
Polynomial removal lemmas for ordered graphs

Lior Gishboliner∗ István Tomon∗

Abstract

A recent result of Alon, Ben-Eliezer and Fischer establishes an induced removal lemma for
ordered graphs. That is, if F is an ordered graph and ε > 0, then there exists δF (ε) > 0 such
that every n-vertex ordered graph G containing at most δF (ε)nv(F ) induced copies of F can be
made induced F -free by adding/deleting at most εn2 edges. We prove that δF (ε) can be chosen
to be a polynomial function of ε if and only if |V (F )| = 2, or F is the ordered graph with vertices
x < y < z and edges {x, y}, {x, z} (up to complementation and reversing the vertex order). We
also discuss similar problems in the non-induced case.

1 Introduction

Graph removal lemmas are among the most powerful tools in combinatorics, with further applications
in number theory, logic, and property testing. The celebrated graph removal lemma, which originates
in the work of Ruzsa and Szemerédi [RS78], states that if F is a graph and ε > 0, then there exists
δ = δF (ε) > 0 such that every n-vertex graph G containing at most δnv(F ) copies of F can be made
F -free by deleting at most εn2 edges. Alon, Fischer, Krivelevich and Szegedy [AFKS00] established
an analogue of this for induced subgraphs. This result, known as the induced removal lemma, states
that if G contains at most δF (ε)nv(F ) induced copies of a graph F , then G can be made induced F -free
by adding/deleting at most εn2 edges. A generalization to arbitrary hereditary graph properties was
later obtained by Alon and Shapira [AS08]. For a general survey on graph removal lemmas, we refer
the reader to [CF13].

In this paper, we are interested in ordered variants of the graph removal lemma. An ordered
graph is a graph with a linear ordering ≤ on its vertex set. An ordered graph H is a subgraph of
an ordered graph G if there exists an order preserving embedding from V (H) to V (G) which maps
edges into edges, and an induced subgraph if it also maps non-edges into non-edges. The natural
analogue of the induced (and also non-induced) removal lemma for ordered graphs was established
by Alon, Ben-Eliezer and Fischer [ABEF17]; see also [ABE20] for related results.

All of the above results build on the regularity lemma of Szemerédi [Sze75] or its appropriate
generalizations. Consequently, the lower bounds on δF (ε) supplied by these proofs are quite poor.
Even in the case of the original graph removal lemma, the current best known bound is 1/δ ≤
tower(O(log 1/ε)), as proved by Fox in [Fox11]. Here, tower(x) denotes a tower of x exponents.
On the other hand, in some special cases better bounds are known. This motivated the natural
question of characterizing the cases in which the removal lemma has polynomial bounds, namely,
when 1/δ can be taken as a polynomial function of 1/ε. By now there are several results of this
type. In the case of graphs, Alon [Alo02] showed that the F -removal lemma has polynomial bounds
if and only if F is bipartite. For the case of induced subgraphs, a result of Alon and Shapira [AS06]
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tells us that the induced F -removal lemma does not have polynomial bounds, unless |V (F )| = 2,
or F ∈ {P3, P3, P4, C4, C4}, where Pk, Ck are the path and cycle on k vertices, respectively. A
polynomial bound in the case F = P3 is easy to show. Alon and Fox [AF15] proved that the
induced-P4-removal lemma has polynomial bounds as well. The case F = C4 is still open, see
[GS19, GS21] for the currently best known bounds. The results of [AS05] and [GT21] completely
characterize the k-uniform hypergraphs which admit polynomial induced removal lemmas, for k ≥ 3.

1.1 Polynomial induced removal lemma for ordered graphs

In the extended version of [ABEF17], Alon, Ben-Eliezer and Fischer proposed the problem of finding
ordered graph properties with polynomial induced removal lemmas. Addressing this question, we
give a complete characterization of ordered graphs F for which the induced-F -removal lemma has
polynomial bounds. It turns out that there is essentially only one such nontrivial ordered graph. For
an ordered graph G, we denote by G the complement of G, and by G← the ordered graph obtained
by reversing the vertex order. It is easy to see that the (induced/non-induced) removal lemma for
F is equivalent to the (induced/non-induced) removal lemma for F←. In the induced case, there is
also symmetry with respect to complementation: the induced removal lemma for F is equivalent to
the induced removal lemma for F . In the rest of the paper we will denote by D the ordered graph
with vertices x < y < z and edges {x, y}, {x, z}.

Theorem 1. For an ordered graph F , the induced F -removal lemma has polynomial bounds if and
only if |V (F )| = 2, or F ∈

{
D,D←, D,D←

}
.

A graph is chordal if it contains no induced cycle of length at least 4. It is well known that
a graph is chordal if and only if it has a vertex ordering such that the resulting ordered graph is
induced D-free (such an ordering is called a perfect elimination order), see e.g. [FG65]. It was
recently proved by de Joannis de Verclos [dV19] that the property of being chordal also admits a
polynomial removal lemma. Despite the similarity with Theorem 1, it is unclear whether there are
any implications between these two results, as the ordering imposes additional structure.

1.2 Polynomial (non-induced) removal lemma for ordered graphs

We also consider the non-induced variant of the previous theorem. In the case of directed graphs
(digraphs), Alon and Shapira [AS04] gave a complete characterization of digraphs F such that the
F -removal lemma has polynomial bounds. This result can be stated as follows. A homomorphism
from a digraph G1 to a digraph G2 is a function ϕ : V (G1)→ V (G2) that satisfies (u, v) ∈ E(G1)⇒
(ϕ(u), ϕ(v)) ∈ E(G2). The core of a digraph G is the smallest subgraph K for which there is a
homomorphism from G to K. Then, for a connected digraph F , the F -removal lemma has polynomial
bounds if and only if the core of F is an oriented tree or a directed cycle of length 2.

In a highly parallel manner, we propose a conjecture characterizing ordered graphs which admit a
polynomial removal lemma, and prove its “only if” part. A homomorphism between ordered graphs
is a graph homomorphism which also preserves the vertex orderings. Formally, for two ordered
graphs G1, G2, a map ϕ : V (G1) → V (G2) is a homomorphism if {ϕ(x), ϕ(y)} ∈ E(G2) for every
{x, y} ∈ E(G1), and ϕ(x) ≤ ϕ(y) for every x, y ∈ V (G1) satisfying x ≤ y. Observe that for such
ϕ, the preimage of each vertex of G2 is an interval in G1 which spans an independent set. For an
ordered graph G, the core of G, denoted by core(G), is the smallest subgraph of G (in terms of
number of vertices) to which there is a homomorphism from G. In the preliminaries, we will show
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that the core is well defined, that is, the smallest such subgraph is unique up to isomorphism. We
prove that if core(F ) is not a forest, then F has no polynomial removal lemma.

Theorem 2. Let F be an ordered graph such that core(F ) is not a forest, let ε > 0 be sufficiently
small, and let n ≥ n0(ε). Then there exists an ordered graph G on n vertices such that G contains
at most εΩ(1/ε)nv(F ) copies of F , but one has to remove at least εn2 edges to destroy all copies of F
in G.

Unfortunately, we were unable to prove that the converse also holds in general, and leave it as an
interesting open problem.

Conjecture 3. For an ordered graph F , if core(F ) is a forest, then the F -removal lemma has
polynomial bounds.

In order to prove Conjecture 3, it is enough to show that it holds when F itself is a forest. Indeed,
let K = core(F ) and suppose that the K-removal lemma has polynomial bounds. Let us assume that
V (K) = [k] and that the vertex order on V (K) is given by the natural order on [k]. Let si be the
number of vertices of F mapped to i ∈ [k] under some fixed homomorphism ϕ : F → K. Let G be
an ordered graph which is ε-far from being F -free. Then G is also ε-far from being K-free (because
K is a subgraph of F ), and hence G contains at least δnk copies of K, where δ = δK(ε) = poly(ε).
Consider the k-uniform hypergraph on V (G) whose edges correspond to copies of K. It is easy
to show, using a standard Kővári-Sós-Turán-type argument, that this hypergraph contains at least

(1 − o(1))δs1···skns1+···+sk = poly(ε)nv(F ) copies of the complete k-uniform hypergraph K
(k)
s1,...,sk in

which the side of size si appears before the side of size sj for every 1 ≤ i < j ≤ k. Every such copy

of K
(k)
s1,...,sk contains a copy of F in G.

We remark that ordered forests are quite hard to analyze in many contexts, so it is not surprising
that the corresponding question about removal lemmas is also difficult. For example, the extremal
numbers (also known as Turán numbers) of ordered forests are already not understood. This problem
is the subject of the celebrated Füredi-Hajnal conjecture [FH92], see [KTTW19] for the state of the
art.

Let us note that the results of this paper can also be stated in the language of property testing.
A tester for a graph property P is a randomized algorithm which, given an input graph G and an
approximation parameter ε, distinguishes between the case that G satisfies P and the case that G
is ε-far from P, with success probability at least 2

3 in both cases. Here, G being ε-far from P means
that one must add/delete at least εn2 edges to turn G into a graph satisfying P, where n = |V (G)|.
The algorithm works by sampling vertices of G and making edge-queries on pairs of sampled vertices.
The measure of complexity, called query complexity, is the total number of queries that the algorithm
makes. It turns out that many properties can be tested with query complexity which depends only
on ε, i.e., is independent of the size of the input graph. This is in particular true for every hereditary
property, as proved in [AS08] for (unordered) graphs, and in [ABEF17] for ordered graphs. A tester
has one-sided error if it outputs the correct answer with probability 1 in the case that G satisfies
P. It is not hard to see that the optimal query complexity of a one-sided-error tester for (induced)
F -freeness is essentially given by the bounds for the (induced) F -removal lemma. Hence, Theorem
1 implies that in ordered graphs, induced F -freeness can be tested with query complexity poly(1/ε)
with one-sided error if and only if |V (F )| = 2 or F ∈

{
D,D←, D,D←

}
. For more on property

testing, we refer the reader to the book of Goldreich [Gol17].
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1.3 Preliminaries

Given an (ordered) graph G, we denote by v(G) its number of vertices, and by e(G) its number
of edges. Also, if A,B ⊆ V (G) are disjoint, then EG(A,B) = E(A,B) is the set of edges between
A and B, and eG(A,B) = e(A,B) = |E(A,B)|. Moreover, Ē(G) is the set of non-edges of G,
ē(G) = |Ē(G)|, ĒG(A,B) = Ē(A,B) is the set of non-edges between A and B, and ēG(A,B) =
ē(A,B) = |Ē(A,B)| = |A||B| − e(A,B).

For a vertex v and a set X, we denote by NX(v) the neighbourhood of v inside X. We denote
by d(X) = e(X)/

(|X|
2

)
the density of X, where e(X) is the number of edges inside X. We say that

a graph is a disjoint union of cliques if its vertex set partitions into cliques with no edges between
them (equivalently, if the graph has no induced path with three vertices).

Given a set X and a linear ordering ≤ on X, an interval in X is a set of the form {x ∈ X : a ≤
x ≤ b} for some a, b ∈ X. We say that an (ordered) graph G on n vertices is ε-far from an (ordered)
graph property P, if one has to add/delete at least εn2 edges in G in order to turn it into a graph
which has property P.

As promised in the introduction, let us show that core(G) is well defined. Let K be a smallest
subgraph of G to which there is a homomorphism from G. Observe that every homomorphism ϕ
from K to itself is surjective and hence bijective; indeed, otherwise one could compose ϕ with a
homomorphism from G to K to obtain a homomorphism from G to a proper subgraph of K, in
contradiction to the minimality of K. It follows that every homomorphism from K to itself is an
isomorphism. Since a homomorphism must also preserve the vertex order, it follows that the only
homomorphism from K to itself is the identity map. An ordered graph K with the property that
every homomorphism from K to itself is the identity will be called a core. Note that K is a core if
and only if core(K) = K.

If K1,K2 are two smallest subgraphs of G to which there are homomorphisms ϕi : G→ Ki, then
ϕ1|V (K2) and ϕ2|V (K1) are both surjective, which implies that K1 and K2 are isomorphic.

2 Polynomial bounds for the induced-D-removal lemma

In this section we prove the positive direction of Theorem 1. By symmetry with respect to
complementation and order reversal, it is enough to prove the following:

Theorem 4. There exists c > 0 such that the following holds. Let G be an n-vertex ordered graph
which is ε-far from being induced D-free. Then G contains at least Ω(εc) · n3 induced copies of D.

We prepare the proof with a few lemmas. One of our key lemmas shows that an ordered graph
with few induced copies of D can be partitioned into a constant number of almost-cliques and one
additional set which contains few edges. In order to prove this, we first show that if G is a dense
ordered graph containing few copies of D, then G contains a very dense subset of linear size.

Lemma 2.1. Let G be an n-vertex ordered graph and let γ, δ > 0. If e(G) ≥ γn2 and G contains at
most δγ3n3/32 induced copies of D, then there exists X ⊆ V (G) with |X| ≥ γn/2 and d(X) ≥ 1− δ.

Proof. For each v ∈ V (G), let Nv be the forward neighbourhood of v, namely, the set of vertices
u > v such that {u, v} ∈ E(G). Since

∑
v∈V (G) |Nv| = e(G) ≥ γn2, there is a set U of at least

γn/2 vertices v with |Nv| ≥ γn/2. If there exists v ∈ U such that d(Nv) ≥ 1− δ, then we are done.
Otherwise, each v ∈ U is the first vertex in at least δ

(|Nv |
2

)
≥ δ
(
γn/2

2

)
≥ δγ2n2/16 induced copies of

D. Altogether, this gives γn/2 · δγ2n2/16 = δγ3n3/32 induced copies of D, a contradiction. �
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Lemma 2.2. Let G be an n-vertex ordered graph and let γ, δ > 0. If G contains at most δγ3n3/32
induced copies of D, then there is a partition V (G) = X1∪· · ·∪Xm∪Y with the following properties:

1. |Xi| ≥ γn/2 and d(Xi) ≥ 1− δ for i = 1, . . . ,m.

2. e(Y ) ≤ γn2.

Proof. Set V0 = V (G). For i ≥ 0, if e(Vi) ≤ γn2 then set Y = Vi and stop. Otherwise, set
β := γn2/|Vi|2 and apply Lemma 2.1 to G[Vi] with parameters β (instead of γ) and δ. Note that
δβ3|Vi|3/32 = δγ3n6/(32|Vi|3) ≥ δγ3n3/32. Hence, the number of induced copies of D in G[Vi]
is at most δβ3|Vi|3/32, as required by Lemma 2.1. Therefore, there is a set Xi+1 ⊆ Vi satisfying

d(Xi+1) ≥ 1− δ and |Xi+1| ≥ β|Vi|/2 = γn2

2|Vi| ≥ γn/2. Set Vi+1 = Vi \Xi+1. This process eventually
terminates, resulting in the desired sequence X1, . . . , Xm, Y . �

Let G be an ordered graph. For disjoint A,B ⊆ V (G), we write A < B to mean that a < b for
all a ∈ A, b ∈ B. A subset A′ ⊆ A is called a suffix of A if for all a1, a2 ∈ A, if a1 ∈ A′ and a1 < a2

then a2 ∈ A′. Similarly, A′ is a prefix of A if for all a1, a2 ∈ A, if a2 ∈ A′ and a1 < a2 then a1 ∈ A′.
We now describe the structure of an induced D-free graph consisting of two cliques. Lemma 2.3

handles the case when one of the cliques precedes the other one. Lemma 2.4 then takes care of the
general case.

Lemma 2.3. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques with A < B. Then
G[A ∪B] is induced D-free if and only if for every b ∈ B, NA(b) is a suffix of A.

Proof. Using that A and B are cliques, if G contains three vertices x < y < z such that
{x, y}, {x, z} ∈ E(G) and {y, z} 6∈ E(G), then we must have x, y ∈ A and z ∈ B. For a given
z, the existence of such x and y is equivalent to the statement that NA(z) is not a suffix in A. �

Lemma 2.4. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques. Then G[A ∪B] is
induced D-free if and only if there is a partition V (G) = I ∪ J into intervals with I < J , such that
the following holds:

1. The bipartite graph between A ∩ I and B ∩ I is empty.

2. The bipartite graph between A ∩ J and B ∩ J is complete, i.e. (A ∪B) ∩ J is a clique.

3. For every b ∈ B ∩ J , NA∩I(b) is a suffix of A ∩ I.

4. For every a ∈ A ∩ J , NB∩I(a) is a suffix of B ∩ I.

Proof. We first check that if there is a partition V (G) = I∪J satisfying 1-4 then G[A∪B] is induced
D-free. Suppose that x < y < z form an induced copy of D. Without loss of generality, suppose
that x ∈ A. If x ∈ J then y, z ∈ J , but (A∪B)∩ J is a clique, contradicting that {y, z} /∈ E(G). So
we must have x ∈ I. If z ∈ I, then y ∈ I, but I ∩ (A ∪B) is the disjoint union of cliques by item 1,
so G[I ∩ (A ∪ B)] cannot contain an induced copy of D. Hence, z ∈ J . But then y ∈ I by item 2.
This also implies y ∈ A, as otherwise {x, y} is a non-edge by item 1. It now follows that z ∈ B, as
{y, z} is a non-edge and A is a clique. However, this setup runs into a contradiction with item 3, so
x, y, z cannot induce a copy of D.

Now we show that if G[A∪B] is induced D-free then there is a partition V (G) = I ∪ J satisfying
1-4. Take J to be a maximal suffix of V (G) with the property that the bipartite graph between A∩J
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and B ∩ J is complete. So item 2 holds by definition. If J = V (G) then we are done. Otherwise,
setting I = V (G)\J , we show that the bipartite graph between A∩I and B∩I is empty. Let x be the
largest element of (A∪B)∩ I, and suppose without loss of generality that x ∈ A. By the maximality
of J , there is y ∈ B ∩ J with {x, y} /∈ E(G). Suppose, for contradiction, that {a, b} ∈ E(G) for
some a ∈ A ∩ I, b ∈ B ∩ I. Assume first that a < b. If {x, b} /∈ E(G) then a, b, x form an induced
copy of D, and if {x, b} ∈ E(G) then b, x, y form an induced copy of D. Assume now that b < a.
If {a, y} /∈ E(G) then b, a, y form an induced copy of D, and if {a, y} ∈ E(G) then a, x, y form an
induced copy of D. This proves item 1. Items 3-4 follow from Lemma 2.3. �

We now prove the removal versions of Lemmas 2.3 and 2.4.

Lemma 2.5. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques with A < B. For
γ > 0, if G[A ∪ B] contains at most γ2|A|2|B|/4 induced copies of D, then G[A ∪ B] can be made
induced D-free by adding/deleting at most γ|A||B| edges between A and B.

Proof. Fix any b ∈ B. If b has at most γ|A|/2 non-neighbours in A, then add all edges between b
and A. Suppose now that b has at least γ|A|/2 non-neighbours in A, and let Ab be a suffix of A such
that b has exactly γ|A|/2 non-neighbours in Ab. Observe that if a ∈ A \ Ab is a neighbour of b and
a′ ∈ Ab is a non-neighbour of b, then a, a′, b span an induced D. So, letting db := |NA\Ab

(b)|, we see
that b participates in at least db · γ|A|/2 induced copies of D of this form. Summing over all b ∈ B,
we get γ|A|/2 ·

∑
b∈B db induced copies of D. Hence, by assumption, γ|A|/2 ·

∑
b∈B db ≤ γ2|A|2|B|/4

and so
∑

b∈B db ≤ γ|A||B|/2. For each b ∈ B, add all edges between b and Ab and delete all edges
between b and A \Ab. This way we make at most γ|A|/2 + db edge changes for each b ∈ B, resulting
in a total of at most γ|A||B|/2 +

∑
b∈B db ≤ γ|A||B| edge changes. By construction, after these

changes NA(b) is a suffix of A for every b ∈ B. Hence, G[A∪B] is induced D-free by Lemma 2.3. �

Lemma 2.6. Let G be an ordered graph and let A,B ⊆ V (G) be disjoint cliques. Let γ > 0 and

suppose that |A|, |B| ≥ 8/γ. If G[A ∪ B] contains at most γ2

64 |A||B|min{|A|, |B|} induced copies of
D, then G[A ∪ B] can be made induced D-free by adding/deleting at most γ|A||B| edges between A
and B.

Proof. If ē(A,B) ≤ γ|A||B| then add all edges between A and B to make G[A ∪ B] a clique and
hence induced D-free. Suppose now that ē(A,B) > γ|A||B|. Let J be the minimal suffix of V (G)
with the property that ē(A ∩ J,B ∩ J) ≥ γ|A||B|/8. By minimality,

ē(A ∩ J,B ∩ J) ≤ γ|A||B|/8 + max{|A|, |B|} ≤ γ|A||B|/4.

Let I = V (G)\J . If {a1, b1} ∈ E(A∩ I,B∩ I) and {a2, b2} ∈ Ē(A∩J,B∩J), then G[{a1, a2, b1, b2}]
contains an induced copy of D; this follows from Lemma 2.4 applied to {a1, a2}, {b1, b2}. Each
induced copy of D is counted at most max{|A|, |B|} times this way. Hence, G contains at least

e(A ∩ I,B ∩ I) · ē(A ∩ J,B ∩ J)

max{|A|, |B|}
≥ e(A ∩ I,B ∩ I) · γ|A||B|

8 max{|A|, |B|}

induced copies of G. Therefore, by our assumption on the number of induced copies of D, we get

e(A ∩ I,B ∩ I) ≤ γ|A||B|/8.

Make the bipartite graph between A∩ J and B ∩ J complete, and the bipartite graph between A∩ I
and B ∩ I empty. This requires at most e(A ∩ I,B ∩ I) + ē(A ∩ J,B ∩ J) ≤ γ|A||B|/2 edge changes
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altogether. Let s be the number of edge changes required to make G[(A ∩ I) ∪ (B ∩ J)] induced
D-free. By Lemma 2.5, applied to the two cliques A ∩ I < B ∩ J and with parameter

β :=
s

|A ∩ I||B ∩ J |

instead of γ, there are at least

β2

4
· |A ∩ I|2 · |B ∩ J | = s2

4|B ∩ J |

induced copies of D in G. By assumption, s2

4|B∩J | ≤ γ2|A|2|B|/64, and hence s ≤ γ|A||B|/4.

Therefore, G[(A ∩ I) ∪ (B ∩ J)] can be made induced D-free by adding/deleting at most γ|A||B|/4
edges. Symmetrically, the same is true for G[(B ∩ I) ∪ (A ∩ J)]. With these changes and the ones
done in the previous step, the total number of edge additions/deletions is at most γ|A||B|. After the
changes, items 1-4 of Lemma 2.4 are satisfied, and hence G[A ∪B] is induced D-free. �

For an ordered set V and disjoint subsets A1, . . . , Ak ⊆ V , an (A1, . . . , Ak)-sequence is a sequence
v1 < v2 < · · · < vk of elements of V with vi ∈ Ai. The next lemma we need is a removal lemma for
ordered sequences, which follows from the main result of [RR21].

Lemma 2.7. Let k ≥ 1, then there exists ck > 0 such that the following holds. Let V be an
ordered set of size n and let A1, . . . , Ak ⊆ V be disjoint subsets. For ε > 0, if the number of
(A1, . . . , Ak)-sequences is at most ckε

knk, then there is a set S ⊆ V , |S| ≤ εn, which intersects every
(A1, . . . , Ak)-sequence.

What was actually proved in [RR21] is that if a sample of q = O(k/ε) elements of V , taken
uniformly at random and independently, contains no (A1, . . . , Ak) sequence with probability larger
than 1

3 , then there is a set S ⊆ V , |S| ≤ εn, which intersects every (A1, . . . , Ak)-sequence. Observe
that if the number of (A1, . . . , Ak)-sequences is N , then the probability that such a sample contains
an (A1, . . . , Ak)-sequence is at most (q/n)kN . Hence, if N ≤ ckεknk then this probability is less than
2/3 (with an appropriate choice of ck), and Lemma 2.7 follows.

We now move on to the following lemma, which is one of the main ingredients in the proof of
Theorem 4.

Lemma 2.8. Let c = c3/64, where c3 is the constant defined in Lemma 2.7. Let G be an n-vertex
ordered graph with a vertex-partition V (G) = X1 ∪ · · · ∪ Xm such that X1, . . . , Xm are cliques and
G[Xi ∪ Xj ] is induced D-free for all i < j. Let γ > 0 and suppose that G has at most cγ6n3/m15

induced copies of D. Then there is a set S ⊆ V (G), |S| ≤ γn, and a partition of V (G) \ S into
intervals I1, . . . , It, t ≤ 2m3, such that the following holds: for every 1 ≤ j ≤ t, G[Ij ] is a disjoint
union of cliques, each of the form Ij ∩ (

⋃
i∈M Xi) for some M ⊆ [m].

Proof. For each 1 ≤ i < j ≤ m, Lemma 2.4 states that there is a partition V (G) = Ii,j ∪ Ji,j into
intervals such that the bipartite graph between Xi∩Ii,j and Xj∩Ii,j is empty, and the bipartite graph
between Xi∩Ji,j and Xj ∩Ji,j is complete. Let I ′1, . . . , I

′
s be the common refinement of the partitions

{Ii,j , Ji,j : 1 ≤ i < j ≤ m}. Then s ≤
(
m
2

)
+ 1 < m2/2, as the right endpoints of the intervals Ii,j

together with the last vertex of V (G) are the right endpoints of the intervals I ′1, . . . , I
′
s. Observe that

for each 1 ≤ ` ≤ s and 1 ≤ i < j ≤ m, the bipartite graph between Xi ∩ I ′` and Xj ∩ I ′` is either
complete or empty, because I ′` ⊆ Ii,j or I ′` ⊆ Ji,j .
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Fix any 1 ≤ ` ≤ s. If |I ′`| < γn/m2 then put all vertices of I ′` into S. This puts at most s·γn/m2 ≤
γn/2 vertices in S altogether. Suppose now that |I ′`| ≥ γn/m2. We run the following process. If there
are distinct 1 ≤ i1, i2, i3 ≤ m such that the number of (Xi1 , Xi2 , Xi3)-sequences inside I ′` is at least 1
and at most c3( γ

2m3 )3|I ′`|3, then use Lemma 2.7 to delete γ
2m3 · |I ′`| vertices from I ′` and thus destroy

all (Xi1 , Xi2 , Xi3)-sequences in I ′`. Add the deleted vertices to S and update I ′`. Let I ′′` ⊆ I ′` be the
interval at the end of the process. Note that each triple i1, i2, i3 can only cause vertex-deletion once
(because following this vertex-deletion, there are no more (Xi1 , Xi2 , Xi3)-sequences in I ′`). Hence,
the total number of deleted vertices is at most m3 · γ

2m3 · |I ′`| =
γ
2 |I
′
`|. So |I ′′` | ≥ (1− γ

2 )|I ′`| ≥ |I ′`|/2 ≥
γn/(2m2). Doing this step for every 1 ≤ i ≤ ` adds a total of at most γ/2 ·

∑s
`=1 |I ′`| ≤ γn/2 vertices

to S. Thus, the total number of vertices in S at this point is at most γn.

Observe that after this step, for every triple of distinct 1 ≤ i1, i2, i3 ≤ m, either there are no
(Xi1 , Xi2 , Xi3)-sequences inside I ′′` , or the number of these sequences is at least

c3

( γ

2m3

)3
|I ′′` |3 ≥ c3

( γ

2m3

)3
·
( γn

2m2

)3
= cγ6n3/m15.

For each 1 ≤ i ≤ m, let J `i be the minimal subinterval of I ′′` which contains the set Xi ∩ I ′′` . By
minimality, the first and last elements of J `i belong to Xi. Now take the common refinement of the
intervals J `1, . . . , J

`
m, giving a partition of I ′′` into at most 2m + 1 intervals. Doing this for every

1 ≤ ` ≤ s, we get a partition I1, . . . , It of V (G) \ S into t ≤ s · (2m + 1) ≤ m2/2 · (2m + 1) ≤ 2m3

intervals. For 1 ≤ ` ≤ s and 1 ≤ j ≤ t with Ij ⊆ I ′′` , observe that if Xi ∩ Ij 6= ∅, then Ij ⊆ J `i , which
means that there is an element of Xi ∩ I ′′` which is smaller or equal to the first element of Ij (indeed,
the first element of J `i satisfies this), as well as an element of Xi ∩ I ′′` which is bigger or equal to the
last element of Ij (indeed, the last element of J `i satisfies this).

Let us show that I1, . . . , It have the property stated in the lemma. Fix any 1 ≤ j ≤ t. By
construction, there is 1 ≤ ` ≤ s such that Ij is a subinterval of I ′′` . Recall that for all 1 ≤ i1 6= i2 ≤ m,
the bipartite graph between Xi1 ∩ I ′′` and Xi2 ∩ I ′′` is either complete or empty.

Note that if G[Ij ] is not a disjoint union of cliques, then there are distinct 1 ≤ i1, i2, i3 ≤ m such
that Xi1 , Xi2 , Xi3 all intersect Ij , and the bipartite graphs (Xi1 ∩ Ij , Xi2 ∩ Ij) and (Xi1 ∩ Ij , Xi3 ∩ Ij)
are complete, and the bipartite graph (Xi2 ∩ Ij , Xi3 ∩ Ij) is empty. But then we also have that the
bipartite graphs (Xi1 ∩ I ′′` , Xi2 ∩ I ′′` ) and (Xi1 ∩ I ′′` , Xi3 ∩ I ′′` ) are complete, and the bipartite graph
(Xi2 ∩ I ′′` , Xi3 ∩ I ′′` ) is empty. Since Xi1 intersects Ij , there exists xi1 ∈ Xi1 ∩ I ′′` such that xi1 is
smaller or equal to the first element of Ij . Similarly, since Xi2 and Xi3 intersect Ij , there exist
xi2 ∈ Xi2 ∩ I ′′` and xi3 ∈ Xi3 ∩ I ′′` such that xi2 , xi3 are bigger or equal to the last element of Ij .
Without loss of generality, suppose that xi2 < xi3 . Then (xi1 , xi2 , xi3) is a (Xi1 , Xi2 , Xi3)-sequence
contained in I ′′` . By construction, there are at least cγ6n3/m15 such sequences. Now observe that
each such sequence spans an induced copy of D, contradicting the assumption of the lemma. This
completes the proof. �

In the next lemma we prove a D-removal lemma for graphs which can be partitioned into two
intervals, each of which induces a disjoint union of cliques. An important feature is that edge changes
are only made between the intervals, not inside them, so that each interval remains a disjoint union
of cliques after the changes.

Lemma 2.9. Let G be an ordered graph, let I, J ⊆ V (G) be disjoint intervals with I < J , and
suppose that each of the graphs G[I], G[J ] is the disjoint union of at most m cliques. Let γ > 0, and

suppose that G[I ∪ J ] contains at most γ15

240m9 |I||J |min{|I|, |J |} induced copies of D. Then G[I ∪ J ]
can be made induced D-free by adding/deleting at most γ|I||J | edges between I and J .
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Proof. Suppose that G[I] is the disjoint union of cliques A1, . . . , Ak and G[J ] is the disjoint union
of cliques B1, . . . , B`. By assumption, k, ` ≤ m. We will make G[I ∪ J ] induced D-free in two steps.

Step 1. Set

δ :=
γ6

216m3
.

Fix i ∈ [k] and j ∈ [`] with |Ai| ≥ γ|I|
4m and |Bj | ≥ γ|J |

4m . Then δ2|Ai|2|Bj |/4 ≥ γ15

240m9 |I|2|J |. By
assumption, the number of induced copies of D in G[Ai∪Bj ] is at most δ2|Ai|2|Bj |/4. Apply Lemma
2.5 to make G[Ai ∪ Bj ] induced D-free with at most δ|Ai||Bj | edge changes. By Lemma 2.3, the
neighbourhood in Ai of each vertex in Bj is now a suffix of Ai. Performing step 1 for all pairs
i ∈ [k], j ∈ [`] requires at most δ|I||J | edge changes altogether.

Step 2. For every i ∈ [k] and j ∈ [`], delete all edges between Ai and Bj if either e(Ai, Bj) ≤
γ|Ai||Bj |/4 or |Ai| ≤ γ|I|

4m or |Bj | ≤ γ|J |
4m . This step requires at most γ|I||J |/4+2m· γ|I||J |4m = 3γ|I||J |/4

edge changes overall. So together with step 1, the total number of edge changes is at most γ|I||J |.

We claim that after step 2, G[I ∪ J ] is induced D-free. Suppose that this is not the case. Note
that G[I] and G[J ] are induced D-free because each is a disjoint union of cliques. If an induced copy
of D has two vertices in I and one in J , then it must be contained in Ai ∪ Bj for some i, j, since
A1, . . . , Ak are cliques with no edges between them. However, in steps 1 and 2 we made sure that
G[Ai ∪Bj ] is induced D-free for all i, j, so this is impossible. Hence, the induced D-copy must be of
the form a, b, b′ with a ∈ Ai, b ∈ Bj and b′ ∈ Bj′ for some i ∈ [k], j, j′ ∈ [`]. Since a is adjacent to
b and b′, we did not make any edge changes in the bipartite graphs (Ai, Bj) and (Ai, Bj′) in step 2.
Hence, it must be the case that

|Ai| ≥
γ|I|
4m

, |Bj |, |Bj′ | ≥
γ|J |
4m

(1)

and

e(Ai, Bj) ≥
γ|Ai||Bj |

4
, e(Ai, Bj′) ≥

γ|Ai||Bj′ |
4

. (2)

Since b and b′ are not adjacent, j 6= j′. There are no edges between Bj and Bj′ . Recall that the
neighbourhood in Ai of each vertex in Bj ∪Bj′ is a suffix of Ai. This means that if a1, a2 ∈ Ai and
a1 < a2, then NBj (a1) ⊆ NBj (a2) and NBj′ (a1) ⊆ NBj′ (a2). Let A′ be the set of the last γ|Ai|/8
elements of Ai. Due to (2), there exist at least γ|Ai|/8 vertices a′ ∈ A with |NBj (a

′)| ≥ γ|Bj |/8.
Since NBj (a1) ⊆ NBj (a2) for a1 < a2, we must have that |NBj (a

′)| ≥ γ|Bj |/8 for every a′ ∈ A′.
Similarly, |NBj′ (a

′)| ≥ γ|Bj′ |/8 for every a′ ∈ A′. Every a′ ∈ A forms an induced copy of D with
every pair in NBj (a

′)×NBj′ (a
′). This gives a total of at least

|A′| · γ|Bj |
8
·
γ|Bj′ |

8
=
γ3

29
· |Ai| · |Bj | · |Bj′ | ≥

γ3

29
· γ|I|

4m
·
(
γ|J |
4m

)2

=
γ6

215m3
|I||J |2 = 2δ|I||J |2

induced copies of D, each having one vertex in I and two in J . The at most δ|I||J | edges we
added/deleted in step 1 can participate in at most δ|I||J |2 of these copies. Hence, at least δ|I||J |2
must be present in the original graph, a contradiction to the assumption of the lemma. �

In the following lemma we show that under certain conditions, if there are few induced
D-copies of a certain type, then they can be destroyed by deleting few vertices (rather than by
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adding/deleting edges). This is useful because vertex deletion, as opposed to edge changes, cannot
create new induced copies.

Lemma 2.10. Let G be an ordered graph and let A,B,C ⊆ V (G) be disjoint cliques with A < B < C,
whose union is V (G). Suppose that G[A∪B], G[A∪C] and G[B∪C] are induced D-free. For s ≥ 1,
if G[A ∪ B ∪ C] has at most s3/12 induced copies of D, then there is a set S of at most 3s vertices
whose deletion destroys every induced copy of D in G[A ∪B ∪ C].

Proof. Clearly, if G contains a copy of D with vertices a < b < c, then a ∈ A, b ∈ B, c ∈ C. Let
(a1, b1, c1), . . . , (ar, br, cr) be a maximum collection of vertex-disjoint induced copies of D with ai ∈ A,
bi ∈ B, ci ∈ C (i = 1, . . . , r). It is enough to show that r ≤ s, because then S = {ai, bi, ci : i ∈ [r]}
suffices. Assume without loss of generality that a1 < · · · < ar. By Lemma 2.3, the neighbourhood of
each vertex of B ∪ C in A is a suffix of A (as G[A ∪B] and G[A ∪ C] are induced D-free). For each
1 ≤ i ≤ r, ai is adjacent to bi and ci. Hence, for each pair of indices 1 ≤ j ≤ i ≤ r, ai is adjacent to
bj and cj .

For each 1 ≤ i ≤ r, {bi, ci} /∈ E(G). This implies that for every 1 ≤ j < k ≤ r, at least one of the
pairs {bj , ck}, {cj , bk} must be a non-edge. Indeed, otherwise bj , cj , bk, ck span an induced 4-cycle,
which must contain an induced copy of D, contradicting the assumption that G[B ∪ C] is induced
D-free. We have shown that for every triple of indices 1 ≤ j < k ≤ i ≤ r, ai forms an induced copy
of D with one of the pairs {bj , ck} or {cj , bk}. This gives a total of at least

∑r
i=1

(
i
2

)
=
(
r+1

3

)
≥ r3/12

induced copies of D. By the assumption of the lemma, r ≤ s, as required. �

In the following lemma we prove a D-removal statement in the following setting. Suppose that
V (G) = X ∪ Y , Y is independent, and G[X] is induced D-free. Then one can efficiently destroy the
remaining induced D-copies by deleting edges between X and Y .

Lemma 2.11. Let G be an ordered graph and let V (G) = X ∪ Y be a vertex partition such that Y
is an independent set and G[X] is induced D-free. Let γ > 0 with |Y | ≥ 4/γ. Suppose that G has at

most γ2

32 |X||Y |min{|X|, |Y |} induced copies of D. Then G can be made induced D-free by deleting
at most γ|X||Y | edges between X and Y .

Proof. We delete edges in two steps. For each x ∈ X, let dx be the number of y ∈ Y , y > x, such
that {x, y} ∈ E(G). Let e :=

∑
x∈X dx be the number of edges in which the first vertex is in X and

the second in Y . We claim that e ≤ γ|X||Y |/2. If e ≤ 2|X| then this holds because |Y | ≥ 4/γ by
assumption. Suppose that e ≥ 2|X|. Observe that as Y is an independent set, each x participates
in
(
dx
2

)
induced copies of D, in which the other two vertices are from Y . By using our assumption

on the one hand and Jensen’s inequality on the other, we get

γ2

32
|X||Y |2 ≥

∑
x∈X

(
dx
2

)
≥ |X|

(
e/|X|

2

)
≥ e2

4|X|
,

where the last inequality uses e ≥ 2|X|. So indeed e ≤ γ|X||Y |/2. Delete all edges in which the first
vertex is in X and the second in Y . This destroys all induced D-copies in which the first vertex is
in X (since G[X] is induced D-free by assumption).

Next, for each y ∈ Y , let Ny ⊆ X be the set of all x ∈ X, x > y, with {x, y} ∈ E(G). Let
My be a largest matching of non-edges inside Ny. Observe that for every {x1, x2}, {x3, x4} ∈ My,
at least one of the pairs {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4} must be a non-edge. Indeed, otherwise
x1, x2, x3, x4 span an induced 4-cycle, which must contain an induced copy of D, in contradiction
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to the assumption that G[X] is induced D-free. Note that y forms an induced D-copy with every

non-edge inside Ny. Hence, y is part of at least |My|+
(|My |

2

)
≥ |My |2

2 induced D-copies, in which the
other two vertices are from X. Using our assumption and Jensen’s inequality, we get

γ2

32
|X|2|Y | ≥

∑
y∈Y

|My|2

2
≥ |Y |

2
·

 1

|Y |
∑
y∈Y
|My|

2

=

(∑
y∈Y |My|

)2

2|Y |
,

Hence
∑

y∈Y |My| ≤ γ|X||Y |/4. For each y ∈ Y , delete the edges between y and x1, x2 for every
{x1, x2} ∈My. By the choice of My, after this step the set {x ∈ X : x > y, {x, y} ∈ E(G)} is a clique.
Hence, this step destroys all induced D-copies in which the first vertex is in Y (recall that Y is an
independent set). The number of edge deletions in this second step is 2

∑
y∈Y |My| ≤ γ|X||Y |/2.

Hence, the total number of edges deleted is at most γ|X||Y |. �

We are finally in a position to prove Theorem 4.

Proof of Theorem 4. We may and will assume that n is larger than some suitable polynomial
function of 1/ε. Set

ε1 :=
ε5

1000
,

ε2 :=
ε3 · ε36

1

2100
,

ε3 := min

{
c · ε6 · ε15

1

240
,
ε18

1 · ε18
2

2100

}
,

and

δ :=
ε2

3 · ε3
1

512
.

Here, c is the constant from Lemma 2.8. We show that if G contains less than N := δε3
1n

3/32 induced
copies of D, then we can make G induced D-free by adding/deleting at most εn2 edges.

First, apply Lemma 2.2 with parameters γ = ε1 and δ. As G contains less than δε3
1n

3/32 induced
copies of D, there exists a partition V (G) = X1 ∪ · · · ∪Xm ∪ Y satisfying the following properties.

1. |Xi| ≥ ε1n/2 and d(Xi) ≥ 1− δ for i ∈ [m],

2. e(Y ) ≤ ε1n
2.

Note that m ≤ 2/ε1. Let X = X1 ∪ · · · ∪ Xm. If X = ∅, then we can make G induced D-free by
deleting all the edges, which is at most ε1n

2 ≤ εn2 changes. So we can assume that X 6= ∅, which
implies that |X| ≥ ε1n/2. We will modify G in 6 steps.

Step 1. Make X1, . . . , Xm cliques and Y an independent set. This requires at most δ ·
∑m

i=1

(|Xi|
2

)
≤

δ
(|X|

2

)
≤ δ|X|2/2 edge changes inside X := X1 ∪ · · · ∪ Xm, and at most ε1n

2 edge changes inside
Y . Set K1 := δ|X|2/2 + ε1n

2. Denote the resulting graph by G1. Note that every modified edge
participates in at most n induced copies of D, and in at most |X| induced copies of D which are
contained in X. Hence, G1[X] contains at most M1 = N + δ|X|3/2 < δ|X|3 induced copies of D.
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Step 2. For every 1 ≤ i < j ≤ m, make G1[Xi ∪Xj ] induced D-free. By Lemma 2.6, this can be
done by at most ε3|Xi||Xj | edge changes. Indeed, otherwise G1[Xi ∪Xj ] contains at least

ε2
3

64
|Xi||Xj |min{|Xi|, |Xj |} ≥

ε2
3

64
·
(ε1n

2

)3
= δn3

induced copies of D, contradiction. Executing these changes for all pairs 1 ≤ i < j ≤ m requires
adding/deleting at most ε3

(|X|
2

)
≤ ε3n

2/2 =: K2 edges altogether. Let G2 be the resulting graph.
Note that G2[X] contains at most M2 = M1 + ε3|X|3/2 < ε3|X|3 induced copies of D.

Let us now apply Lemma 2.8 to G2[X] with parameter γ = ε/12. Note that

c
( ε

12

)6 |X|3

m15
≥ c

( ε
12

)6 |X|3

(2/ε1)15
≥ ε3|X|3 > M2.

Hence, G2[X] contains at most c
(
ε
12

)6 |X|3
m15 induced copies of D, meaning that the condition of Lemma

2.8 is satisfied. Therefore, there is a set S ⊆ X of size at most εn/12 and a partition of X \ S into
t ≤ 2m3 ≤ 16/ε3

1 intervals I1, . . . , It such that for every j ∈ [t], G2[Ij ] is the disjoint union of cliques,
each clique of the form Ij ∩ (

⋃
i∈M Xi) for some M ⊂ [m]. It follows that G2[Ij ] is induced D-free.

From this point on, we will make no edge changes inside the sets I1, . . . , It, so this property will
continue to hold.

Step 3. We will make G2[Ii ∪ Ij ] induced D-free for every 1 ≤ i < j ≤ t, as follows. If |Ii| or |Ij | is
smaller than ε2|X|

4t , then delete all edges between Ii and Ij . Doing this for all such pairs 1 ≤ i < j ≤ t
requires at most t · ε2|X|4t · |X| = ε2|X|2

4 edge changes altogether. Now fix a pair 1 ≤ i < j ≤ t with

|Ii|, |Ij | ≥ ε2|X|
4t . Apply Lemma 2.9 to Ii, Ij with parameter γ = ε2. We have

ε15
2

240m9
|Ii||Ij |min{|Ii|, |Ij |} ≥

ε15
2

240m9

(
ε2|X|

4t

)3

≥ ε18
2

240(2/ε1)9(64/ε3
1)3
|X|3 ≥ ε3|X|3 > M2

so the number of induced copies of D in G[Ii ∪ Ij ] satisfies the required condition of the lemma.
Therefore, we can make G2[Ii∪Ij ] induced D-free by adding/deleting at most ε2|Ii||Ij | edges between

Ii and Ij . Altogether, in step 3 we make at most ε2|X|2/4+ε2
∑

1≤i<j≤t |Ii||Ij | ≤ ε2|X|2/4+ε2

(|X|
2

)
≤

3ε2|X|2/4 =: K3 edge changes. Denote the resulting graph by G3. Note that the number of induced
copies of D in G3[X] is at most M3 = M2 + 3ε2|X|3/4 < ε2|X|3.

Step 4. Fix any 1 ≤ j1 < j2 < j3 ≤ t and 1 ≤ i1, i2, i3 ≤ m. Apply Lemma 2.10 to the cliques
Xi1 ∩ Ij1 , Xi2 ∩ Ij2 , Xi3 ∩ Ij3 with parameter s = εn

3m3t3
. The number of induced copies of D in

G3[(Xi1 ∩ Ij1) ∪ (Xi2 ∩ Ij2) ∪ (Xi3 ∩ Ij3)] is at most M3, and we have

s3

12
=

1

12
·
( εn

3m3t3

)3
≥ 1

12
·
(

εn

3 · (2/ε1)3(16/ε3
1)3

)3

> ε2n
3 > M3.

So the condition in Lemma 2.10 is satisfied. Therefore, there is a set Sj1,j2,j3,i1,i2,i3 of size 3s = εn
m3t3

which intersects each such induced D-copy. Add the elements of Sj1,j2,j3,i1,i2,i3 to S. Doing this for
every 1 ≤ j1 < j2 < j3 ≤ t and 1 ≤ i1, i2, i3 ≤ m increases the size of S by at most

(
t
3

)
m3· εn

m3t3
≤ εn/6.

Hence, after this step we have |S| ≤ εn/12 + εn/6 = εn/4. Observe that after step 4, there are no
induced copies of D in G3[X \ S].
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Step 5. Delete all edges touching the vertices in S. This requires at most |S|n ≤ εn2/4 =: K5

edge changes. Note that if |Y | ≤ εn/2, then by deleting all edges touching Y , of which there are at
most |Y |n ≤ εn2/2, we make the graph induced D-free. Since the total number of edge changes in
all previous steps is at most K1 +K2 +K3 +K5 < 2ε1n

2 + εn2/4 ≤ εn2/2, this would contradict the
assumption that G is ε-far from being induced D-free. Hence, |Y | ≥ εn/2. By similar reasoning, we
may assume that |X \S| ≥ εn/2, since otherwise we may delete all the at most εn2/2 edges touching
X \ S and thus make the graph empty (recall that G3[Y ] is an empty graph).

Step 6. Note that G3[(X \S)∪Y ] contains at most N + (K1 +K2 +K3)n ≤ 2ε1n
3 induced copies

of D. We have
ε2

32
· |X \ S| · |Y | ·min{|X \ S|, |Y |} ≥ ε2

32

(εn
2

)3
> 2ε1n

3,

hence, we can apply Lemma 2.11 with parameter γ = ε to make G3[(X \ S) ∪ Y ] induced D-free by
changing at most ε|X \ S||Y | ≤ εn2/4 =: K6 edges between X \ S and Y . This makes the entire
graph induced D-free. The overall number of edge changes in all steps is at most

K1 +K2 +K3 +K5 +K6 < εn2,

contradicting the assumption thatG is ε-far from being inducedD-free. This completes the proof. �

3 Lower bounds

In this section we prove the “only if” part of Theorem 1, as well as Theorem 2. Two subgraphs of
a graph G will be called pair-disjoint if they share at most one vertex. We will use the obvious fact
that if G contains a collection of εn2 pairwise pair-disjoint (induced) copies of F , then G is ε-far
from being (induced) F -free. We need the following simple claim.

Lemma 3.1. For k ≥ 2 and r ≥ 2k, there is a collection R ⊆ [r]k, |R| ≥ r2/4, such that any two
k-tuples in R coincide on at most one coordinate.

Proof. Let p be a prime such that r/2 < p ≤ r, which exists by Bertrand’s postulate. For a, b ∈ Fp,
let xa,b ∈ Fkp be the k-tuple xa,b(i) = a + (i − 1)b, i = 1, . . . , k. For (a1, b1) 6= (a2, b2), there is at
most one 1 ≤ i ≤ k with xa1,b1(i) = xa2,b2(i). Indeed, if there are two such 1 ≤ i 6= j ≤ k, then
a1 + (i− 1)b1 = a2 + (i− 1)b2 and a1 + (j − 1)b1 = a2 + (j − 1)b2. Solving this system of equations
gives a1 = a2 and b1 = b2, a contradiction. Here we use the fact that i 6≡ j (mod p), which follows
from p > r/2 ≥ k. �

We will adapt the constructions in [Alo02] and [AS06] to ordered graphs. These constructions
use generalizations of Behrend’s example [Beh46] of large sets of integers with no 3-term arithmetic
progressions, see Lemma 3.1 in [Alo02] and Lemma 4.1 in [AS06]. We will use the following common
generalization of these two lemmas.

Lemma 3.2. For every k ≥ 3 and m, there is S ⊆ [m] of size at least m · e−ck
√

logm such that
for every 3 ≤ t ≤ k and for every choice of integers p1, . . . , pt−1 ≥ 1 with p1 + · · · + pt−1 ≤ k, if
s1, . . . , st ∈ S satisfy p1s1 + · · ·+ pt−1st−1 = (p1 + · · ·+ pt−1)st then s1 = · · · = st.

The proof of Lemma 3.2 is very similar to the proofs of the aforementioned lemmas from [Alo02,
AS06] (which themselves closely follow Behrend’s original argument). The proof is thus omitted.
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The proof of the “only if” part of Theorem 1 involves a case analysis over several small ordered
graphs, each of which needs a slightly different variant of a construction from [Alo02]. To avoid
repetitions, we now introduce a general setting in which this construction can be applied. A pattern
P is a complete ordered graph, say on [k] with the natural ordering, whose edges are colored with the
colors black, white and gray. An ordered graph G is said to have the pattern P if there is a partition
V (G) = V1 ∪ · · · ∪ Vk into independent sets with V1 < · · · < Vk, such that the following condition
is satisfied: for every 1 ≤ i < j ≤ k, if {i, j} is colored black then the bipartite graph (Vi, Vj)
is complete, and if {i, j} is colored white then the bipartite graph {i, j} is empty. The partition
(V1, . . . , Vk) is called a P -partition of G. A completion of P is an ordered graph F on [k] which has
pattern P , i.e. {i, j} ∈ E(F ) if {i, j} is black in P and {i, j} /∈ E(F ) if {i, j} is white in P . In
other words, a completion is obtained by recoloring the gray edges with black/white. Let A be a
set of subsets of V (P ). We say that F is (P,A)-good if for every ordered graph G with P -partition
(V1, . . . , Vk) and for every induced copy F ′ of F in G, there is A ∈ A and vertices vi ∈ Vi ∩ V (F ′),
i ∈ A, such that (vi : i ∈ A) form an (ordered) induced copy of F [A]. Note that in such a copy, vi
must play the role of i due to the vertex order. If A = {A} then we will simply write “(P,A)-good”
in place of “(P, {A})-good”. The following is a generalization of the aforementioned construction
from [Alo02].

Lemma 3.3. Let P be a pattern on [k], let A be a set of subsets of V (P ), and suppose that there
is a bijection σ : [k] → [k] such that for every A ∈ A, there is a cycle i1, . . . , it, i1 of gray edges in
P [A] such that σ(i1) < · · · < σ(it). Let F be a completion of P which is (P,A)-good. Then for every
small enough ε and n ≥ n0(ε), there is an n-vertex ordered graph G with the following properties:

1. G has pattern P .

2. G contains εn2 pair-disjoint induced copies of F .

3. G contains at most εΩ(log 1/ε)nv(F ) induced copies of F .

Proof. As above, we assume that V (F ) = V (P ) = [k] (with the natural vertex order). Let m be
the maximal integer satisfying e−ck

√
logm ≥ 4k4ε, where ck is from Lemma 3.2. It is easy to see

that m ≥ (1/ε)Ω(log 1/ε). Let S be the set guaranteed by Lemma 3.2; so |S| ≥ 4k4εm by our choice
of m. Let σ : [k] → [k] be a bijection as in the statement of the lemma. We start by defining an
ordered graph H, as follows. The vertex-set of H consists of k pairwise-disjoint independent sets
V1, . . . , Vk with V1 < · · · < Vk. For each 1 ≤ i ≤ k, the set Vi is identified with [σ(i) · m]. So
|V (H)| =

∑k
i=1 i ·m ≤ k2m. For each x ∈ [m] and s ∈ S, add a copy of F on vertices v1, . . . , vk,

where vi = x+ (σ(i)− 1) · s ∈ Vi; this copy is denoted by Fx,s. Next, for each black edge {i, j} of P ,
make the bipartite graph (Vi, Vj) complete, and for each white edge {i, j} of P , make the bipartite
graph (Vi, Vj) empty. This agrees with the copies Fx,s, since F has pattern P . Finally, for each
gray edge {i, j} of P and for each vi ∈ Vi, vj ∈ Vj , if {vi, vj} is not contained in any of the copies
V (Fx,s), then make {vi, vj} an edge of H if {i, j} /∈ E(F ), and a non-edge of H if {i, j} ∈ E(F ). By
construction, H has pattern P with P -partition (V1, . . . , Vk).

For distinct pairs (x1, s1), (x2, s2) ∈ [m]×S, the copies Fx1,s1 and Fx2,s2 are pair-disjoint. Indeed,
if Fx1,s1 and Fx2,s2 have the same vertex in Vi and Vj (for some 1 ≤ i < j ≤ k), then x1+(σ(i)−1)s1 =
x2 + (σ(i)− 1)s2 and x1 + (σ(j)− 1)s1 = x2 + (σ(j)− 1)s2. Solving this system of equations, we get
that x1 = x2 and s1 = s2. So we conclude that the copies (Fx,s)(x,s)∈[m]×S of F are pair-disjoint and
hence induced. The number of these copies is m|S| ≥ 4k4εm2.

Now, let G be the n
v(H) -blowup of H. For 1 ≤ i ≤ k, denote by Wi the blowup of Vi. It is easy to

see that G has pattern P with P -partition (W1, . . . ,Wk). Each induced copy of F in H gives rise to
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(
n

2v(H)

)2
pair-disjoint induced copies of F in G, by Lemma 3.1 with parameter r = n

v(H) . Hence, G

contains a collection of 4k4εm2 ·
(

n
2v(H)

)2 ≥ εn2 pair-disjoint induced copies of F .

To complete the proof it remains to show that item 3 holds. So let F ′ be an induced copy of
F in G. Since F is (P,A)-good, there is A ∈ A and vertices wi ∈ Wi ∩ V (F ′) for i ∈ A, such
that (wi : i ∈ A) form an induced copy of F [A] (in G). For i ∈ A, let vi ∈ Vi be such that
wi belongs to the blowup of vi. Then (vi : i ∈ A) form an induced copy of F [A] in H. By the
assumption of the lemma, there is a cycle i1, . . . , it, i1 in P [A] consisting of gray edges, such that
σ(i1) < · · · < σ(it). By the construction of H, for every gray edge {i, j} of P [A], it must be that
{vi, vj} is contained in V (Fx,s) for some x ∈ [m], s ∈ S. Indeed, if {vi, vj} is not contained in
any Fx,s, then the adjacency relation of {vi, vj} is opposite to the adjacency relation of {i, j} in F .
So we see that for every 1 ≤ j ≤ t, there are xj ∈ X, sj ∈ S such that {vij , vij+1} ⊆ V (Fxj ,sj )
(with indices taken modulo t). For 1 ≤ j ≤ t − 1, this means that vij = xj + (σ(ij) − 1)sj and
vij+1 = xj + (σ(ij+1) − 1)sj ; hence, vij+1 − vij = (σ(ij+1) − σ(ij)) · sj . Similarly, for j = t we have
vi1 = xt + (σ(i1)− 1) · st and vit = xt + (σ(it)− 1) · st, and hence vit − vi1 = (σ(it)− σ(i1)) · st. So
we get that (σ(i2)− σ(i1)) · s1 + · · ·+ (σ(it)− σ(it−1)) · st−1 = (σ(it)− σ(i1)) · st. Now we use our
choice of S via Lemma 3.2, taking p1, . . . , pt−1 in Lemma 3.2 to be pj = σ(ij+1) − σ(ij). (Here we
use that σ(i1) < · · · < σ(it) so that p1, . . . , pt−1 are positive.) We obtain that s1 = · · · = st =: s. We
now get that xj = vij+1 − (σ(ij+1)− 1) · s = xj+1 (for every 1 ≤ j ≤ t− 1), and hence x1 = · · · = xt.

So far we have shown that for every induced copy F ′ of F in G, there exist x ∈ [m], s ∈ S, a
set A ∈ A, a cycle i1, . . . , it, i1 in P [A], and vertices vij ∈ Vij and wij ∈ Wij ∩ V (F ′), such that wij
belongs to the blowup of vij , and vi1 , . . . , vit ∈ V (Fx,s). There are |A| ≤ 2k = O(1) choices for A,
and fixing A determines i1, . . . , it. The number of choices for (x, s) is m|S| ≤ m2, and fixing x, s

determines vi1 , . . . , vit . Now, given vi1 , . . . , vit , there are
(

n
v(H)

)t
choices for wi1 , . . . , wit , and at most

nk−t choices for the remaining k − t vertices of F . Hence, given vi1 , . . . , vit , the number of choices

for an induced copy of F is at most
(

n
v(H)

)t ·nk−t ≤ ( n
v(H)

)3 ·nk−3 = nk/v(H)3 ≤ nk/m3. So overall,

the number of induced copies of F in G is at most O(1) ·m2 · nk/m3 = O(nk/m) ≤ εΩ(log 1/ε)nk, as
required. �

Evidently, for every specific cycle i1, . . . , it, i1 in P , one can choose a bijection σ : [k] → [k] with
σ(i1) < · · · < σ(it). Hence, a bijection σ as in Lemma 3.3 always exists when A = {A}. We therefore
have the following corollary:

Lemma 3.4. Let P be a pattern, and let A ⊆ V (P ) such that P [A] has a cycle consisting of gray
edges. Let F be a (P,A)-good completion of P . Then the conclusion of Lemma 3.3 holds.

Lemma 3.3 implies the following statement, which extends a construction from [AS06] to ordered
graphs.

Lemma 3.5. Let F be an ordered graph which contains a triangle. Then for every sufficiently small
ε > 0 and n > n0(ε), there is an n-vertex ordered graph G which contains εn2 pair-disjoint induced
copies of F , but only εΩ(log 1/ε)nv(F ) induced copies of F altogether.

Proof. Take P to be the pattern on V (F ) in which all non-edges of F are white and all edges of F
are gray. Take A to be the set of all (vertex sets of) triangles in F . Observe that F is (P,A)-good.
Indeed, let G be an ordered graph with P -partition (V1, . . . , Vk) and let F ′ be a copy of F in G.
Then F ′ has a triangle, say on vertices vi ∈ Vi, vj ∈ Vj , v` ∈ V`. Then {i, j}, {i, `}, {j, `} must be
gray edges in P and hence must be edges in F . So i, j, ` is a triangle in F , meaning that vi, vj , v`
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form a copy of F [A] for A = {i, j, `} ∈ A. Now take σ : [k] → [k] to be an arbitrary bijection. For
a triangle it is always possible to choose a starting point and an orientation such that the triangle
(as a cycle) is increasing with respect to σ. So the conditions of Lemma 3.3 are satisfied, and the
assertion follows from Lemma 3.3. �

Lemma 3.4 easily implies the following:

Lemma 3.6. Let K be an ordered core which has a cycle. Then for every small enough ε and large
enough n, there is an n-vertex ordered graph G with the following properties:

1. G is homomorphic to K.

2. G contains εn2 pair-disjoint induced copies of K.

3. G has at most εΩ(log 1/ε)nv(K) (not necessarily induced) copies of K.

Proof. We reduce to Lemma 3.4. Let P be the pattern on [k] = V (K) in which {i, j} is gray if
{i, j} ∈ E(K) and white if {i, j} /∈ E(K). Observe that an ordered graph G has pattern P if and
only if G is homomorphic to K. The fact that K is a core implies that K is (P, V (P ))-good. Apply
Lemma 3.4 to get an ordered graph G satisfying items 1-3 in Lemma 3.3. Then G is homomorphic
to K because G has pattern P . Observe that every copy of K in G is induced because K is a core
and G is homomorphic to K. Lemma 3.6 follows. �

Using Lemma 3.6, we can prove Theorem 2.

Proof of Theorem 2. Let K be the core of F , and suppose that V (K) = [k]. Apply Lemma 3.6
with parameters v(F )2 · ε (in place of ε) and n

v(F ) (in place of n) to obtain an ordered graph G′

on n
v(F ) vertices with the properties stated in the lemma. Since G′ is homomorphic to K, we have

V (G′) = V1 ∪ · · · ∪ Vk for independent sets V1 < · · · < Vk. Let G be the v(F )-blowup of G′, and
denote by Wi the blowup of Vi (for i = 1, . . . , k). By item 2 in Lemma 3.6, G′ contains a collection
K1, . . . ,KM of M ≥ v(F )2 · ε · ( n

v(F ))2 = εn2 pair-disjoint copies of K. For each 1 ≤ i ≤M , let Bi be

the v(F )-blowup of Ki, and let Ei be the set of edges of Bi which go between the sets W1, . . . ,Wk.
Since K1, . . . ,KM are pair-disjoint, the sets E1, . . . , EM are disjoint. Observe that each Bi contains a
copy of F , and that in order to destroy this copy one must delete some edge of Ei. Since E1, . . . , EM
are disjoint, one must delete at least M ≥ εn2 edges from G to make it F -free, as required.

To complete the proof, let us bound the number of copies of F in G. Since K is a subgraph of F ,
every copy of F must contain a copy of K. Each copy of K can be completed to a copy of F in at
most nv(F )−k ways. Since K is a core and G′ (and hence also G) is homomorphic to K, every copy
of K in G corresponds to a copy of K in G′. On the other hand, each copy of K in G′ gives rise to at
most v(F )k = O(1) copies of K in G. By item 3 in Lemma 3.6, G′ has at most εΩ(log 1/ε) ·nk copies of
K. Hence, the number of copies of F in G is at most O(1) · εΩ(log 1/ε) · nk · nv(F )−k = εΩ(log 1/ε)nv(F ),
as required. �

Next, we prove the “only if” part of Theorem 1, which we restate as follows:

Theorem 5. Let F be an ordered graph, v(F ) ≥ 3, F /∈
{
D,D←, D,D←

}
. Then for every sufficiently

small ε > 0 and n > n0(ε), there is an n-vertex ordered graph G which is ε-far from being induced
F -free but contains at most εΩ(log 1/ε)nv(F ) induced copies of F .
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Proof. If F contains a triangle then the assertion follows from Lemma 3.5. By symmetry with
respect to taking graph complements, the same is true if F contains an independent set of size 3.
This in particular proves the theorem for F on at least 6 vertices, since every such F contains a
triangle or an independent set of size 3. We will assume that F contains neither of these.

Denote by Pmon
k the monotone path with k vertices, that is, the ordered path with vertex set [k]

and edges {i, i+ 1} for i = 1, . . . , k− 1. It is easy to see that Pmon
k is (P, V (P ))-good for the pattern

P on [k] in which {1, 2}, {2, 3}, . . . , {k − 1, k}, {k, 1} are gray and all other edges are white.

If v(F ) = 3, then F = Pmon
3 or F = Pmon

3 . So in this case, the assertion follows from Lemma
3.4. If v(F ) = 5 then F must be a 5-cycle, because every other 5-vertex graph contains a triangle or
an independent set of size 3. Every ordered 5-cycle is a core (because the homomorphic image of an
odd cycle must itself contain an odd cycle). So for these F , the assertion follows from Lemma 3.6.

It remains to handle the case v(F ) = 4. The only 4-vertex (unordered) graphs which have no
triangle and no independent set of size 3 are the 4-cycle, the complement of the 4-cycle, and the path
with four vertices.

We first consider the 4-cycle. There are 3 non-isomorphic ordered 4-cycles. Assuming the vertices

are 1, 2, 3, 4, these 4-cycles are: C
(1)
4 = 1, 2, 3, 4, 1; C

(2)
4 = 1, 3, 2, 4, 1; and C

(3)
4 = 1, 2, 4, 3, 1. See

Figure 3 for an illustration.

C
(1)
4 : It is easy to see that C

(1)
4 is a core, so this case follows from Lemma 3.6.

C
(2)
4 : Let us consider the complement C

(2)
4 , which is the ordered graph with vertices 1, 2, 3, 4 and

edges {1, 2}, {3, 4}. We show that this graph is P -good for a suitable pattern P . Let P be

the pattern on [4] in which {1, 2}, {3, 4} are black and all other edges are gray. Then C
(2)
4

is (P, V (P ))-good. Indeed, let G be a graph with pattern P , and let (V1, V2, V3, V4) be a
P -partition of G. Note that the bipartite graphs (V1, V2) and (V3, V4) are complete. Let C be

an induced copy of C
(2)
4 in G, and let ai be the vertex of C playing the role of i (for i = 1, . . . , 4).

It is enough to show that |C ∩ Vi| = 1 for all 1 ≤ i ≤ 4, as this would imply that ai ∈ Vi.
Suppose by contradiction that |C ∩ Vi| ≥ 2 for some i. Then |C ∩ Vi| = 2 because Vi is an
independent set and C is does not have an independent set of size 3. The two vertices in
C ∩ Vi must play the role of some non-edge e of C. If e is {a1, a3}, {a2, a4} or {a1, a4}, then
|C∩Vi| ≥ 3, because for each of those edges, there is another vertex of C between the endpoints
of the edge. Hence e = {a2, a3}. Since a1 comes before Vi and a4 after Vi, it must be that i = 2
or i = 3; without loss of generality, i = 2. Then a1 ∈ V1. But then a1 is adjacent to a3 ∈ V2

because the bipartite graph (V1, V2) is complete, a contradiction.

The assertion of Theorem 5 for C
(2)
4 now follows by applying Lemma 3.4 to C

(2)
4 and taking

complements.

C
(3)
4 : Here we will use Lemma 3.3. Let P be the pattern on [4] with white edge {2, 3} and all other

edges gray. Let A = {{1, 2, 4}, {1, 3, 4}}. We claim that C
(3)
4 is (P,A)-good. Indeed, let G be

a graph with pattern P , and let (V1, V2, V3, V4) be a P -partition of G. Note that the bipartite

graph (V2, V3) is empty. Let C be an induced copy of C
(3)
4 in G, and let ai be the vertex of C

playing the role of i (for i = 1, . . . , 4). We need to show that a1 ∈ V1, a4 ∈ V4, and a2 ∈ V2

or a3 ∈ V3. Observe that a2, a3 ∈ V2 ∪ V3, because a1, a4 are adjacent to both a2 and a3, a1

comes before a2, a3, and a4 comes after a2, a3. If a2 ∈ V2 and a3 ∈ V3 then we must have
a1 ∈ V1 and a4 ∈ V4, so we are done. Suppose then that a2, a3 ∈ V2 or a2, a3 ∈ V3; without
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Figure 1: The ordered 4-cycles

loss of generality, we may assume that a2, a3 ∈ V2. This implies that a1 ∈ V1. Also, since the

bipartite graph (V2, V3) is empty, we must have a4 ∈ V4. Therefore, C
(3)
4 is (P,A)-good. So

the assertion of Theorem 5 for C
(3)
4 follows from Lemma 3.3 (with σ being the identity map).

It remains to consider ordered paths with four vertices. Up to complementation and order reversal,

there are only four possible such paths: Pmon
4 ; P

(1)
4 = 2, 1, 4, 3; P

(4)
4 = 2, 1, 3, 4; and P

(3)
4 = 3, 2, 1, 4.

See Figure 3 for an illustration. We already established the case Pmon
4 . For the other three cases, we

again use Lemma 3.4.

P
(1)
4 : Let P be the pattern on [4] in which {1, 3} and {2, 4} are white, and all other edges are gray.

Then P
(1)
4 is (P, V (P ))-good. Indeed, let G be a graph with pattern P , and let (V1, . . . , V4) be

a P -partition of G. Then the bipartite graphs (V1, V3) and (V2, V4) are empty. Let X be an

induced copy of P
(1)
4 in G, and let ai be the vertex of X playing the role of i (for i = 1, . . . , 4).

It is enough to show that |X ∩Vi| = 1 for all 1 ≤ i ≤ 4, as this will imply that ai ∈ Vi, showing

that P
(1)
4 is (P, V (P ))-good. Suppose by contradiction that |X ∩ Vi| ≥ 2 for some i. Then

|X ∩Vi| = 2 because Vi is an independent set and X has no independent set of size 3. The two
vertices in X ∩ Vi must play the role of some non-edge e of X. If e = {a1, a3}, {a2, a4} then
|X ∩Vi| ≥ 3, because for each of those e, there is another vertex of X between the endpoints of
e. Hence e = {a2, a3}. Since a1 comes before Vi and a4 after Vi, it must be that i = 2 or i = 3;
without loss of generality, i = 2. Then a1 ∈ V1. It follows that a4 ∈ V4, because a4 is adjacent
to a1 and there are no edges between V1 and V3. But now, a4 is not adjacent to a3 ∈ V2, as
there are no edges between V2 and V4. This is a contradiction.

Lemma 3.4 now confirms the case of P
(1)
4 .

P
(2)
4 : Take P to be the pattern on [4] with edges {2, 3}, {2, 4} white and all other edges gray, and

take A = {1, 3, 4}. Then P
(2)
4 is (P,A)-good. Indeed, let G be an ordered graph with pattern

P , and let (V1, V2, V3, V4) be a P -partition of G. Note that the bipartite graphs (V2, V3) and

(V2, V4) are empty. Let X be an induced copy of P
(2)
4 in G, and let ai be the vertex of X

playing the role of i (for i = 1, . . . , 4). We need to show that ai ∈ Vi for i = 1, 3, 4. We first
claim that a3 ∈ V3. Since a1, a4 are adjacent to a3, a1 comes before a3, and a4 comes after a3,
it must be that a3 ∈ V2 ∪V3. If a3 ∈ V2 then a4 cannot be adjacent to a3 because the bipartite
graphs (V2, V3) and (V2, V4) are empty, a contradiction. So a3 ∈ V3. It follows that a4 ∈ V4.
Similarly, as the bipartite graph (V2, V3) is empty, it must be that a1 ∈ V1, as required.

We apply Lemma 3.4 to conclude.

P
(3)
4 : Take P to be the pattern on [4] with edges {2, 4}, {3, 4} white and all other edges gray, and

take A = {1, 2, 3}. Similarly as in the previous case, one can check that P
(3)
4 is (P,A)-good.

Therefore, we can again apply Lemma 3.4 to finish the proof.

�
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[FH92] Zoltán Füredi and Péter Hajnal. Davenport-schinzel theory of matrices. Discrete
Mathematics, 103(3):233–251, 1992.

[Fox11] Jacob Fox. A new proof of the graph removal lemma. Annals of Mathematics, pages
561–579, 2011.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

[GS19] Lior Gishboliner and Asaf Shapira. Efficient removal without efficient regularity.
Combinatorica, 39(3):639–658, 2019.

[GS21] Lior Gishboliner and Asaf Shapira. Removal lemmas with polynomial bounds.
International Mathematics Research Notices, 2021(19):14409–14444, 2021.

[GT21] Lior Gishboliner and István Tomon. On 3-graphs with no four vertices spanning exactly
two edges. Bulletin of the London Mathematical Society, 2021.
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