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0. Introduction

A major controversy in the modern theory of option pricing is the debate of discrete-time
versus continuous-time modelling. Whereas a continuous-time formulation is often more
amenable to analysis and thus tends to provide better insight, one also frequently hears the
counter-argument that a description of real market behaviour can only be based on discrete
observations. In view of these contrasting opinions, it is natural to look for connections
between the two competing approaches. In particular, one should like to obtain convergence
results as one passes from discrete time to continuous time by a limiting procedure. There is
an abundant literature on this question and we mention here only a very few references. One of
the starting points is the paper by Cox/Ross/Rubinstein (1979) which provides a derivation
of the famous Black-Scholes formula, first obtained in Black/Scholes (1973) and Merton
(1973), by a passage to the limit from a binomial model. The survey by Willinger/Taqqu
(1991) contains an excellent overview of several convergence approaches used so far, as well
as an extensive list of references. Among the more recent contributions, we mention Eberlein
(1992), where pathwise approximations of geometric Brownian motion by piecewise constant
processes are constructed, and Duffie/Protter (1992), who discuss the convergence of the
process of cumulative gains from trade.

Perhaps the first result that one would like to establish in this context is the convergence
of option prices. There are quite a few results in this direction when stock prices are given by
diffusion processes and the discrete-time models are binomial or suitable multinomial trees;
see for instance Cox/Ross/Rubinstein (1979), He (1990) or Duffie/Protter (1992). The reason
for this very restrictive choice of model is the fact that one has completeness at the level of
both continuous and discrete time. This allows perfect replication of any contingent claim,
and so option prices are uniquely determined by the assumption of absence of arbitrage.

In this paper, we attack the same question of convergence in an incomplete market. In
that case, one is immediately and simultaneously faced with two closely intertwined problems.
Not only is there the difficulty of establishing a convergence result, but it is even not clear in
the first place what the appropriate definition of an option price or option value should be.
Intuitively, one feels of course that a reasonable valuation methodology should allow one to
deduce convergence. We show here that the criterion of local risk-minimization introduced
in Schweizer (1988, 1991) possesses this feature, at least for the particular example consid-
ered here. This means that local risk-minimization has an inherent stability property under
discretization which may be regarded as an additional argument in favour of this approach.
For other recent results in a similar direction, see also Dengler (1993).

More precisely, we study the preceding problem in the case where the price S of the
underlying asset is given by a jump-diffusion process with deterministic coefficients; see
Merton (1976), Jeanblanc-Picqué/Pontier (1990), Shirakawa (1990), Xue (1992) and Mer-
curio/Runggaldier (1993) for similar models. The discrete-time processes Sm are obtained
by first approximating the coefficient functions by piecewise constant ones and then simply
evaluating the resulting continuous-time process at the given discretization points. Note that
this is rather straightforward and does not require an elaborate construction of the approx-
imating processes Sm as for instance in Nelson/Ramaswamy (1990). Section 1 contains a
detailed description of the model and the discretization procedure explained above. In the
continuous and in each discrete model, we then apply the criterion of local risk-minimization
to determine option values. By the results of Schweizer (1988, 1991, 1993), this means that

for each Sm, we use the minimal martingale measure P̂m for Sm to compute the value of
a contingent claim Hm as Êm[Hm]; the valuation for H is Ê[H] with P̂ corresponding to
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S. We should like to emphasize that these quantities are not necessarily option prices in the
usual sense of the word. They give the initial capital required for the construction of a locally
risk-minimizing strategy which duplicates the contingent claim under consideration, but this
strategy is typically not self-financing, and it may well happen that a non-vanishing hedging
cost appears. For these reasons, we use the more cautious terminology “value” rather than
“price”.

In section 2, we prove that in our situation, the densities dP̂m

dP converge to dP̂
dP in Lp(P ) for

every p ∈ [1,∞). Although our method of proof relies crucially on the jump-diffusion structure
and in particular on the assumption of deterministic coefficients, we feel that the theorem
itself is likely to hold in more general situations as well. We remark that a related result was
obtained by He (1990) who proved the weak convergence of the density processes in the case
where S is a multidimensional diffusion process and Sm is a suitable multinomial process.
However, this is not comparable to our result here since he assumed in addition that S as well
as each Sm is complete and thus admits a unique equivalent martingale measure. In section 3,
we discuss some applications of our convergence theorem. One immediate consequence is the
convergence of the values Êm[Hm] to Ê[H] if Hm converges to H in Lq(P ) for some q > 1,

and the last condition is usually easy to verify. Since the values Êm[Hm] correspond to a
discrete-time model, they can in principle always be computed, but the computational burden
may occasionally become rather heavy. As a by-product of our convergence approach, we also
obtain an additional approximation result which in some cases allows an easier computation
of the approximating values as simple averages of Black-Scholes-type formulae.

1. Model and problem formulation

Let (Ω,F , P ) be a probability space and T > 0 a fixed and finite time horizon. Let
W = (Wt)0≤t≤T be a Brownian motion and N = (Nt)0≤t≤T a 1-variate point process with
deterministic intensity ν(t). Thus N is a Poisson process, and W and N are independent
by Theorem II.6.3 of Ikeda/Watanabe (1981). We shall assume that ν(t) is bounded away
from 0, uniformly in t ∈ [0, T ]. Finally, IF = (Ft)0≤t≤T denotes the P -augmentation of the
filtration generated by W and N .

Now denote by S = (St)0≤t≤T the unique strong solution of the stochastic differential
equation

(1.1) dSt = St−
(
b(t) dt+ v(t) dWt + ϕ(t) dNt

)
, S0 > 0.

We shall assume that b, v, ϕ, ν are left-continuous functions with right limits from [0, T ] to IR
which are bounded uniformly in t ∈ [0, T ]. Furthermore, we impose the conditions

ϕ(t) > −1 for all t ∈ [0, T ]

and

(1.2) v2(t) + ϕ2(t) inf
0≤s≤T

ν(s) ≥ ε for some ε > 0, uniformly in t ∈ [0, T ].

This implies that S is strictly positive and that the function

%(t) :=
b(t) + ϕ(t)ν(t)

v2(t) + ϕ2(t)ν(t)
, 0 ≤ t ≤ T
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is also left-continuous with right limits and bounded uniformly in t ∈ [0, T ]. Finally we
assume that

(1.3) ϕ(t)%(t) ≤ 1− δ for some δ > 0, uniformly in t ∈ [0, T ].

By Itô’s formula, the solution of (1.1) is explicitly given by

(1.4) St = S0 exp




t∫

0

(
b(s)− 1

2
v2(s)

)
ds+

t∫

0

v(s) dWs +

t∫

0

log
(
1 + ϕ(s)

)
dNs




for t ∈ [0, T ]. Due to the boundedness of all coefficients, one can then show that

sup
0≤t≤T

|St| ∈ Lp(P ) for every p ∈ [1,∞);

see for instance Lemma III.2.1 of Xue (1992) or Lemma II.8.1 of Schweizer (1993). In par-
ticular, S is a special semimartingale with canonical decomposition S = S0 +M +A, where

Mt =

t∫

0

Su−
(
v(u) dWu + ϕ(u)

(
dNu − ν(u) du

))
, 0 ≤ t ≤ T

and

At =

t∫

0

Su−
(
b(u) + ϕ(u)ν(u)

)
du =

t∫

0

αu d〈M〉u , 0 ≤ t ≤ T

with

αt =
1

St−

b(t) + ϕ(t)ν(t)

v2(t) + ϕ2(t)ν(t)
=
%(t)

St−
, 0 ≤ t ≤ T.

Next we define the process Ẑ = (Ẑt)0≤t≤T by

Ẑt := exp




t∫

0

(
ϕ(s)%(s)ν(s)− 1

2
v2(s)%2(s)

)
ds

−
t∫

0

v(s)%(s) dWs +

t∫

0

log
(
1− ϕ(s)%(s)

)
dNs


 , 0 ≤ t ≤ T.

Similar estimates as for S then show, using (1.3), that

(1.5) sup
0≤t≤T

|Ẑt| ∈ Lp(P ) for every p ∈ [1,∞).

Since Ẑ also solves the stochastic differential equation

dẐt = −Ẑt−
(
v(t)%(t) dWt + ϕ(t)%(t)

(
dNt − ν(t) dt

))
, Ẑ0 = 1,
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we see that Ẑ is a strictly positive martingale under P , and this allows us to define an

equivalent probability measure P̂ on (Ω,F) by setting dP̂
dP := ẐT . It is easy to check that S

is a (P̂ , IF )-martingale, and since Ẑ can be written as E
(
−
∫
αdM

)
, P̂ is in fact the minimal

equivalent martingale measure for S with respect to IF ; this can be proved as in Theorem
(3.5) of Föllmer/Schweizer (1991). Moreover, Girsanov’s theorem shows that

Ŵt := Wt +

t∫

0

v(s)%(s) ds , 0 ≤ t ≤ T

is a Brownian motion under P̂ and that N has intensity ν̂(t) := ν(t)
(
1 − ϕ(t)%(t)

)
under

P̂ . Again using Theorem II.6.3 of Ikeda/Watanabe (1981), we conclude that N is a Poisson

process under P̂ and that Ŵ and N are independent under P̂ . For future reference, we note
that (1.4) can be rewritten as

St = S0 exp


−

t∫

0

(
1

2
v2(s) + ϕ(s)ν̂(s)

)
ds+

t∫

0

v(s) dŴs +

t∫

0

log
(
1 + ϕ(s)

)
dNs




for all t ∈ [0, T ], since S satisfies

dSt = St−
(
v(t) dŴt + ϕ(t)

(
dNt − ν̂(t) dt

))
.

Now consider any FT -measurable random variable H. If H ∈ Lp(P ) for some p > 2,
then H admits a so-called Föllmer-Schweizer decomposition as

(1.6) H = Ê[H] +

T∫

0

ξHu dSu + LHT P -a.s.,

where ξH = (ξHt )0≤t≤T is an IF -predictable process satisfying

E




T∫

0

(
ξHu
)2
d〈M〉u +




T∫

0

∣∣ξHu αu
∣∣ d〈M〉u




2

 <∞

and LH = (LHt )0≤t≤T is a P -square-integrable (P, IF )-martingale null at 0 which is strongly
P -orthogonal to M . For a proof of this result, we refer to Theorem 3.4 of Monat/Stricker
(1995) or Theorem II.8.3 of Schweizer (1993). Moreover, the argument given in Schweizer
(1993) also shows that

V̂t := Ê[H] +

t∫

0

ξHu dSu + LHt = Ê[H|Ft] , 0 ≤ t ≤ T.

If we now interpret S as the discounted price of some risky asset in a financial market where
there also exists a riskless asset whose discounted price is identically 1, then the existence of
the above decomposition of H implies the existence of a dynamic trading strategy which is
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H-admissible and locally risk-minimizing in the sense of Schweizer (1991). More precisely,
define an adapted process ηH = (ηHt )0≤t≤T by setting

ηHt := V̂t − ξHt St , 0 ≤ t ≤ T.

If we interpret ξHt as the number of shares of S held at time t and ηHt as the amount invested
in the riskless asset, then the value of this portfolio ϕH = (ξH , ηH) is clearly given by

Vt(ϕ
H) = ξHt St + ηHt = V̂t , 0 ≤ t ≤ T,

so that VT (ϕH) = H P -a.s. The cumulative costs incurred by using ϕH are given by

Ct(ϕ
H) = Vt(ϕ

H)−
t∫

0

ξHu dSu = Ê[H] + LHt , 0 ≤ t ≤ T.

Since this is a (P, IF )-martingale strongly P -orthogonal to M and since it is easy to verify
that S satisfies assumptions (X1) – (X5) of Schweizer (1991), Proposition 2.3 of Schweizer
(1991) implies that ϕH is indeed H-admissible and locally risk-minimizing with respect to IF .

The value process V (ϕH) = V̂ can thus be viewed as a valuation process for the contingent

claim H with respect to the criterion of local risk-minimization. In particular, V̂0 = Ê[H]
can be interpreted as a valuation for H at time 0.

What happens now if we use the same criterion to value options along a sequence of
discretizations of S? If the above valuation concept is reasonable, then economic intuition
suggests that the sequence of discrete-time values should converge to the continuous-time
value. However, this is not so clear from a mathematical point of view, since the valuation
measures will usually be different in every discretization. The convergence result established
in the next section thus shows that the criterion of local risk-minimization has a very appealing
stability property; this will be discussed below in more detail.

To be more precise, fix a sequence (τm)m∈IN of partitions of [0, T ], i.e., τm ={
tm0 , t

m
1 , . . . , t

m
nm

}
with 0 = tm0 < tm1 < . . . < tmnm = T , whose mesh size |τm| :=

max
ti,ti+1∈τm

|ti+1−ti| tends to 0 as m→∞. Define piecewise constant functions ψm : [0, T ]→ IR

by setting

(1.7) ψm(t) := ψ(0)I{0}(t) +

nm∑

k=1

ψ(tmk−1)I(tmk−1
,tm
k ](t)

for m ∈ IN and ψ ∈ {b, v, ϕ}. Then each ψm is clearly left-continuous with right limits,
ψm(t) is bounded by ‖ψ‖∞ uniformly in m and t, and (1.2) also holds for the corresponding
approximating functions vm, ϕm. Note that the function

%m(t) :=
bm(t) + ϕm(t)ν(t)

(
vm(t)

)2
+
(
ϕm(t)

)2
ν(t)

, 0 ≤ t ≤ T

is also left-continuous with right limits, but in general not piecewise constant. We shall
assume that for m large enough, %m also satisfies the condition (1.3), uniformly in m; this is
for instance the case if ν(t) is constant or, more generally, if ν(t) is continuous.
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If we define Xm = (Xm
t )0≤t≤T as the solution of the stochastic differential equation

dXm
t = Xm

t−
(
bm(t) dt+ vm(t) dWt + ϕm(t) dNt

)
, Xm

0 = S0,

then (1.4) with ψm replacing ψ gives the explicit expression for Xm
t , and we get

sup
m∈IN

E

[
sup

0≤t≤T
|Xm

t |p
]
<∞ for every p ∈ [1,∞).

The discrete-time process corresponding to τm is now obtained by simply evaluating Xm at
all discretization points tmk ∈ τm, and we write

Smk := Xm
tm
k

for k = 0, 1, . . . , nm.

Finally, the discrete-time filtration IFm = (Fmk )k=0,1,...,nm is obtained by setting

Fmk := Ftm
k

for k = 0, 1, . . . , nm,

so that Fmk ⊇ σ(Sm0 , . . . , S
m
k ) for every k.

In analogy to the continuous-time case, we now introduce the process Ẑm =
(Ẑmk )k=0,1,...,nm defined by

Ẑmk :=
k∏

j=1

(
1−

E
[
∆Smj

∣∣Fmj−1

]

Var
[
∆Smj

∣∣Fmj−1

] (∆Smj − E
[
∆Smj

∣∣Fmj−1

])
)

for k = 0, 1, . . . , nm, where ∆Smj := Smj − Smj−1 denotes the increment of Sm between tmj−1

and tmj . Using the explicit expression for Ẑm provided in (2.11) – (2.14) below, one readily

verifies that Ẑm is a P -square-integrable (P, IFm)-martingale and that the product ẐmSm is

also a (P, IFm)-martingale. For this reason, we call the signed measure P̂m on (Ω,F) defined

by dP̂m

dP := Ẑmnm the minimal signed martingale measure for Sm with respect to IFm. More
details can be found for instance in Schweizer (1993).

If Hm is now any Fmnm -measurable random variable and in L2(P ), then Hm can be
written as

(1.8) Hm = Êm[Hm] +

nm∑

j=1

ξmj ∆Smj + Lmnm P -a.s.,

where ξm = (ξmk )k=1,...,nm is an IFm-predictable process with ξmk ∆Smk ∈ L2(P ) for every k,
and Lm = (Lmk )k=0,1,...,nm is a P -square-integrable (P, IFm)-martingale null at 0 which is
strongly P -orthogonal to the martingale part Mm in the Doob decomposition Sm = Sm0 +
Mm+Am of Sm with respect to IFm. Note that (1.8) is exactly the discrete-time counterpart
of (1.6). For a proof of (1.8), see for instance Lemma 4.10 of Schäl (1994) or Proposition I.6.1
of Schweizer (1993). Moreover, Theorem I.9 of Schweizer (1988) implies that ξm determines a
unique Hm-admissible discrete-time strategy ϕm = (ξm, ηm) which is locally risk-minimizing
with respect to the discrete-time filtration IFm. Its value process is given by

Vk(ϕm) = ξmk S
m
k + ηmk = Êm[Hm] +

k∑

j=1

ξmj ∆Smj + Lmk =: V̂ mk for k = 0, 1, . . . , nm,
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and the value of Hm at time 0 with respect to IFm is V̂ m0 = Êm[Hm]. Furthermore,

V̂ mk = Êm
[
Hm

∣∣Fmk
]

P -a.s. for k = 0, 1, . . . , nm

in the sense that V̂ mnm = Hm P -a.s. and V̂ mẐm is a (P, IFm)-martingale.
Now we can reformulate our question: How do these option values behave if |τm| tends

to 0? If for instance H = (ST −K)+ is a European call option on S and Hm = (SmT −K)+

is its discretized version, then we certainly expect Hm to converge to H, and we hope that
this will imply the convergence of the values Êm[Hm] to Ê[H]. The conclusion below will

be that this is indeed true, and the essential step in the argument will be to prove that Ẑmnm
converges to ẐT in a sufficiently strong sense.

2. Convergence of the minimal densities

In this section, we prove that Ẑmnm converges to ẐT as |τm| tends to 0. For that purpose,
we first establish an auxiliary result. Define the left-continuous piecewise constant functions
%̄m : [0, T ]→ IR by

%̄m(t) :=
1

∆tmk

tmk∫

tm
k−1

%m(s) ds for t ∈
(
tmk−1, t

m
k

]

and %̄m(0) := %(0). Then %̄m(t) is bounded uniformly in m and t, %̄m satisfies (1.3) whenever
%m does, and

(2.1) lim
m→∞

%̄m(t) = %(t) for almost every t ∈ [0, T ].

Denote by Um = (Umt )0≤t≤T the process defined by

Umt := exp




t∫

0

(
ϕm(s)%̄m(s)ν(s)− 1

2

(
vm(s)%̄m(s)

)2
)
ds(2.2)

−
t∫

0

vm(s)%̄m(s) dWs +

t∫

0

log
(
1− ϕm(s)%̄m(s)

)
dNs




for t ∈ [0, T ]. The same arguments as for (1.5) then show that

(2.3) sup
m∈IN

E

[
sup

0≤t≤T
|Umt |p

]
<∞ for every p ∈ [1,∞).

Lemma 1. As |τm| tends to 0,

(2.4) UmT −→ ẐT in Lp(P ) for every p ∈ [1,∞)
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and

(2.5) Xm
T −→ ST in Lp(P ) for every p ∈ [1,∞).

Proof. By the definition of ψm, ψm(t) converges to ψ(t) for every t ∈ [0, T ] and for ψ ∈
{b, v, ϕ}. Hence we conclude that

T∫

0

(
ϕm(s)%̄m(s)ν(s)− 1

2

(
vm(s)%̄m(s)

)2
)
ds −→

T∫

0

(
ϕ(s)%(s)ν(s)− 1

2
v2(s)%2(s)

)
ds

by (2.1) and the dominated convergence theorem. Furthermore,

T∫

0

log
(
1− ϕm(s)%̄m(s)

)
dNs −→

T∫

0

log
(
1− ϕ(s)%(s)

)
dNs P -a.s.

by (2.1) and dominated convergence, since 1−ϕm(t)%̄m(t) is bounded away from 0 uniformly
in m and t for large m by assumption. Finally,

T∫

0

(
vm(s)%̄m(s)− v(s)%(s)

)2
ds −→ 0

by (2.1) and dominated convergence and thus

T∫

0

vm(s)%̄m(s) dWs −→
T∫

0

v(s)%(s) dWs in L2(P ).

This implies that UmT converges to ẐT in probability as m → ∞, and combining this with
(1.5) and (2.3) yields (2.4). The proof of (2.5) is perfectly analogous.

q.e.d.

Now we are ready to state and prove the main result of this section.

Theorem 2. As |τm| tends to 0,

(2.6) Ẑmnm −→ ẐT in Lp(P ) for every p ∈ [1,∞).

Proof. 1) By Lemma 1, it is enough to show that Ẑmnm − UmT converges to 0 in Lp(P ) for
every p ∈ [1,∞) or even only for every p ∈ IN . Since

∥∥∥Ẑmnm − UmT
∥∥∥
Lp(P )

≤ ‖UmT ‖L2p(P )

∥∥∥∥∥
Ẑmnm
UmT

− 1

∥∥∥∥∥
L2p(P )
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and
(
‖UmT ‖L2p(P )

)
m∈IN is bounded due to (2.3), we only need to show that

E



(
Ẑmnm
UmT

− 1

)2p

 −→ 0 as m→∞ for every p ∈ IN .

But

E



(
Ẑmnm
UmT

− 1

)2p

 =

2p∑

`=0

(
2p

`

)
E



(
Ẑmnm
UmT

)`
 (−1)2p−`,

and so (2.6) will be proved once we show that

(2.7) lim
m→∞

E



(
Ẑmnm
UmT

)`
 = 1 for every ` ∈ IN0.

2) Now we compute Ẑmnm . Due to (1.4) and (1.7), Sm can be written recursively as

(2.8) Smk = Smk−1 exp

((
bmk −

1

2
(vmk )2

)
∆tmk + vmk ∆Wm

k + ∆Nm
k log(1 + ϕmk )

)

with the shorthand notation

(2.9) ψmk := ψ(tmk−1) = ψm(tmk ) for ψ ∈ {b, v, ϕ,W,N}.

Using the fact that ∆Wm
k and ∆Nm

k are independent of each other and of Fmk−1 with respective
distributions N (0,∆tmk ) and P(ν̄mk ∆tmk ), where

(2.10) ν̄mk :=
1

∆tmk

tmk∫

tm
k−1

ν(s) ds,

we can compute

E
[
∆Smk

∣∣Fmk−1

]
= Smk−1

(
exp

(
(bmk + ϕmk ν̄

m
k )∆tmk

)
− 1
)

and

Var
[
∆Smk

∣∣Fmk−1

]
= (Smk−1)2 exp

(
2(bmk + ϕmk ν̄

m
k )∆tmk

)(
exp

((
(vmk )2 + (ϕmk )2ν̄mk

)
∆tmk

)
− 1

)
.

With the abbreviations

(2.11) qmk :=
exp

(
(bmk + ϕmk ν̄

m
k )∆tmk

)
− 1

exp
(
(bmk + ϕmk ν̄

m
k )∆tmk

)(
exp

((
(vmk )2 + (ϕmk )2ν̄mk

)
∆tmk

)
− 1

) ,

(2.12) R̃mk := exp

(
vmk ∆Wm

k + ∆Nm
k log(1 + ϕmk )−

(
1

2
(vmk )2 + ϕmk ν̄

m
k

)
∆tmk

)

9



        

and

(2.13) Rmk := qmk (R̃mk − 1),

we thus obtain

(2.14) Ẑmnm =

nm∏

j=1

(1−Rmj ).

By (2.2), this implies

Ẑmnm
UmT

=

nm∏

j=1

(1−Rmj ) exp(−Lmj )

with

(2.15) Lmk :=

(
ϕmk %̄

m
k ν̄

m
k −

1

2
(vmk %̄

m
k )2

)
∆tmk − vmk %̄mk ∆Wm

k + ∆Nm
k log(1− ϕmk %̄mk );

note that we have used here the fact that ϕm, vm, %̄m are all piecewise constant. Since the
processes W and N are independent and have independent increments, the random variables
(1−Rmj ) exp(−Lmj ) are independent for j = 1, . . . , nm and so

E



(
Ẑmnm
UmT

)`
 =

nm∏

j=1

E
[
(1−Rmj )` exp(−`Lmj )

]
= exp



nm∑

j=1

logE
[
(1−Rmj )` exp(−`Lmj )

]

 .

Hence (2.7) will follow if we show that

(2.16) lim
m→∞

nm∑

j=1

logE
[
(1−Rmj )` exp(−`Lmj )

]
= 0 for every ` ∈ IN0.

3) Now fix ` ∈ IN0 and m ∈ IN , and drop the index m for the moment to ease the
notation. From (2.13), we get

(1−Rk)` exp(−`Lk) =
∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk)iR̃ik exp(−`Lk),

and using (2.12) and (2.15) gives

E
[
R̃ik exp(−`Lk)

]
= exp

(
fk(`, i)∆tk

)

with

fk(`, i) :=
1

2
v2
k

(
(i+ `%̄k)2 − i

)
− `

(
ϕk%̄kν̄k −

1

2
v2
k%̄

2
k

)
+ ν̄k

(
(1 + ϕk)i

(1− ϕk%̄k)`
− 1− iϕk

)
.

Expanding ex into a power series, we get

E
[
R̃ik exp(−`Lk)

]
= 1 + fk(`, i)∆tk +O

(
(∆tk)2

)
,

10



        

and since we have uniform bounds on all coefficients for large m, the error term is O
(
(∆tk)2

)

uniformly in m for large m, i.e.,

lim sup
m→∞

1

(∆tk)2
O
(
(∆tk)2

)
<∞.

Summing over i yields

E
[
(1−Rk)` exp(−`Lk)

]
=
∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk)i

(
1 + fk(`, i)∆tk +O

(
(∆tk)2

) )

= 1 + ∆tk
∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk)ifk(`, i) +O

(
(∆tk)2

)
,

and expanding log(1 + x) into a power series leads to

logE
[
(1−Rk)` exp(−`Lk)

]
= ∆tk

∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk)ifk(`, i) +O

(
(∆tk)2

)
,

again with an error term which is uniform in m for large m; notice that qmk is bounded
uniformly in m for large m.

4) Next we compute

∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk)ifk(`, i)

=
1

2
`2v2

k%̄
2
k − `

(
ϕk%̄kν̄k −

1

2
v2
k%̄

2
k

)
− ν̄k +

ν̄k
(1− ϕk%̄k)`

∑̀

i=0

(
`

i

)
(1 + qk)`−i(−qk − qkϕk)i

+ (`v2
k%̄k − ν̄kϕk)

∑̀

i=0

i

(
`

i

)
(1 + qk)`−i(−qk)i +

1

2
v2
k

∑̀

i=0

i(i− 1)

(
`

i

)
(1 + qk)`−i(−qk)i

=
1

2
`2v2

k%̄
2
k − `

(
ϕk%̄kν̄k −

1

2
v2
k%̄

2
k

)
− ν̄k + ν̄k

(
1− qkϕk
1− ϕk%̄k

)`

− `qk(`v2
k%̄k − ν̄kϕk) +

1

2
v2
kq

2
k`(`− 1)

=
1

2
`2v2

k(%̄k − qk)2 + `

(
ϕkν̄k(qk − %̄k)− 1

2
v2
k(q2

k − %̄2
k)

)
+ ν̄k

((
1− qkϕk
1− ϕk%̄k

)`
− 1

)

=: gk(`).

5) Now sum over k and reinstate the index m to obtain

nm∑

k=1

logE
[
(1−Rmk )` exp(−`Lmk )

]
=

nm∑

k=1

(
gmk (`)∆tmk +O

(
(∆tmk )2

))
.

The sum of the error terms is O(1)|τm| and thus tends to 0. Furthermore, (2.11) shows that

lim
m→∞

qmk =
b(t) + ϕ(t)ν(t)

v2(t) + ϕ2(t)ν(t)
= %(t)

11



           

for every t, and as |τm| tends to 0,

ψmk −→ ψ(t) for every t and for ψ ∈ {v, ϕ}

by (2.9) and
ψ̄mk −→ ψ(t) for almost every t and for ψ ∈ {ν, %}

by (2.1) and (2.10). Hence we conclude that (2.16) holds, and this completes the proof.
q.e.d.

3. Applications

As an immediate consequence of Theorem 2, we obtain

Theorem 3. Suppose Hm is Fmnm -measurable for every m ∈ IN , H is FT -measurable and
Hm converges to H in Lq(P ) for some q > 1. Then

(3.1) lim
m→∞

Êm[Hm] = Ê[H].

From the perspective of possible applications, this is the central result of this paper.
It tells us that even in incomplete markets, one can get convergence of discrete-time option
values to continuous-time option values if these values are determined at each step with
respect to the criterion of local risk-minimization. We emphasize once more that this is not
a trivial result: local risk-minimization is defined with respect to a given filtration, and so we
have a different optimization problem in each discretization. Theorem 3 then shows that local
risk-minimization has an inherent stability property under discretization and thus provides a
strong argument in favour of this criterion for valuing options under incompleteness.

Consider now briefly the case where ϕ ≡ 0, i.e., S has no jump component. Then S is
just geometric Brownian motion with (time-dependent) drift b(t) and volatility v(t), and this

implies that S is complete. Hence P̂ is the unique equivalent martingale measure for S with
respect to IF , and Ê[H] is the unique price for H which is consistent with absence of arbitrage

opportunities. If H has a complicated form, then an explicit formula for Ê[H] is in general not
available and so one resorts to approximations by using discrete-time models. In most papers
so far, these discrete models are binomial trees, and one major argument for this choice (apart
from computational reasons) is the fact that this is the only discrete-time process which, like
its continuous-time counterpart S, is complete and thus allows pricing by arbitrage. Theorem
3 shows that this very restrictive choice is not necessary; one can equally well take a simple
(incomplete) discretization of S if one then uses the minimal signed martingale measure P̂m

to compute the value of the approximating claim Hm.

Remark. Although our proof of Theorem 2 relies crucially on the explicit structure of our
model and in particular on the assumption of deterministic coefficients, we conjecture that
Theorem 3 is valid in more generality. Obviously, (3.1) will hold whenever Hm tends to H
in Lq(P ) and

(3.2)
dP̂m

dP
−→ dP̂

dP
in Lp(P )

12



         

with 1
p + 1

q = 1. It would be interesting to see a proof of (3.2) in a more general situation.

Note that we have assumed in Theorem 3 that Hm converges to H in Lq(P ). In general,
this condition is easy to verify; if for instance (Fmnm)m∈IN increases to FT , we can always
choose

Hm := E
[
H
∣∣Fmnm

]

by the martingale convergence theorem. For specific examples, however, other choices of Hm

may be more natural.

Example 1. Suppose H = (ST −K)+ is a European call option on S with strike price K.
If we denote by Hm = (Smnm −K)+ the corresponding call option in the discrete-time model,
then Lemma 1 implies that Hm tends to H in Lq(P ) for every q ∈ [1,∞) and so we can apply
Theorem 3 to deduce the convergence of the corresponding values. More generally, the same
arguments work with H = f(ST ) and Hm = f(Smnm) for every continuous function f which
satisfies for instance a polynomial growth condition.

Example 2. If H =


 1

T

T∫

0

Su du−K




+

is a fixed strike Asian option, its natural discrete-

time counterpart is

Hm =


 1

T

nm∑

j=1

Smj−1∆tmj −K




+

.

It is then straightforward to check that Hm tends to H in Lq(P ) for every q ∈ [1,∞). Hence

Êm[Hm] provides an approximation for Ê[H] by Theorem 3, and this may be useful since
the latter expectation is quite difficult to compute.

In general terms, Theorem 3 tells us that an approximation for the value Ê[H] can
be obtained by computing a suitable expectation in a suitable discretization. The great
advantage of this lies in the fact that in a discrete-time model, every quantity of interest can
in principle be computed explicitly. Let us illustrate this in our situation for a call option of
the form Hm = (Smnm −K)+. By (2.14), Êm[Hm] can be written as

(3.3) Êm[Hm] = S0E



nm∏

j=1

(1−Rmj )

(
nm∏

k=1

Smk
Smk−1

− K

S0

)+

 .

Now drop the index m for ease of notation and use (2.8), (2.12) and (2.13) to obtain

E




n∏

j=1

(1−Rj)
(

n∏

k=1

Sk
Sk−1

− K

S0

)+



= E




n∏

j=1


1 + qj − qj exp

(
vj∆Wj + ∆Nj log(1 + ϕj)−

(
1

2
v2
j + ϕj ν̄j

)
∆tj

)





n∏

k=1

exp

((
bk −

1

2
v2
k

)
∆tk + vk∆Wk + ∆Nk log(1 + ϕk)

)
− K

S0




+

.
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With suitable constants fj , gj , this can be expressed as

E




n∏

j=1

(
fj + gj exp

(
vj∆Wj + ∆Nj log(1 + ϕj)

))

(
n∏

k=1

exp
(
vk∆Wk + ∆Nk log(1 + ϕk)

)
− K̄

)+



= E







n∏

j=1

fj +
n∑

j=1

gj exp
(
vj∆Wj + ∆Nj log(1 + ϕj)

)∏

k 6=j
fk

+
n∑

i,j=1

gigj exp
(
vi∆Wi + vj∆Wj + ∆Ni log(1 + ϕi) + ∆Nj log(1 + ϕj)

) ∏

k 6=i,j
fk + . . .

+




n∏

j=1

gj


 exp




n∑

j=1

(
vj∆Wj + ∆Nj log(1 + ϕj)

)







 exp




n∑

j=1

(
vj∆Wj + ∆Nj log(1 + ϕj)

)

− K̄




+


which, apart from deterministic constants, is a sum of terms of the form

(3.4) E


exp




n∑

j=1

(cj∆Wj + dj∆Nj)





 exp




n∑

j=1

(c̄j∆Wj + d̄j∆Nj)


− K̃




+
 .

Since W and N are independent, the expectation can be performed first with respect to the
Poisson and then with respect to the Gaussian variables. Because the random variables ∆Nj
are independent with respective distributions P(λj), where λj = ν̄j∆tj , (3.4) then becomes

∞∑

k1,...,kn=0




n∏

j=1

λ
kj
j

kj !
e−λj


 exp




n∑

j=1

djkj


(3.5)

E





 exp




n∑

j=1

(
(cj + c̄j)∆Wj + d̄jkj

)

− K̃ exp




n∑

j=1

cj∆Wj







+
 .

The problem at this point is reduced to the computation of expectations of the form

(3.6) E

[(
eG1 − K̃eG2

)+
]

= E

[
E

[(
eG1 − K̃eG2

)+
∣∣∣∣G2

] ]
,
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where G1 and G2 are Gaussian random variables with given means m1,m2, variances σ2
1 , σ

2
2

and covariance R = %σ1σ2. In (3.5), we have for instance

m1 =
n∑

j=1

d̄jkj , m2 = 0, σ2
1 =

n∑

j=1

(cj + c̄j)
2∆tj , σ2

2 =
n∑

j=1

c2j∆tj , R =
n∑

j=1

cj(cj + c̄j)∆tj .

The inner expectation on the right-hand side of (3.6) is now given by a Black-Scholes-type
formula corresponding to the case where the terminal value of the risky asset is lognormal
with mean

m1 + %
σ2

σ1
G2 = m1 +

RG2

σ2
1

and variance

σ2
2(1− %2) = σ2

2 −
R2

σ2
1

.

The value of the expression in (3.6) is thus an average of Black-Scholes-type formulae over a
Gaussian distribution, and this average must in general be computed numerically. To obtain
the option value Êm[Hm] in (3.3), a further averaging over a Poisson measure is required
according to (3.5). In summary, the option value in the discrete-time model can be obtained
as an average of Black-Scholes-type formulae, where the averaging is first performed with
respect to a Gaussian measure and then with respect to a Poisson measure.

In the case where the claim H is an Asian option, either with fixed strike, i.e.,

H =


 1

T

T∫

0

Su du−K




+

,

or with average strike, i.e.,

H =


ST −

K

T

T∫

0

Su du




+

,

completely analogous computations can be made. Consider for instance the second case with

Hm =


Smnm −

K

T

nm∑

j=1

Smj−1∆tmj




+

.

Instead of (3.6), we then obtain

(3.7) E




eG − K̃

n∑

j=1

eGj




+
 = E


E




eG − K̃

n∑

j=1

eGj




+ ∣∣∣∣∣∣
G1, . . . , Gn





,

where G,G1, . . . , Gn are correlated Gaussian random variables with appropriate means and
variances. Thus the value in (3.7) can again be obtained by repeated averaging of Black-
Scholes-type formulae over Gaussian distributions, or equivalently by a single averaging over
a multivariate Gaussian distribution. To obtain from there the option value Êm[Hm] requires
a further averaging over a Poisson measure.
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Remark. Despite the fact that Theorem 3 allows us to reduce the computation of ap-
proximate option values in our framework to a discrete-time problem, it may sometimes be
computationally advantageous to use a different approximation. Suppose that H is of the
form H = f(ST ) for a continuous function f satisfying a polynomial growth condition. Define

the process Ûm = (Ûmt )0≤t≤T by setting

Ûmt := exp




t∫

0

(
ϕm(s)%m(s)ν(s)− 1

2

(
vm(s)%m(s)

)2
)
ds

−
t∫

0

vm(s)%m(s) dWs +

t∫

0

log
(
1− ϕm(s)%m(s)

)
dNs




for all t ∈ [0, T ]; note that Ûm differs from Um in (2.2) by the fact that %m replaces %̄m.

The same arguments as in section 1 show that Ûm is the density process of the minimal
martingale measure Q̂m for Xm with respect to IF . Furthermore, ÛmT converges to ẐT in
Lp(P ) for every p ∈ [1,∞) by an analogous argument as for (2.4), and so Lemma 1 implies
that

Ê[H] = E
[
ẐT f(ST )

]
= lim
m→∞

E
[
ÛmT f(Xm

T )
]

= lim
m→∞

E
Q̂m

[f(Xm
T )] .

Now use again the arguments of section 1 to conclude that Xm
T is given by

S0 exp




T∫

0

vm(s) dŴm
s +

T∫

0

log
(
1 + ϕm(s)

)
dNs −

T∫

0

(
1

2

(
vm(s)

)2
+ ϕm(s)ν̂m(s)

)
ds




= S0 exp




T∫

0

vm(s) dŴm
s −

T∫

0

(
1

2

(
vm(s)

)2
+ ϕm(s)ν̂m(s)

)
ds




nm∏

j=1

(1 + ϕmj )∆Nmj ,

since ϕm is piecewise constant. But Ŵm and N are independent under Q̂m and N is a
Poisson process with Q̂m-intensity ν̂m(t) = ν(t)

(
1− ϕm(t)%m(t)

)
, and so we obtain

E
Q̂m

[f(Xm
T )](3.8)

= exp


−

T∫

0

ν̂m(s) ds




∞∑

k1,...,knm=0





nm∏

j=1

(λ̂mj )kj

kj !

E


f


S0e

G
nm∏

j=1

(1 + ϕmj )kj exp


−

T∫

0

(
1

2

(
vm(s)

)2
+ ϕm(s)ν̂m(s)

)
ds













,

where

λ̂mk :=

tmk∫

tm
k−1

ν̂m(s) ds

and G has a normal distribution with mean 0 and variance
T∫
0

(
vm(s)

)2
ds. In fact, (3.8) is

obtained by conditioning on N and using the independence of N and Ŵm under Q̂m, exactly
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as in the proof of Theorem 2.1 of Mercurio/Runggaldier (1993). For the case where H is a
European call option, i.e., f(x) = (x −K)+, (3.8) simplifies to a Poisson average of Black-
Scholes-type formulae as in Mercurio/Runggaldier (1993). Since no further averaging over a
Gaussian distribution is required, (3.8) is therefore easier to compute than (3.3).
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