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Abstract

We use a theorem by Ding, Lubetzky and Peres describing the structure of the giant component
of random graphs in the strictly supercritical regime, in order to determine the typical size of
MAXCUT of G ∼ G

(
n, 1+ε

n

)
in terms of ε. We then apply this result to prove the following

conjecture by Frieze and Pegden. For every ε > 0 there exists `ε such that w.h.p. G ∼ G(n, 1+ε
n )

is not homomorphic to the cycle on 2`ε + 1 vertices. We also consider the coloring properties of
biased random tournaments. A p-random tournament on n vertices is obtained from the transitive
tournament by reversing each edge independently with probability p. We show that for p = Θ( 1

n )
the chromatic number of a p-random tournament behaves similarly to that of a random graph
with the same edge probability. To treat the case p = 1+ε

n we use the aforementioned result on
MAXCUT and show that in fact w.h.p. one needs to reverse Θ(ε3)n edges to make it 2-colorable.

1 Introduction

Given a graph G, a bipartition of G is a partition of V (G) into two sets, V (G) = V1]V2. The cut of

the partition (V1, V2) is the set of edges with one end-point in each Vi. The MAXCUT problem asks to

find the size of a largest cut in G. We denote this number by MAXCUT(G). The problem of finding

MAXCUT(G) has been extensively studied. It is known to be very important in both combinatorics

and theoretical computer science, and has some connections to physics. The MAXCUT problem is

known to be NP-hard (see [22, 31]) and even not approximable to within a factor of 16
17 unless P = NP

(see [24]). On the other hand, as shown by Goemans and Williamson [23], there is a semidefinite

programming algorithm that approximates MAXCUT to a factor of 0.87856. Moreover, for dense

graphs there are polynomial time approximation schemes for MAXCUT(G), which approximate it

up to an additive factor of o(n2), as shown by Arora, Karger and Karpinski in [4], and by Frieze and

Kannan in [19].

One natural generalization of the MAXCUT problem is the MAX k-CUT problem that asks an

analogous question about k-partitions of a graph. A k-partition of G is a partition of V (G) into k
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sets, V (G) = V1 ] · · · ] Vk. The k-cut of the partition (V1, . . . , Vk) is the set of edges connecting

vertices in different parts. The MAX k-CUT problem asks to find the size of a largest k-cut in G.

Extending the methods of [23], Frieze and Jerrum found in [18] an algorithm that approximates

MAX k-CUT up to a known constant factor αk < 1.

For any graph G = (V,E), finding MAXCUT(G) is clearly equivalent to finding the maximal

number of edges in a bipartite subgraph of G. The distance of G from bipartiteness is defined to be

the minimal number of edges whose removal turns G into a bipartite graph. We denote the distance

by DistBP(G). Obviously, DistBP(G) = |E| −MAXCUT(G). So asking for the size of a maximum

cut in G is equivalent to asking for the distance of G from bipartiteness.

In this paper we consider the maximum cut in a random graph. We work in the binomial random

graph model G(n, p). This is the probability space that consists of all graphs with n labeled vertices,

where each one of the
(
n
2

)
possible edges is included independently with probability p. The study of

the typical value of MAXCUT in the model G(n, p) has a long history. For starters, if p is not too

small, say p� n−1/2 log n, then one can check (using simple probabilistic tools) that the size of the

MAXCUT of a typical G ∼ G(n, p) is n2p
4 (1 + o(1)). The problem is more interesting for smaller p,

specifically p = Θ
(

1
n

)
. It was shown in [16] that a random graph G(n, p) with p = c

n (for a large

enough constant c), does not have a cut with significantly more than half the edges. In 2013, Bayati,

Gamarnik and Tetali [5] proved that for any c > 0, the random variable n−1 ·MAXCUT
(
G
(
n, cn

))
converges in probability to a single value MC(c) (as n tends to infinity). They also established a

similar result for the random regular graph model Gn,r. Asymptotic bounds on MC(c) were obtained

by Coppersmith et al. (see [9]), Gamarnik and Li (see [21]) and Feige and Ofek (see [17]). All these

bounds are of the form c
4 + α

√
c + o(

√
c) ≤ MC(c) ≤ c

4 + β
√
c + o(

√
c), where α, β are known

absolute constants and the little-o notation is with respect to c. Recently, Dembo, Montanari and

Sen found the correct asymptotic behavior of MC(c) up to an error of o(
√
c); they proved that

MC(c) = c
4 + γ

√
c
4 + o(

√
c), where γ ≈ 0.7632. They also obtained a similar result for random

regular graphs (see [12]).

The above results cover the case when c is large. We, however, focus on the range around the

phase transition value p = 1
n . It is known that the typical structure of G (n, p) changes significantly

as p increases above this value; the giant component appears together with other graph properties.

MAXCUT also has a phase transition at p = 1
n . For G ∼ G

(
n, cn

)
, the value of DistBP(G) =

|E(G)| − MAXCUT(G) is O(1) in expectation if c < 1, and typically Ω(n) if c > 1. Indeed, if

c < 1 then w.h.p. every connected component in G ∼ G
(
n, cn

)
is either a tree or unicyclic, and the

number of unicyclic components has a Poisson limiting distribution with an expected value of O(1)

(see Section 5.4 in [8]). This means that in expectation, the distance of G from bipartiteness, which

is at most the number of cycles, is O(1). For c > 1, a typical G ∼ G
(
n, cn

)
contains a complex giant

connected component whose 2-core is of linear size in n (see Section 5.4 in [25]).

Coppersmith, Gamarnik, Hajiaghayi and Sorkin [9] considered the regime p = 1+ε
n for a fixed

ε > 0, and showed that a typical G ∼ G(n, p) satisfies DistBP(G) = Ω
(

ε3

log(1/ε)

)
n. They also

conjectured that the dependence on ε can be improved to Θ(ε3). Moreover, they showed that the

expectation of DistBP(G) is O(ε3)n. We prove that this conjecture is indeed true.

Theorem 1.1. Let ε ∈ (0, 1) and let G ∼ G
(
n, 1+ε

n

)
. Then w.h.p. DistBP(G) = Θ(ε3)n.

The regime p = c
n for c > 1, which is considered in this paper, is called the strictly supercritical

regime. We note that the problem of finding the typical distance to bipartiteness has also been

considered in the following regimes: the strictly subcritical regime p = c
n for c < 1; the subcritical
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regime p = 1−µ
n for n−1/3 � µ� 1; the scaling window p = 1±µ

n for µ = Θ
(
n−1/3

)
; the supercritical

regime p = 1+µ
n for n−1/3 � µ � 1. For all these regimes, Daudé, Mart́ınez, Rasendrahasina and

Ravelomanana found the limit distribution of a normalization of DistBP(G) (see [11] for the details).

For the subcritical regime and the scaling window, Scott and Sorkin [30] showed that a maximum

cut of a random graph can be found in linear expected time by a simple algorithm.

We note that the MAX k-CUT problem was also studied in several models of random graphs,

such as G(n, p), G(n,m), and the random regular graph model Gn,r (see, [7, 9, 10, 26]).

The key ingredient in the proof of Theorem 1.1 is the characterization of the giant component of

random graphs in the strictly supercritical regime, obtained by Ding, Lubetzky and Peres in [14].

We use Theorem 1.1 to address two supposedly unrelated problems. The first problem is related

to the chromatic number of random graphs and homomorphisms of random graphs. We first give

relevant definitions for general graphs. A graph G is called k-colorable if there exists a coloring

c : V (G)→ [k] = {1, 2, . . . , k} such that if v ∼ u then c(v) 6= c(u). The chromatic number of a graph

G, denoted by χ(G), is the minimal k for which G is k-colorable. A graph homomorphism ϕ from a

graph G = (V,E) to a graph G′ = (V ′, E′), is a (not necessarily injective) mapping ϕ : V → V ′ from

the vertex set of G to the vertex set of G′ such that if {v, u} ∈ E(G) then {ϕ(v), ϕ(u)} ∈ E(G′).

We simply denote this mapping by ϕ : G → G′. By the definition, we can see that a graph G is

k-colorable if and only if there exists a homomorphism ϕ : G→ Kk, where Kk is the complete graph

on k vertices. For a graph G and an integer ` ≥ 1, a homomorphism ϕ : G → C2`+1 implies a

homomorphism ϕ′ : G→ C2k+1 for every k ∈ [`] = {1, ..., `}, where Cr is the cycle with r vertices. In

particular, a graph G is 3-colorable if there exists a homomorphism ϕ : G→ C2`+1 for some integer

` ≥ 1 (as this implies a homomorphism ϕ′ : G→ C3). The opposite direction is not always true. For

example, the graph G = C3 is 3-colorable but is not homomorphic to any C2`+1 for ` ≥ 2. Thus, by

considering homomorphisms from a graph G to C2`+1, we can measure how “strong” the property

of 3-colorability is in a given graph G.

Here we will consider this notion in the random graph model G(n, p) (see, e.g., Chapter 7 of [25]

for a detailed overview of coloring properties of random graphs). In the case of random graphs, it is

known that for p = c
n where c > 1 we have that w.h.p. G ∼ G(n, p) is not 2-colorable, that is, w.h.p.

χ(G) ≥ 3 (see, e.g., [8, 25]). In their paper [20], Frieze and Pegden proved the following.

Theorem 1.2. For any ` > 1, there is an ε > 0 such that with high probability, G ∼ G(n, 1+ε
n )

either has odd-girth < 2`+ 1 or has a homomorphism to C2`+1 (the cycle of length 2`+ 1).

In Theorem 1.2 the size of the cycle, 2` + 1, is fixed, and ε (and thus the edge probability p)

depends on `. It is also natural to ask, for a fixed probability, about the values of ` for which there

is a homomorphism from the random graph to C2`+1. Frieze and Pegden conjectured the following.

Conjecture 1.3 (Conjecture 1 in [20]). For any c > 1, there is an `c such that with high probability,

there is no homomorphism from G ∼ G(n, cn) to C2`+1 for any ` ≥ `c.

In Section 4 we give a proof of this conjecture using Theorem 1.1. We show the following.

Theorem 1.4. For any ε > 0, there is an `ε such that w.h.p. there is no homomorphism from

G ∼ G(n, 1+ε
n ) to C2`+1 for any ` ≥ `ε. In fact, `ε = O

(
1
ε3

)
.

The second application of Theorem 1.1 is related to colorability of biased random tournaments.

Consider the following random tournament model. We start with Kn and order its vertices in the

natural order 1, 2, 3, . . . , n. A p-random tournament on n vertices, T ∼ T (n, p), is a tournament for
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which
−→
ji ∈ E(T ) with probability p and

−→
ij ∈ E(T ) with probability 1 − p, for every 1 ≤ i < j ≤ n

independently. Observe trivially that for p = o(1) most of the edges of T ∼ T (n, p) typically point

forward, explaining our terminology of a biased random tournament. In [29],  Luczak, Ruciński,

and Gruszka studied properties of T (n, p) such as the appearance of small subdigraphs and strong

connectivity. In some cases, it is more natural to view this model as a perturbation of the transitive

tournament: we start with the transitive tournament on [n] and then choose each oriented edge with

probability 2p and re-orient it uniformly at random. Random perturbations of general tournaments

were studied by Krivelevich, Kwan and Sudakov in [27].

We say that a tournament is k-colorable if there a k-coloring of its vertices such that for every

i ∈ [k] the sub-tournament induced by the vertices of color i is transitive. The chromatic number of

a tournament T , denoted by χ(T ), is the minimal k for which T is k-colorable. In the past few years

there has been extensive research into the chromatic number of tournaments. Much of the work

dealt with the chromatic number of tournaments with some forbidden substructure. Most notably,

Berger et al. characterized the tournaments that are heroes (see [6]). A tournament H is called a

hero if there exists C > 0 such that every H-free tournament G satisfies χ(G) ≤ C.

In this paper we will show that the coloring properties of p-random tournaments are similar to

those of the random graph model G(n, p). For random graphs, it is known that for k ≥ 3 we have

a sharp threshold for G ∼ G(n, p) being k-colorable. In particular, it is known that for c > 0,

G ∼ G(n, cn) satisfies w.h.p. χ(G) ∈ {k, k+ 1}, where k is the smallest integer such that c < 2k log k

(see [1, 2, 28]). However, in the case of 2-colorability we observe an entirely different phenomenon (see,

e.g., Chapter 5 in [8]). For c ∈ (0, 1), G ∼ G(n, cn) contains an odd cycle with probability bounded

away from zero (and dependent on c), and therefore χ(G) > 2 with probability bounded away from

zero. On the other hand, G is acyclic with probability bounded away from zero (and dependent on

c), and thus χ(G) ≤ 2 with probability bounded away from zero. For c > 1, G ∼ G(n, cn) is not

2-colorable w.h.p. We show that p-random tournaments behave similarly.

Theorem 1.5. Let ε ∈ (0, 1) and let T ∼ T (n, 1−ε
n ). Then for large enough n we have that

cε ≤ Pr [χ(T ) ≤ 2] ≤ 1− c′ε, where cε, c
′
ε > 0 are constants depending on ε.

For the regime p = 1+ε
n , we prove an analogue of Theorem 1.1 for tournaments. The distance of

T from bipartiteness, denoted by DistTour-BP(T ), is the minimal number of edges that need to be

reversed to make T bipartite (2-colorable). The following theorem is the tournament analogue of

Theorem 1.1.

Theorem 1.6. Let ε ∈ (0, 1) and let T ∼ T
(
n, 1+ε

n

)
. Then w.h.p. DistTour-BP(T ) = Θ(ε3)n.

Theorem 1.6 clearly implies the following corollary.

Corollary 1.7. Let ε ∈ (0, 1) and let T ∼ T (n, 1+ε
n ). Then w.h.p. χ(T ) > 2.

In the next theorem we determine the order of magnitude of the threshold for k-colorability for

every k ≥ 3.

Theorem 1.8. For every k ≥ 3, there exist constants c := c(k) and C := C(k) such that if p ≥ C(k)
n ,

then for T ∼ T (n, p) w.h.p. χ(T ) > k, and if p ≤ c(k)
n then for T ∼ T (n, p) w.h.p. χ(T ) ≤ k. In fact,

c(k), C(k) = Θ(k log k).

Remark 1.9. For T ∼ T (n, p), where p = o( 1
n), w.h.p. χ(T ) ≤ 2. This will be argued later.

4



Remark 1.10. Theorems 1.4 and 1.6 could have been proved (with worse asymptotics in ε) using a

weaker bound than the one in Theorem 1.1. In particular, any linear (in n) lower bound on DistBP,

such as the bound given by Coopersmith et al. in [9], would imply weaker (quantitative) versions of

these theorems.

1.1 Notation and terminology

Our graph-theoretic notation is standard and follows that of [33]. In particular we use the follow-

ing: For a graph G, let V = V (G) and E = E(G) denote its set of vertices and edges, respectively.

We let v(G) = |V | and e(G) = |E|. For a subset U ⊆ V we denote by EG(U) all the edges e ∈ E with

both endpoints in U . For subsets U,W ⊆ V we denote by EG(U,W ) all the edges e ∈ E with both

endpoints in U∪W for which e∩U 6= ∅ and e∩W 6= ∅. We simply write E(U) or E(U,W ) in the cases

where there is no risk of confusion. We also write eG(U) = |EG(U)| and eG(U,W ) = |EG(U,W )|.
We assume that n is large enough where needed. We say that an event holds with high probability

(w.h.p.) if its probability tends to one as n tends to infinity. For the sake of simplicity and clarity

of presentation, and in order to shorten some of the proofs, no real effort is made to optimize the

constants appearing in our results. We also sometimes omit floor and ceiling signs whenever these

are not crucial. When we write log n we mean the natural logarithm.

A tournament T on [n] is an orientation of the complete graph Kn. That is, V (T ) = [n] and

for every edge {i, j} of Kn either (i, j) ∈ E(T ) or (j, i) ∈ E(T ). We usually write
−→
ij to mean

(i, j) ∈ E(T ) (the edge {i, j} appears with the orientation from i to j). Let U,W ⊆ V (T ) be two

disjoint subsets of vertices. We write U → W to mean that for every u ∈ U and for every w ∈ W ,
−→uw ∈ E(T ). In the case that U = {u} or W = {w} we simply write u→W or U → w, respectively.

For U ⊆ [n], we let T [U ] be the subtournament of T induced by U .

For a tournament T with V (T ) = [n] we let B = B(T ) be the undirected graph obtained from

T by keeping only backedges, that is V (B) = [n] and E(B) = {{i, j} | i < j and
−→
ji ∈ E(T )}. B is

called the backedge graph of T . We will often use the following simple observation.

Observation 1.11. Let T be a tournament, let B be its backedge graph and let E′ ⊆ E(B). If

deleting the edges in E′ makes B a k-colorable graph then reversing the corresponding arcs to E′

(in T ) makes T a k-colorable tournament. In particular, if B is k-colorable (as a graph) then T is

k-colorable (as a tournament) and DistTour-BP(T ) ≤ DistBP(B).

Proof. Set B′ = (V (B), E(B) \ E′). Let T ′ be the tournament obtained from T by reversing every

edge in E′. It is easy to see that B′ is the backedge graph of T ′. Every independent set in B′ spans

a transitive tournament in T ′, implying that T ′ is k-colorable.

2 Tools

2.1 Binomial distribution bounds

We use the following standard bound on the lower and the upper tails of the Binomial distribution

due to Chernoff (see, e.g., [3], [25]):

Lemma 2.1. Let X ∼ Bin(n, p) and µ = E(X), then

1. Pr (X < (1− a)µ) < exp
(
−a2µ

2

)
for every a > 0.
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2. Pr (X > (1 + a)µ) < exp
(
−a2µ

3

)
for every 0 < a < 1.

We will also use the following Chernoff-type bound due to Hoeffding (see, e.g., [3]):

Lemma 2.2. For X ∼ Bin(n, p) and µ = E(X), we have Pr (|X − µ| > tn) < 2e−2t2n.

2.2 The structure of the giant component in random graphs

For the proof of Theorem 1.1 we will use a theorem by Ding, Lubetzky and Peres. First we need

the following definition.

Definition 2.3. Let G = (V,E) be a graph. The 2-core of G is the maximal induced subgraph of G

with minimum degree at least two.

Theorem 2.4 (Theorem 1 in [14]). Let C be the 2-core of the largest component of G(n, p) for p = λ
n ,

where λ = 1 + ε and ε ∈ (0, 1) is fixed. Let µ < 1 be such that µe−µ = λe−λ. Let C̃ be the following

model:

1. Let Λ be Gaussian N (λ − µ, 1/n) and let Du ∼ Poisson(Λ) for u ∈ [n] be i.i.d., conditioned

on the event that
∑n

u=1Du1Du≥3 is even. Let Nk = #{u : Du = k} and N =
∑

k≥3Nk. Select

a random multigraph K on N vertices, uniformly among all multigraphs (possibly with loops)

that have Nk vertices of degree k for every k ≥ 3.

2. Replace the edges of K by internally disjoint paths of i.i.d Geom(1− µ) lengths.

Then C is contiguous to the model C̃, that is, if Pr[C̃ ∈ A] → 0 then Pr[C ∈ A] → 0 for any set of

graphs A.

By Geom(1−µ) we mean a random variable which takes the value k with probability µk−1(1−µ)

for every k ≥ 1. Throughout this section, the notation is the same as in Theorem 2.4. We assume

that ε is small enough where needed.

Claim 2.5. 1− ε < µ < 1− ε+ 2
3ε

2. In particular µ = 1− ε+O(ε2).

Proof. First we show that µ > 1 − ε. Let f : R → R be the function f(x) = xe−x. Then f ′(x) =

(1 − x)e−x and f ′(x) > 0 for x ∈ (0, 1). Therefore, f is increasing in (0, 1). We need to show that

f(µ) > f(1 − ε). Since f(µ) = f(1 + ε), it is enough to show that f(1 − ε) < f(1 + ε). This is

equivalent to 1−ε
1+ε · e

2ε < 1, which is true for every ε > 0.

Now we show will that µ < 1 − ε + 2
3ε

2. Since ε ∈ (0, 1) we have 1 − ε + 2
3ε

2 < 1. If we will

show that f(µ) < f(1 − ε + 2
3ε

2), the claim will follow. Since f(1 + ε) = f(µ), we need to show

that (1 + ε)e−1−ε < (1− ε+ 2
3ε

2)e−(1−ε+ 2
3
ε2), which is equivalent to 1+ε

1−ε+ 2
3
ε2
< e2ε− 2

3
ε2 . This can be

verified for every ε ∈ (0, 1) by taking log of both sides and differentiating.

Corollary 2.6. Λ = 2ε+O(ε2) holds w.h.p.

Proof. By Claim 2.5 we have E[Λ] = λ−µ = 1 + ε− (1− ε+O(ε2)) = 2ε+O(ε2). Since Var[Λ] = 1
n ,

Chebyshev’s inequality gives that Pr
[
|Λ− E[Λ]| ≥ ε2

]
−→
n→∞

0.

Claim 2.7. Suppose that Λ ∈ (0, 1). Then Pr [
∑n

u=1Du1Du≥3 is even] ≥ 1
2 .

6



Proof. For 1 ≤ m ≤ n, define pm to be the probability that
∑m

u=1Du1Du≥3 is even. We prove by

induction on m that pm ≥ 1
2 . Evidently, p1 is the probability that Poisson(Λ) is smaller than 3 or

even. Since Λ ∈ (0, 1), we have Pr[Poisson(Λ) = k] > Pr[Poisson(Λ) = k + 1] for every k, implying

that p1 ≥ 1
2 . For m ≥ 2, by conditioning on the value of Dm we get

pm = Pr[Dm < 3 or Dm even]·pm−1+Pr[Dm ≥ 3 and odd]·(1−pm−1) = p1pm−1+(1−p1)(1−pm−1).

By the induction hypothesis pm−1 ≥ 1
2 we get pm = (2p1 − 1)pm−1 + 1− p1 ≥ 1

2 .

Corollary 2.8. W.h.p. we have e(K) = (2ε3 +O(ε4))n.

Proof. We condition on the value of Λ and assume that Λ = 2ε + O(ε2), which holds w.h.p. by

Corollary 2.6. For D ∼ Poisson(Λ) we have

E[D · 1D≥3] = e−Λ
∞∑
k=3

Λk

k!
k = (1 +O(Λ))

(
0.5Λ3 +O(Λ4)

)
= 0.5Λ3 +O(Λ4) = 4ε3 +O(ε4).

Set X :=
∑n

u=1Du1Du≥3. We have E[X] = (4ε3 +O(ε4))n. Note that Var(Du1Du≥3) = O(1) and

by independence Var(X) = O(n). By Chebyshev’s inequality we have

Pr[|X − E[X]| > ε4n] ≤ Var(X)

ε8n2
= o(1),

and this bound is uniform for all Λ in the range 2ε+O(ε2). Since Pr [X is even] ≥ 1
2 (by Claim 2.7)

we have

Pr
[
|X − E[X]| > ε4n

∣∣ X is even
]
≤

Pr
[
|X − E[X]| > ε4n

]
Pr[X is even]

= o(1).

Thus Pr
[
X = (4ε3 +O(ε4))n

∣∣ X is even
]

= 1− o(1). Since e(K) = X
2 conditioned on X being even

(recall Theorem 2.4), we are done.

3 Proof of Theorem 1.1

The following lemma is the main part of the proof of the lower bound of Theorem 1.1.

Lemma 3.1. Let K be a multigraph satisfying e(K) ≥ 3
2v(K) and let 0.99 ≤ µ < 1. Replace the

edges of K by paths of i.i.d. Geom(1− µ) lengths and denote this new multigraph by C̃. Then w.h.p.

we have DistBP(C̃) ≥ 0.001e(K).

Proof. Denote by `e the length of the path that replaces the edge e ∈ E(K) in C̃, and by Pe the set

of edges of this path. Note that

peven := Pr(`e is even) =

∞∑
k=1

µ2k−1(1− µ) =
µ

1 + µ
<

1

2

and

podd := Pr(`e is odd) = 1− Pr(`e is even) =
1

1 + µ
< 0.51.

The last inequality holds by our assumption that µ ≥ 0.99. We conclude that podd, peven ∈ (0.49, 0.51).
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It is clear that if DistBP(C̃) < 0.001e(K) then there is a bipartition V (C̃) = Ṽ1 ] Ṽ2 satisfying

e(Ṽ1) + e(Ṽ2) < 0.001e(K). Let V (K) = V1]V2 be a bipartition of K. We will bound the probability

that V (C̃) has a bipartition Ṽ1 ] Ṽ2 that extends V1 ] V2 (i.e. V1 ⊆ Ṽ1 and V2 ⊆ Ṽ2) and satisfies

e(Ṽ1) + e(Ṽ2) < 0.001e(K).

Let e ∈ K. Consider the following events:

(a) e ∈ E(V1) ∪ E(V2) (that is, e lies inside V1 or inside V2) and `e is odd.

(b) e ∈ E(V1, V2) and `e is even.

Observe that if (a) or (b) happen then for every bipartition V (C̃) = Ṽ1 ] Ṽ2 which extends V1 ] V2,

at least one of the edges in Pe must lie inside either Ṽ1 or Ṽ2. If (a) or (b) happen then we call e

bad. We conclude that for any bipartition V (C̃) = Ṽ1 ] Ṽ2 which extends V1 ] V2, e(Ṽ1) + e(Ṽ2) is at

least the number of bad edges of K. Let us denote this number by X. Since podd, peven ≥ 0.49, every

e ∈ E(K) is bad with probability at least 0.49. Thus, X stochastically dominates the distribution

Bin(e(K), 0.49). By Lemma 2.2 (with t = 0.489) we have

Pr [X < 0.001e(K)] ≤ Pr [Bin(e(K), 0.49) < 0.001e(K)] ≤ 2e−2·(0.489)2e(K).

By the union bound over all partitions V1 ] V2 of K we get: the probability that there exists a

partition Ṽ1 ] Ṽ2 of C̃ with e(Ṽ1) + e(Ṽ2) < 0.001e(K) is at most

2v(K) · 2e−2(0.489)2e(K) ≤ 2e(
2 log 2

3
−2·(0.489)2)e(K) = o(1).

In the first inequality we used the assumption that e(K) ≥ 3
2v(K).

Proof of Theorem 1.1. We can assume that ε < ε0 for some small constant ε0. Indeed, if we know

the theorem for some ε0 then for every ε ∈ (ε0, 1) and G ∼ G
(
n, 1+ε

n

)
we have (by monotonicity)

w.h.p. Ω(ε3
0)n ≤ DistBP(G) ≤ e(G) ≈ 1+ε

2 n < n. So by adjusting the implied constants in the

Θ-notation, we get the theorem for ε > ε0 as well.

Consider the model C̃ from Theorem 2.4. We prove that w.h.p. DistBP(C̃) = Θ(ε3)n. Let K be

the multigraph generated in item 1 of Theorem 2.4. By Claim 2.8 we have w.h.p. e(K) = Θ(ε3)n.

Since all vertex-degrees in K are at least 3, we have e(K) ≥ 3
2v(K). By Claim 2.5, µ ≥ 0.99 if ε is

sufficiently small. By Lemma 3.1 we get that w.h.p. DistBP(C̃) ≥ 0.001e(K) = Ω(ε3)n.

We now show that w.h.p. DistBP(C̃) = O(ε3)n. For each e ∈ E(K), let Pe be the path in C̃
which replaces e and let e∗ be an arbitrary edge of Pe. It is easy to see that for every cycle C in

C̃ there is e ∈ E(K) such that C contains all the edges of Pe. Moreover, if C is an odd cycle then

there is such e ∈ E(K) for which |Pe| is odd. Thus, removing {e∗ : e ∈ E(K)} from C̃ leaves an

acyclic graph, and removing {e∗ : e ∈ E(K), |P (e)| odd} leaves a bipartite graph. As in the proof

of Lemma 3.1, we have podd := Pr[|Pe| is odd] = µ
1+µ <

1−ε+ 2
3
ε2

2−ε ≤ 1
2 −

ε
8 . Here we used Claim 2.5

and assumed that ε is small enough. Therefore, the random variable X = |{e ∈ E(K) : |Pe| is odd}|
is stochastically dominated by Bin(e(K), 1

2 −
ε
8). By Chernoff’s Inequality (Lemma 2.1), we have

Pr[X > 1
2e(K)] = o(1). Thus, w.h.p. DistBP(C̃) ≤ X ≤ 1

2e(K) = O(ε3)n, using Corollary 2.8.

Now let G ∼ G
(
n, 1+ε

n

)
and let C be the 2-core of the largest component of G. By Theorem 2.4

and the fact that w.h.p. DistBP(C̃) = Θ(ε3)n we get that w.h.p. DistBP(C) = Θ(ε3)n. This already

establishes that w.h.p. DistBP(G) = Ω(ε3)n. To prove the upper bound on DistBP(G), we use the

known fact that the expected number of cycles in G not contained in the largest component is O(1)
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(see, e.g., [25]). Thus, w.h.p. the number of these cycles is o(n), implying that all components other

than the largest can be made acyclic by omitting o(n) edges. Moreover, w.h.p. the 2-core of the

largest component, C, can be made bipartite by omitting O(ε3)n edges. Observe that every edge

of the largest component which is not in its 2-core is not contained in any cycle and thus can be

added to every cut of the 2-core. Therefore, there is a cut of the largest component, consisting of

a maximum cut of the 2-core and all edges that are not in the 2-core. We conclude that G can be

made bipartite by omitting O(ε3)n edges, as required.

Remark 3.2. The proof of the upper bound in Theorem 1.1 is algorithmic in the sense that

there is a deterministic polynomial-time algorithm that w.h.p. finds in G ∼ G(n, 1+ε
n ) a cut of size

e(G) − O(ε3)n. The algorithm follows the proof of the upper bound: first it finds the connected

components of G. Then, for every connected component C but the largest, the algorithm greedily

deletes one edge to make C bipartite (this is possible because w.h.p. all components but the largest

are unicyclic or trees). The algorithm then finds the 2-core of the largest component and deletes one

edge from every path (here a cycle is thought of as a path with identical endpoints) in the 2-core

whose internal vertices are all of degree 2. The remaining edges form a cut whose size is w.h.p.

e(G)−O(ε3)n.

Remark 3.3. Using a similar technique, we can obtain an analogue of Theorem 1.1 for random

graphs in the supercritical phase, i.e. p = 1+ε
n for n−1/3 � ε � 1. Instead of using Theorem 2.4,

we need to use an analogous result that describes the structure of the giant component of random

graphs in the supercritical phase, see [13]. In this manner we can prove that for ε as above, a typical

G ∼ G
(
n, 1+ε

n

)
satisfies DistBP (G) = Θ(ε3). This has already been shown (using a different proof

technique) in [11].

4 Proof of Conjecture 1.3

Proof of Theorem 1.4. Observe that if G is homomorphic to C2`+1 then DistBP(G) ≤ e(G)
2`+1 . Indeed,

assume that there exists a homomorphism ϕ : G → C2`+1. Let v1, . . . v2`+1 be the vertices of C2`+1

and let e1, . . . , e2`+1 be the edges of C2`+1, where ei = {vi, vi+1} for every i ∈ [2`] and e2`+1 =

{v2`+1, v1}. Since every edge of G is mapped into one of the ei-s, there exists i0 ∈ {1, . . . , 2` + 1}
such that ϕ maps at most e(G)

2`+1 edges to ei0 . By erasing the edges mapped to ei0 we turn G into a

graph which is homomorphic to a path (of length 2`) and hence bipartite. Thus, DistBP(G) ≤ e(G)
2`+1 .

Now let G ∼ G
(
n, 1+ε

n

)
. By Theorem 1.1 and since w.h.p. e(G) =

(
1+ε

2 + o(1)
)
n, we have that

w.h.p. DistBP(G) ≥ δ · e(G) for δ = Θ(ε3). Set `ε = 1
2δ . Then 1

2`+1 < δ for every ` ≥ `ε. By the

previous paragraph, w.h.p. G is not homomorphic to C2`+1 for any ` ≥ `ε.

5 Proof of Theorem 1.5

Let T ∼ T
(
n, 1−ε

n

)
. For the lower bound, let B be the backedge graph of T (as defined in section

1.1). Then B ∼ G
(
n, 1−ε

n

)
. It is well known that Pr

[
χ
(
G
(
n, 1−ε

n

))
≤ 2
]
≥ cε > 0 (see, e.g., [1, 8]).

By Observation 1.11 it follows that Pr[χ(T ) ≤ 2] ≥ Pr[χ(B) ≤ 2] ≥ cε.
Using the same argument we can also explain Remark 1.9. Indeed, it is easy to show that

B ∼ G(n, p) is 2-colorable w.h.p. for p = o
(

1
n

)
.

9



We now prove the upper bound in the theorem. Our strategy is to show that with probability at

least c′ε (for c′ε to be determined later) T ∼ T
(
n, 1−ε

n

)
contains a small non-2-colorable subtourna-

ment. We consider the tournament H with vertices 1, ..., 7 and edges:

1 → 2 → 3 → 1, 4 → 5 → 6 → 4, {1, 2, 3} → {4, 5, 6} → 7 → {1, 2, 3}. It is easy to verify the

following.

Observation 5.1. H has the following properties.

1. H is not 2-colorable.

2. In the ordering 1, . . . , 7, every S ⊆ {1, . . . , 7} spans at most |S| backedges.

It is worth noting that [29] found, for every fixed oriented graph, the threshold for the appearance

of this graph in T (n, p). In our case, the threshold for the appearance of H is 1
n . We show that for

p = 1−ε
n (namely, in the threshold), the probability of containing H is bounded away from 0.

For a 7-tuple 1 ≤ u1 < ... < u7 ≤ n, we say that (u1, ..., u7) is an ordered copy of H in T if the

map i → ui is an embedding of H into T . Let X be the number of ordered copies of H in T . We

will show that Pr[X > 0] ≥ c′ε > 0.

Fix a 7-tuple 1 ≤ u1 < ... < u7 ≤ n. Since H has 5 backedges in the ordering 1, ..., 7, the

probability that (u1, . . . , u7) is an ordered copy of H is p5(1− p)(
7
2)−5 =

(
1− o(1)

)
p5. Therefore

E[X] =

(
n

7

)
(1− o(1))p5 =

(
1− o(1)

)(
1− ε

)5
n2

7!
≥
(
1− ε

)5
n2

104
.

We now estimate E[X2], the expected number of pairs of (not necessarily distinct) ordered copies ofH.

Fix two 7-tuples U1 and U2 and put k = |U1∩U2|. Observe that for every 7-tuple U there is a unique

orientation for which U spans an ordered copy of H. Therefore, there is at most one way to orient

E(U1)∪E(U2) so that both U1 and U2 are ordered copies ofH. Let ` be the number of backedges inside

U1∩U2 in this orientation (if it exists). By Item 2 in Observation 5.1 we have ` ≤ k. The probability

that U1 and U2 are both ordered copies of H is p5(1 − p)16p5−`(1 − p)16−((k2)−`) ≤ p10−` ≤ p10−k.

Therefore

E[X2] ≤
7∑

k=0

(
n

7

)(
7

k

)(
n− 7

7− k

)
p10−k ≤

7∑
k=0

n14−kp10−k ≤
7∑

k=0

n4 = 8n4.

By the Paley-Zygmund inequality we get

Pr[X > 0] ≥ E[X]2

E[X2]
≥ (1− ε)10

109
.

We may set, say, c′ε = (1−ε)10
109

, and then the assertion of the theorem holds.

6 Proof of Theorem 1.6

For proving Theorem 1.6, we will show that in a typical T ∼ T (n, p) one needs to reverse Θ(ε3)n

arcs to make it 2-colorable. We assume by contradiction that there exist cε3n such edges (where c is

a small constant) and by reversing them we get two transitive color classes. Our strategy is first to

show, using Theorem 1.1, that for every 2-coloring there are many “long” monochromatic backedges.
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Among them we find a large matching of long backedges all contained in the same color class. Then,

we claim that since this color class spans a transitive tournament, T must in fact contain many more

backedges, which stands in contradiction with the fact that w.h.p. T contains Θ(n) backedges.

We start with three claims that will be used in the proof of Theorem 1.6. Let T be a tournament

on [n]. For α > 0, we say that a backedge e = −→vu ∈ E(T ) is α-long if v − u ≥ αn and α-short

otherwise.

Claim 6.1. Let T ∼ T
(
n, 1+ε

n

)
and let α = α(n) = ω(n−1/2). Then the following holds w.h.p.

1. The number of backedges in T is
(

1+ε
2 + o(1)

)
n.

2. The number of α-short backedges in T is at most 2α(1 + ε)n.

3. Every vertex participates in at most log n backedges.

Proof. The number of backedges in T is distributed as Bin
((
n
2

)
, 1+ε
n

)
. Item 1 follow from Chernoff’s

inequality (Lemma 2.1) with, say, a = n−1/3. Next, the total number of pairs {i, j} such that

i < j < i+αn is at most αn2. Thus, the number of α-short backedges is stochastically dominated by

a random variable with distribution Bin
(
αn2, 1+ε

n

)
. Items 2 now follows from Chernoff’s inequality

(Lemma 2.1) with parameter a = α(1 + ε)n. Here we use the assumption that α(n) = ω(n−1/2).

We now prove Item 3. For i ∈ [n] = V (T ), the number of backedges containing i is distributed

Bin
(
n− 1, 1+ε

n

)
. By the union bound, the probability that Item 3 does not hold is at most

n

(
n− 1

log n

)(
1 + ε

n

)logn

≤ n
(
e(1 + ε)

log n

)logn

≤ n · e−2 logn = o(1).

In the rightmost inequality above we assumed that n is large enough.

In the following two claims, by a matching we mean a set of vertex-disjoint edges (in a graph or

a tournament).

Claim 6.2. Let T be a tournament with V (T ) = [n], let α ∈ (0, 1) and let t > 0 be an integer.

Suppose that e1 = −−→v1u1, . . . , et = −−→vtut ∈ E(T ) are α-long backedges, such that {e1, . . . , et} is a

matching and the subtournament induced by {u1, v1, . . . , ut, vt} is transitive. Then T contains at

least
(
αt+1

2

)
backedges.

Proof. Sample k ∈ [n] uniformly at random and let F = {ei : ui ≤ k < vi}. For every 1 ≤ i ≤ t, since

ei is α-long we get Pr[ei ∈ F ] ≥ α. Thus, E[|F |] ≥ αt, implying that there is some k ∈ [n] for which

|F | ≥ αt. W.l.o.g. assume that F = {e1, . . . , er}. Note that vj > k ≥ ui for every 1 ≤ i, j ≤ r. Since

by assumption {u1, v1, . . . , ur, vr} spans a transitive tournament, there is an ordering uσ(1), . . . , uσ(r)

of u1, . . . , ur such that −−−−−−→uσ(i)uσ(j) ∈ E(T ) for every 1 ≤ i < j ≤ r. Since −−−−−−→vσ(i)uσ(i) ∈ E(T ) for every

1 ≤ i ≤ r, we get from transitivity that −−−−−−→vσ(i)uσ(j) ∈ E(T ) for every 1 ≤ i ≤ j ≤ r. Since vj > ui, we

get that −−−−−−→vσ(i)uσ(j) is a backedge for every 1 ≤ i ≤ j ≤ r. Since {e1, . . . , et} is a matching, all these

backedges are distinct, giving a total of
(
r+1

2

)
≥
(
αt+1

2

)
backedges, as required.

Claim 6.3. Let F be a set of edges (of a graph or a tournament) such that every vertex participates

in at most d of the edges in F . Then F contains a matching of size at least |F |d+1 .

Proof. By Vizing’s theorem [32], there is a proper edge-coloring of F using d+ 1 colors. Since each

color class is a matching, there must be a matching of size at least |F |d+1 .
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Proof of Theorem 1.6. Let ε > 0 and let T ∼ T (n, 1+ε
n ). Let B be the backedge graph of T (as defined

in Section 1.1). Then B ∼ G
(
n, 1+ε

n

)
. The upper bound in the theorem, DistTour-BP(T ) ≤ O(ε3)n,

follows immediately from Theorem 1.1 and Observation 1.11. It remains to prove that w.h.p.

DistTour-BP(T ) ≥ Ω(ε3)n. By Theorem 1.1, w.h.p. for every partition [n] = V1 ∪ V2 there are at

least δn edges of B in E(V1) ∪ E(V2), where δ = Ω(ε3). Assume that this event occurs and fur-

thermore that the assertion of Claim 6.1 holds, applied with parameter (say) α = n−1/6. These

events occur w.h.p. so from now on we argue deterministically and show that for every partition

[n] = V1∪V2 of T one must reverse at least (δ−o(1))n = Ω(ε3)n edges to make both parts transitive.

Fix a partition [n] = V1 ∪ V2. By our assumption, E(V1) ∪ E(V2) contains at least δn edges of

B. By the definition of the backedge graph, each of these edges corresponds to a backedge of T . By

Item 2 of Claim 6.1, the overall number of α-short backedges is o(n), implying that there is a set E0

of size |E0| = (δ− o(1))n of α-long backedges, each contained in V1 or V2. Suppose by contradiction

that there is a tournament T ′, obtained from T by reversing less than |E0| − 4n5/6 edges of T , in

which V1 and V2 are transitive. Then there is a set F ⊆ E0 of size |F | ≥ 4n5/6 such that none of

the edges in F was reversed. By Item 3 of Claim 6.1, every vertex in T participates in at most log n

backedges (of T ). Since every edge in F is a backedge of T , Claim 6.3 gives a matching M ⊆ F of

size |M | ≥ |F |
logn+1 ≥

|F |
2 logn ≥

2n5/6

logn . W.l.o.g. at least half of the edges of M are inside V1. Denote

these edges by e1 = −−→v1u1, . . . , et = −−→vtut, where t ≥ n5/6

logn . Then e1, . . . , et is a matching of α-long

backedges in T ′, and the subtournament of T ′ induced by {u1, v1, . . . , ut, vt} is transitive, as it is

contained in V1. By Claim 6.2, T ′ contains at least
(
αt
2

)
≥
(
n2/3/ logn

2

)
= ω(n) backedges. Since T ′

and T differ on O(n) edges, T must contain ω(n) backedges, in contradiction to Item 1 of Claim

6.1. We conclude that one must reverse at least |E0| − 4n5/6 = (δ − o(1))n edges to make V1 and V2

transitive, as required.

7 Proof of Theorem 1.8

We will use the following fact in the proof of Theorem 1.8.

Lemma 7.1. [Theorem 2 from [15]] The largest collection of edge-disjoint triangles in Kn is of size

at least n2

6 −
n
3 .

Let k ≥ 3 and let C = C(k) to be chosen later. Let T ∼ T (n, Cn ). If T is k-colorable, then there

exists a transitive sub-tournament of size at least n
k . We will show that w.h.p. this is not the case.

Let T ′ be a fixed sub-tournament on n0 = n
k vertices (keeping the order of the vertices of T ). By

Lemma 7.1, there is a set of size
n2
0

7 of triples of vertices S = {{xi, yi, zi}}
n2
0/7
i=1 in T ′ such that for

every i 6= j we have |{xi, yi, zi} ∩ {xj , yj , zj}| ≤ 1. If T ′ is transitive, then every triangle from S has

to be transitive. Moreover, the probability that a triangle on a vertex set {x, y, z} ∈ S is transitive

is 1− (1− p)2p− (1− p)p2 ≤ 1− 0.9C
n . Therefore,

Pr(T ′ is transitive) ≤ Pr(every triangle in S is transitive) ≤
(

1− 0.9C

n

)|S|
.

Now, using the union bound, the probability that there exists a transitive sub-tournament of size

n0 is at most (
n

n0

)(
1− 0.9C

n

)|S|
≤
(
k · e−

0.9C
n
|S|/n0

)n/k
12



≤
(
k · e−( 0.9C

n
)n0/7

)n/k
=
(
k · e−

1
7

0.9C
k

)n/k
.

Thus, if we set C = 8k log k (and thus p = 8k log k/n) we have that the probability that there

exists a transitive sub-tournament of size n0 is o(1) and therefore w.h.p. T is not k-colorable.

For the lower bound, set c(k) < 2(k − 1) log(k − 1), let p ≤ c(k)
n and consider T ∼ T (n, p). Let

B be the backedge of T . It is known (see, e.g., [2]) that for c(k) and p as above, B ∼ G(n, p) is

k-colorable w.h.p. By Observation 1.11 we get Pr[χ(T ) ≤ k] ≥ Pr[χ(B) ≤ k] = 1− o(1).

8 Concluding Remarks and Open Problems

In this paper, we used a deep theorem by Ding, Lubetzky and Peres [14] to obtain a sharp upper

bound for the maximum cut in sparse random graphs. More precisely, we proved that the maximum

cut a typical G ∼ G
(
n, 1+ε

n

)
is of size Θ(ε3)n. We actually proved that w.h.p. the MAXCUT

is at most (ε3 + O(ε4))n, and with additional arguments, this upper bound can be improved to

(1
3ε

3 +O(ε4))n. We wonder if 1
3 is indeed the correct constant.

Using the aforementioned result on MAXCUT, we immediately obtained a solution to a conjecture

of Frieze and Pegden. The conjecture stated that w.h.p. the random graph G ∼ G
(
n, 1+ε

n

)
does not

have a homomorphism into a sufficiently large odd cycle. We actually showed for ` = Θ
(
ε−3
)
, there

is no homomorphism from a typical G
(
n, 1+ε

n

)
to C2`+1. It would be interesting to find the minimal

`(ε) with this property.

Regarding random tournaments, we investigated the typical chromatic number of T ∼ T (n, p)

(the biased p-random tournament) for p = Θ
(

1
n

)
. We showed that if k ≥ 3, then there is a threshold

for k-colorability of order k log k
n . Moreover, there is a coarse threshold for 2-colorability: if p = c

n for

c < 1, then the probability of being 2-colorable is bounded away from 0 and 1; if p = c
n for c > 1 then

a typical T (n, p) is not 2-colorable. In fact, we proved something stronger: for p = 1+ε
n , a typical

T ∼ T (n, p) satisfies DistTour-BP(T ) = Θ(ε3)n. This shows that the threshold for 2-colorability of

random tournaments is the same as that of random graphs. It would be interesting to determine

the threshold for k-colorability of random tournaments for k ≥ 3. Using the same method as in the

proof of Theorem 1.6, one can show that if w.h.p. the distance of G ∼ G(n, cn) from k-colorability

is at least C(k)n3/4 log1/2 n (for some appropriate C(k)) then w.h.p. T ∼ T (n, cn) is not k-colorable.

This leads us to conjecture that the threshold for k-colorability of tournaments is the same as that

of graphs.
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