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Abstract

Suppose one needs to change the direction of at least εn2 edges of an n-vertex tournament T ,
in order to make it H-free. A standard application of the regularity method shows that in this
case T contains at least f∗H(ε)nh copies of H, where f∗H is some tower-type function. It has long
been observed that many graph/digraph problems become easier when assuming that the host
graph is a tournament. It is thus natural to ask if the removal lemma becomes easier if we assume
that the digraph G is a tournament.

Our main result here is a precise characterization of the tournaments H for which f∗H(ε) is
polynomial in ε, stating that such a bound is attainable if and only if H’s vertex set can be parti-
tioned into two sets, each spanning an acyclic directed graph. The proof of this characterization
relies, among other things, on a novel application of a regularity lemma for matrices due to Alon,
Fischer and Newman, and on probabilistic variants of Ruzsa-Szemerédi graphs.

We finally show that even when restricted to tournaments, deciding if H satisfies the condition
of our characterization is an NP-hard problem.

1 Introduction

1.1 Background and motivation

Suppose an n-vertex graph G contains cnh copies of an h-vertex graph H. It is clear that in this
case one should remove at least c′n2 edges in order to turn G into an H-free graph. The celebrated
removal lemma of Ruzsa and Szemerédi [17] states that (at least qualitatively) this sufficient condition
is in fact necessary. More precisely, it states that there is a function fH(ε) so that if one needs to
remove at least εn2 edges from an n-vertex graph G in order to make it H-free, then G contains at
least fH(ε)nh copies of H. Besides its intrinsic interest, the removal lemma was extensively studied
also due to its many applications. See [10] for more background on the lemma and its many variants.

All proofs of the removal lemma apply some version of Szemerédi’s regularity lemma [19], and thus
can only bound fH(ε) by tower-type functions of ε. It is a major open problem in extremal graph
theory to decide if a non-tower-type bound can be obtained even for the special case of H = K3.
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Given the above, it is thus natural to ask for which graphs H one can obtain very efficient bounds for
fH(ε). The first result of this type was obtained by Alon [1] who proved that fH(ε) is polynomial in
ε if and only if H is a bipartite graph. Alon and Shapira [4] considered the analogous question in the
setting of directed graphs and proved that fH(ε) is polynomial if and only if H has a homomorphism
into an oriented tree or a 2-cycle, where an oriented graph H = (V,E) is an orientation of an
undirected graph, that is, a directed graph in which, for every pair of distinct vertices x, y ∈ V , there
is at most one edge between x and y.

Our focus in this paper is in studying analogous questions in the setting of tournaments. The
precise definition is the following: Suppose H is a fixed oriented graph. We say that an n-vertex
tournament T is ε-far from being H-free if one should change the direction of at least εn2 edges in
order to turn T into an H-free tournament. It is not hard to apply the regularity method, in a way
similar to [2], and show that if T is ε-far from being H-free then T contains f∗H(ε)nh copies of H,
where again f∗H(ε) is a tower-type function. The question we are interested in is then for which H
can f∗H(ε) be bounded by a polynomial in ε?

As is well known, tournaments possess many properties not shared by general oriented graphs.
As a result, many problems that are hard to resolve in general oriented graphs, become easier
for tournaments. It is thus natural to ask if the removal lemma is easier for tournaments. Let
us mention that there is at least one H for which the removal lemma is known to be easier for
tournaments. Indeed, for H = C3 (the directed triangle) it follows from the result of [4] that fC3(ε)
is not polynomial1 in ε, while Fox and Sudakov [12] proved that f∗C3

(ε) is polynomial in ε.

Let us conclude by mentioning that a further motivation for this paper was the work of Berger et
al. [8] on tournaments they called Heroes. See [18] for more details. The work of [8] is another nice
example of a phenomenon that holds in tournaments but fails to hold for general digraphs. One of
the notions studied in [8] is the chromatic number of a tournament T defined as the smallest number
of transitive tournaments which cover V (T ). As Theorem 1.1 shows, this notion is also relevant in
our setting.

1.2 Our main results

Our main result in this paper gives a precise characterization of the oriented graphs H for which
one can prove a removal lemma in tournaments with a polynomial bound. Let us say that an oriented
graph H is easy if there is a constant c = c(H) satisfying f∗H(ε) ≥ εc for every sufficiently small ε > 0.
If H is not easy then it is hard.

Theorem 1.1. H is easy if and only if V (H) can be partitioned into 2 vertex sets, each spanning
an acyclic directed graph.

It was shown in [4] that an oriented graph H satisfies fH(ε) ≥ εc in general digraphs, only if H has
a homomorphism into an oriented tree. Observe that Theorem 1.1 shows that f∗H(ε) is polynomial
for a much wider class of oriented graphs, that is, there is an entire family of oriented graphs for
which the removal lemma is easier for tournaments.

We believe that the proofs of both directions of Theorem 1.1 are of independent interest. We
note that the analogous “if” parts in the characterizations given in [1, 4] followed from simple
density/Turán type arguments. For example, the fact that a bipartite H is easy in undirected
graphs, follows from the simple reason that a graph with εn2 edges contains at least εh

2
nh copies

of H. In contrast, our proof requires a much more elaborate argument: we first show that for

1This special case of the result of [4] is actually implicit already in [17]
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every oriented graph H as in the theorem there is an oriented complete bipartite graph, so that
no matter how one completes this bipartite digraph into a tournament, one always ends up with a
tournament containing a copy of H (see Lemma 2.5). We then combine this with a novel application
of an efficient “conditional regularity lemma” for matrices of Alon, Fischer and Newman [3] (see
also [11] and [14] for related results) in order to complete the proof. As to the “only if” part, as
in previous lower bounds for removal lemmas, we also make use of variants of Ruzsa-Szemerédi [17]
graphs. Our construction however, requires several additional twists such as the notion of ordered
homomorphisms defined in Section 4, and the probabilistic construction from Section 2.

We note that Theorem 1.1 is related to the notion of VC-dimension (see [6] for an overview of
this notion). For a tournament T , define the VC-dimension of T to be the VC-dimension of the
set-system {N+(x) : x ∈ V (T )}, where N+(x) denotes the out-neighbourhood of x, i.e. N+(x) =
{y ∈ V (T ) : x→ y}. Lemma 2.5 essentially shows that for a hereditary tournament property T , we
have supT∈T VC-dim(T ) < ∞ if and only if there is some 2-colorable oriented graph H such that
no T ∈ T contains copies of H. So Theorem 1.1 can be rephrased as saying that the property H-
freeness is easy if and only if the VC-dimension of H-free tournaments is bounded. The conditional
regularity lemma of Alon-Fischer-Newman [3], stated here as Lemma 3.4, can also be phrased in
terms of VC-dimension: it says (qualitatively) that tournaments having small VC-dimension have
small regular partitions (see [14, 11] for similar results). This fact is at the heart of the proof of the
“if”-direction of Theorem 1.1

Let us conclude by describing our final result. It is natural to ask if the characterization given in
Theorem 1.1 is “efficient”, that is, how hard is it to tell if an oriented graph H is easy. It follows
from the work of Bokal et al. [9] that this task is in fact NP -hard. Continuing with the theme of
studying whether problems become easier when restricted to tournaments, it is natural to ask if one
can at least recognize tournaments whose vertex set can be partitioned into 2 sets, each spanning an
acyclic directed graph, i.e. into two transitive tournaments. The following theorem strengthens the
result of Bokal et al. [9] by showing that the problem is hard even for tournaments.

Theorem 1.2. For every k ≥ 2, the problem of deciding if a tournament is k-colorable is NP -hard.

1.3 Organization

In Section 2 we describe a probabilistic construction that will be crucial in the proofs of both
directions of Theorem 1.1. The proof of the first direction of Theorem 1.1 is given in Section 3, while
the second is given in Section 4. The proof of Theorem 1.2 is given in Section 5.

2 A Preliminary Lemma

A proper k-coloring (or simply k-coloring) of an oriented graph H is a partition of V (H) into k
sets, each inducing an acyclic digraph. We say that H is k-colorable if it has a proper k-coloring.
Notice that if H is a tournament then this definition coincides with the definition of a k-colorable
tournament.

In this section we prove Lemma 2.1, stated below, which will be a key ingredient in the proof of
both directions of Theorem 1.1. We start with some notation which we will also use in later sections.
For a digraph D = (V,E) and X ⊆ V , we use D[X] to denote the subdigraph of D induced by X.
For a pair of vertices x, y ∈ V , we write (x, y) for the edge directed from x to y. For a pair of disjoint
subsets X,Y ⊆ V , we write X → Y to mean that (x, y) ∈ E for every x ∈ X, y ∈ Y . If X = {x} and
Y = {y}, we write x → y instead of {x} → {y}. We write E(X,Y ) for the set of edges going from
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X to Y . Note that E(X,Y ) is not the same as E(Y,X). Evidently, if the digraph is a tournament
then E(Y,X) = ∅ is equivalent to X → Y .

A k-partite tournament is an orientation of a complete k-partite graph. Notice that a bipartite
tournament (i.e., a k-partite tournament for k = 2) is not the same as a 2-colorable tournament
(clearly, a bipartite tournament on 3 or more vertices is not even a tournament). A completion of a
k-partite tournament F = (V1 ∪ V2 · · · ∪ Vk, E) is any tournament on V (F ) that agrees with F on
the edges between the sets V1, ..., Vk, i.e. any tournament obtained from F by adding k arbitrary
tournaments on the sets V1, . . . , Vk.

Lemma 2.1. For every h ≥ 2 there are m0 = m0(h) and γ = γ(h) > 0 with the following property.
Let H be an oriented graph on h vertices and let D be an oriented graph on [k], where 2 ≤ k ≤ h.
Suppose that H has a proper k-coloring, V (H) = X1 ∪ · · · ∪Xk, such that E(Xj , Xi) = ∅ for every
(i, j) ∈ E(D). Then for every m ≥ m0 there is a k-partite tournament F = (V1 ∪ · · · ∪ Vk, E(F ))
such that:

1. |Vi| = m for every i = 1, ..., k.

2. Vi → Vj for every (i, j) ∈ E(D).

3. Every completion of F contains a collection H of at least γm2 copies of H with the property
that every edge e ∈ E(F ) is contained in at most one of the copies of H in H.

In the proof of Lemma 2.1 we use the following three claims. Denote by Bin(N, p) the binomial
distribution with parameters N and p. We will need the following standard Chernoff-type bound.

Claim 2.2 ([6]). Pr
[
Bin(N, p) < (1− α)Np

]
≤ e−Npα2/2 .

The following claim is a well-known fact from Ramsey theory.

Claim 2.3 ([16]). Every tournament on 2k−1 vertices contains a transitive subtournament on k
vertices.

Claim 2.4. Let t ≥ 1, k ≥ 2 be integers. Then there is a collection S ⊆ [t]k of size at least (t/k)2

such that every pair of distinct k-tuples in S have at most one identical entry.

Proof. We construct the collection S greedily: we start with an empty collection, add an arbitrary
k-tuple to it, discard all k-tuples that coincide in more than one entry with the k-tuple we added
and repeat. At the beginning we have all tk of the k-tuples in [t]k. At each step we discard at most(
k
2

)
tk−2 tuples. Therefore, at the end of the process we have a collection of size at least

tk

1 +
(
k
2

)
tk−2

≥ tk

k2tk−2
=

(
t

k

)2

,

as required. �

Proof of Lemma 2.1. For every i = 1, ..., k put Hi = H[Xi] and hi = |Xi|. Fix an integer
m > m0(h), where m0(h) will be chosen later. For convenience of presentation, we assume that
m is divisible by 2h and by 2hi for every i. Let V1, ..., Vk be pairwise-disjoint vertex sets of size
m each. The edges between the sets V1, ..., Vk are oriented as follows: for every (i, j) ∈ E(D) we
direct all edges from Vi to Vj . For every 1 ≤ i < j ≤ k for which (i, j), (j, i) /∈ E(D), orient the
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edges between Vi and Vj randomly and independently with probability 1/2. We will show that with
positive probability, the resulting k-partite tournament, F , satisfies the assertion of Item 3 in the
lemma, thus finishing the proof.

An H-partition is a tuple (Pi,j , Ti,j)i,j , where 1 ≤ i ≤ k and 1 ≤ j ≤ m
2hi

, with the following two
properties.

• For each 1 ≤ i ≤ k, Pi,1, ...,Pi, m
2hi

are pairwise-disjoint subsets of Vi, each of size hi = |Xi|.

• For each 1 ≤ i ≤ k and 1 ≤ j ≤ m
2hi

, Ti,j is a labeled transitive tournament on the set Pi,j .

Note that
⋃m/2hi
j=1 Pi,j is a subset of Vi of size exactly m

2 . The number of ways to choose an H-partition
is exactly

k∏
i=1

m!

(m/2)!
≤ mkm. (1)

By Claim 2.4 with parameter t = m
2h , there is a collection S ⊆

[
m
2h

]k ⊆ [ m2h1 ]× · · · × [ m2hk ] such that

|S| ≥
(
m
2hk

)2 ≥ m2

4h4
, and

For every pair s = (s1, ..., sk), s
′ = (s′1, ..., s

′
k) ∈ S, #

{
1 ≤ i ≤ k : si = s′i

}
≤ 1. (2)

For each i = 1, . . . , k we fix a linear ordering of the vertices of Hi in which all edges point forward,
that is, if (u, v) ∈ E(Hi) then u precedes v in the ordering. Such an ordering exists since Hi is acyclic.
Fix an H-partition Q = (Pi,j , Ti,j)i,j and let s = (s1, ..., sk) ∈ S. Since Ti,si is transitive and Hi is
acyclic, Hi can be embedded into Ti,si . In what follows, when we say that Ti,si plays the role of Hi

we mean that Hi is embedded in Ti,si in an order-preserving way with respect to our fixed ordering
of Hi and the unique ordering of Ti,si in which all edges point forward. Let AQ(s) be the event that
T1,s1 ∪ · · · ∪ Tk,sk , together with the edges of F connecting the sets P1,s1 , . . . ,Pk,sk , contains a copy

of H with Ti,si playing the role of Hi. Then P [AQ(s)] ≥ 2−
∑
hihj ≥ 2−h

2
. Observe that by (2), the

events {AQ(s) : s ∈ S} are independent. Since |S| ≥ m2

4h4
, the random variable

ZQ :=
∑
s∈S

1AQ(s)

stochastically dominates a random variable with distribution Bin
(
m2

4h4
, 2−h

2
)

. By Claim 2.2 with

parameter α = 1
2 we have:

P

[
ZQ <

2−h
2
m2

8h4

]
≤ P

[
Bin

(
m2

4h4
, 2−h

2

)
<

2−h
2
m2

8h4

]
≤ exp

{
−2−h

2
m2

32h4

}
< m−hm ≤ m−km.

The strict inequality above holds if m is large enough, and we choose m0(h) accordingly. Set γ =

γ(h) = 2−h2

8h4
. By (1), there are at most mkm ways to choose an H-partition Q. By the union bound

over all H-partitions we get that the following event has positive probability: for every H-partition
Q, the number of s ∈ S for which AQ(s) happened is at least γm2. We now show that if this event
happens then F satisfies the assertion of Item 3 in the lemma.

Let T be a completion of F . For every 1 ≤ i ≤ k, we use Claim 2.3 to extract from Vi a
collection Pi,1, ...,Pi, m

2hi
of pairwise-disjoint sets, each of size hi, such that T [Pi,j ] is transitive for
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every 1 ≤ j ≤ m
2hi

. We extract these sets one by one and stop when there are m
2 remaining vertices.

By Claim 2.3, we can do this as long as there are at least 2hi−1 remaining vertices. By choosing
m0(h) to be large enough we guarantee that m

2 ≥ 2hi−1.

For every 1 ≤ i ≤ k and 1 ≤ j ≤ m
2hi

, set Ti,j = T [Pi,j ]. Consider this H-partition Q =

(Pi,j , Ti,j)i,j . By our assumption, the event AQ(s) happened for at least γm2 of the elements s ∈ S.
By the definition of the event AQ(s), if this event happened then the vertex-set P1,s1 ∪ · · · ∪ Pk,sk
contains a copy of H (in the tournament T ) with Ti,si playing the role of Hi. The collection H
required by Item 3 consists of all such copies of H. By (2), every pair of copies of H in H can share
vertices in no more than one of the clusters V1, . . . , Vk. Therefore, every edge e ∈ E(F ) (that is, an
edge that connects vertices in two distinct clusters Vi, Vj) is contained in at most one of these copies.
Thus, Item 3 in the lemma holds, completing the proof. �

We end this section with the following corollary of Lemma 2.1, which we will use later on. We
say that a bipartite tournament F forces an oriented graph H if every completion of F contains a
copy of H.

Lemma 2.5. For every 2-colorable oriented graph H there is a bipartite tournament that forces H.

Proof. Let V (H) = X1 ∪ X2 be a proper 2-coloring of H. Apply Lemma 2.1 with parameter
h = |V (H)| and with D being the empty graph on 2 vertices. Lemma 2.1 implies that there is
a bipartite tournament F = (V1 ∪ V2, E(F )), where |V1| = |V2| = m := m0(h), such that every
completion of F contains at least γ(h)m2 (and in particular at least one) copies of H. �

3 Easy Tournaments

In this section we prove the first part of Theorem 1.1. For convenience, we restate as follows.

Theorem 3.1. For every h there are ε0 = ε0(h) > 0 and d = d(h) with the following property. For
every 2-colorable oriented graph H on h vertices and for every positive ε < ε0, if a tournament T on
n ≥ n0(ε) vertices is ε-far from being H-free then T contains at least εdnh copies of H.

Throughout this section, we implicitly assume that n is large enough. To make the presentation
cleaner, we also implicitly assume that n is divisible by various quantities which depend on the other
parameters, H and ε. It is easy to see that in order to establish Theorem 3.1, it is enough to prove
it for values of n which satisfy such divisibility conditions.

We start by introducing some definitions and lemmas that we use in the proof of Theorem 3.1.
Let T be an n-vertex tournament. Recall that for a pair of disjoint sets X,Y ⊆ V (T ), we write

E(X,Y ) for the set of edges going from X to Y . Now set e(X,Y ) = |E(X,Y )| and d(X,Y ) = e(X,Y )
|X||Y | .

Note that d(X,Y ) + d(Y,X) = 1, as T is a tournament. We have X → Y if and only if d(X,Y ) = 1,
and Y → X if and only if d(X,Y ) = 0. For a constant δ < 1

2 , we say that (X,Y ) is δ-homogeneous
if either d(X,Y ) ≥ 1 − δ or d(X,Y ) ≤ δ. We say that the dominant direction of (X,Y ) is X → Y

if d(X,Y ) ≥ 1
2 and is Y → X if d(X,Y ) < 1

2 . The weight of the pair (X,Y ) is |X||Y |
n2 . Let

P = {V1, ..., Vr} be a vertex-partition of T , namely suppose that V (T ) = V1]· · ·]Vr. We say that P
is δ-homogeneous if the total weight of non-δ-homogeneous pairs (Vi, Vj), 1 ≤ i 6= j ≤ r, is at most δ.
We say that P is an equipartition if |V1| = · · · = |Vr| (as mentioned above, we will always implicitly
assume that the number of vertices n is divisible by the number of parts in the partition).

Recall the definition of a bipartite tournament from Section 2. The first ingredient in the proof
of Theorem 3.1 is the following lemma.
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Lemma 3.2. There is C > 0 such that the following holds for every integer k ≥ 1 and every
δ ∈ (0, 1/2). Let F = (M ∪ N,E) be a bipartite tournament with |M | = |N | = k. Then every

tournament T on n ≥ n0(k, δ) vertices either contains at least (δ/k)Ck
3

n2k copies of F or satisfies
the following: there is an equipartition Q = {Q1, ..., Qq} of V (T ), where q ≥ 1

δ , and there are subsets
Wi ⊆ Qi, such that the following hold.

1. For all but at most δq2 of the pairs 1 ≤ i < j ≤ q, it holds that (Qi, Qj) is δ-homogeneous and
the dominant direction of (Wi,Wj) is the same as that of (Qi, Qj).

2. (Wi,Wj) is δ-homogeneous for every 1 ≤ i < j ≤ q.

3. |Wi| ≥ (δ/k)Ck
2

n for every 1 ≤ i ≤ q.

Throughout this section, C denotes the constant from Lemma 3.2. The last ingredient in the proof
of Theorem 3.1 is the following simple counting lemma.

Lemma 3.3. For every h there are η = η(h) and α = α(h) > 0 such that the following holds for
every oriented graph H on h vertices. Let X1, ..., X` be a partition of V (H) such that X1, ..., X`

induce acyclic digraphs, and for every 1 ≤ i < j ≤ `, either E(Xj , Xi) = ∅ or E(Xi, Xj) = ∅. Let
W1, ...,W` be pairwise-disjoint vertex sets in a tournament T having the following properties:

1. |Wi| ≥ 2h−1 for every 1 ≤ i ≤ `.

2. For every 1 ≤ i 6= j ≤ `, if E(Xi, Xj) 6= ∅ then d(Wi,Wj) ≥ 1− η.

Then T contains at least α ·
∏`
i=1 |Wi|hi copies of H, where hi = |Xi|.

Proof of Theorem 3.1. Let H be a 2-colorable oriented graph on h vertices. Apply Lemma 2.5
to get a bipartite tournament F = (M ∪N,E) that forces H. Note that we can clearly assume that
|M | = |N | ≥ h (by adding additional vertices if necessary). Put k := |M | = |N |.
We will prove the theorem with

ε0 = ε0(h) = min

(
1

3k
, 3η(h)

)
and

d = d(h) = 2Ck3 + α−1,

where η(h) and α = α(h) are from Lemma 3.3, and C is the constant from Lemma 3.2.

Let ε < ε0, and let T be any tournament on n vertices which is ε-far from being H-free. Assume

first that T contains at least (ε/3k)Ck
3

n2k copies of F . Since F forces H, every copy of F (in a
tournament) contains a copy of H. Every copy of H is contained in at most n2k−h copies of F .
Recalling that ε < 1

3k , we conclude that T contains at least

n−(2k−h) (ε/3k)Ck
3

n2k = (ε/3k)Ck
3

nh ≥ ε2Ck3nh ≥ εdnh

copies of H, giving the desired result in this case.

Suppose from now on that T contains less than (ε/3k)Ck
3

n2k copies of F . We apply Lemma 3.2
to T with approximation parameter ε

3 to get an equipartition Q = {Q1, ..., Qq} and subsets Wi ⊆ Qi
with the properties stated in the lemma. Define N to be the set of pairs 1 ≤ i < j ≤ q for which
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either (a) (Qi, Qj) is not ε
3 -homogeneous, or (b) the dominant direction of (Wi,Wj) is not the same

as that of (Qi, Qj). By the guarantees of Lemma 3.2 we have |N | ≤ ε
3q

2. This implies that

∑
(i,j)∈N

|Qi||Qj | ≤
ε

3
q2
(
n

q

)2

=
ε

3
n2. (3)

Let T ′ be the tournament obtained from T by making the following changes.

1. Make Qi span a transitive tournament for every i = 1, . . . , q.

2. For every 1 ≤ i < j ≤ q, if d(Wi,Wj) ≥ 1− ε
3 then set Qi → Qj and if d(Wi,Wj) ≤ ε

3 then set
Qj → Qi.

By Lemma 3.2, (Wi,Wj) is ε
3 -homogeneous for every 1 ≤ i < j ≤ q, so Item 2 covers all options.

The number of edge-reversals made in Item 1 is at most q
(
n/q
2

)
< n2

q ≤
ε
3n

2. Here we use the

inequality q ≥ 3
ε , given by Lemma 3.2. In Item 2, if (i, j) /∈ N then the number of reversals of edges

between Qi and Qj is at most ε
3 |Qi||Qj |. Using these facts and (3) we get that the total number of

edge-reversals made in Items 1 and 2 is less than ε
3n

2 +
∑

i<j
ε
3 |Qi||Qj |+

ε
3n

2 < εn2.

Since T is ε-far from being H-free and since T ′ is obtained from T by reversing less than εn2

edges, T ′ must contain a copy of H. Let Qi1 , ..., Qi` be the parts of Q which intersect this copy. For
j = 1, ..., ` define Xij = V (H) ∩ Qij and hij = |Xij |. From the way we constructed T ′ from T in
Items 1 and 2, it follows that in the graph H, the sets Xi1 , ..., Xi` span acyclic digraphs and for every
1 ≤ s < t ≤ ` we have either E(Xit , Xis) = ∅ or E(Xis , Xit) = ∅. Moreover, for every 1 ≤ s 6= t ≤ `,
if E(Xis , Xit) 6= ∅ then Qis → Qit in T ′, implying that d(Wis ,Wit) ≥ 1− ε

3 ≥ 1− η(h) in T (see our
choice of ε0). Finally, by Lemma 3.2 we have

|Wij | ≥ (ε/3k)Ck
2

n (4)

for every j = 1, . . . , `. So if n is large enough then |Wij | ≥ 2h−1. We conclude thatWi1 , . . . ,Wi` satisfy
the conditions of Lemma 3.3 in the tournament T with respect to the partition V (H) = Xi1∪· · ·∪Xi` .
By applying Lemma 3.3 and using the inequalities (4) and ε < 1

3k , we get that T contains at least

α ·
∏̀
j=1

∣∣Wij

∣∣hij ≥ α (ε/3k)Chk
2

nh ≥ ε1/α (ε/3k)Ck
3

nh ≥ ε2Ck3+1/αnh = εdnh

copies of H. This completes the proof of the theorem. �

Having proven Theorem 3.1, we proceed to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.3. Set m = 2h−1. For each i = 1, ..., ` we choose a subset Yi ⊆ Wi of size m
uniformly at random. For 1 ≤ i < j ≤ `, let us say that (Yi, Yj) agrees with (Xi, Xj) if Yi → Yj
whenever E(Xi, Xj) 6= ∅ and Yj → Yi whenever E(Xj , Xi) 6= ∅. By the assumption on the pairs
(Wi,Wj), the probability that (Yi, Yj) does not agree with (Xi, Xj) is at most ηm2. By the union
bound, the probability that there is a pair 1 ≤ i < j ≤ ` for which (Yi, Yj) does not agree with

(Xi, Xj) is at most ηm2
(
`
2

)
≤ ηm2h2. By setting η(h) = 1

2(hm)−2 = 1
2h
−22−2(h−1) we get that this

probability is at most 1
2 .

By Claim 2.3 and the choice of m we get that Yi contains a subset Zi which induces a transitive
tournament and has size |Zi| = hi = |Xi|. Therefore, if (Yi, Yj) agrees with (Xi, Xj) for every
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1 ≤ i < j ≤ `, then Y =
⋃`
i=1 Yi contains a copy of H with Zi playing the role of Xi. Every such

copy of H is contained in at most
∏`
i=1

(|Wi|−hi
m−hi

)
such sets Y . Therefore there are at least

1
2

∏`
i=1

(|Wi|
m

)∏`
i=1

(|Wi|−hi
m−hi

) =

1
2

∏`
i=1

(|Wi|
hi

)∏`
i=1

(
m
hi

) ≥ 1

2
·
∏̀
i=1

(
|Wi|
m

)hi
=

1

2
·m−h

∏̀
i=1

|Wi|hi

copies of H. We thus choose the constant α = α(h) to be α = 1
2m
−h = 2−h(h−1)−1. �

We now turn to the proof of Lemma 3.2. This lemma is proved using a “conditional” regularity
lemma for binary matrices, proved by Alon, Fischer and Newman in [3]. Let A be an n× n matrix
with 0/1 entries whose rows and columns are indexed by 1, ..., n. For a pair of sets R,C ⊆ [n], we
denote by R × C the submatrix of A with rows from R and columns from C and we call it a block.
The dominant value of a block is the value, 0 or 1, that appears in at least half of the entries. For
a constant δ < 1

2 , we say that a block is δ-homogeneous if its dominant value appears in at least a

(1− δ)-fraction of the entries. The weight of a block R×C is defined as |R||C|
n2 . Let R = {R1, ..., Rs}

and C = {C1, ..., Ct} be partitions of [n]. We say that (R, C) is a δ-homogeneous partition of A if the
total weight of non-δ-homogeneous blocks Ri × Cj is at most δ.

Let B be a 0/1-valued k × k matrix. A copy of B in A is a sequence of rows r1 < r2 < · · · < rk
and a sequence of columns c1 < c2 < · · · < ck such that Ari,cj = Bi,j for every 1 ≤ i, j ≤ k. We are
now ready to state the Alon-Fischer-Newman Regularity Lemma.

Lemma 3.4 (Alon-Fischer-Newman [3]). There is c > 0 such that the following holds for every
integer k ≥ 1 and every δ > 0. For every 0/1 matrix A of size n× n with n > (k/δ)ck, either A has
a δ-homogeneous partition (R, C) with |R|, |C| ≤ (k/δ)ck, or for every 0/1-valued k × k matrix B, A

contains at least (δ/k)ck
2

n2k copies of B.

Throughout this section c denotes the constant from Lemma 3.4. Without loss of generality, we
always assume that c ≥ 1.

We will apply Lemma 3.4 to adjacency matrices of tournaments. For a tournament T on [n], the
adjacency matrix of T , denoted A = A(T ), is the n × n matrix in which, for every 1 ≤ i 6= j ≤ n,
Ai,j = 1 if (i, j) ∈ E(T ) and Ai,j = 0 if (j, i) ∈ E(T ). The main diagonal of A is set to be 0. Clearly,
if A is the adjacency matrix of a tournament T and X,Y ⊆ V (T ) = [n] are disjoint, then (X,Y ) is
δ-homogeneous (in the tournament sense) if and only if the block X × Y is δ-homogeneous (in the
matrix sense). Moreover, the dominant direction of (X,Y ) is X → Y if and only if the dominant
value of X × Y is 1. Furthermore, if P is a partition of [n] such that (P,P) is a δ-homogeneous
partition of A, then P is a δ-homogeneous partition of T (as defined in the beginning of Section 3)2.
The following lemma is an application of Lemma 3.4 to adjacency matrices of tournaments.

Lemma 3.5. Let F = (M∪N,E) be a bipartite tournament with |M | = |N | = k, and let δ ∈ (0, 1/2).
Let T be a tournament on n ≥ n0 (k, δ) vertices and let P be an equipartition of V (T ). Then either T

contains at least (δ/3k)2ck
2

n2k copies of F , or T admits a δ-homogeneous equipartition that refines
P, and has at least δ−1 and at most |P| · (3k/δ)5ck parts.

As the proof of Lemma 3.5 is rather technical, we leave it to the end of this section and first show
how to deduce Lemma 3.2 by two applications of Lemma 3.5.

2The converse is not necessarily true. The fact that P is a δ-homogeneous partition of T does not take into account
“diagonal” blocks, i.e. blocks of the form Vi × Vi, Vi ∈ P.
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Proof of Lemma 3.2. Let C be large enough so that

(δ/k)C ≤ (δ/15k)110c
2
,

where c ≥ 1 is the constant from Lemma 3.4. Note that C does not depend on δ or k, as δ is assumed
to be less than 1

2 .

We assume that T contains less than (δ/k)Ck
3
n2k copies of F and prove that the other alternative

in the statement of the lemma holds. Our choice of C implies that T contains less than (δ/15k)2ck
2
n2k

copies of F . By applying Lemma 3.5 with approximation parameter δ
5 and P = {V (T )}, we get that

T admits a δ
5 -homogeneous equipartition Q = {Q1, ..., Qq} with

δ−1 ≤ q ≤ (15k/δ)5ck. (5)

Set γ = 1
2q4

, and note that γ ≥ 1
2(δ/15k)20ck, and hence

(γ/3k)2ck
2

≥
(

(1/6k) · (δ/15k)20ck
)2ck2

≥
(

(δ/15k)21ck
)2ck2

≥ (δ/15k)42c
2k3 .

Our assumption in the beginning of the proof and our choice of C imply that T contains less than

(γ/3k)2ck
2

n2k copies of F .

Apply Lemma 3.5 to T again, now with approximation parameter γ and P = Q, to obtain a
γ-homogeneous equipartition W which refines Q and satisfies

|W| ≤ |Q| · (3k/γ)5ck ≤ (15k/δ)5ck ·
(

6k · (15k/δ)20ck
)5ck

≤ (15k/δ)110c
2k2 . (6)

For each 1 ≤ i ≤ q define Wi = {W ∈ W : W ⊆ Qi}. Sample a vertex wi ∈ Qi uniformly at
random and let Wi ∈ Wi be such that wi ∈Wi. By (6) and our choice of C, we have |W| ≤ (k/δ)Ck

2
,

which implies that |Wi| ≥ (δ/k)Ck
2
n for every 1 ≤ i ≤ q, as required. To complete the proof, we

show that with positive probability, W1, ...,Wq satisfy the assertions of Items 1 and 2 of the lemma.

Let A1 be the event that (Wi,Wj) is δ-homogeneous for every 1 ≤ i < j ≤ q. Fixing 1 ≤ i < j ≤ q,
the probability that (Wi,Wj) is not δ-homogeneous is

∑ |W ||W ′|
|Qi||Qj | =

( q
n

)2∑ |W ||W ′|, where the sum is

over all non-δ-homogeneous pairs (W,W ′) ∈ Wi×Wj . This sum is not larger than γq2 = 1
2q2

because
W is γ-homogeneous and by our choice of γ. By the union bound over all pairs 1 ≤ i < j ≤ q, we
get that P [A1] ≥ 1

2 .

Let 1 ≤ i < j ≤ q be such that (Qi, Qj) is a δ
5 -homogeneous pair. We say that (Qi, Qj) is

bad if d(Qi, Qj) ≥ 1 − δ
5 but d(Wi,Wj) ≤ δ, or d(Qi, Qj) ≤ δ

5 but d(Wi,Wj) ≥ 1 − δ. Otherwise

(Qi, Qj) is good. Consider a δ
5 -homogeneous pair (Qi, Qj) and assume without loss of generality that

d(Qi, Qj) ≥ 1 − δ
5 . Then the probability that d(Wi,Wj) ≤ δ is at most δ/5

1−δ <
2δ
5 (here we use

δ < 1
2). We conclude that the probability that a given pair (Qi, Qj) is bad is less than 2δ

5 . Let Z be

the number of bad pairs (Qi, Qj). Let A2 be the event that Z ≤ 4δ
5 q

2. We have E[Z] < 2δ
5 q

2. By

Markov’s inequality, we have P[Z > 4δ
5 q

2] < 1
2 , implying that P[A2] >

1
2 .

So far we showed that with positive probability, both A1 and A2 happen. We now show that
if A1 and A2 happen then Items 1 and 2 in the lemma hold. Item 2 holds because A1 happened.
For Item 1, notice that if (Qi, Qj) is δ

5 -homogeneous and good, and if (Wi,Wj) is δ-homogeneous,
then (Wi,Wj) has the same dominant direction as (Qi, Qj). Thus, if a pair 1 ≤ i < j ≤ q violates
Item 1, then either (Qi, Qj) is not δ

5 -homogeneous or (Qi, Qj) is bad. Since Q is a δ
5 -homogeneous

equipartition, the number of non- δ5 -homogeneous pairs (Qi, Qj) is at most δ
5q

2. Since A2 happened,

the number of bad pairs (Qi, Qj) is at most 4δ
5 q

2. Thus, Item 1 holds for all but at most δq2 of the
pairs (Qi, Qj), as required. �
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Proof of Lemma 3.5. Let us assume that T contains less than (δ/3k)2ck
2

n2k copies of F . Our
goal is to show that T admits a δ-homogeneous equipartition which refines P, and has at least δ−1

and at most |P| · (3k/δ)5ck parts.

Define B to be the bipartite adjacency matrix of F ; that is, B is a k×k matrix, indexed by M×N ,
in which Bx,y = 1 if (x, y) ∈ E(F ) and Bx,y = 0 if (y, x) ∈ E(F ). We claim that A = A(T ), the

adjacency matrix of T , contains less than
(
δ2/3k

)ck2
n2k copies of B. Assume otherwise. A copy of

B which does not intersect the main diagonal of A corresponds to a copy of F in T . There can be
no more than O(n2k−1) copies of B which intersect the main diagonal of A. Assuming n to be large

enough, we conclude that T contains at least
(
δ2/3k

)ck2
n2k − O(n2k−1) ≥ (δ/3k)2ck

2

n2k copies of
F , in contradiction to our assumption in the beginning of the proof.

Thus, A = A(T ) contains less than
(
δ2/3k

)ck2
n2k copies of B. By Lemma 3.4, applied with

approximation parameter δ2

3 , A has a δ2

3 -homogeneous partition (R, C) with |R|, |C| ≤
(
3k/δ2

)ck
.

Write P = {P1, ..., Pp}. For every i = 1, . . . , p, let Ui be the common refinement of the set Pi

and the partitions R, C, that is Ui = {Pi ∩ R ∩ C : R ∈ R, C ∈ C}. Set q = 6p|R||C|
δ , and note that

δ−1 ≤ q ≤ 6p
δ ·
(
3k/δ2

)2ck ≤ p · (3k/δ)5ck. For each U ∈ Ui, partition U into parts of size n
q and an

additional part Zi,U of size less than n
q . Let Zi be the union of all additional parts Zi,U , U ∈ Ui.

Note that we have |Zi| < |R| · |C| · nq ≤
δn
6p . Partition Zi arbitrarily into parts of size n

q . Denote by Qi
the resulting equipartition of Pi. Then Q :=

⋃q
i=1Qi is an equipartition of V (T ) which has q parts

and refines P.

To finish the proof, we show that Q is δ-homogeneous. To this end, define N to be the set
of all non-δ-homogeneous pairs (X,Y ) ∈ Q × Q with X 6= Y . Set Z :=

⋃p
i=1 Zi and note that

|Z| =
∑p

i=1 |Zi| ≤
δ
6n. By the definition of Q, if X ∈ Q is not contained in Z then there are R ∈ R

and C ∈ C such that X ⊆ R ∩ C. Thus, a block X × Y for which X,Y 6⊆ Z is contained in a
block R × C, where R ∈ R and C ∈ C. Let N1 be the set of pairs (X,Y ) ∈ N such that either
X or Y is contained in Z; let N2 be the set of pairs (X,Y ) ∈ N such that X,Y 6⊆ Z, and the

block R × C containing X × Y is not δ2

3 -homogeneous; let N3 = N \ (N1 ∪ N2). Since |Z| ≤ δ
6n,

we have
∑

(X,Y )∈N1
|X||Y | ≤ 2n · |Z| ≤ δ

3n
2. Furthermore, as (R, C) is δ2

3 -homogeneous, we have∑
(X,Y )∈N2

|X||Y | ≤ δ2

3 n
2. Thus, in order to prove that Q is δ-homogeneous, it is enough to show

that
∑

(X,Y )∈N3
|X||Y | ≤ δ

3n
2.

By the definition of N3, for every (X,Y ) ∈ N3 there are R ∈ R and C ∈ C such that the block

R×C is δ2

3 -homogeneous and contains the block X×Y . Let R×C be a δ2

3 -homogeneous block, and
assume without loss of generality that the dominant value of R×C is 1. Let X1, ..., Xa be the parts
of Q that are contained in R, and let Y1, ..., Yb be the parts of Q that are contained in C. Define
γ(i, j) to be the fraction of pairs (x, y) ∈ Xi × Yj for which Ax,y = 0. Obviously, if γ(i, j) ≤ δ then
the block Xi × Yj is δ-homogeneous. We have

a∑
i=1

b∑
j=1

|Xi||Yj |
|R||C|

γ(i, j) ≤ δ2

3
,

because the sum on the left hand side is a lower bound for the fraction of pairs (x, y) ∈ R × C for
which Ax,y = 0. By Markov’s inequality we have

∑
(i,j): γ(i,j)>δ

|Xi||Yj |
|R||C|

≤ δ

3
.
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Thus, the sum of |X||Y | over all pairs (X,Y ) ∈ N3 for which X × Y ⊆ R × C, is at most δ
3 |R||C|.

By summing over all δ2

3 -homogeneous blocks R× C of the partition (R, C), we get∑
(X,Y )∈N3

|X||Y | ≤
∑

R∈R,C∈C

δ

3
|R||C| ≤ δ

3
n2,

as required. �

4 Hard Tournaments

In this section we prove the second direction of Theorem 1.1. For convenience we restate it as
follows.

Theorem 4.1. For every h there are ε0 = ε0(h) > 0 and α = α(h) > 0 with the following property.
For every non-2-colorable oriented graph H on h vertices, for every positive ε < ε0 and for every
n ≥ n0(ε) there is a tournament T on n vertices which is ε-far from being H-free but contains at
most εα log(1/ε)nh copies of H.

Our goal in this section is to prove Theorem 4.1. Throughout this section, the vertex sets of
all graphs and digraphs are assumed to be subsets of N. The reason for this assumption is that
sometimes we want to have a linear ordering of the vertices. Before getting to the actual proof of
Theorem 4.1, we first study some properties of homomorphisms between graphs which take into
account an order of their vertex sets.

4.1 Order-preserving Homomorphisms

Definition 4.2. (Order-Preserving Homomorphism) Let G,G′ be (undirected) graphs. An order-
preserving homomorphism from G to G′ is a function f : V (G)→ V (G′) satisfying the following two
conditions.

1. f is order preserving: for every i, j ∈ V (G), if i ≤ j then f(i) ≤ f(j).

2. f is a graph homomorphism: for every {i, j} ∈ E(G) we have {f(i), f(j)} ∈ E(G′).

We write G ≤hom G′ if there is an order-preserving homomorphism from G to G′. Notice that
the relation ≤hom is transitive (the composition of order-preserving homomorphisms is also an order-
preserving homomorphism). An order-preserving isomorphism is an order-preserving homomorphism
which is a graph isomorphism. We write G ∼= G′ if there is an order-preserving isomorphism between
G and G′. 3

Any subgraph of a graph G is always assumed to inherit the same vertex-labeling as it had in G.
The ordered core of G is a smallest (with respect to number of vertices) subgraph of G to which there
is an order-preserving homomorphism from G. The ordered core of G is assumed to inherit the same
vertex-labeling as it had in G. Notice that by definition, there is no order-preserving homomorphism
from the ordered core of G to a proper induced subgraph of it. We say that a graph is an ordered
core if it is the ordered core of itself.

3Notice that two isomorphic labeled graphs may not have an order-preserving isomorphism between them. Moreover,
if two graphs have an order-preserving isomorphism between them then it is unique, assuming that the vertices in each
graph have different labels, which we always do in our setting.
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Proposition 4.3. Let G1, G2 be a pair of ordered cores. If G1 ≤hom G2 and G2 ≤hom G1 then
G1
∼= G2.

Proof. By assumption there exist order-preserving homomorphisms f : G1 → G2 and g : G2 → G1.
Then g ◦ f is an order-preserving homomorphism from G1 to itself. Since G1 is a core, g must
be surjective. The same argument shows that f is surjective. So f, g are bijections and since f, g
are order-preserving we have g = f−1. Therefore f, g are order-preserving graph isomorphisms, as
required. �

Proposition 4.3 shows that the ordered core of a graph is unique up to order-preserving isomorphism.

Proposition 4.4. Let G1, G2 be a pair of ordered cores and suppose that G1
∼= G2. Then every

order-preserving homomorphism f : G1 → G2 is an order-preserving isomorphism.

Proof. By definition, there is an order-preserving isomorphism g : G2 → G1. Then f ◦ g is an
order-preserving homomorphism from G2 to itself. By the definition of an ordered core, f ◦ g is a
bijection. Since f, g are order-preserving we have that f ◦ g is the identity map and hence f = g−1.
So f is an isomorphism, as required. �

Let H be an oriented graph. We say that an edge (i, j) ∈ E(H) is a forward-edge if i < j and
backward-edge (or backedge) otherwise. The backedge graph of H is the (undirected) graph on V (H)
in which {i, j} is an edge if and only if i < j and j → i. Note that the backedge graph depends on
the labeling of the vertices of H; if we relabel the vertices of H then we may get a different backedge
graph. We will need the following characterization of oriented graphs with chromatic number at most
k. Although this characterization will be crucial in our proof of Theorem 4.1, it is computationally
inefficient even for k = 2, as shown in Section 5.

Proposition 4.5. An oriented graph H is k-colorable if and only if there is a labeling of the vertices
of H for which the corresponding backedge graph is k-colorable (as a graph).

Proof. Assume first that there is a labeling of V (H) such that the corresponding backedge graph,
G, has a proper (graph) k-coloring U1∪· · ·∪Uk. Then for every i, the set Ui is acyclic (in H) because
all the edges inside it are forward-edges.

Now assume that H has a proper (acyclic) k-coloring U1 ∪ · · · ∪ Uk. For every i = 1, ..., k, label
the vertices of Ui such that there are no backedges inside Ui (this is clearly possible because Ui is
acyclic). Then Ui is an independent set in the backedge graph corresponding to this labeling. �

For an oriented graph H we define a family of graphs C = C(H), all labeled with [h], as follows.
We go through all h! vertex-labelings of H using the labels 1, ..., h (where h = v(H)), and for each
labeling we take the ordered core of the corresponding backedge graph. Let C be the set of all these
ordered cores. Proposition 4.3 implies that (C,≤hom) is a poset in the following sense: for every
C1, C2 ∈ C, if C1 ≤hom C2 and C2 ≤hom C1 then C1

∼= C2. In other words, ≤hom is a partial order on
the set of equivalence classes of C under the equivalence relation ∼=. Finally, let K(H) be a minimal
element of the poset (C,≤hom), i.e. K(H) is an (arbitrary) element of a minimal equivalence class.
The minimality of K(H) implies that for every C ∈ C, if there is an order-preserving homomorphism
from C to K(H) (namely if C ≤hom K(H)) then C ∼= K(H).

Proposition 4.6. Let H be an oriented graph. Consider any vertex-labeling of H and let G be the
corresponding backedge graph. For every order-preserving homomorphism f : G → K(H) there is a
set X ⊆ V (H) = V (G) such that f |X is a (graph) isomorphism onto K(H).
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Proof. Let C be the ordered core of G. Then f |V (C) is an order-preserving homomorphism from
C to K(H). By the minimality of K(H) we have C ∼= K(H). Then f |V (C) is an order-preserving
isomorphism by Proposition 4.4, implying the assertion with X = V (C). �

Corollary 4.7. Let H be a non-2-colorable oriented graph. Then the graph K(H) contains a cycle
c1c2 . . . c`c1 of length ` ≥ 3 with the following property. Consider any vertex-labeling of H and let G
be the corresponding backedge graph. Then for every order-preserving homomorphism f : G→ K(H)
there are vertices u1 ∈ f−1(c1), . . . , u` ∈ f−1(c`) such that u1u2 . . . u`u1 is a cycle in G.

Proof. By the definition of K(H) there is a vertex-labeling of H such that K(H) is the ordered core
of the corresponding backedge graph, G0. By Proposition 4.5, G0 is not 2-colorable and therefore
contains an odd cycle. It is easy to see that the homomorphic image of an odd cycle must contain an
odd cycle. Therefore K(H) contains an odd cycle, whose length is obviously at least 3. The other
assertion of the corollary follows directly from Proposition 4.6. �

4.2 Proof of Theorem 4.1

The main ingredient in the proof of Theorem 4.1 is the following construction (see [17] and [1]).

Theorem 4.8. For every k ≥ 3 there are δ0 = δ0(k) and c = c(k) such that for every δ < δ0, for
every 3 ≤ ` ≤ k and for every sequence of distinct indices 1 ≤ i1, i2, . . . , i` ≤ k, there is a graph
R = R(k, δ; i1, . . . , i`) with the following properties:

1. V (R) = Y1 ] ... ] Yk and Yi is an independent set for every i.

2. |V (R)| ≥
(
1
δ

)c log(1/δ)
.

3. E(R) is the union of at least δ|V (R)|2 pairwise edge-disjoint k-cliques, each of the form
{y1, . . . , yk} with yi ∈ Yi.

4. R contains at most |V (R)|2 cycles yi1yi2 ...yi`yi1 with yij ∈ Yij for j = 1, . . . , `.

The proof of Theorem 4.8 uses (simple variants of) Behrend’s construction of a large set of integers
without a 3-term arithmetic progression (see [7]). As it is similar to related constructions proved in
previous papers (see, e.g., [1]) it is omitted.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let H be a non-2-colorable oriented graph on h vertices. Consider the
graph K = K(H) defined in Subsection 4.1. Put k = |V (K)| and write V (K) = {a1, ..., ak}, where
1 ≤ a1 < a2 < · · · < ak ≤ h.4 By Corollary 4.7, K contains a cycle (ai1ai2 ...ai`ai1) of length ` ≥ 3.
Let m0 = m0(h) and γ = γ(h) be from Lemma 2.1. Set ε0 = ε0(h) to be small enough so that every
ε < ε0 will satisfy the inequalities

(εγ−1)log(γ/ε) ≤ ε0.5 log(1/ε), ε < γδ0(k), (7)

where δ0(k) is from Theorem 4.8. Let ε < ε0. Let R = R(k, δ; i1, . . . , i`) be the graph obtained by
applying Theorem 4.8 with parameters k and

δ = εγ−1,

4Recall that K inherits its vertex-labeling from the backedge graph of H whose ordered core is K and whose
vertex-labels are 1, . . . , h.
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and with i1, . . . , i` being the indices of the cycle in K as above. Our choice of ε0 guarantees that we
can apply Theorem 4.8 with the above δ. Recall that V (R) = Y1 ] · · · ] Yk. Put r = |V (R)| and let
n be an integer which we assume, for simplicity of presentation, to be divisible by r. We will also
assume that n is large enough where needed.

By the definition of K, there is a vertex-labeling of H such that K is the ordered core of the
corresponding backedge graph, G0. Hence there is an order-preserving homomorphism g : G0 → K.
Denote Xi = g−1(ai) for i = 1, ..., k. We claim that X1, . . . , Xk have the following two properties in
the oriented graph H.

(a) Xi spans an acyclic digraph for every i = 1, ..., k.

(b) For every 1 ≤ i < j ≤ k, if {ai, aj} /∈ E(K) then E(Xj , Xi) = ∅.

Item (a) follows from the definition of a backedge graph and the fact that g is a graph homomorphism.
For Item (b) we also need to use the fact that g is order-preserving.

Define an oriented graph D on [k] as follows. For every 1 ≤ i < j ≤ k, if {ai, aj} /∈ E(K) then
(i, j) ∈ D (that is, there is a directed edge from i to j) and otherwise (i, j), (j, i) /∈ E(D). Then
for every (i, j) ∈ E(D) we have E(Xj , Xi) = ∅. So H satisfies the conditions of Lemma 2.1 with
respect to the k-coloring V (H) = X1 ∪ · · · ∪Xk and the oriented graph D. Apply Lemma 2.1 to get
a k-partite tournament F = (V1 ∪ · · · ∪ Vk, E(F )) such that |Vi| = n

r (here we assume that n is large
enough so that n

r ≥ m0(h)), and

∀1 ≤ i < j ≤ k, if {ai, aj} /∈ E(K) then Vi → Vj . (8)

Let K be the collection of k-cliques given by Item 3 in Theorem 4.8. Note that |K| ≥ δr2; that
the k-cliques in K are pairwise edge-disjoint and of the form {y1, . . . , yk} with yi ∈ Yi; and that
every edge in R is contained in (exactly) one of these k-cliques. We define a tournament T on an
n
r -blowup of V (R); that is, each vertex y ∈ V (R) is replaced by a vertex-set B(y) of size n

r . Put
B(Yi) =

⋃
y∈Yi B(y). The edges of T are oriented as follows.

1. B(Yi) spans a transitive tournament for every i = 1, ..., k.

2. For every 1 ≤ i < j ≤ k and for every yi ∈ Yi, yj ∈ Yj , if {yi, yj} /∈ E(R) then set B(yi) →
B(yj).

3. For every {y1, ..., yk} ∈ K, put a copy of F on B(y1) ∪ · · · ∪B(yk) with B(yi) playing the role
of Vi for every i = 1, ..., k.

Since every edge of R is contained in one of the cliques in K, Items 2 and 3 together define the
orientation of edges between B(y) and B(y′) for every pair of vertices y, y′ ∈ V (R) which belong to
different clusters among Y1, . . . , Yk. Therefore, Items 1-3 indeed define a tournament. There is no
contradiction in Item 3 because the cliques in K are pairwise edge-disjoint.

We now show that T satisfies our requirements, that is, T is ε-far from being H-free yet contains
at most εα log(1/ε)nh copies of H (for a constant α = α(h) that we choose later). We start with the
following two observations that play a central role in the proof. First, notice that by Item 2 and by
the combination of Item 3 and (8) we have the following:

∀1 ≤ i < j ≤ k, if {ai, aj} /∈ E(K) then B(Yi)→ B(Yj). (9)
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Secondly, let C be the set of all `-tuples (vi1 , . . . , vi`) ∈ B(Yi1) × · · · × B(Yi`) such that for every
j = 1, . . . , `, if ij < ij+1 then vij+1 → vij and if ij > ij+1 then vij → vij+1 , with indices taken modulo
`. We now prove the inequality

|C| ≤ n`

r
. (10)

Given (vi1 , . . . , vi`) ∈ C, let yij ∈ Yij be such that vij ∈ B(yij ). We claim that yi1yi2 . . . yi`yi1 is a
cycle in R. Let 1 ≤ j ≤ ` and let us first handle the case that ij < ij+1. By the definition of C we have
vij+1 → vij . By Item 2 in the construction of T above, if {yij , yij+1} /∈ E(R) then B(yij )→ B(yij+1),
in contradiction to vij+1 → vij . Therefore {yij , yij+1} ∈ E(R) in this case. Similarly, if ij > ij+1 then
by the definition of C we have vij → vij+1 . By Item 2 in the construction of T , if {yij , yij+1} /∈ E(R)
then B(yij+1)→ B(yij ), in contradiction to vij → vij+1 . Therefore {yij , yij+1} ∈ E(R) in this case as
well, proving our assertion that yi1yi2 . . . yi`yi1 is a cycle in R. By Item 4 in Theorem 4.8, there are

at most r2 such cycles in R. Since T is an n
r -blowup of R and ` ≥ 3, we get that |C| ≤ r2

(
n
r

)` ≤ n`

r ,
establishing (10).

Let us prove that T contains at most εα log(1/ε)nh copies of H, where α = α(h) = 0.5c and c = c(k)
is from Theorem 4.8. We will show that every copy of H in T contains vertices vi1 , . . . , vi` such that
(vi1 , . . . , vi`) ∈ C (recall the definition of C above). This will imply that T contains at most |C| ·nh−`

copies of H. By (10) we have |C| ≤ n`

r , and by Item 2 in Theorem 4.8 we have r ≥ (1/δ)c log(1/δ). By
using our choice of δ and the first inequality in (7), we will conclude that T contains at most

n`

r
· nh−` =

nh

r
≤ δc log(1/δ)nh =

(
εγ−1

)c log(γ/ε)
nh ≤ ε0.5c log(1/ε)nh = εα log(1/ε)nh

copies of H, as required. Hence, in order to prove the required bound on the number of H-copies in
T , it remains to show that every H-copy in T contains vertices vi1 , . . . , vi` such that (vi1 , . . . , vi`) ∈ C.

Consider an embedding ϕ : H → T ; that is, Imϕ spans a copy of H in T with ϕ(v) playing the
role of v for every v ∈ V (H). For i = 1, ..., k define Ui = ϕ−1(B(Yi)). Then Ui spans an acyclic
digraph by Item 1 in the construction of T above. Consider a vertex-labeling of H with labels 1, ..., h
in which: (a) for every 1 ≤ i < j ≤ k, the labels given to the vertices of Ui are smaller than the
labels given to the vertices of Uj , and (b) for every i = 1, ..., k, the vertices in Ui are labeled in such
a way that all edges are forward-edges, that is, for every u, v ∈ Ui we have u→ v only if u < v (such
a vertex-labeling of Ui exists since H[Ui] is acyclic). Let G be the backedge graph of H with respect
to this vertex-labeling. Notice that if {u, v} ∈ E(G) and u < v then there are 1 ≤ i < j ≤ k such
that u ∈ Ui and v ∈ Uj , as Ui is an independent set in G for every i = 1, . . . , k.

We claim that the function f : V (H) → V (K) which maps Ui to ai is an order-preserving
homomorphism from G to K. The fact that f is order-preserving is immediate from the definition of
the labeling. To see that f is a graph homomorphism, consider any edge {u, v} ∈ E (G) and assume
without loss of generality that u < v. By the definition of a backedge graph we have v → u in H,
implying that ϕ(v)→ ϕ(u) in T . As mentioned before, there are 1 ≤ i < j ≤ k such that u ∈ Ui and
v ∈ Uj . Assume, for the sake of contradiction, that we have {f(u), f(v)} = {ai, aj} /∈ E(K). By (9),
this implies that B(Yi) → B(Yj). Since ϕ(u) ∈ B(Yi) and ϕ(v) ∈ B(Yj), we get a contradiction to
ϕ(v)→ ϕ(u). Therefore {f(u), f(v)} = {ai, aj} ∈ E(K), showing that f is a homomorphism.

Having shown that f is an order-preserving homomorphism, we use Corollary 4.7 to infer that there
are uij ∈ f−1(aij ) = Uij , 1 ≤ j ≤ `, such that ui1ui2 . . . ui`ui1 is a cycle in G. Denote vij = ϕ(uij ) and
observe that by the definition of f we have vij ∈ B(Yij ). We now show that (vi1 , . . . , vi`) ∈ C. For
every 1 ≤ j ≤ ` we have {uij , uij+1} ∈ E (G) (with indices taken modulo `). Fix any 1 ≤ j ≤ ` and
assume first that ij < ij+1. Then uij+1 → uij in H by the definition of the backedge graph. Therefore
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vij+1 = ϕ(uij+1)→ ϕ(uij ) = vij , as ϕ is an embedding. Similarly, if ij > ij+1 then uij → uij+1 in H
by the definition of the backedge graph, implying that vij = ϕ(uij ) → ϕ(uij+1) = vij+1 . This shows
that (vi1 , . . . , vi`) ∈ C, as required.

Having shown that T contains at most εα log(1/ε)nh copies of H, we now prove that T is ε-far from
being H-free. We say that an edge e is a cluster-edge if it is contained in B(Yi) for some i = 1, ..., k,
and is a cut-edge otherwise; that is, a cut-edge connects vertices from two different clusters among
B(Y1), . . . , B(Yk). Let T ′ be any tournament obtained from T by reversing less than εn2 edges. Our
goal is to show that T ′ contains a copy of H. Let T ′′ be the tournament that agrees with T on all
cut-edges and agrees with T ′ on all cluster-edges. Then T ′′ and T ′ disagree on less than εn2 edges,
and the same is true for T ′′ and T .

For every Y = {y1, ..., yk} ∈ K, the tournament T ′′[B(y1) ∪ · · · ∪B(yk)] is a completion of F (by
Item 3 in the construction of T , and because T ′′ agrees with T on cut-edges). By the choice of F via

Lemma 2.1, T ′′[B(y1) ∪ · · · ∪ B(yk)] contains a collection H(Y ) of at least γ
(
n
r

)2
copies of H, any

two of which do not share cut-edges. Let Y = {y1, . . . , yk} and Z = {z1, . . . , zk} be distinct cliques
in K. Since Y and Z are edge-disjoint, T ′′[B(y1) ∪ · · · ∪ B(yk)] and T ′′[B(z1) ∪ · · · ∪ B(zk)] do not
share cut-edges. Therefore, copies of H from H(Y ) do not share cut-edges with copies of H from
H(Z). Put H :=

⋃
Y ∈KH(Y ). Then H is a collection of copies of H in T ′′, any two of which do not

share cut-edges. By |K| ≥ δr2 and our choice of δ, we have |H| ≥ δr2γ
(
n
r

)2
= εn2. Since the copies

of H in H do not share cut-edges, one must reverse at least |H| ≥ εn2 cut-edges in order to destroy
all copies of H in T ′′. Recall that T ′ and T ′′ agree on cluster-edges, and disagree on less than εn2

edges. Therefore, one of the copies of H in T ′′ is also present in T ′. This completes the proof. �

5 The Hardness of Deciding Tournament Colorability

In this section we prove Theorem 1.2. The main challenge in proving Theorem 1.2 is the case
k = 2.

Theorem 5.1. Deciding if a tournament is 2-colorable is NP -hard.

After proving Theorem 5.1 we show how to deduce Theorem 1.2 by using a simple reduction from
the (k − 1)-Colorability problem to the k-Colorability problem for every k ≥ 3. Theorem 5.1 is
proved by showing a reduction from a known NP -hard problem: the Triangle-Free Cut Problem, to
the Tournament 2-Colorability problem.

Definition 5.2 (Triangle-Free Cut). For an (undirected) graph G, a triangle-free cut of G is a
2-coloring of V (G) with no monochromatic triangle.

It is known that the problem of deciding if a given graph has a triangle-free cut is NP -hard (see
[15]).

For a vertex v in a tournament we denote N+(v) = {u : v → u} and N−(v) = {u : u → v}. If
a pair of vertices u, v in a tournament satisfy u → v then we say that u dominates v and that v
is dominated by u. For the proof of Theorem 5.1 we need the following proposition regarding the
gadget H depicted in Figure 1.

Proposition 5.3. H has the following properties.

1. H has a proper 2-coloring in which u and v have the same color and all the vertices in the set
N−(u) ∪N+(v) have the other color.

17



vu

d

c

b

a

w

Figure 1: the gadget H

2. In every proper 2-coloring of H, the colors of u and v are the same.

Proof. For Item 1, color u, v, w with one color and a, b, c, d with the other color. We now prove Item
2. Consider a 2-coloring of V (H) in which u and v have different colors, say u is colored red and v is
colored blue. If there is a color, red or blue, that appears in both {a, b} and {c, d}, then the coloring
is not proper, as we get a monochromatic cyclic triangle by joining either u or v. Therefore, we may
assume that either a, b are colored with red and c, d are colored with blue, or vice versa. But in both
cases there is no color for w as {a, b, w} and {c, d, w} are cyclic triangles. �

Proof of Theorem 5.1. Given a graph G with vertices V (G) = {x1, ..., xn}, we construct a tour-
nament T = T (G) and prove that G has a triangle-free cut if and only if T is 2-colorable. T is
defined as follows. First, we put in T vertices y1, ..., yn and set yi → yj for every i < j. We think of
yi as corresponding to the vertex xi of G. Denote Y = {y1, ..., yn}. Let C1, ..., Cm be an enumeration
of all triangles in G. Fix 1 ≤ t ≤ m and suppose that Ct contains the vertices xi, xj , xk ∈ V (G),

where i < j < k. We add to T three new vertices, zit, z
j
t , z

k
t , and set zit → zjt → zkt → zit. So

Zt :=
{
zit, z

j
t , z

k
t

}
spans a cyclic triangle. Set Zs → Zt for each 1 ≤ s < t ≤ m. Denote Z =

⋃m
t=1 Zt

and set Y → Z.

Let 1 ≤ t ≤ m, suppose that Zt =
{
zit, z

j
t , z

k
t

}
, where i < j < k, and fix any ` ∈ {i, j, k}. We add a

copy of H (see Figure 1), denoted by H`
t , in which y` plays the role of u, z`t plays the role of v and all

other five vertices are new. Notice that this does not contradict Y → Z, as we have u→ v in H. Let
K`
t be the subtournament of H`

t spanned by the five “new” vertices, that is V (K`
t ) = V (H`

t )\(Y ∪Z).
Set Ki

t → Kj
t → Kk

t and Ki
t → Kk

t . Denote Kt = Ki
t ∪K

j
t ∪Kk

t and for each 1 ≤ s < t ≤ m set
Ks → Kt.

Define K =
⋃m
t=1Kt and note that we have |Y | = n, |Z| = 3m and |K| = 15m. The vertex set of

the tournament T (G) is Y ]Z ]K. So far we defined the edges of T (G) inside Y , Z and K and we
set Y → Z. We also already put some edges between Y and K and between K and Z, namely the
edges which are contained in H`

t for some 1 ≤ t ≤ m and 1 ≤ ` ≤ n. We direct all other edges from
Y to K and from K to Z; that is, if a pair (p, q) ∈ Y ×K is not contained in any H`

t then we set
p→ q, and similarly for K and Z. In what follows we use the fact that an edge going from K to Y
or from Z to K is contained in H`

t for some 1 ≤ t ≤ m and 1 ≤ ` ≤ n. This completes the definition
of the tournament T = T (G).

It remains to show that G has a triangle-free cut if and only if T is 2-colorable. Assume first
that T admits a proper 2-coloring, c : V (T ) → {red, blue}. For each i = 1, ..., n set φ(xi) = c(yi).
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We claim that φ is a triangle-free cut of G, that is, for every 1 ≤ t ≤ m, the triangle Ct in G is
not monochromatic. Fix 1 ≤ t ≤ m and suppose that Ct contains the vertices xi, xj , xk. By Item

2 in Proposition 5.3, it must be the case that c(zit) = c(yi), c(z
j
t ) = c(yj) and c(zkt ) = c(yk). Since

the set Zt = {zit, z
j
t , z

k
t } ⊆ V (T ) spans a cyclic triangle, we deduce that c(yi), c(yj), c(yk) are not all

identical. Our choice of φ guarantees that Ct is not monochromatic.

Now assume that G admits a triangle-free cut, φ : V (G)→ {red, blue}. We define a 2-coloring c
of V (T ) as follows. First, set c(yi) = φ(xi) for every i = 1, . . . , n. Next, let 1 ≤ t ≤ m and suppose

that Zt =
{
zit, z

j
t , z

k
t

}
. For each ` ∈ {i, j, k} set c(z`t ) = c(y`). Recall that H`

t is a copy of H in which

y` plays the role of u and z`t plays the role of v. Extend the coloring of
{
y`, z

`
t

}
to a coloring of H`

t

as in Item 1 of Proposition 5.3, that is, H`
t is colored properly and any vertex that dominates y` or

that is dominated by z`t has a different color from that of y`, z
`
t . This guarantees that H`

t does not
contain monochromatic edges going from K to Y or from Z to K. As mentioned before, any edge
in T going from K to Y or from Z to K is contained in H`

t for some 1 ≤ t ≤ m and 1 ≤ ` ≤ n. We
conclude that T does not contain monochromatic edges going from K to Y or from Z to K.

It remains to show that the 2-coloring c of V (T ) = Y ∪Z ∪K, defined in the previous paragraph,
is proper. Let S be a cyclic triangle in T . We show by case analysis that S is not monochromatic.
First we consider the cases (a) S ⊆ Y ∪K and S intersects both Y and K, (b) S ⊆ K ∪ Z and S
intersects both K and Z, (c) S has one vertex in each of the sets Y, Z,K. Case (a) implies that S
contains an edge going from K to Y . Similarly, case (b) implies that S contains an edge that goes
from Z to K. Case (c) also implies that S contains an edge from Z to K because Y → Z. As proven
in the previous paragraph, T does not contain any monochromatic edge going from K to Y or from
Z to K. Therefore, S is not monochromatic in each of the cases (a), (b) and (c).

Given the previous paragraph, the only remaining cases to consider are S ⊆ Y ∪ Z and S ⊆ K.
First, notice that the only cyclic triangles which are contained in Z are Z1, . . . , Zm. Let 1 ≤ t ≤ m

and suppose that Zt =
{
zit, z

j
t , z

k
t

}
.

By the definition of the coloring c we have c(z`t ) = c(y`) = φ(x`) for every ` ∈ {i, j, k}. The vertices
of the triangle Ct (in G) are xi, xj , xk. Since φ is a triangle-free cut, it follows that φ(xi), φ(xj), φ(xk)

are not all identical. Therefore c(zit), c(z
j
t ), c(z

k
t ) are not all identical, namely Zt is not monochro-

matic.

Recall that Y is transitive and we have Y → Z. Therefore Y ∪Z does not contain any monochro-
matic cyclic triangle. Finally, every cyclic triangle inside K is contained in some K`

t . These triangles
are not monochromatic because each K`

t is colored properly. This finishes the case analysis, showing
that T does not contain a monochromatic cyclic triangle and completing the proof of the theorem. �

Proof of Theorem 1.2. We will show that for every k ≥ 3 there is a simple reduction from the
(k − 1)-Colorability problem to the k-Colorability problem. Given this reduction, we can prove the
theorem by induction on k, with the base case k = 2 already settled by Theorem 5.1.

Let T be a tournament. We define a tournament T ′ as follows. The vertex-set of T ′ consists of two
vertex-disjoint copies of T , denoted T1 and T2, and an additional vertex z. We set T1 → T2 → z → T1.
We now show that T is (k−1)-colorable if and only if T ′ is k-colorable. First, if T is (k−1)-colorable
then clearly T ′ is k-colorable: we color T1 and T2 according to a proper (k − 1)-coloring of T , using
the same k − 1 colors for both T1 and T2, and then color z with the remaining k’th color. It is easy
to see that this k-coloring of T ′ is proper. In the other direction, suppose that there is a proper
coloring c : V (T ′) → [k] and assume without loss of generality that c(z) = k. Then it cannot be
the case that both T1 and T2 contain a vertex with color k, as that will imply that there is a cyclic
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triangle in this color. Therefore, there is i = 1, 2 such that Ti is colored with [k − 1], implying that
T is (k − 1)-colorable. This completes the proof of the theorem. �
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