}\right)-a_{3}-2$.

In both cases we have $|F| \leq d\left(x_{4}\right)-a_{3}-3+a_{0}$. Let G^{\prime} be the graph obtained from G by deleting x_{1}, x_{2}, x_{3} and all edges in F. So $v\left(G^{\prime}\right)=n-3$. To count the deleted edges, note that there are $d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)-3$ edges touching x_{1}, x_{2}, x_{3}, and that the edges in F do not touch x_{1}, x_{2}, x_{3}. So the number of deleted edges is

$$
d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)-3+|F| \leq d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)-a_{3}+a_{0}-6 \leq 2 n-3
$$

where the last inequality uses (12). So $e\left(G^{\prime}\right) \geq e(G)-2 n+3=t_{3}(n)+1-2 n+3=t_{3}(n-3)+1$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$. Define a subgraph $H^{\prime \prime}$ of G^{\prime} as follows:

- If there is $z \in A_{3} \backslash\left\{x_{1}\right\}$ such that $x_{4} z \in E\left(H^{\prime}\right)$, then $H^{\prime \prime}=H^{\prime}$;
- Else, pick any $z \in A_{3} \backslash\left\{x_{1}\right\}$ and set $H^{\prime \prime}=H^{\prime}-x_{4} v+x_{4} z$.

We claim that $e\left(H^{\prime \prime}\right) \geq e\left(H^{\prime}\right)$. In the first item this is obvious. Suppose we are in the second item. By the definition of F, every neighbour of x_{4} in G^{\prime} belongs to $\{v\} \cup A_{3} \backslash\left\{x_{1}\right\}$. Since we are in the second item, the only possible neighbour of x_{4} in H^{\prime} is v. So indeed $e\left(H^{\prime \prime}\right) \geq e\left(H^{\prime}\right)$. Also, $H^{\prime \prime}$ is chordal; in the second case, this is because x_{4} is a leaf in both H^{\prime} and $H^{\prime \prime}$.

By the definition of $H^{\prime \prime}$, there is $z \in A_{3} \backslash\left\{x_{1}\right\}$ such that $x_{4} z \in E\left(H^{\prime \prime}\right)$. Now put $H=H^{\prime \prime}+\left\{x_{2} z, x_{3} z\right\}+$ $\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$, see Figure 2(b). Then $e(H)=e\left(H^{\prime \prime}\right)+8 \geq g_{3}(n-3)+8-6=g_{3}(n)-6$. Also, H is chordal: adding the vertices x_{2}, x_{3}, x_{1} in this order, we always add a simplicial vertex. This proves Claim 5.5.

We now continue with the proof of the theorem. For $i \in[4]$, we say that x_{i} is deletable if $d\left(x_{i}\right) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ and there is $y \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to x_{j} for all $j \in[4] \backslash\{i\}$.

Figure 2: Illustrations to proofs of claims. The red edges are added after applying induction. The dashed edges are deleted.

Claim 5.6. We may assume that there is no deletable x_{i}.
Proof. Suppose that x_{i} is deletable. Without loss of generality, assume that $i=1$. Let $G^{\prime}=G-x_{1}$. Then $e\left(G^{\prime}\right)=e(G)-d\left(x_{1}\right) \geq t_{3}(n)+1-\left\lfloor\frac{2 n}{3}\right\rfloor=t_{3}(n-1)+1$. Let y be a common neighbour of x_{2}, x_{3}, x_{4}. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-1)-6$, such that H^{\prime} contains the edges of the clique x_{2}, x_{3}, x_{4}, y. Take $H=H^{\prime}+\left\{x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right\}$. Then H is chordal and $e(H)=e\left(H^{\prime}\right)+3 \geq g_{3}(n-1)+3-6 \geq g_{3}(n)-6$.

Claim 5.7. We may assume that $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \leq g_{3}(n)-1$.
Proof. Else, take H to be the subgraph of G consisting of all edges which touch x_{1}, \ldots, x_{4}. Then H is chordal and $e(H)=d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)-6 \geq g_{3}(n)-6$.

Claim 5.8. We may assume that there is no 5-clique containing x_{1}, \ldots, x_{4}.
Proof. Suppose that x_{1}, \ldots, x_{4}, y is a 5 -clique. If $d\left(x_{i}\right) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ then x_{i} is deletable. Assuming no x_{i} is deletable, we have $d\left(x_{1}\right)+\cdots+d\left(x_{4}\right) \geq 4 \cdot\left(\left\lfloor\frac{2 n}{3}\right\rfloor+1\right) \geq 2 n+\left\lfloor\frac{2 n}{3}\right\rfloor+2=g_{3}(n)$, so we are done by Claim 5.7.

Claim 5.9. We may assume that for every $i \in[4], \sum_{j \neq i} d\left(x_{j}\right) \leq 2 n$.
Proof. Suppose that $d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right) \geq 2 n+1$ (the proof for each other i is symmetric). By Claim 5.7, we may assume that $d\left(x_{4}\right) \leq g_{3}(n)-1-(2 n+1)=n-\left\lceil\frac{n}{3}\right\rceil=\left\lfloor\frac{2 n}{3}\right\rfloor$. By Claim 5.6, we may assume that x_{4} is not deletable. Then x_{1}, x_{2}, x_{3} have no common neighbour except for x_{4}. But as $d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right) \geq 2 n+1$, this means that every vertex in $V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ is adjacent to exactly two of the vertices x_{1}, x_{2}, x_{3}. Let $G^{\prime}=G-\left\{x_{1}, \ldots, x_{4}\right\}$. Then $v\left(G^{\prime}\right)=n-4$ and $e\left(G^{\prime}\right)=e(G)-\left(d\left(x_{1}\right)+\cdots+d\left(x_{4}\right)\right)+6 \geq e(G)-g_{3}(n)+7=$ $t_{3}(n)+1-g_{3}(n)+7=t_{3}(n-4)+1$ by Lemma 5.1. Fix an arbitrary 4 -clique w_{1}, \ldots, w_{4} in G^{\prime}. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-4)-6$ such that H^{\prime} contains the edges of the clique w_{1}, \ldots, w_{4}. Each w_{i} is adjacent to two of the vertices x_{1}, x_{2}, x_{3}. By the pigeonhole principle and by symmetry, we may assume that each of w_{1}, w_{2} is adjacent to x_{1}, x_{2}. Moreover, w_{3} must be adjacent to x_{1} or x_{2}; say to x_{1}. Take $H=H^{\prime}+\left\{x_{1} w_{1}, x_{1} w_{2}, x_{1} w_{3}, x_{2} w_{1}, x_{2} w_{2}\right\}+\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$, see Figure 2(c). Then $e(H)=e\left(H^{\prime}\right)+11 \geq g_{3}(n-4)+11-6 \geq g_{3}(n)-6$. Also, H is chordal: adding the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ in this order, we always add a simplicial vertex. This proves Claim 5.9.

By Claim 5.4, we may assume that there is $y_{0} \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to at least 3 of the vertices x_{1}, \ldots, x_{4}; say to x_{2}, x_{3}, x_{4}. By Claim 5.6, we may assume that x_{i} is not deletable for any $i \in[4]$. Since x_{1} is not deletable, $d\left(x_{1}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$. By Claim 5.5, there is $z_{0} \in V(G) \backslash\left\{x_{1}, \ldots, x_{4}\right\}$ which is adjacent to x_{1} and to at least two of the vertices x_{2}, x_{3}, x_{4}; without loss of generality, z_{0} is adjacent to x_{3}, x_{4}. Since x_{2} is not deletable, we have $d\left(x_{2}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$. Also, we may assume that $y_{0} \neq z_{0}$ because else we would have a 5 -clique containing x_{1}, \ldots, x_{4}.

Figure 3: Applying induction after deleting certain vertices. The added edges are red.

Claim 5.10. We may assume that $d\left(x_{i}\right) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ for each $i=3,4$.
Proof. By Claim 5.9, we may assume that $d\left(x_{i}\right) \leq 2 n-d\left(x_{1}\right)-d\left(x_{2}\right) \leq 2 n-2 \cdot\left(\left\lfloor\frac{2 n}{3}\right\rfloor+1\right) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$.
If $d\left(y_{0}\right) \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ then we can delete y_{0}, apply induction to the remaining graph to find a chordal subgraph H^{\prime} with at least $g_{3}(n-1)-6$ edges which contains the edges of the clique x_{1}, \ldots, x_{4}, and then add the edges $x_{2} y_{0}, x_{3} y_{0}, x_{4} y_{0}$ to H^{\prime} to conclude the proof. So suppose that $d\left(y_{0}\right) \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$. Let $v \notin\left\{x_{3}, x_{4}\right\}$ be a common neighbour of x_{2} and y_{0}. Such a vertex v exists because $d\left(x_{2}\right)+d\left(y_{0}\right) \geq 2 \cdot\left(\left\lfloor\frac{2 n}{3}\right\rfloor+1\right) \geq n+3$, where the last inequality holds for every $n \geq 5$. Note that $v \neq x_{1}$ because x_{1} is not adjacent to y_{0}, as otherwise $x_{1}, \ldots, x_{4}, y_{0}$ would be a 5 -clique. Similarly, $v \neq z_{0}$ because v is adjacent to x_{2} and z_{0} is adjacent to x_{1}, x_{3}, x_{4} (so otherwise $x_{1}, \ldots, x_{4}, z_{0}$ would be a 5 -clique).

Suppose first that x_{2}, y_{0}, v have no common neighbour. Then $d\left(x_{2}\right)+d\left(y_{0}\right)+d(v) \leq 2 n$. Let $G^{\prime}=$ $G-\left\{x_{2}, y_{0}, v\right\}$. Then $e\left(G^{\prime}\right)=e(G)-d\left(x_{2}\right)-d\left(y_{0}\right)-d(v)+3 \geq t_{3}(n)+1-2 n+3=t_{3}(n-3)+1$. By the induction hypothesis, G^{\prime} contains a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$ such that H^{\prime} contains the edges of the clique $x_{1}, x_{3}, x_{4}, z_{0}$. Take $H=H^{\prime}+\left\{x_{2} x_{1}, x_{2} x_{3}, x_{2} x_{4}, y_{0} x_{2}, y_{0} x_{3}, y_{0} x_{4}, v x_{2}, v y_{0}\right\}$, see Figure 3(a). Then $e(H)=e\left(H^{\prime}\right)+8 \geq g_{3}(n-3)+8-6=g_{3}(n)-6$. Also, H is chordal: adding the vertices x_{2}, y_{0}, v in this order, we always add a simplicial vertex.

Suppose now that x_{2}, y_{0}, v have a common neighbour w. First, suppose that $w \in\left\{x_{3}, x_{4}\right\}$, say $w=x_{3}$. Let $G^{\prime}=G-\left\{x_{1}, x_{4}\right\}$. We have $d\left(x_{1}\right)+d\left(x_{4}\right) \leq 2 n-d\left(x_{2}\right) \leq 2 n-\left\lfloor\frac{2 n}{3}\right\rfloor-1 \leq\left\lfloor\frac{4 n}{3}\right\rfloor$, where the first inequality is by Claim 5.9. So $e\left(G^{\prime}\right)=e(G)-d\left(x_{1}\right)-d\left(x_{4}\right)+1 \geq t_{3}(n)+1-\left\lfloor\frac{4 n}{3}\right\rfloor+1=t_{3}(n-2)+1$. By the induction hypothesis, G^{\prime} has a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-2)-6$ such that H^{\prime} contains the edges of the clique x_{2}, y_{0}, v, x_{3}. Take $H=H^{\prime}+\left\{x_{4} x_{2}, x_{4} x_{3}, x_{4} y_{0}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}\right\}$, see Figure $3(\mathrm{~b})$. Then $e(H)=e\left(H^{\prime}\right)+6 \geq g_{3}(n-2)+6-6 \geq g_{3}(n)-6$. Also, H is chordal: adding x_{4} and then x_{1}, we always add a simplicial vertex. Now suppose that $w \notin\left\{x_{3}, x_{4}\right\}$. Let $G^{\prime}=G-\left\{x_{1}, x_{3}, x_{4}\right\}$. By Claims 5.9 and 5.10 we have $d\left(x_{1}\right)+d\left(x_{3}\right) \leq 2 n-d\left(x_{2}\right) \leq \frac{4 n}{3}$ and $d\left(x_{4}\right) \leq \frac{2 n}{3}$, so $d\left(x_{1}\right)+d\left(x_{3}\right)+d\left(x_{4}\right) \leq 2 n$. Hence, $e\left(G^{\prime}\right)=e(G)-d\left(x_{1}\right)-d\left(x_{3}\right)-d\left(x_{4}\right)+3 \geq t_{3}(n)+1-2 n+3=t_{3}(n-3)+1$. By the induction hypothesis, G^{\prime} has a chordal subgraph H^{\prime} with $e\left(H^{\prime}\right) \geq g_{3}(n-3)-6$ such that H^{\prime} contains the edges of the clique x_{2}, y_{0}, v, w. Now take $H=H^{\prime}+\left\{x_{3} y_{0}, x_{4} y_{0}\right\}+\left\{x_{i} x_{j}: 1 \leq i<j \leq 4\right\}$, see Figure 3(c). Then $e(H)=e\left(H^{\prime}\right)+8 \geq g_{3}(n-3)+8-6=g_{3}(n)-6$. Also, H is chordal: adding the vertices x_{3}, x_{4}, x_{1} in this order, we always add a simplicial vertex. This completes the proof of the theorem.

6 Concluding remarks

In this paper we study the maximal value $f(n, m)$ such that every graph with n vertices and m edges has a chordal subgraph with at least $f(n, m)$ edges. We determine this function asymptotically for all m and exactly for $m \leq t_{3}(n)+1$. Our results suggest the following conjecture on the value of $f(n, m)$ for general m.

Conjecture 6.1. Let $k \geq 2, n \geq 1$ and $t_{k}(n)+1 \leq m \leq t_{k+1}(n)$. Then

$$
f(n, m)=\min _{t, r}(k n-t+r)-\binom{k+1}{2}
$$

where the minimum is taken over all $t, r \geq 0$ satisfying $t_{k-1}(n-t)+t(n-t)+t_{2}(r) \geq m$.
It seems very likely that some progress on this conjecture can be achieved using our techniques together with a careful case analysis, but it would be interesting to find a proof which avoids such a case analysis as much as possible.

References

[1] B. Bollobás and V. Nikiforov. The sum of degrees in cliques. Electron. J. Combin., 12: Note 21, $10,2005$.
[2] G. Dirac. Extensions of turán's theorem on graphs. Acta Mathematica Hungarica, 14(3-4):417-422, 1963.
[3] C. Edwards. Complete subgraphs with largest sum of vertex degrees. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), volume 1, pages 293-306.
[4] C. Edwards. The largest vertex degree sum for a triangle in a graph. Bulletin of the London Mathematical Society, 9(2):203-208, 1977.
[5] C. S. Edwards. A lower bound for the largest number of triangles with a common edge. Unpublished manuscript, 1977.
[6] J. Enright and G. Kondrak. The application of chordal graphs to inferring phylogenetic trees of languages. 2011.
[7] P. Erdős. On a theorem of rademacher-turán. Illinois J. Math, 6(122-127):1-3, 1962.
[8] P. Erdős, Z. Furedi, R. J. Gould, and D. S. Gunderson. Extremal graphs for intersecting triangles. Journal of Combinatorial Theory, Series B, 64(1):89-100, 1995.
[9] P. Erdős, A. Gyárfás, E. T. Ordman, and Y. Zalcstein. The size of chordal, interval and threshold subgraphs. Combinatorica, 9(3):245-253, 1989.
[10] P. Erdős and R. Laskar. A note on the size of a chordal subgraph. In Congress. Numer, volume 48, pages 81-86, 1985.
[11] P. Erdős. On the number of complete subgraphs and circuits contained in graphs. Časopis pro pěstování matematiky, 94(3):290-296, 1969.
[12] R. J. Faudree. Complete subgraphs with large degree sums. Journal of graph theory, 16(4):327-334, 1992.
[13] A. Gyárfás. Problems and memories. arXiv preprint arXiv:1307.1768, 2013.
[14] N. G. Khadžiivanov and V. S. Nikiforov. Solution of a problem of P. Erdős about the maximum number of triangles with a common edge in a graph. Doklady Bolgarsko乞̆ Akademii Nauk. Comptes Rendus de l'Académie Bulgare des Sciences, 32(10):1315-1318, 1979. (In Russian).
[15] L. Lovász and M. Simonovits. On the number of complete subgraphs of a graph ii. In Studies in pure mathematics, pages 459-495. Springer, 1983.
[16] L. Vandenberghe and M. S. Andersen. Chordal graphs and semidefinite optimization. Foundations and Trends in Optimization, 1(4):241-433, 2015.

[^0]: *Department of Mathematics, ETH, Zürich, Switzerland. Research supported in part by SNSF grant 200021_196965. Email: \{lior.gishboliner, benjamin.sudakov\}@math.ethz.ch.
 ${ }^{1} \mathrm{~A}$ related fact is that a graph is chordal if and only if it has a tree-decomposition in which the bags are cliques. So chordal graphs can be thought of as "trees of cliques".

