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Abstract

We show that there exist linear 3-uniform hypergraphs with n vertices and Ω(n2) edges which con-
tain no copy of the 3×3 grid. This makes significant progress on a conjecture of Füredi and Ruszinkó.
We also discuss connections to proving lower bounds for the (9, 6) Brown-Erdős-Sós problem and to
a problem of Solymosi and Solymosi.

1 Introduction

In recent years there has been some interest in Turán-type results for linear hypergraphs [4, 5, 6]. In
this paper, all hypergraphs are 3-uniform. For a family H of 3-uniform hypergraphs, we let exlin(n,H)
denote the maximum number of edges in a linear 3-uniform H-free hypergraph on n vertices. When
H has a single element H, we will write exlin(n,H). Arguably, the interest in problems of this type
is motivated by the famous Brown-Erdős-Sós conjecture [1, 2], which states that, for every k ≥ 3, if
Hk+3,k is the set of all 3-uniform hypergraphs with k edges and at most k+3 vertices (such hypergraphs
are called (k + 3, k)-configurations), then1 exlin(n,Hk+3,k) = o(n2). So far, this conjecture has only
been proven in the case k = 3. This is a celebrated result of Ruzsa and Szemerédi [7], which became
known as the (6, 3) theorem. Ruzsa and Szemerédi [7] have also given a construction which shows that
exlin(n,H6,3) ≥ n2−o(1), implying that the exponent 2 in the (6, 3) theorem cannot be improved. For
k ≥ 4, the Brown-Erdős-Sós conjecture remains widely open despite considerable effort, with the best
approximate result recently obtained in [3] (see also [8, 10]).

It is easy to check that H6,3 contains only one linear hypergraph: the triangle T, which is the
hypergraph with vertices 1, 2, 3, 4, 5, 6 and edges {1, 2, 3}, {3, 4, 5}, {5, 6, 1}. Thus, the aforementioned
results of Ruzsa and Szemerédi [7] are equivalent to the statement n2−o(1) ≤ exlin(n,T) ≤ o(n2).

It is natural to try and prove that exlin(n,Hk+3,k) ≥ n2−o(1) for every k ≥ 3, which would mean that,
in a sense, the Brown-Erdős-Sós conjecture is optimal. For k = 4, 5, such a lower bound follows from
the simple observation that every (7, 4)- or (8, 5)-configuration contains a (6, 3)-configuration. Similar
considerations were used in [5] to handle the cases k = 7, 8. For k = 6, however, such arguments
could not be used, since there exists a (9, 6)-configuration which contains no (6, 3)-configuration; this
is the 3 × 3 grid G3×3, which is the 3-uniform hypergraph whose vertices are the nine points in a
3 × 3 point array, and whose edges correspond to the 6 horizontal and vertical lines of this array. It
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1The Brown-Erdős-Sós conjecture is usually stated about general (i.e., not necessarily linear) hypergraphs, but it is

well-known that it suffices to consider linear hypergraphs. Indeed, if a hypergraph H contains no (k + 3, k)-configuration,
then every pair of vertices is contained in at most k − 1 edges, which implies that for every edge e, there are at most
3k− 6 other edges f with |e∩ f | ≥ 2. Hence, H has a linear subhypergraph with at least e(H)/(3k− 5) = Ω(e(H)) edges.
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is not hard to verify2 (see also [5]) that every linear (9, 6)-configuration either contains a triangle T
or is isomorphic to G3×3. Hence, exlin(n,H9,6) ≥ exlin(n, {T,G3×3}). This relation has led Füredi
and Ruszinkó [4] to study extremal problems related to the grid. In particular, they conjectured that
exlin(n,G3×3) =

(
1
6 − o(1)

)
n2, and, more strongly, that for every large enough admissible n, there

exists a Steiner triple system of order n which is G3×3-free. Using a standard probabilistic alterations
argument, Füredi and Ruszinkó [4] showed that exlin(n,G3×3) = Ω(n1.8). This was then slightly

improved (as a special case of a more general result) to Ω(n1.8 log1/5 n) by Shangguan and Tamo [9].
Here we make significant progress on the conjecture of Füredi and Ruszinkó [4], by showing that
exlin(n,G3×3) = Ω(n2).

Theorem 1. For infinitely many n, there exists a linear G3×3-free 3-uniform hypergraph with n vertices
and ( 1

16 − o(1))n2 edges.

Theorem 1 is proved in the following section. Then, in Section 3, we discuss some related open problems.

2 The Construction

Construction 2.1. Let F be a field and let X,A ⊆ F. Define H(X,A) to be the 3-partite 3-uniform
hypergraph with sides X, Y := {x + a : x ∈ X, a ∈ A} and Z := {x · a : x ∈ X, a ∈ A}, and with an
edge (x, x + a, x · a) ∈ X × Y × Z for every x ∈ X and a ∈ A.

We now prove that the hypergraph H(X,A) defined in Construction 2.1 is always G3×3-free. We
will then show that it contains a dense linear subhypergraph. We denote the vertices of G3×3 by
{pi, qi, ri : 1 ≤ i ≤ 3} and its edges by {{pi, qi, ri}, {pi+1, qi+2, ri} : 1 ≤ i ≤ 3}, where (here and later
on) indices are taken modulo 3. A 3-partition of a 3-uniform hypergraph F is a partition V (F ) =
P ∪ Q ∪ R such that every edge of F contains one element from each of the sets P,Q,R. Observe
that {p1, p2, p3}, {q1, q2, q3}, {r1, r2, r3} is a 3-partition of G3×3. It can be verified3 that every two
3-partitions of G3×3 are equivalent, in the sense that there is an automorphism of G3×3 which maps
every class of one to a class of the other.

Lemma 2.2. Let F be a field and let X,A ⊆ F. Then H(X,A) is G3×3-free.

Proof. Suppose, for the sake of contradiction, that H(X,A) contains a copy of G3×3. Since all 3-
partitions of G3×3 are equivalent (as explained above), we may assume, without loss of generality, that
p1, p2, p3 ∈ X, q1, q2, q3 ∈ Y = {x + a : x ∈ X, a ∈ A} and r1, r2, r3 ∈ Z = {x · a : x ∈ X, a ∈ A}. By
definition of H(X,A), for every edge {x, y, z} ∈ E(H) (with x ∈ X, y ∈ Y and z ∈ Z) there is a ∈ A
such that y = x+a and z = x ·a; hence, z = x ·(y−x). It follows that for every 1 ≤ i ≤ 3, we must have
ri = pi · (qi− pi) and ri = pi+1 · (qi+2− pi+1). Here and throughout the proof, indices are taken modulo
3. By comparing these two expressions for ri, we see that

pi · (qi − pi) = pi+1 · (qi+2 − pi+1). (1)

2Indeed, let H be a linear (9, 6)-configuration avoinding T. First, observe that H has maximum degree 2, for if
{a, b, c}, {a, d, e}, {a, f, g} are three edges containing a, then there can be only one edge containing the remaining two
vertices (as H is linear), so there must be an edge which contains two vertices from {b, c, d, e, f, g}, which gives a T. Now,
as e(H) = 6, all degrees in H must be 2. Consider the two edges {a, b, c}, {a, d, e} containing some vertex a. Let f, g, h, i
be the four remaining vertices. Each of the four remaining edges must contain two vertices from {f, g, h, i} and one from
{b, c, d, e}. Every vertex from {b, c, d, e} must be covered once by these edges, and every vertex from {f, g, h, i} twice.
Hence, the pairs from {f, g, h, i} which are covered by these edges must form a C4. Since H is T-free, b and c must be
contained in opposite edges of this C4, and the same for d and e. This gives a G3,3.

3Indeed, every 3-partition of G3×3 is either obtained from the 3-partition (P,Q,R) by permuting its classes, or equals
({p1, q3, r2}, {p2, q1, r3}, {p3, q2, r1}) or one of its permutations.
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for every 1 ≤ i ≤ 3. Multiplying (1) by pi+2 and then summing over 1 ≤ i ≤ 3, we obtain

3∑
i=1

pipi+2 · (qi − pi) =
3∑

i=1

pi+1pi+2 · (qi+2 − pi+1).

It is easy to see that for every 1 ≤ i ≤ 3, both sides have the term pipi+2qi. Cancelling out these terms
and rearranging, we get

0 =

3∑
i=1

p2i pi+2 −
3∑

i=1

p2i+1pi+2 = (p1 − p2)(p2 − p3)(p3 − p1).

Hence, there must be 1 ≤ i ≤ 3 such that pi+1 = pi. However, this is impossible as p1, p2, p3 ∈ X must
correspond to distinct vertices of a copy of G3×3. This contradiction completes the proof. �

Proof of Theorem 1. We first prove Theorem 1 with a slightly worse bound, namely, with the frac-
tion 1

16 replaced by 1
18 . We then explain how our argument can be modified to give 1

16 .
Let p be a prime power, and set X := Fp\{0} and A := Fp. Let H = H(X,A) be the hypergraph from

Construction 2.1. By Lemma 2.2, H is G3×3-free. We claim that for each edge e = (x, x + a, x · a) ∈
E(H) ⊆ X × Y × Z, if f ∈ E(H) \ {e} satisfies that |e ∩ f | = 2 then f = (a, x + a, x · a). So let
f = (y, y + b, y · b) ∈ E(H) \ {e} be such that |e ∩ f | = 2. We cannot have (x, x + a) = (y, y + b) or
(x, x ·a) = (y, y ·b), for otherwise we would have x = y, a = b and hence e = f . Therefore, we must have
(x+a, x·a) = (y+b, y·b), which gives y(x+a−y) = x·a. Solving this quadratic equation for y, we get that
y = x or y = a, and hence (y, b) = (x, a) or (y, b) = (a, x). In the former case, f = e, and in the latter
case f = (a, x+ a, x · a). This proves our claim. It follows that for each e ∈ E(H) there is at most one
other edge f ∈ E(H) such that |e∩ f | = 2. By deleting one edge from each such pair (e, f), we obtain

a linear sub-hypergraph H ′ of H with e(H ′) ≥ e(H)
2 = |X||A|/2 = (12 − o(1))p2 = ( 1

18 − o(1))v(H)2,
where in the last equality we used the fact that v(H) = 3p− 1 as |X| = p− 1 and |Y | = |Z| = p. This
shows that exlin(n,G3×3) ≥ ( 1

18 − o(1))n2.
To improve the constant, we assume that p is odd and choose X and A differently: let X be the set

of (non-zero) quadratic residues and A be the set of (non-zero) quadratic non-residues in Fp. Evidently,

|X| = |A| = p−1
2 and |Y | ≤ p. As Z = {x · a : x ∈ X, a ∈ A} = A, one also has |Z| = p−1

2 . Altogether

we get v(H) = |X|+ |Y |+ |Z| ≤ 2p− 1. Moreover, e(H) = |X||A| = (14 − o(1))p2 = ( 1
16 − o(1))v(H)2.

Crucially, we observe that H is linear, because for every e = (x, x + a, x · a) ∈ E(H), the edge f =
(a, x+a, x ·a) is not in H, as a is not a quadratic residue (and so a /∈ X). This completes the proof. �

3 Concluding Remarks And Open Problems

• Another problem raised in [4] is to prove that exlin(n,H9,6) ≥ n2−o(1). This problem remains
open. Recalling that exlin(n,H9,6) ≥ exlin(n, {T,G3×3}), we see, in light of Lemma 2.2, that it

suffices to find a choice of sets X,A ⊆ Fp, |X|, |A| ≥ p1−o(1), such that the hypergraph H(X,A)
has no triangles (i.e., no copies of T). For this, one needs that there are no x ∈ X and distinct
a, b, c ∈ A such that (x + a− b) · b = x · c.

• There is another construction of a linear 3-uniform grid-free hypergraph with Ω(n2) edges.
As in the previous construction, we first construct a grid-free hypergraph which is not linear,
and then show that it contains a linear subhypergraph with a constant fraction of all edges.
For sets X,A ⊆ Fp, define a 3-partite hypergraph with sides X,Y, Z by placing the edge
(x, x + a, x + a2) ∈ X × Y × Z for every x ∈ X, a ∈ A (where Y, Z = Fp). Here one needs

3



to be more careful: unlike Construction 2.1, this hypergraph can contain a copy of G3×3, but
only if there are x1, x2 ∈ X and a ∈ A satisfying 4x1 + 4a = 4x2 + 1. Let us prove this. Consider
a copy of G3,3 with vertices {pi, qi, ri : 1 ≤ i ≤ 3}, as described before Lemma 2.2. Here, this
copy corresponds to the equations ri−pi = (qi−pi)

2 and ri−pi+1 = (qi+2−pi+1)
2 for i = 1, 2, 3.

Hence, pi + (qi − pi)
2 = pi+1 + (qi+2 − pi+1)

2. Substituting ui := pi+1 − pi and vi := qi − pi+1

(i = 1, 2, 3), we get (vi + ui)
2 = ui + (vi+2 − ui)

2, and, after rearranging,

(2vi + 2vi+2 − 1)ui = v2i+2 − v2i . (2)

Now, if 2vi + 2vi+2 6= 1 for all 1 ≤ i ≤ 3, then in equation (2) we can divide and get ui =
(v2i+2 − v2i )/(2vi + 2vi+2 − 1) for all 1 ≤ i ≤ 3. Summing this over i and using the fact that
u1 + u2 + u3 = (p2 − p1) + (p3 − p2) + (p1 − p3) = 0, we get

0 =
3∑

i=1

ui =
3∑

i=1

v2i+2 − v2i
2vi + 2vi+2 − 1

=
−2(v3 − v1)(v1 − v2)(v2 − v3)

(2v1 + 2v3 − 1)(2v2 + 2v1 − 1)(2v3 + 2v2 − 1)
.

Hence, there must be 1 ≤ i ≤ 3 such that vi+2 = vi. Plugging this into (2) and using that
2vi + 2vi+2 6= 1, we get that ui = pi+1 − pi = 0, which is impossible as pi, pi+1 are distinct
vertices. Therefore, there must be 1 ≤ i ≤ 3 such that 2vi + 2vi+2 = 1, hence also v2i+2 − v2i = 0

by (2). Plugging vi+2 = 1/2− vi into v2i+2 − v2i = 0, we get that vi = 1/4, hence qi − pi+1 = 1/4.
Now, recall that by construction, pi, pi+1 ∈ X and qi = pi + a for some a ∈ A. Hence, we have
our desired solution to 4x1 +4a = 4x2 +1 with x1, x2 ∈ X, a ∈ A. So in order for the hypergraph
to be G3×3-free, it suffices to choose X,A that avoid such solutions; for example, one can take
X = A = {1, . . . , bp/8c}. What remains is to show that the constructed hypergraph has a large
linear subhypergraph. For this, we show that each pair of vertices of the hypergraph is contained
in at most two edges. Recall that each edge is of the form ex,a = (x, x + a, x + a2) ∈ X × Y ×Z.
Now, for (x, y) ∈ X × Y , the only possible edge containing (x, y) is ex,y−x; for (x, z) ∈ X × Z,
if ex,a contains (x, z) then a2 = z − x; and for (y, z) ∈ Y × Z, if ex,a contains (y, z) then
y = x + a, z = x + a2. In each of the three cases there are at most two solutions for x, a.

This construction can also be a candidate for showing that exlin(n,H9,6) ≥ n2−o(1). Again, the
issue is choosing X,A so as to avoid triangles, which in this case correspond to solutions to the
equation a + c2 − c = b2 with distinct a, b, c ∈ A. Thus, in order to show that exlin(n,H9,6) ≥
n2−o(1), it suffices to show that there exists A ⊆ Fp, |A| = p1−o(1), with no non-trivial solution to
this equation.

• A related conjecture of Solymosi and Solymosi [10] states that every (large enough) 3-uniform
hypergraph with n vertices and Ω(n2) edges contains a 2-core on at most 9 vertices, where a
2-core is a hypergraph with minimum degree 2. This conjecture is closely related4 to the case
k = 6 of the Brown-Erdős-Sós conjecture, since a 2-core on 9 vertices has at least 6 edges.

Let H be the 3-partite hypergraph with sides X,Y, Z, all equal to Fp, and with edge-set
{(x, x + a, x + 2a) ∈ X × Y × Z : x, a ∈ Fp}. Alternatively, this is the hypergraph whose
edges are all triples (x, y, z) ∈ X × Y × Z satisfying y = (x + z)/2. By a somewhat lengthy case
analysis, one can show that H avoids all 2-cores on at most 9 vertices except for the grid G3×3.
Thus, the hypergraph corresponding to a linear relation (namely, the relation y = (x + z)/2)
avoids all but one of the 2-cores on at most 9 vertices, whereas in order to avoid G3×3 one needs a
non-linear relation (as in Construction 2.1 or in the construction described in the previous item).

4Strictly speaking, the Solymosi-Solymosi conjecture does not imply the case k = 6 of the Brown-Erdős-Sós conjecture,
since the former allows the 2-core to have less than 9 vertices, and hence less than 6 edges.
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It would be interesting to understand the connection between the structure of a configuration F
and the relation which can be used to define a hypergraph which avoids F .

We note that inspite of the above construction, it is plausible that the Solymosi-Solymosi conjec-
ture is true; namely, that while there exist dense linear hypergraphs which avoid any individual
2-core on at most 9 vertices (and even hypergraphs which avoid all but one of them), avoiding
all such 2-cores in a dense linear hypergraph is impossible.
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