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Abstract

Let F ⊂ 2[n] be a set family such that the intersection of any two members of F has size divisible
by `. The famous Eventown theorem states that if ` = 2 then |F| ≤ 2bn/2c, and this bound can be
achieved by, e.g., an ‘atomic’ construction, i.e. splitting the ground set into disjoint pairs and taking their
arbitrary unions. Similarly, splitting the ground set into disjoint sets of size ` gives a family with pairwise
intersections divisible by ` and size 2bn/`c. Yet, as was shown by Frankl and Odlyzko, these families are
far from maximal. For infinitely many `, they constructed families F as above of size 2Ω(n log `/`). On the
other hand, if the intersection of any number of sets in F ⊂ 2[n] has size divisible by `, then it is easy to
show that |F| ≤ 2bn/`c. In 1983 Frankl and Odlyzko conjectured that |F| ≤ 2(1+o(1))n/` holds already if
one only requires that for some k = k(`) any k distinct members of F have an intersection of size divisible
by `. We completely resolve this old conjecture in a strong form, showing that |F| ≤ 2bn/`c + O(1) if k
is chosen appropriately, and the O(1) error term is not needed if (and only if) ` |n, and n is sufficiently
large. Moreover the only extremal configurations have ‘atomic’ structure as above. Our main tool, which
might be of independent interest, is a structure theorem for set systems with small ’doubling’.

1 Introduction
An eventown is a family F ⊂ 2[n] such that |A∩B| is even for any A,B ∈ F . The famous Eventown theorem
of Berlekamp [2], also proved independently by Graver [13], states that if F ⊂ 2[n] is an eventown, then
|F| ≤ 2bn/2c. This bound is also the best possible, and a simple construction showing this can be obtained
as follows. Say that a family F ⊂ 2[n] is atomic, if there exist disjoint sets A1, . . . , Ad ⊂ [n] such that F is
the family of all sets F satisfying that either Ai ⊂ F or Ai ∩ F = ∅ for every i ∈ [d], and F contains no
element not covered by the sets Ai. The sets A1, . . . , Ad are called the atoms of F . Also, let S(n, `) be the
atomic family for which d = bn/`c and all Ai, i ∈ [d] have size exactly `. Note that |S(n, `)| = 2bn/`c, and
the size of the intersection of any number of sets in S(n, `) is divisible by `. Therefore, the family S(n, 2)
is an eventown of size 2bn/2c. Moreover, any eventown family can be completed to a maximal one of size
2bn/2c, see e.g. the book of Babai and Frankl [1], which is also a general reference on intersection problems.

In general, one might be tempted to conjecture that the maximal families F ⊂ 2[n], whose all pairwise
intersections are divisible by `, have size close to 2(1+o(1))n/`. However, this turns out to be far from the
truth. Frankl and Odlyzko [8] proved that if there exists a Hadamard matrix of order 4`, then there exists
such a family of size 2Ω(n log `/`), and this bound is also the best possible up to the constant factor. On the
other hand, it follows from a result of Deza, Erdős and Frankl [6], proved also by Frankl and Tokushige [9],
that if we consider uniform families, that is, F ⊂ [n](r), then |F| ≤

(bn/`c
r/`

)
if n is sufficiently large given r and

` | r. This bound is also the best possible as witnessed by the family F = [n](r) ∩ S(n, `). Let us emphasize
that the condition that n must be large compared to r is necessary, otherwise this would contradict the
aforementioned construction of Frankl and Odlyzko.

Despite all the above, if we require that the intersection of any number of sets in F ⊂ 2[n] must have
size divisible by `, then it is not difficult to show that |F| ≤ 2bn/`c for any n and `. Moreover, in this case,
F is contained in some isomorphic copy of S(n, `) (we say that two families in 2[n] are isomorphic if they
are equal up to a permutation of [n]). In 1983, Frankl and Odlyzko [8] asked whether a similar conclusion
holds if we only require that the intersection of any k distinct sets in F has size divisible by `, where k
is some constant only depending on `. More precisely, they conjectured that for some k, we must have
|F| ≤ 2(1+o(1))n/` for such a family F . Until recently, it was not even known if the bound 2O(n log `/`) can
be improved for any constant k. Indeed, while there are many tools to handle pairwise intersections as they
correspond to the scalar product of characteristic vectors, k-wise intersections are usually harder to analyse,
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see, e.g., [12, 15, 18, 19, 21] for related results. Also, it was shown in [18] that if the conjecture is true, k
must depend on `. In particular, if ` is a power of 2, there exist families F ⊂ 2[n] such that the intersection
of any k sets in F has size divisible by `, and |F| ≥ 2ckn log `/`, where ck > 0 is a constant only depending
on k. In this paper we resolve the conjecture of Frankl and Odlyzko in the following strong form.

Theorem 1. Let ` be a positive integer, then there exists k = k(`) such that for every positive integer n
the following holds. Let F ⊂ 2[n] such that the intersection of any k distinct elements of F is divisible by `.
Then |F| ≤ 2bn/`c + c, where c = c(`, k) is a constant, and c = 0 if ` | n and n is sufficiently large.

Note that the error term c is needed if ` - n. Indeed, in this case S(n, `) is not extremal, one can add a
constant number of sets contained in the nonempty set not covered by members of S(n, `) while retaining
the property that the intersection of every k distinct sets has size divisible by `.

1.1 Stability
As we mentioned above, maximum size eventowns are not unique. In particular, any eventown can be
completed to an eventown of size 2bn/2c. However, as it was proved in [18], if we require that the intersection
of any three sets is even sized, then S(n, 2) is the unique family achieving the maximum. Moreover, in this
case we have stability, that is, if F ⊂ 2[n] has this property and |F| ≥ (1− ε)2bn/2c for some small ε, then F
is a subfamily of some isomorphic copy of S(n, 2).

In Theorem 1, we also have stability. More precisely, if F ⊂ 2[n] such that the intersection of any k
distinct elements of F is divisible by `, and |F| > 1

2 · 2
bn/`c, then one can remove a constant number of sets

from F to make it a subfamily of some isomorphic copy of S(n, `). However, somewhat surprisingly, a much
more robust form of stability also holds. We show that under the substantially weaker condition |F| > 2αn,
the family F already highly resembles a subfamily of S(n, `) if k is chosen appropriately with respect to α
and `. The following result showing this seems to be new even for ` = 2.

Say that a family F ⊂ 2[n] is k-closed (mod `) if the intersection of any k (not necessarily distinct) sets
in F has size divisible by `. Later, we show that if F has the property that any k distinct sets in F have
an intersection of size divisible by `, then F can be made k-closed by removing O(n) elements. The next
statement will be more convenient to state for k-closed families, however, this only makes a small difference
by the previous claim. If X ⊂ [n] then F|X = {F ∩X : F ∈ F} denotes the projection of F onto X.

Theorem 2. Let ε > 0, and let ` be a positive integer, then there exist k = k(`, ε) and c = c(`, ε) such that
the following holds. Let F ⊂ 2[n] be k-closed (mod `). Then there exist X ⊂ [n] such that |F|X | ≥ 2−εn|F|,
and F|X is a subfamily of an isomorphic copy of S(|X|, `).

The following construction shows that this theorem is also optimal in a certain sense. Suppose that
` = p is a prime and 2pk+1 divides n. Partition {1, . . . , n/2} into sets A1, . . . , Aq of size p, and partition
{n/2 + 1, . . . , n} into sets B1, . . . , Br of size pk+1. Let F be the family of sets F of the following form.

• For i ∈ [q], either Ai ⊂ F or Ai ∩ F = ∅.

• For j ∈ [r], identify Bj with the vector space Fk+1
p . Then F ∩Bj is a k-dimensional subspace of Fk+1

p .

Clearly, we have |F| = 2qp(k+1)r = 2n/2ppn(k+1)/2pk+1

. Also, if F1, . . . , Fk ∈ F , then |F1∩· · ·∩Fk| is divisible
by p. Indeed, |F1 ∩ · · · ∩Fk ∩Ai| ∈ {0, p}, and F1 ∩ · · · ∩Fk ∩Bj is a subspace of Fk+1

p of dimension at least
1, so its size is also divisible by p. Finally, if X ⊂ [n] is such that F|X is a subfamily of some isomorphic
copy of S(|X|, p), then X ⊂ {1, . . . , n/2} and |F|X | ≤ 2n/2p = 2−n(log2 p)(k+1)/2pk+1 |F|.

1.2 Tools
The main technical tool we develop to prove Theorem 1 is a structure theorem for set systems with
small ‘doubling’. This result is similar in spirit to the famous Freiman-Ruzsa type theorems in additive
combinatorics. These theorems give a structure of a subset A of a group such that the sum-set A + A has
size not much larger than A (i.e. A has small doubling). The theorem of Freiman and Ruzsa [11, 17] states
that a subset of the integers with small doubling must be contained in a so-called generalized arithmetic
progression of bounded rank (see also [20]). This classical result was subsequently generalized to abelian
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groups by Green and Ruzsa [14] and to all groups by Breuillard, Green and Tao [3] (see also the survey [4]).
These results show that sets with small doubling must be close in structure to one of few natural examples.

Given a set-family F , our measure for the size of F will be the dimension of the subspace 〈F〉 spanned
by the characteristic vectors of the sets in F over some field F. Let F · F = {A ∩B : A,B ∈ F}, note that,
by definition, F ⊂ F · F . What can we say about F if the dimension of 〈F · F〉 is not much larger than
that of 〈F〉? Observe that if S is an atomic set-family, then S · S = S. Our structure theorem shows that
this is essentially the only possible example: any set-family F with small ‘doubling’ must be close to being
atomic. To make this more precise, we need the following definition. Given i, j ∈ [n], say that i and j are
twins for F if every F ∈ F either contains both i, j or none of them, and there is at least one F ∈ F such
that i, j ∈ F . Note that being twins is an equivalence relation (on the set of i ∈ [n] which are contained in
at least one F ∈ F). A set of coordinates T ⊂ [n] is called a set of twins if any pair of elements in T are
twins, or |T | = 1. Also, say that T is a maximal set of twins if it is a complete equivalence class of the twins
relation. We can now state our structure theorem.

Theorem 3. Let F ⊂ {0, 1}n, let F be a field, and suppose that dim〈F〉 = d and dim〈F · F〉 = d+ h. Then
[n] can be partitioned into d+ 1 sets A1, . . . , Ad, B such that Ai is a maximal set of twins for F for i ∈ [d],
and dim〈F|B〉 ≤ 2h.

2 Small ‘doubling’ and twins
In this section we establish Theorem 3. We will actually prove a more general statement about arbitrary
vector spaces. Let us introduce some notation.

As usual, Z` denotes the ring of integers modulo `, and if p is a prime, we write Fp instead of Zp to
emphasize that it is also a field. Fix any commutative ring R with a unity (in our case, R will be either a
field or Z` for some positive integer `). For a vector v ∈ Rn, we use v(i) to denote the ith coordinate of v.
The support of v is {i ∈ [n] : v(i) 6= 0}. For F ⊂ Rn, we use 〈F〉 to denote the span (i.e. the set of all linear
combinations) of the elements of F . If R = Z`, we might write 〈F〉` instead of 〈F〉 if R is not clear from
the context. If A ⊂ [n] and F ∈ Rn, then F |A ∈ RA denotes the restriction of F to the coordinates in A,
and if F ⊂ Rn, then F|A = {F |A : F ∈ F}.

Given vectors v, w ∈ Rn, let v · w be the vector in Rn defined as (v · w)(i) = v(i)w(i) for i ∈ [n]. Note
that if v and w are characteristic vectors of sets A and B, then v · w is the characteristic vector of A ∩ B.
For V,W ⊂ Rn, let V ·W = {v · w : v ∈ V,w ∈ W}. Given V ⊂ Rn and i, j ∈ [n], say that i and j are
twins for V if v(i) = v(j) for all v ∈ V and v(i) 6= 0 for at least one v ∈ V . Observe that if V is a subspace
generated by some family F ⊂ {0, 1}n, then this definition of twins exactly coincides with the one given in
the previous section.

Theorem 4. Let F be a field, V < Fn, d = dim(V ) and dim(〈V ∪ (V · V )〉) = d + h. Then [n] can be
partitioned into d + 1 sets A1, . . . , Ad, B such that Ai is a maximal set of twins for V for each i ∈ [d], and
dim(V |B) ≤ 2h.

Proof. For i, j ∈ [n], say that i and j are siblings for V if there exists λ ∈ F, λ 6= 0 such that v(i) = λv(j)
for all v ∈ V , and v(i) 6= 0 for at least one v ∈ V . Note that if λ = 1 then i, j are twins.

Let v1, . . . , vd ∈ V be a basis of V , and let M be the d× n sized matrix, whose rows are v1, . . . , vd. It is
possible to choose the basis v1, . . . , vd such that after possibly rearranging the columns of M , the restriction
of M to the first d columns is a diagonal matrix.

We can assume without loss of generality that M has no all-zero columns, i.e. that there is no coordinate
i ∈ [n] such that v(i) = 0 for all v ∈ V . Note that the indices i ∈ [d] and j ∈ [n] \ [d] are siblings for V if and
only if vi(j) 6= 0 and the j-th column of M contains exactly one nonzero entry. For i ∈ [d], let Si contain all
the siblings of i, and let B′ = [n] \ (S1 ∪ · · · ∪Sd). Note that for every j ∈ B′, the j-th column of M contains
at least two nonzero entries.

Let r = dim(V |B′). Let C ⊂ B′ such that |C| = r and dim(V |C) = r. Also, let wi = vi|C for i ∈ [d]. For
c ∈ C, let 1c ∈ FC be the characteristic vector of the single element set {c}.

Claim 5. For every c ∈ C there exists λ ∈ F, c′ ∈ C, c′ 6= c, and two vectors of coefficients x, y ∈ Fd such
that x, y have disjoint support and 1c + λ1c′ = (

∑d
i=1 x(i)wi) · (

∑d
i=1 y(i)wi).
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Here, as always, · denotes the coordinate-wise product of vectors.

Proof. Let K ⊂ [d] be the set of indices i such that wi(c) 6= 0. Note that |K| ≥ 2. Also, without loss of
generality, suppose that w1, . . . , wr is a basis of FC . For every u ∈ C, we can write 1u =

∑r
i=1 λu,iwi with

suitable λu,1, . . . , λu,r ∈ F. Consider two cases.

Case 1. There exists k ∈ K such that k 6∈ [r] or λc,k = 0. Recall that, by definition of K, wk(c) 6= 0. In
this case, the choices λ = 0, x = (λc,1, . . . , λc,r, 0, . . . , 0) and y defined as

y(i) =

{
1

wk(c) if i = k,

0 otherwise

suffice. Indeed,
∑d
i=1 x(i)wi = 1c,

∑d
i=1 y(i)wi =

1
wk(c)wk, (

∑d
i=1 x(i)wi) · (

∑d
i=1 y(i)wi) = 1c, and x

and y have disjoint supports by our assumption on k.

Case 2. K ⊂ [r] and λc,k 6= 0 for every k ∈ K. There exists some c′ ∈ C, c′ 6= c such that not all |K|
coefficients λc′,k for k ∈ K vanish. This is true as (1u)u∈C is also a basis of FC and |K| ≥ 2. Therefore,
if we had λc′,k = 0 for all k ∈ K and c′ ∈ C \ {c}, then the r − |K| ≤ r − 2 vectors wj , j ∈ [r] \ K
would span the r − 1 independent vectors 1c′ , c′ ∈ C \ {c}. Choose such a c′ and let k ∈ K such that
λc′,k 6= 0. Let α = −λc,k/λc′,k, x = (λc,1 + αλc′,1, . . . , λc,r + αλc′,r, 0, . . . , 0), and define y as

y(i) =

{
1

wk(c) if i = k,

0 otherwise
.

Then
∑d
i=1 x(i)wi = 1c+α1c′ ,

∑d
i=1 y(i)wi =

1
wk(c)wk, (

∑d
i=1 x(i)wi)·(

∑d
i=1 y(i)wi) = 1c+

αwk(c′)
wk(c) 1c′ ,

and x and y have disjoint supports because x(k) = 0 by our choice of α.

For c ∈ C, let xc, yc ∈ Fd be the vectors of coordinates x and y given by the previous claim. Also,
let zc = (

∑d
i=1 xc(i)vi) · (

∑d
i=1 yc(i)vi), then zc ∈ V · V . Note that zc|[n]\B′ = 0, because xc and yc have

disjoint supports, and every column inM |[n]\B′ has only one non-zero entry. Also, zc|C = 1c+λ1c′ for some
c′ ∈ C, c 6= c′ and λ ∈ F. Let W be the vector-space generated by the vectors (zc)c∈C .

Claim 6. dim(W ) ≥ r/2.

Proof. Suppose this does not hold, and without loss of generality, let D ⊂ C such that {zc}c∈D is a basis
of W , and |D| < r/2. As zc|C vanishes in all but at most two coordinates, there exists u ∈ C such that zc
vanishes on u for every c ∈ D. But then zu is not contained in W , contradiction.

Let I be the set of indices i ∈ [d] such that the entries in vi|Si are not all equal, that is, Si is not a set of
twins. For i ∈ [d], let Ai be a maximal set of twins in Si, then Si 6= Ai if and only if i ∈ I. If i ∈ I, and vi
is the constant s vector on Ai, then define v′i = svi − vi · vi ∈ 〈V ∪ (V · V )〉. Then v′i vanishes on Ai and on
Sj for every j ∈ [d] \ {i}, and v′i does not vanish on Si \Ai. Therefore, the d+ |I| vectors v1, . . . , vd, {v′i}i∈I
are linearly independent and do not vanish on [n] \ B′. Set V ′ = 〈{vi : i ∈ [d]} ∪ {v′i : i ∈ I}〉, then
dim(V ′) = d + |I|. Also, we have W ∩ V ′ = {0}, as zc|[n]\B′ = 0 for every c ∈ C, but every vector in V ′
other than 0 does not completely vanish on [n] \B′. But then as V ′ +W < 〈V ∪ (V · V )〉, we have

dim(〈V ∪ (V · V )〉) ≥ dim(V ′ +W ) = dim(V ′) + dim(W ) ≥ d+ |I|+ r/2.

Therefore, |I|+r/2 ≤ h. Let B = B′∪
⋃
i∈I(Si \Ai), then dim(V |B) ≤ r+ |I| ≤ 2h, so the sets A1, . . . , Ad, B

satisfy the desired properties.
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3 k-closed families are atomic
In this section, we prove a theorem which implies Theorem 1 after a small amount of work. Before stating it,
we need some additional notation. Say that F is non-reducible if F does not vanish on any of the coordinates
(namely, if there is no i such that v(i) = 0 for all v ∈ F). Recall that F · F is the set of all v · w, v, w ∈ F ,
where v ·w is the coordinate-wise product. We also put vk = v · ... ·v and Fk = F · ... ·F , where the products
contain k terms. Finally, let ||v|| =

∑n
i=1 v(i).

We say that a set F ⊂ Zn` is k-closed if ||v|| = 0 for every 1 ≤ i ≤ k and v ∈ F i. Note that if F ⊂ {0, 1}n,
then this is the same as saying that the intersection of any k not necessarily distinct sets from F is divisible
by `. We will use the following simple, but important observation repeatedly.

Claim 7. If F ⊂ Zn` is k-closed, then 〈F〉 is also k-closed. Also, if F ,F ′ ⊂ Zn` , then 〈F · F ′〉 = 〈F〉 · 〈F ′〉.

For what follows, let us record some simple but important properties of twins.

Claim 8. Let F ⊂ {0, 1}n.

1. If F is non-reducible, then the maximal sets of twins for F form a partition of [n].

2. For every k ≥ 1, the family
⋃k
i=1 F i has the same sets of twins as F .

Recall that S(n, `) ⊂ 2[n] is the atomic set-family with bn/`c atoms of size ` each. The main result of
this section is the following variant of Theorem 1. We show that if F ⊂ 2[n] is such that the intersection of
any k not necessarily distinct elements of F has size divisible by `, then |F| ≤ 2bn/`c, given k is sufficiently
large with respect to `. We also show that if F is close to being extremal, then F must be a subfamily of
(an isomorphic copy of) S(n, `).

Theorem 9. Let ` be a positive integer, then there exists k such that the following holds. Let F ⊂ {0, 1}n
such that F is k-closed over Z`. Then |F| ≤ 2bn/`c. Also, if |F| > 2bn/`c−1, then [n] can be partitioned into
sets A1, . . . , Ad, A

′ such that Ai is a maximal set of twins for F for i ∈ [d], |Ai| = `, |A′| ≤ ` − 1, and F
vanishes on A′.

The Eventown theorem mentioned in the introduction can be easily extended to vector spaces, where
we replace intersections with scalar products. We will make use of the following simple extension of this in
which we consider certain bilinear forms instead of scalar product.

Lemma 10. Let F be a field, let b1, . . . , bn ∈ F, let z be the number of zeros among b1, . . . , bn, and let
b : Fn × Fn → F be the bilinear form defined as b(v, w) =

∑n
i=1 biv(i)w(i). Let V < Fn such that b(v, w) = 0

for every v, w ∈ V . Then dim(V ) ≤ 1
2 (n+ z).

Proof. LetM be the n×n diagonal matrix with diagonal entries b1, . . . , bn, and letW = {Mv : v ∈ V } < Fn.
Then dim(ker M) = z, so dim(W ) ≥ dim(V )−z. By definition, V andW are orthogonal spaces (with respect
to the standard inner product). Therefore, dim(V ) + dim(W ) ≤ n, which implies dim(V ) ≤ 1

2 (n+ z).

In what comes, we show that if ` = pα is a prime power, and F ⊂ {0, 1}n is k-closed over Z` for some
large constant k, then most sets of maximal twins for F must have size divisible by `, provided that the
dimension of 〈F〉p is large. We start with the case when ` is a prime.

Lemma 11. Let V < Fnp , let A1, . . . , Ad be a partition of [n] into twins for V , and suppose that V is 2-closed.
If dim(V ) = d− h, then at least d− 2h of the numbers |A1|, . . . , |Ad| are divisible by p.

Proof. For i ∈ [d], let bi = |Ai| and let b be the bilinear form defined as in Lemma 10. Let φ : V → Fdp
be the linear map defined as φ(v)(i) = s if v|Ai is the constant s vector. Then φ is an injection, so
dim(φ(V )) = dim(V ) = d − h. Also, for every u, v ∈ V , we have ||u · v|| = b(φ(u), φ(v)), so we have
b(x, y) = 0 for every x, y ∈ φ(V ). But then by Lemma 10, if z is the number of zeros among b1, . . . , bd, then
dim(φ(V )) ≤ 1

2 (d+ z), which gives z ≥ d− 2h.

Lemma 12. Let p be a prime and α ∈ Z+. Let F ⊂ {0, 1}n be 2(p+α)-closed over Zpα , let dim(〈F〉p) = d,
and let A1, . . . , Ad, B be a partition of [n] such that Ai is a set of twins, and dim(〈F|B〉p) ≤ h. Then at least
d− 2αh of the numbers |A1|, . . . , |Ad| are divisible by pα.
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Proof. Let V = 〈F〉p. We prove this by induction on α. The case α = 1 follows from Lemma 11. Suppose
that α > 1. Then, by our induction hypothesis, at least k = d − (2α − 2)h of the sets A1, . . . , Ad have size
divisible by pα−1, without loss of generality, let these sets be A1, . . . , Ak. Also, let B′ = Ak+1 ∪ · · · ∪Ad ∪B.
Note that

dim(V |B′) ≤ dim(V |B) + (d− k) ≤ h+ d− k.

Therefore, V contains a subspace W such that dim(W ) ≥ d− dim(V |B′) ≥ k − h and W vanishes on B′.
Note that for every w ∈ W there exists some w′ ∈ 〈F〉pα such that w′ ≡ w (mod p). Let β be the

smallest number such that β > α and β = 1 (mod p − 1), then β < α + p. As F is 2β-closed, for every
u, v ∈ W we have that ||(u′)β · (v′)β || is divisible by pα. However, note that (w′)β ≡ w (mod p), and if
w(i) = 0 (over Fp) for some i ∈ [n], then pα | (w′)β(i).

For i ∈ [k], let A′i be a set of size |Ai|/pα−1, and let A′ =
⋃k
i=1A

′
i. Define the linear map φ : W → FA′

p

as follows. If w ∈W , i ∈ [k], and w|Ai is the constant s vector, then φ(w)|A′
i
is the constant s vector. Then

φ is an injection, so dim(W ) = dim(φ(W )). Also, for every u, v ∈W , we have

||(u′)β · (v′)β || ≡ pα−1||φ(u) · φ(v)|| (mod pα).

Therefore, we must have ||x · y|| = 0 for every x, y ∈ φ(W ). Let z be the number of sets among A′1, . . . , A′k,
whose size is divisible by p. We can apply Lemma 11 to conclude that

z ≥ k − 2(k − dim(φ(W ))) ≥ k − 2h ≥ d− 2αh.

As z is also the number of sets among A1, . . . , Ak whose size is divisible by pα, this finishes the proof.

Lemma 13. Let p be a prime, and α, t ∈ Z+. Let F ⊂ {0, 1}n such that F is non-reducible and
2t+1(p+ α)-closed over Zpα . Let A1, . . . , Ad be the unique partition of [n] into maximal sets of twins, and let

B =
⋃
i∈[d]

|Ai|6≡0 (mod pα)

Ai.

Then dim(〈F|B〉p) ≤ 6nα
t .

Proof. Let F0 = F , and for i = 1, 2, . . . , t, let Fi = Fi−1 · Fi−1. Note that Fi−1 ⊂ Fi and Fi is 2t+1−i(p +
α)-closed over Zpα , and A1, . . . , Ad is also the unique partition of [n] into maximal sets of twins for Fi. As
dim(〈Fr〉p) is monotone increasing, there exists 0 ≤ r < t such that

dim(〈Fr+1〉p) ≤ dim(〈Fr〉p) +
n

t
.

Let d′ = dim(〈Fr〉p). Applying Theorem 3, we get that [n] can be partitioned into d′ +1 sets A1, . . . , Ad′ , C
such that Ai is a maximal set of twins for Fr, and dim(〈Fr|C〉p) ≤ 2n

t . But then as Fr is 2(p + α)-closed,
we can apply Lemma 12 to conclude that at least q = d′ − 4nα

t of the numbers |A1|, . . . , |Ad′ | are divisible
by pα. Without loss of generality, let A1, . . . , Aq be the sets of twins whose sizes are divisible by pα. Let
D = C ∪Aq+1 ∪ · · · ∪Ad′ . Then B ⊂ D, and noting that dim(〈Fr|D\C〉p) ≤ d′ − q, and F ⊂ Fr, we get the
chain of inequalities

dim(〈F|B〉p) ≤ dim(〈Fr|D〉p) ≤ (d′ − q) + dim(〈Fr|C〉p) ≤
4nα+ 2n

t
≤ 6nα

t
.

This finishes the proof.

The final ingredient we need for the proof of Theorem 9 is the following well known result, see e.g. the
work of Odlyzko [16].

Lemma 14. Let p be a prime and V < Fnp . Then |V ∩ {0, 1}n| ≤ 2dim(V ).

Proof of Theorem 9. Write ` = pα1
1 . . . pαss , where p1, . . . , ps are distinct primes. We show that k =

2t+1 maxr∈[s](pr+αr) suffices, where t = 12`
∑s
r=1 αr. More precisely, we show the following two statements.

Let F ⊂ {0, 1}n such that F is k-closed over Z`.
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(1) Then |F| ≤ 2bn/`c.

(2) If |F| > 2bn/`c−1, then [n] can be partitioned into sets A1, . . . , Abn/`c, A
′ such that Ai is a maximal set

of twins for i ∈ [bn/`c], |Ai| = `, |A′| ≤ `− 1, and F vanishes on A′.

We proceed by induction on n. If n ≤ 6s`, the statements are easy to show. Indeed, let A1, . . . , Ad, A
′

be a partition of [n] such that Ai is a maximal set of twins for F for i ∈ [d], and F vanishes on A′. Then
|F| ≤ 2d. As k ≥ n, the characteristic vector of Ai is contained in (〈F〉`)k. Indeed, take v ∈ F such that
v|Ai is the all 1 vector 1, and let J be the set of j ∈ [d] \ {i} such that v|Aj is 1. For each j ∈ J , since
Ai, Aj are maximal sets of twins, there is uj ∈ F such that either uj |Ai = 1 and uj |Aj = 0, or the other way
around. Let J1 be the set of j of the first type, and J2 the set of j of the second type. Then the product
of uj over j ∈ J1 and (v − uj) over j ∈ J2 is the characteristic vector of Ai, as required. Now, since F is
k-closed, ` divides |Ai| for i ∈ [d]. But then d ≤ bn/`c, and we are done with (1). Also, if |F| > 2bn/`c−1, we
must have d = bn/`c, which is only possible if all the sets A1, . . . , Ad have size `. Therefore, (2) also holds.

Let n > 6s`. First, suppose that there exists A ⊂ [n] such that ` divides |A| and A is a set of twins for F .
Then the family F ′ = F|[n]\A is also k-closed over Z` and |F ′| ≥ 1

2 |F|. By our induction hypothesis, we have
|F ′| ≤ 2b(n−`)/`c, so we get |F| ≤ 2bn/`c, and (1) indeed holds. If |F| > 2bn/`c−1, then |F ′| > 2b(n−`)/`c−1,
so by our induction hypothesis there exists a partition of [n]\A into sets A1, . . . , Ab(n−`)/`c, A

′ satisfying (2)
with respect to F ′. Setting Abn/`c = A, the sets A1, . . . , Abn/`c, A

′ satisfy (2) with respect to F .
Therefore, in order to finish the proof, it is enough to show that if |F| > 2bn/`c−1, then F has a set of

twins of size divisible by `. Next, we show that if I ⊂ [n] is large, then the dimension of 〈F|I〉p cannot be
too small for any prime p.

Claim 15. Let p be a prime and I ⊂ [n] such that |I| ≥ `. Then

|I| ≤ ` dim(〈F|I〉p) + 3`.

Proof. Let V = 〈F|I〉p and d = dim(V ). Then |V ∩{0, 1}I | ≤ 2d by Lemma 14. This means that there exists
some v ∈ {0, 1}I and F ′ ⊂ F such that w|I = v for every w ∈ F ′, and |F ′| ≥ |F|/2d. Let 0 ≤ m ≤ ` − 1
such that ||v|| ≡ m (mod `), and in every w ∈ F ′, replace the coordinates in I with m coordinates of 1
entries. This gives a family F ′′ ⊂ {0, 1}n−|I|+m such that F ′′ is k-closed over Z` and |F ′′| = |F ′| ≥ |F|/2d.
Therefore, by our induction hypothesis, we have

2bn/`c−d−1 <
|F|
2d
≤ |F ′′| ≤ 2b(n−|I|+m)/`c < 2bn/`c+2−|I|/`.

Comparing the left- and right-hand-side gives the desired inequality |I| ≤ `d+ 3`.

We can assume that F is non-reducible, because otherwise we are immediately done by applying our
induction hypothesis. Let A1, . . . , Ad be the unique partition of [n] such that Ai is a maximal set of twins
for F . Let r ∈ [s], and apply Lemma 13 to F with respect to the prime power pαrr . Let

Br =
⋃
i∈[d]

|Ai|6≡0 (mod pαrr )

Ai.

As F is 2t+1(pr + αr)-closed, we get that dim(〈F|Br 〉pr ) ≤ 6nαr
t . But then by Claim 15, we also have

|Br| ≤
6nαr`

t
+ 3`.

Let B =
⋃s
r=1Br, then

|B| ≤
s∑
r=1

|Br| ≤ 3s`+
6n`

t

s∑
r=1

αr < n,

where the last inequality holds by the choice of t and noting that n > 6sl. Observe that B is the union of
those maximal sets of twins Ai where |Ai| is not divisible by `. Therefore, as |B| < n and A1, . . . , Ad form
a partition of [n], there must exists j ∈ [d] such that ` divides |Aj |, finishing the proof.
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Let us remark that in case ` is a prime power, we can prove something slightly stronger following the
same proof. This might be of independent interest.

Theorem 16. Let p be a prime, ` = pα, then there exists k such that the following holds. Let F ⊂ {0, 1}n
such that F is k-closed over Z`. Then dim(〈F〉p) ≤ bn/`c.

Proof. We show that k = 2t+1(p + α) suffices, where t = 6α + 1. We will proceed by induction on n. In
case n ≤ `, the statement is trivial, so assume that n > `. Assume that F is maximal k-closed over Z`. Let
V = 〈F〉p.

Suppose that there exists a set A ⊂ [n] of twins of size ` for F . If v ∈ {0, 1}n is the characteristic vector
of A, then v ∈ F , otherwise {v} ∪ F contradicts the maximality of F . Let F ′ = F|[n]\A and V ′ = 〈F ′〉p,
then dim(V ′) = dim(V ) − 1 (as v is an element of V ) and F ′ is also k-closed. Therefore, by our induction
hypothesis, dim(V ′) ≤ b(n− `)/`c, so dim(V ) ≤ bn/`c.

In the rest of the proof, we show that if dim(V ) ≥ bn/`c, then there exists a set A ⊂ [n] of twins of size
` for F . We can assume that F is non-reducible, otherwise apply our induction hypothesis. Let A1, . . . , Ad
be the unique partition of [n] such that Ai is a maximal set of twins for F . Apply Lemma 13 to F with
respect to the prime power pα. Let

B =
⋃
i∈[d]

|Ai|6≡0 (mod pα)

Ai.

As F is 2t+1(p+ α)-closed, we get that

dim(V |B) ≤
6nα

t
< dim(V ).

Therefore, B 6= [n], and at least one of |A1|, . . . , |Ad| is divisible by pα. Hence, F has a set of twins of size
` = pα. This finishes the proof.

Finally, we note that if ` is a prime, a similar proof shows that Theorem 16 holds for every F ⊂ Fn` (that
is, the elements of F need not be 0-1 vectors).

Theorem 17. Let p be a prime, then there exists k such that the following holds. Let F ⊂ Fnp such that F
is k-closed. Then dim(〈F〉p) ≤ bn/pc. In particular, |F| ≤ pbn/pc, and this bound is the best possible.

4 Proof of the main result
In this section, we show how to deduce Theorem 1 from Theorem 9. Let us start with the following variant
of the well known Oddtown theorem [2], see also [1] for related results.

Lemma 18. Let `,m, n be positive integers, and let A1, . . . , Am, B1, . . . , Bm ⊂ [n] such that ` - |Ai ∩Bi| for
i ∈ [m], but ` divides |Ai ∩ Bj | for i 6= j. Then m ≤ sn, where s is the number of distinct prime divisors
of `.

Proof. Write ` = pα1
1 . . . pαss , where p1, . . . , ps are distinct primes. Let vi and wi be the characteristic vectors

of Ai and Bi over Q, respectively. Let t = dm/se, then there exists r ∈ [s] such that for at least t of the
indices i ∈ [m], we have that |Ai∩Bi| is not divisible by pαrr . Without loss of generality let these t indices be
1, . . . , t. We show that v1, . . . , vt are linearly independent (over Q), which then implies t ≤ n and m ≤ sn.

Suppose this is not the case, then there exist c1, . . . , ct ∈ Z, not all zero, such that
∑t
i=1 civi = 0. We

can assume that at least one of c1, . . . , ct is not divisible by pr, otherwise we can replace ci with c′i = ci/pr
for every i ∈ [t]. Let k ∈ [t] be an index such that pr - ck. Consider the equality

0 =

〈
t∑
i=1

civi, wk

〉
=

t∑
i=1

ci|Ai ∩Bk|.

We have pαrr | ci|Ai ∩Bk| if i 6= k, and pαrr - ck|Ak ∩Bk|, so pαrr - 〈
∑t
i=1 civi, wk〉, contradiction.
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Say that F ⊂ 2[n] is weakly k-closed over Z` if the intersection of any k distinct elements of F is divisible
by `. Also, say that F ⊂ 2[n] is k-closed over Z` if the family formed by the characteristic vectors of the
elements of F is k-closed over Z`. So F is k-closed over Z` if and only if the intersection of any k not
necessarily distinct elements of F is divisible by `. We need the following useful observation, which for ` = 2
appears in [18].

Lemma 19. Let `, k be positive integers, and let s be the number of distinct prime divisors of `. Let F ⊂ 2[n]

such that F is weakly k-closed over Z`. Then there exists F ′ ⊂ F such that |F ′| ≥ |F| − sk2n, and F is
k-closed over Z`.

Proof. Repeat the following removal operation. Suppose that F is not k-closed, and let t be maximal such
that some t distinct elements of F have an intersection not divisible by `. So t < k because F is weakly
k-closed. Let H be the t-uniform hypergraph on F in which {C1, . . . , Ct} is an edge if |C1 ∩ · · · ∩ Ct| is not
divisible by `. We claim that H contains no matching of size more than sn. Indeed, suppose otherwise,
let {Ci,1, . . . , Ci,t}, i ∈ [m], be the edges of a matching of size m > sn. For i ∈ [m], let Ai = Ci,1 and
Bi = Ci,1 ∩ · · · ∩ Ci,t. Then ` - |Ai ∩ Bi|, but ` divides |Ai ∩ Bj | for every i 6= j by the maximality of t.
Therefore, by Lemma 18 we get m ≤ sn, contradiction.

Consider a maximal matching of H, and remove every element of F that appears in this matching. Then
F no longer contains t distinct sets, whose intersection is not divisible by `. Repeating this procedure at
most k − 1 times, we get a family F ′ ⊂ F such that F ′ is k-closed over Z`, and |F ′| ≥ |F| − sk2n.

Lemma 19 combined with Theorem 9 immediately implies that if F ⊂ 2[n] is weakly k-closed over Z`,
then |F| ≤ 2bn/`c + sk2n. In order to improve the term sk2n to a constant, we use the second part of
Theorem 9.

Proof of Theorem 1. Let d = bn/`c. Let F ⊂ {0, 1}n such that F is weakly k-closed over Z`. Then by
Lemma 19, there exists F ′ ⊂ F such that |F ′| ≥ |F| − sk2n, and F is k-closed over Z`, where s is the
number of distinct prime divisors of `. If |F ′| ≤ 2d−1, then

|F| ≤ 2d−1 + sk2n < 2d,

where the last inequality holds if n is sufficiently large.
Suppose that |F ′| > 2d−1 and |F| ≥ 2d, otherwise we are done. Then by Theorem 9, [n] can be partitioned

into sets A1, . . . , Ad, A
′ such that Ai is a maximal set of twins for F ′ for i ∈ [d], |Ai| = `, |A′| ≤ ` − 1,

and F ′ vanishes on A′. Let S ⊂ {0, 1}n be the atomic family containing all possible 2d sets C such that
C ∩Ai ∈ {∅, Ai} for every i ∈ [d]. Then F ′ ⊂ S and |S \F ′| ≤ sk2n. Also, if n is sufficiently large, for every
i ∈ [d] we can find k − 1 distinct sets Bi,1, . . . , Bi,k−1 ∈ F ′ such that Ai =

⋂k−1
j=1 Bi,j . Indeed, F ′ contains

a set of the form Ai ∪ Aa ∪ Ab for some a, b, as the number of such sets in S is at least
(
d−1

2

)
> sk2n, let

this set be Bi,1. Also F ′ contains k − 2 sets that contain Ai but do not contain Aa and Ab as the number
of such sets in S is 2d−3 > sk2n+ k. Let these k − 2 sets be Bi,2, . . . , Bi,k−1. Then Ai =

⋂k−1
j=1 Bi,j .

Let F ∈ F\S. For every i ∈ [d], we have Ai ⊂ F or Ai∩F = ∅, as the size of Ai∩F = Bi,1∩· · ·∩Bi,k−1∩F
must be divisible by `. Now, as F /∈ S, we must have F ∩A′ 6= ∅. But for any H ⊂ A′, where H 6= ∅, there
are at most k − 1 elements F ∈ F \ S such that F ∩ A′ = H, because otherwise we would have k distinct
F1, . . . , Fk ∈ F with |F1∩· · ·∩Fk| ≡ |H| 6≡ 0 (mod `), a contradiction. So we see that |F\S| ≤ k2|A′| ≤ k2`−1,
and if ` | n then F ⊂ S. This finishes the proof.

5 Stability
In this section, we prove Theorem 2. The proof follows easily from our earlier results.

Proof of Theorem 2. Write ` = pα1
1 . . . pαss , where p1, . . . , ps are distinct primes. Let t = d6ε−1

∑
r∈[s] αie,

then we show that k = 2t+1 maxr∈[s](pr + αr) suffices.
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Without loss of generality, F is non-reducible. Let A1, . . . , Ad be the unique partition of [n] into maximal
sets of twins for F . For r ∈ [s], let

Br =
⋃
i∈[d]

|Ai|6≡0(mod pαrr )

Ai.

Then by Lemma 13, we have dim(〈F|Br 〉pr ) ≤ 6nαr
t . This implies, using Lemma 14, that

|F|Br | ≤ 26nαr/t.

Let B =
⋃
r∈[s]Br. Then B is the union of those sets Ai, whose size is not divisible by `. Also, we have

|F|B | ≤
∏
r∈[s]

|F|Br | ≤ 26n(α1+···+αs)/t ≤ 2εn.

Set X = [n] \B, then |F|X | ≥ 2−εn|F|. But X is the union of sets of twins of size divisible by `, so we can
partition X into sets of twins of size exactly `. Note that F|X is a subfamily of some isomorphic copy of
S(|X|, `), finishing the proof.

6 Concluding remarks
For many problems in extremal set theory, it is natural to consider their multipartite (i.e. cross) variant.
For example, Frankl and Kupavskii [7] proved a tight bound on |F1|+ · · ·+ |Fk| for k set-families F1, . . . ,Fk
with no choice of disjoint F1, . . . , Fk, Fi ∈ Fi. In a similar vein, Bucić, Letzter, Sudakov and Tran [5] proved
a tight result for the multipartite version of the Erdős–Kleitman conjecture. We refer the reader to the book
[10] for additional examples.

One might wonder what can be said about the cross-version of Theorem 1. That is, let F1, . . . ,Fk ⊂ 2[n]

such that |F1∩· · ·∩Fk| is divisible by ` for every F1 ∈ F1, . . . , Fk ∈ Fk. What is the maximum of |F1| . . . |Fk|?
It follows from Theorem 9 that if F1 = · · · = Fk, then this maximum is 2kbn/`c, given k is sufficiently large
with respect to `. However, if the families F1, . . . ,Fk are not necessarily equal, the answer is very different.
Indeed, let A1, . . . , Ak be an arbitrary partition of [n], and let Fi = 2[n]\Ai for i ∈ [k]. Then F1∩· · ·∩Fk = ∅
for every Fi ∈ Fi, i ∈ [k], and |F1| . . . |Fk| = 2(k−1)n. We can also show that 2(k−1)n is the maximum, which
somewhat surprisingly does not depend on `.

Theorem 20. Let `, k ≥ 2, and let F1, . . . ,Fk ⊂ 2[n] such that ` divides |F1 ∩ · · · ∩ Fk| for every F1 ∈
F1, . . . , Fk ∈ Fk. Then |F1| . . . |Fk| ≤ 2(k−1)n.

Proof. Let p be any prime divisor of `, and let Vi = 〈Fi〉p for i ∈ [k] (where we identify the members of Fi
with their characteristic vectors). Note that for every v ∈ V1 · ... · Vk, we have ||v|| = 0. Our goal is to show
the inequality

k∑
i=1

dim(Vi) ≤ (k − 1)n,

which then immediately implies the desired bound |F1| . . . |Fk| ≤ 2(k−1)n noting that |Fi| ≤ 2dim(Vi).
Let V = V1 ∩ · · · ∩ Vk−1, then dim(V ) ≥

∑k−1
i=1 dim(Vi) − (k − 2)n. Also, V k−1 and Vk are orthogonal

spaces, so dim(V k−1) + dim(Vk) ≤ n. Therefore, in order to finish the proof, it is enough to show that
dim(V k−1) ≥ dim(V ), as then

k∑
i=1

dim(Vi) ≤ dim(V ) + (k − 2)n+ dim(Vk) ≤ dim(V k−1) + dim(Vk) + (k − 2)n ≤ (k − 1)n.

Let d = dim(V ), then there exist 1 ≤ i1 < · · · < id ≤ n and a basis v1, . . . , vd ∈ V such that vr(ir) = 1 and
vr(ij) = 0 for r ∈ [d], j ∈ [d] \ {r}. But then vk−1

r ∈ V k−1, and vk−1
r (ij) = vr(ij) for j ∈ [d]. Therefore, the

vectors vk−1
1 , . . . , vk−1

d are linearly independent in V k−1, hence dim(V k−1) ≥ d.
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