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Abstract: We consider a general stochastic model of frictionless continuous trading.

The price process is a semimartingale and the model is incomplete. Our

objective is to hedge contingent claims by using trading strategies with a

small riskiness. To this end, we introduce a notion of local R-minimality

and show its equivalence to a new kind of stochastic optimality equa-

tion. This equation is solved by a Girsanov transformation to a minimal

equivalent martingale measure. We prove existence and uniqueness of

the solution, and we provide several examples. Our approach contains

previous treatments of option trading as special cases.
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0. Introduction

The formula of Black and Scholes [1] for the valuation of options has led to

the development of a general hedging method for contingent claims in a complete

financial market by Harrison and Pliska [8]. In such a market, any claim can be

replicated by a self-financing dynamic portfolio strategy which only makes use of

the existing assets; in this sense, the claim is redundant. In an incomplete market,

however, there exist non-redundant claims which carry an intrinsic risk, and any

portfolio strategy generating such a claim will involve a random process of cumula-

tive costs. In order to compare these strategies, a measure R of riskiness in terms

of a conditional mean square error was introduced in Föllmer and Sondermann

[6]. Although somewhat ad hoc from an economic point of view, this formulation

permits one to apply martingale theory in a natural way. In particular, R-minimi-

zing trading strategies turn out to be mean-self-financing , i.e., their cost process

is a martingale. In the case where the stock price process X is a martingale under

the basic probability measure P , existence and uniqueness of an R-minimizing

strategy were proved in Föllmer and Sondermann [6], using the Kunita-Watanabe

projection technique.

In this paper, we consider a general incomplete model where the price process

X is assumed to be a semimartingale under P . This assumption is quite natural

because it is implied by the existence of an equivalent martingale measure for X,

i.e., a probability measure P ∗ equivalent to P such that X is a martingale under

P ∗. In turn, the existence of P ∗ corresponds to assuming the absence of arbitrage

opportunities. Our purpose is to analyze the riskiness of non-redundant contin-

gent claims and to determine optimal hedging strategies in this context. To this

end, we have to modify the approach taken in Föllmer and Sondermann [6] since

the Kunita-Watanabe projection technique does not apply directly to the case of

a semimartingale. In section 2, the idea of keeping conditional variances as small

as possible is now formalized in a local manner, leading to the notion of a locally

R-minimizing strategy. We show that these strategies are mean-self-financing, and

that they can be characterized by a stochastic optimality equation. This involves

new results in Schweizer [13] on the differentiation of semimartingales and their

connection to the orthogonality of martingales. In section 3 we solve the optimal-

ity equation. Existence and uniqueness of the solution are established under the

assumption that P admits a minimal equivalent martingale measure P̃ . This mea-

sure has the property that it only turns X into a martingale and otherwise does

not disturb the structure of the model. The optimal strategy for P is identified

with the unique strategy which is R-minimizing for P̃ in the sense of Föllmer and
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Sondermann [6]. It should be pointed out that the minimal martingale measure

plays here only the role of a tool; the option writer’s subjective assessment of the

market structure is given by the measure P , and so our formulation of the optimal-

ity criterion also uses P . But the identification of the optimal strategy in terms

of P̃ has an important consequence. It shows the invariance of an R-minimizing

strategy within a certain class of equivalent semimartingale models. Thus a key

feature of the complete market situation treated by Harrison and Pliska [8] is pre-

served in our incomplete model. The preceding results are illustrated in section 4

by two examples. The first one is an incomplete version of the Black/Scholes model

with two sources of uncertainty, but only one stock. The second involves point

processes and is related to dynamic reinsurance policies for stop-loss contracts;

this approach was initiated by Sondermann [14].

Acknowledgements. This paper is based on my Ph.D. thesis [12]. I take this

opportunity to thank my adviser Hans Föllmer for all his help and encouragement.

I should also like to thank an unknown referee for his comments and questions

which led to a number of improvements.

1. The basic model

This section has two purposes. First of all, we describe our model for option

trading and introduce the required notation and terminology. After that, we re-

view some previous results in the literature in order to motivate the subsequent

development.

Let (Ω,F , P ) be a probability space with a filtration (Ft)0≤t≤T satisfying the

usual conditions of right-continuity and completeness. T ∈ IR denotes a fixed and

finite time horizon; furthermore, we assume that F0 is trivial and that FT = F .

Let X = (Xt)0≤t≤T be a semimartingale with a decomposition

(1.1) X = X0 +M +A ,

such that

(X1) M = (Mt)0≤t≤T is a square-integrable martingale with M0 = 0

and A = (At)0≤t≤T is a predictable process of finite variation |A| with A0 = 0.

Additional assumptions on X will be introduced later on when the need arises.

By (X1), M has a variance process 〈M〉 with respect to P , and we denote by PM
the measure P×〈M〉 on the product space Ω := Ω×[0, T ] with the σ-algebra P of

predictable sets.
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Definition. A trading strategy ϕ is a pair of processes ξ = (ξt)0≤t≤T , η =

(ηt)0≤t≤T satisfying the following conditions:

(1.2) ξ is predictable.

(1.3) The process

t∫

0

ξu dXu (0 ≤ t ≤ T ) is a semimartingale of class S2.

(1.4) η is adapted.

(1.5) The process V (ϕ) defined by Vt(ϕ) := ξt ·Xt + ηt (0 ≤ t ≤ T ) is right-

continuous and satisfies Vt(ϕ) ∈ L2(P ), 0 ≤ t ≤ T .

The integrability condition (1.3) is equivalent to

E




T∫

0

ξ2
u d〈M〉u +




T∫

0

|ξu| d|A|u




2

 <∞

which means that

ξ ∈ L2(PM ) and

T∫

0

|ξu| d|A|u ∈ L2(P ) .

In accordance with the usual terminology, the process V (ϕ) will be called the value

process of ϕ and the right-continuous square-integrable process C(ϕ) defined by

(1.6) Ct(ϕ) := Vt(ϕ)−
t∫

0

ξu dXu , 0 ≤ t ≤ T

the (cumulative) cost process of ϕ. See Harrison and Pliska [8] and Föllmer and

Sondermann [6] for a detailed motivation.

Interpretation. The process X is a model for the price evolution of a risky

asset (called stock). We tacitly assume that there also exists a riskless asset (called

bond) whose value is 1 at all times. Actually, any strictly positive continuous pro-

cess of finite variation will do for this purpose; the normalization to 1 simply means

that we work directly with discounted prices and helps to avoid more complicated

notations. A trading strategy is interpreted as a dynamic portfolio of stock and

bond: at time t, we hold ξt shares of stock and ηt unit bonds, and clearly Vt(ϕ) is

the value of this portfolio. (1.6) expresses the fact that the cumulative costs up to

time t are equal to the current value of the portfolio reduced by the accumulated
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trading gains. The predictability condition (1.2) on ξ means that we have to de-

termine the amount of shares before the next infinitesimal stock price movement

is actually known. On the other hand, η is allowed to be adapted; this relaxation

of the measurability condition on η was introduced and motivated by Föllmer and

Sondermann [6]. In a complete financial market, the distinction does not matter

because there the relevant trading strategies turn out to be predictable in both

components. But in an incomplete situation, it will give us some extra freedom in

adjusting the portfolio value to a desired level, and this will be essential.

A contingent claim H is intended to model the payoff at time T of some

financial instrument. The simplest example is given by a European call option

with fixed strike price K ∈ IR where

H = (XT −K)+ .

This claim has the special form H = h(XT ) for some function h. More generally,

H could depend on the whole evolution of X up to time T . One example of such

a path-dependent option would be a call on the average value of the stock, i.e.,

H =


XT −

1

T
·
T∫

0

Xu du




+

.

Depending on the structure of the filtration (Ft), even some external events could

play a role. Note, however, that payoffs will be made at the terminal time T

only. Assuming that we have sold such a claim, this means that we shall have

to pay the amount H at time T . However, the exact size of this obligation is in

general still uncertain at any time t < T , and it makes sense that we should like

to reduce the inherent dangers of this uncertainty. To achieve this end, we have to

use the available means: buying and selling stocks and bonds. A natural approach

is therefore to look for a trading strategy which generates the required payoff H

and at the same time minimizes some measure of riskiness. This idea will now be

made precise.

In mathematical terms, a contingent claim is a random variable H ∈ L2(P ).

We shall concentrate on strategies which are H-admissible in the sense that

(1.7) VT (ϕ) = H P − a.s. ;

ϕ is then said to generate H. Note that an H-admissible strategy always exists:

we can simply choose ξ ≡ 0 and η = 0 except for ηT = H. This corresponds to
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“doing nothing until one has to pay up”. As a measure of riskiness, we introduce

for each strategy the conditional mean square error process

(1.8) Rt(ϕ) := E
[ (
CT (ϕ)− Ct(ϕ)

)2 ∣∣∣Ft
]

, 0 ≤ t ≤ T,

defined as a right-continuous version. Following Harrison and Pliska [8], a strategy

ϕ is called self-financing if its cost process C(ϕ) is constant P -a.s. It is called mean-

self-financing if C(ϕ) is a martingale; this notion was introduced by Föllmer and

Sondermann [6].

Remarks. 1) The criterion (1.8) is essentially a mean-variance criterion;

in fact, Rt(ϕ) is simply the conditional variance of the total cost CT (ϕ), given

the information up to time t, if the strategy ϕ is mean-self-financing. Lemma 1.2

below will show that we can restrict ourselves to this class of strategies.

2) The main reason for our use of P in the definition of Rt(ϕ) is that P is

intended to model the subjective beliefs of the option writer. It has been suggested

by the referee to use a risk-neutral probability (i.e., a martingale measure) P̂

instead of P in (1.8). In that case, the subsequent discussion would simply reduce

to the martingale case treated by Föllmer and Sondermann [6]. As it turns out

from Theorem 3.2 below, the optimal strategy can in fact be described in terms

of a certain minimal martingale measure P̃ , and this proves the robustness of the

criterion (1.8) and of the corresponding optimal strategy under certain equivalent

changes of measure. But this result is only meaningful if our analysis is done

in terms of P . If we had used a martingale measure in the definition of Rt(ϕ),

robustness would only hold by definition.

Definition. A contingent claim H is called attainable if it is of the form

(1.9) H = H0 +

T∫

0

ξ∗u dXu P − a.s.

with a constant H0 and a predictable process ξ∗ satisfying (1.3).

Proposition 1.1. Let H be a contingent claim. The following statements

are equivalent:

1) There exists a self-financing H-admissible trading strategy ϕ.

2) There exists an H-admissible trading strategy ϕ with R0(ϕ) = 0.

3) There exists an H-admissible trading strategy ϕ with
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Rt(ϕ) = 0 P − a.s. , 0 ≤ t ≤ T .

4) H is attainable.

Proof. Since 1), 2) and 3) are clearly equivalent, it is enough to show the

equivalence of 1) and 4). But 1) yields

H = VT (ϕ) = CT (ϕ) +

T∫

0

ξu dXu = C0(ϕ) +

T∫

0

ξu dXu P − a.s. ,

and 4) allows us to define ϕ = (ξ∗, η) by

Vt(ϕ) = H0 +

t∫

0

ξ∗u dXu , 0 ≤ t ≤ T.

q.e.d.

Remark. The crucial equivalence between 1) and 4) was proved by Harrison

and Pliska [8]; the explicit use of the process R(ϕ) in 2) and 3) appears in Föllmer

and Sondermann [6]. An attainable claim H has some very special features. First

of all, it is riskless in the following sense: If we start with the non-random initial

amount C0(ϕ) = H0 and then use the above self-financing strategy, we can ex-

actly duplicate the cash-flow induced by H. In our idealized model of frictionless

continuous trading, H and ϕ are therefore equivalent. This implies that the price

of H is uniquely determined and must be H0 in order to exclude the possibility of

arbitrage. An easy way to compute both the price H0 and the generating strategy

ξ∗ is provided by the use of an equivalent martingale measure P ∗ for X. (1.9)

then implies

H0 = E∗[H]

and

ξ∗t =
d〈V ∗, X〉P∗t
d〈X〉P∗t

, 0 ≤ t ≤ T

where V ∗ denotes a right-continuous version of the process

V ∗t := E∗[H|Ft] , 0 ≤ t ≤ T.

Thus, the optimal strategy can be expressed in terms of P ∗ alone. In particular,

it does not depend on the subjective beliefs described by the original measure

P ≈ P ∗.
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The preceding discussion of attainable claims is of course well-known. The

arbitrage argument yielding H0 as the fair option price in this model is exactly

the one made already by Black and Scholes [1], with the small difference that

they used stock and option to form a portfolio earning the riskless rate of return.

They worked with a specific model where X follows a geometric Brownian motion.

This was generalized by Harrison and Pliska [8], [9] who treated the case of a so-

called complete market, i.e., a situation where every contingent claim is attainable.

Harrison and Pliska [9] also proved that a model is complete if and only if it admits

a unique equivalent martingale measure P ∗ for X. However, all these contributions

were limited to attainable claims. But as Hakansson [7] pointed out, any attainable

claim is essentially redundant because it can be duplicated by using the already

existing assets, namely stock and bond. Starting from this observation, Föllmer

and Sondermann [6] introduced the process R(ϕ) and formulated the following

optimization problem.

Definition. Let ϕ = (ξ, η) be a trading strategy and t ∈ [0, T ). An admissible

continuation of ϕ from t on is a trading strategy ϕ̃ = (ξ̃, η̃) satisfying

ξ̃s = ξs for s ≤ t(1.10)

η̃s = ηs for s < t

and

(1.11) VT (ϕ̃) = VT (ϕ) P − a.s.

An admissible variation of ϕ from t on is a trading strategy ∆ = (δ, ε) such that

ϕ+ ∆ is an admissible continuation of ϕ from t on.

Definition. A trading strategy ϕ is called R-minimizing if for any t ∈ [0, T )

and for any admissible continuation ϕ̃ of ϕ from t on we have

Rt(ϕ̃) ≥ Rt(ϕ) P − a.s.

or equivalently if

(1.12) Rt(ϕ+ ∆)−Rt(ϕ) ≥ 0 P − a.s.

for every admissible variation ∆ of ϕ from t on.

Problem: Given a contingent claim H, find an H-admissible R-minimizing

strategy.
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Remark. R-minimization should be viewed as a sequential regression pro-

cedure in the following sense: at any time t, one “lets the past be the past” and

concentrates instead on those strategies which differ from the reference strategy

only on the remaining time interval (t, T ]. Note that this is an extension of the

Black/Scholes approach where R(ϕ) can be reduced to 0; cf. Proposition 1.1. In

an incomplete model, this is in general not possible; it is therefore important to

analyze the riskiness of a given contingent claim in more detail. Before recalling

the central result on R-minimizing strategies, we give a technical lemma on the

improvement of trading strategies which will be useful later on. It says that for

any H-admissible strategy we can find another H-admissible strategy which is

mean-self-financing and which has smaller conditional mean square error. Thus,

it suggests that any “good” strategy ought to be mean-self-financing. Note that

this excludes for example a strategy which is self-financing on [0, T ) and makes up

the balance at the end.

Lemma 1.2. Let ϕ = (ξ, η) be a trading strategy and t ∈ [0, T ]. Then there

exists a trading strategy ϕ̂ satisfying

a) VT (ϕ̂) = VT (ϕ) P − a.s.
b) Cs(ϕ̂) = E

[
CT (ϕ̂)

∣∣Fs
]

P − a.s. for t ≤ s ≤ T .

c) Rs(ϕ̂) ≤ Rs(ϕ) P − a.s. for t ≤ s ≤ T .

If we choose t := 0, then ϕ̂ is mean-self-financing.

Proof. Set ξ̂ := ξ and

η̂s :=





ηs for s < t

E


VT (ϕ)−

T∫

0

ξu dXu

∣∣∣∣∣∣
Fs


+

s∫

0

ξu dXu − ξs ·Xs for s ≥ t ,

choosing right-continuous versions. Then V (ϕ̂) is given by

Vs(ϕ̂) =





Vs(ϕ) for s < t

E


VT (ϕ)−

T∫

0

ξu dXu

∣∣∣∣∣∣
Fs


+

s∫

0

ξu dXu for s ≥ t

and therefore right-continuous, since both parts are. Furthermore, since

CT (ϕ̂) = VT (ϕ̂)−
T∫

0

ξ̂u dXu = VT (ϕ)−
T∫

0

ξu dXu = CT (ϕ) ,
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we have by the above that

Cs(ϕ̂) = E
[
CT (ϕ̂)

∣∣Fs
]

for s ≥ t

and therefore

Rs(ϕ̂) = E
[ (
CT (ϕ̂)− Cs(ϕ̂)

)2 ∣∣∣Fs
]

= E
[ (
CT (ϕ)− Cs(ϕ) + Cs(ϕ)− Cs(ϕ̂)

)2 ∣∣∣Fs
]

= Rs(ϕ) +
(
Cs(ϕ)− Cs(ϕ̂)

)2
+ 2·

(
Cs(ϕ̂)− Cs(ϕ)

)
·
(
Cs(ϕ)− Cs(ϕ̂)

)

= Rs(ϕ)−
(
Cs(ϕ)− Cs(ϕ̂)

)2

≤ Rs(ϕ) P − a.s. for s ≥ t.

q.e.d.

In the martingale case, the problem of R-minimization was completely solved

by Föllmer and Sondermann [6]. In order to state their result, we need to recall

the Kunita-Watanabe decomposition: If X is a square-integrable martingale, then

every H ∈ L2(P ) can be written as

(1.13) H = E[H] +

T∫

0

ξHu dXu + LHT P − a.s. ,

where ξH ∈ L2(PX) and LH = (LHt )0≤t≤T is a square-integrable martingale or-

thogonal to X with LH0 = 0 P -a.s.

Proposition 1.3. Assume that X is a square-integrable martingale. For

every contingent claim H, there exists a unique H-admissible R-minimizing trad-

ing strategy ϕH . It is mean-self-financing, and its ξ-component is given by the

integrand ξH in (1.13).

Proof. Let us first remark that ϕH is determined by this description since

any H-admissible mean-self-financing trading strategy can be characterized by its

ξ-component. Now fix t ∈ [0, T ) and consider an admissible continuation ϕ = (ξ, η)

of ϕH from t on. For the strategy ϕ̂ constructed from ϕ as in Lemma 1.2, we obtain

by (1.13)

CT (ϕ̂)− Ct(ϕ̂) = VT (ϕ̂)−
T∫

0

ξu dXu − E
[
CT (ϕ̂)

∣∣Ft
]
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= H −
T∫

0

ξu dXu − E


H −

T∫

0

ξu dXu

∣∣∣∣∣∣
Ft




=

T∫

t

(
ξHu − ξu

)
dXu +

(
LHT − LHt

)
P − a.s.

On the other hand,

CT (ϕH)− Ct(ϕH) = H −
T∫

0

ξHu dXu − E


H −

T∫

0

ξHu dXu

∣∣∣∣∣∣
Ft




= LHT − LHt P − a.s.

and therefore

Rt(ϕ) ≥ Rt(ϕ̂)

= E




T∫

t

(
ξHu − ξu

)2
d〈X〉u

∣∣∣∣∣∣
Ft


+ E

[ (
LHT − LHt

)2 ∣∣∣Ft
]

≥ Rt
(
ϕH
)

P − a.s.

which shows that ϕH is R-minimizing. To prove uniqueness, we first note that any

R-minimizing trading strategy ϕ∗ must be mean-self-financing; this follows from

Lemma 1.2. But then the same argument as above yields

R0(ϕ∗) = E




T∫

0

(
ξHu − ξ∗u

)2
d〈X〉u


+ E

[(
LHT
)2]

> R0

(
ϕH
)

unless ξ∗ = ξH PX -a.e.

q.e.d.

Remark. The idea of using Lemma 1.2 in the proof is taken from Schweizer

[12] and exploited again in the next section. In Proposition 1.3, X is assumed

to be a martingale. Unfortunately, the following example shows that the general

case of a semimartingale is less pleasant: Consider a discrete-time model with

three trading dates 0,1,2, and assume that the price increments Xk − Xk−1 can

take three distinct values in each period. This will prevent the model from being

complete. If there exists an R-minimizing trading strategy ϕ∗ for a given claim

H, it must minimize both R0(ϕ) and R1(ϕ) over all admissible continuations of
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ϕ∗ from 0 and 1 on, respectively. But if P is not a martingale measure for X, it is

easy to find a claim H and an H-admissible mean-self-financing trading strategy

ϕ such that either R0(ϕ∗) > R0(ϕ) or R1(ϕ∗) > R1(ϕ). This reflects the fact

that it is impossible to minimize simultaneously R0(ϕ) and R1(ϕ) by the same

strategy. Hence, there cannot exist any R-minimizing strategy in such a situation.

For explicit computations in this example, see Schweizer [12].

Technically speaking, the above concept of R-minimization fails in the general

case because we cannot control the influence of the term
∫
ξ dA on the process

R(ϕ). More precisely, there is no analogue to the Kunita-Watanabe projection

theorem allowing us to decompose a claim H into a stochastic integral
∫
ξ dX

(with respect to X) and an orthogonal component. From an intuitive point of

view, the class of permissible variations of a trading strategy is too large. We

must use a weaker approach by restricting our attention to variations which are

small enough in some sense. This is quite straightforward in a discrete-time model;

see Schweizer [12], and Föllmer and Schweizer [4] for an expository account. The

rather delicate situation in continuous time will be treated in the next section.

2. Local R-minimization and the optimality equation

In this section, we introduce the concept of a locally R-minimizing trading

strategy. Being an infinitesimal concept, it will involve limit considerations, and

under suitable assumptions on the price process, the required limits actually exist.

This will enable us to prove that a trading strategy is locally R-minimizing if and

only if it is mean-self-financing and satisfies a certain equation. We shall call this

the optimality equation.

Definition. A trading strategy ∆ = (δ, ε) is called a small perturbation if it

satisfies the following conditions:

(2.1) δ is bounded.

(2.2)

T∫

0

|δu| d|A|u is bounded.

(2.3) δT = εT = 0 .
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Remark. Due to (1.1), the price process X can be thought of as having two

components: the “unpredictable” martingale term M and the “drift” or “trend”

A.
T∫
0

δu dAu therefore represents the systematic part of the trading gains from

∆, and condition (2.2) says that ∆ is meant to be small in the sense of limited

systematic gains. (2.3) has two consequences: VT (∆) = 0 P -a.s., so that ϕ+ ∆ is

an H-admissible trading strategy for every H-admissible ϕ, and the restriction of

∆ to any subinterval of [0, T ] is again a small perturbation.

As mentioned in the last section, our idea is to introduce the notion of a local

variation of a trading strategy. To this end, we consider partitions τ = (ti)0≤i≤N
of the interval [0, T ]. Such partitions will always satisfy

0 = t0 < t1 < . . . < tN = T ,

and their mesh will be defined by |τ | := max
1≤i≤N

(ti − ti−1). A sequence (τn)n∈IN

of partitions will be called increasing if τn ⊆ τn+1 for all n; it will be called

0-convergent if it satisfies

lim
n→∞

|τn| = 0 .

If ∆ is a small perturbation and (s, t] a subinterval of [0, T ], we define the small

perturbation

∆
∣∣
(s,t]

:=
(
δ
∣∣
(s,t]

, ε
∣∣
[s,t)

)

by setting

δ
∣∣
(s,t]

(ω, u) := δu(ω)·I(s,t](u)

ε
∣∣
[s,t)

(ω, u) := εu(ω)·I[s,t)(u) .

The asymmetry corresponds to the fact that δ is predictable and ε merely adapted.

Definition. Let ϕ be a trading strategy, ∆ a small perturbation and τ a

partition of [0, T ]. Then we can define the R-quotient

(2.4) rτ [ϕ,∆](ω, t) :=
∑

ti∈τ

Rti(ϕ+ ∆
∣∣
(ti,ti+1]

)−Rti(ϕ)

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] (ω)·I(ti,ti+1](t) .

The strategy ϕ is called locally R-minimizing if

(2.5) lim inf
n→∞

rτn [ϕ,∆] ≥ 0 PM − a.e.

for every small perturbation ∆ and every increasing 0-convergent sequence (τn) of

partitions of [0, T ].
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Remark. Obviously, rτ [ϕ,∆] is a stochastic process which is well-defined

PM -a.e. on Ω. It can be interpreted as a measure for the total change of riskiness

if ϕ is locally perturbed by ∆ along the partition τ . The denominator in (2.4)

describes the appropriate time scale for these measurements. Note that (2.5) is

the infinitesimal analogue of the condition (1.12).

For our next result, we need an additional assumption on X.

(X2) For P -almost all ω, the measure on [0, T ] induced by 〈M〉.(ω) has the

whole interval [0, T ] as its support.

Equivalently, we could postulate that 〈M〉.(ω) is strictly increasing P -a.s. This

nondegeneracy condition prevents the martingale M from being locally constant.

For example, both a diffusion process with a strictly positive diffusion coefficient

and a point process with a strictly positive intensity satisfy (X2).

Lemma 2.1. Assume that X satisfies (X1) and (X2). If a trading strategy

ϕ is locally R-minimizing, it is mean-self-financing.

Proof. Construct ϕ̂ from ϕ as in Lemma 1.2 with t = 0. ∆ := ϕ̂− ϕ is then

a small perturbation. Let τn be the n-th dyadic partition of [0, T ], and denote by

d′ := (d+ 2−n ·T ) ∧ T the successor in τn of d ∈ τn. Since

Vd

(
ϕ+ ∆

∣∣
(d,d′]

)
= Vd(ϕ) + η̂d − ηd = Vd(ϕ̂) ,

it follows from (2.3) that

CT

(
ϕ+ ∆

∣∣
(d,d′]

)
− Cd

(
ϕ+ ∆

∣∣
(d,d′]

)
= CT (ϕ̂)− Cd(ϕ̂)

for any n ∈ IN and d ∈ τn. The proof of Lemma 1.2 now yields

Rd

(
ϕ+ ∆

∣∣
(d,d′]

)
−Rd(ϕ) = Rd(ϕ̂)−Rd(ϕ)

= −
(
Cd(ϕ)− E

[
CT (ϕ)

∣∣Fd
])2

and therefore

(2.6) rτn [ϕ,∆] = −
∑

d∈τn

(
Cd(ϕ)− E

[
CT (ϕ)

∣∣Fd
])2

E
[
〈M〉d′ − 〈M〉d

∣∣Fd
] ·I(d,d′] .
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Now assume that for some dyadic rational d0, there is a set B of positive probability

such that

Cd0
(ϕ)(ω) 6= E

[
CT (ϕ)

∣∣Fd0

]
(ω)

for all ω ∈ B. Since both C.(ϕ) and E
[
CT (ϕ)

∣∣F.
]

have been chosen to be right-

continuous, there exist for any ω ∈ B constants γ(ω) > 0 and β(ω) > 0 such

that ∣∣∣Cd(ϕ)− E
[
CT (ϕ)

∣∣Fd
]∣∣∣(ω) ≥ γ(ω) > 0

for every dyadic rational d ∈
[
d0, d0 + β(ω)

]
. But then (2.6) implies for all ω ∈ B

that

lim inf
n→∞

rτn [ϕ,∆](ω, t) < 0

for any t in the open interval
(
d0, d0 + β(ω)

)
, in contradiction to (X2) and to the

assumption that

lim inf
n→∞

rτn [ϕ,∆](ω, t) ≥ 0

holds for 〈M〉.(ω)-almost all t outside of a set of probability 0. Hence we conclude

that

Cd(ϕ) = E
[
CT (ϕ)

∣∣Fd
]

for every dyadic rational d

holds P -a.s., and the assertion follows from right-continuity.

q.e.d.

The next step furnishes us with the key result of this section. It is technically

somewhat involved, but essentially it tells us that we can find a locally R-mini-

mizing trading strategy by varying only the ξ-component. This turns out to be

very important since it enables us to use again martingale techniques. Let H be a

fixed contingent claim and ϕ = (ξ, η) an H-admissible mean-self-financing trading

strategy. Since C(ϕ) is a martingale with terminal value

(2.7) CT (ϕ) = H −
T∫

0

ξu dXu P − a.s. ,

ϕ is uniquely determined by ξ, and we write C(ξ) := C(ϕ) and R(ξ) := R(ϕ). Now

take a small perturbation ∆ = (δ, ε) and a partition τ of [0, T ]. For ti ∈ τ , we

are going to compare the H-admissible (but not necessarily mean-self-financing)

trading strategy ϕ+ ∆
∣∣
(ti,ti+1]

with the H-admissible mean-self-financing trading

strategy associated to ξ + δ
∣∣
(ti,ti+1]

. These strategies have the same ξ-component,
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but may differ in the η-component. Because of (2.3), we obtain

CT

(
ϕ+ ∆

∣∣
(ti,ti+1]

)
= H −

T∫

0

ξu dXu −
ti+1∫

ti

δu dXu

= CT (ϕ)−
ti+1∫

ti

δu dXu

= CT

(
ξ + δ

∣∣
(ti,ti+1]

)
.

Furthermore, we have

Cti

(
ϕ+ ∆

∣∣
(ti,ti+1]

)
= Cti(ϕ) + εti

and

Cti

(
ξ + δ

∣∣
(ti,ti+1]

)
= E

[
CT

(
ξ + δ

∣∣
(ti,ti+1]

) ∣∣∣∣Fti
]

= Cti(ϕ)− E




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti




since ϕ is mean-self-financing. This implies

CT

(
ϕ+ ∆

∣∣
(ti,ti+1]

)
− Cti

(
ϕ+ ∆

∣∣
(ti,ti+1]

)

= CT

(
ξ + δ

∣∣
(ti,ti+1]

)
− Cti

(
ξ + δ

∣∣
(ti,ti+1]

)
−


εti + E




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti






and therefore by the martingale property of C
(
ξ + δ

∣∣
(ti,ti+1]

)

Rti

(
ϕ+ ∆

∣∣
(ti,ti+1]

)
= Rti

(
ξ + δ

∣∣
(ti,ti+1]

)
+


εti + E




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti






2

.

Summing up, we conclude that

rτ [ϕ,∆] =
∑

ti∈τ

Rti(ξ + δ
∣∣
(ti,ti+1]

)−Rti(ξ)
E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1](2.8)

+
∑

ti∈τ

(
εti + E

[
ti+1∫
ti

δu dAu

∣∣∣∣∣Fti

])2

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1] .
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In accordance with previous notations, we denote the first term on the right-hand

side of (2.8) by rτ [ξ, δ].

Now it is time to introduce our final assumptions on X. They will enable us

to show that the last term in (2.8) is asymptotically negligible.

(X3) A is continuous.

(X4) A is absolutely continuous with respect to 〈M〉 with a density α satis-

fying EM
[
|α|·log+ |α|

]
<∞.

(X5) X is continuous at T P -a.s.

Condition (X5) means that X does not have a fixed time of discontinuity at T .

Because of (X3), it implies that M does not jump at T so that 〈M〉 does not have

any mass in T .

Lemma 2.2. Assume that X satisfies (X1) – (X5). Let H be a contingent

claim and ϕ = (ξ, η) an H-admissible trading strategy. Then the following state-

ments are equivalent:

1) ϕ is locally R-minimizing.

2) ϕ is mean-self-financing, and

(2.9) lim inf
n→∞

rτn [ξ, δ] ≥ 0 PM − a.e.

for every bounded predictable process δ satisfying (2.2) and (2.3), and

for every increasing 0-convergent sequence (τn) of partitions of [0, T ].

Proof. Due to Lemma 2.1, we may assume ϕ to be mean-self-financing. But

then (2.8) immediately shows that 1) follows from 2). For the converse, we first

note that we may choose all εti to be 0 in (2.8). The estimate


E




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti






2

≤ ‖δ‖2∞ ·E
[ (
|A|ti+1

− |A|ti
)2 ∣∣∣Fti

]
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then yields

∑

ti∈τn

(
E

[
ti+1∫
ti

δu dAu

∣∣∣∣∣Fti

])2

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1]

≤ ‖δ‖2∞ ·
∑

ti∈τn

E
[ (
|A|ti+1

− |A|ti
)2 ∣∣Fti

]

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1] .

If 〈M〉t = t and A is absolutely continuous with respect to Lebesgue measure

with a bounded density, it is easy to see that this last expression converges to 0

PM -a.e. In the general case, the required convergence follows from (X1) – (X5) by

Proposition 3.1 of Schweizer [13]. Therefore, (2.8) shows that 2) follows from 1).

q.e.d.

By its definition, local R-minimality is a variational concept involving two

variables ξ and η. Lemma 2.2 splits this into two separate and simpler problems;

it tells us to vary only ξ and to determine η from the side condition that ϕ is mean-

self-financing. Put differently, this amounts to studying the following question: If

we consider the martingale C(ξ) and the locally perturbed process

Ct

(
ξ + δ

∣∣
(ti,ti+1]

)
= E


CT (ξ)−

ti+1∫

ti

δu dXu

∣∣∣∣∣∣
Ft


 , 0 ≤ t ≤ T ,

how do their R-quotients compare? This problem is resolved in Schweizer [13] for

a general martingale Y instead of C(ξ). It is shown there that R-minimality under

such local perturbations is equivalent to orthogonality of Y and M . Hence, we

now obtain a martingale-theoretic characterization of locally R-minimizing trading

strategies.

Proposition 2.3. Assume that X satisfies (X1) – (X5). Let H be a contin-

gent claim and ϕ an H-admissible trading strategy. Then the following statements

are equivalent:

1) ϕ is locally R-minimizing.

2) ϕ is mean-self-financing, and the martingale C(ϕ) is orthogonal to M .

Proof. Due to Lemma 2.2, this follows directly from Theorem 3.2 of Schweizer

[13].

q.e.d.
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Having established Proposition 2.3, it is now straightforward to derive the

optimality equation for a locally R-minimizing trading strategy. All we have to do

is to find the Kunita-Watanabe decomposition of CT (ϕ) with respect to P and M .

From the decompositions

(2.10) H = E[H] +

T∫

0

µH;P
u dMu + LH;P

T P − a.s.

and (using (1.3))

(2.11)

T∫

0

ξu dAu = E




T∫

0

ξu dAu


+

T∫

0

µξ,A;P
u dMu + Lξ,A;P

T P − a.s. ,

we conclude that it is given by

(2.12) CT (ϕ) = C0(ϕ)+

T∫

0

(
µH;P
u − ξu − µξ,A;P

u

)
dMu+LH;P

T −Lξ,A;P
T P−a.s.

due to (2.7).

Theorem 2.4. Assume that X satisfies (X1) – (X5). Let H be a contingent

claim and ϕ = (ξ, η) an H-admissible trading strategy. Then ϕ is locally R-

minimizing if and only if ϕ is mean-self-financing and ξ satisfies the optimality

equation

(2.13) µH;P − ξ − µξ,A;P = 0 PM − a.e.

Proof. This follows immediately from Proposition 2.3 and the decomposition

(2.12).

q.e.d.

The importance of Theorem 2.4 lies in the fact that it reduces the variational

problem of finding a locally R-minimizing trading strategy to the solving of a

stochastic optimality equation. Of course, equation (2.13) still remains to be

solved. We shall give an existence and uniqueness result in the next section.

Remark. Since the concept of an R-minimizing strategy has a direct and

intuitive interpretation, it is natural to ask in which sense a locally R-minimi-

zing strategy is optimal. To answer this question, we shall focus on mean-self-

financing strategies which is quite reasonable in view of Lemmas 1.2 and 2.2.
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Using Proposition 3.1 of Schweizer [13], we first note that

(2.14) lim
n→∞

rτn [ξ, δ] = δ2 − 2·δ ·
(
µH;P − ξ − µξ,A;P

)
PM − a.e.

holds for all ξ satisfying (1.3) and for all bounded predictable δ satisfying (2.2). If

ϕ is locally R-minimizing, this implies by Theorem 2.4 that

lim
n→∞

rτn [ξ, δ] = δ2 PM − a.e.

Therefore, we conclude that for PM -almost all (ω, t) the inequality

Rti

(
ξ + δ

∣∣
(ti,ti+1]

)
(ω) ≥ Rti(ξ)(ω)

holds for all n ≥ n0(ω, t), ti ∈ τn and t ∈ (ti, ti+1]. This means that any bounded

perturbation of ξ on a small enough time interval leads to an increase of R.

This formulation is still not quite satisfactory since it does not allow us to

compare ξ directly with another trading strategy ξ̃. But if we assume that both α

and 〈M〉T are bounded, (2.14) holds even for all predictable processes δ satisfying

(1.3), and choosing δ := ξ̃ − ξ then implies that for PM -almost all (ω, t),

(2.15) Rti

(
ξ + (ξ̃ − ξ)

∣∣
(ti,ti+1]

)
(ω) ≥ Rti(ξ)(ω)

for all n ≥ n0(ω, t), ti ∈ τn and t ∈ (ti, ti+1]. Hence, we can say that any modifi-

cation of ξ by another mean-self-financing trading strategy on a small interval will

increase R, and this is exactly what the term “locally R-minimizing” suggests.

3. Solving the optimality equation

In this section, we show how the optimality equation (2.13) can be solved.

This yields a locally R-minimizing trading strategy by Theorem 2.4. The basic

idea for solving (2.13) is both simple and intuitive; however, it requires quite a

lot of technical machinery in the general case. To provide a better insight, we

therefore concentrate here on a situation with additional explicit structure.

Definition. We say that M and N form a P -basis of L2(P ) if the following

conditions are satisfied:

(3.1) Both M and N are square-integrable martingales under P .
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(3.2) M −M0 and N −N0 are P -orthogonal (as martingales).

(3.3) Every H ∈ L2(P ) has a unique representation

H = E[H] +

T∫

0

µH;P
u dMu +

T∫

0

νH;P
u dNu P − a.s.

for two predictable processes µH;P ∈ L2(PM ) and νH;P ∈ L2(PN ).

Condition (3.3) is equivalent to assuming that the stable subspace generated by

M and N coincides with the whole space of square-integrable martingales under

P .

From now on we add the following assumptions to our initial model:

(P1) There exists a process N = (Nt)0≤t≤T such that M and N form a

P -basis of L2(P ).

(P2) There exists a probability measure P̃ equivalent to P such that X and N

form a P̃ -basis of L2(P̃ ).

Remarks. 1) (3.1) alone would entail that P̃ is an equivalent martingale

measure for X, i.e., a probability measure P̃ ≈ P such that X is a martingale under

P̃ . Assuming the existence of such a measure is quite familiar in this context since

it corresponds to a no-arbitrage condition. Here, however, we require a minimal

martingale measure: Apart from turning X into a martingale, it should leave

intact the remaining structure of the model; in particular, orthogonality relations

should be preserved. See Föllmer and Schweizer [5] for a generalization of this

concept.

2) (3.3) and Theorem 11.2 of Jacod [10] clearly show that P̃ is not extremal

in the setM(X) of martingale measures for X since X does not span L2(P̃ ). But

due to Corollary 11.4 of Jacod [10] and the remark following it, assumption (P2)

implies that P̃ is extremal in the set M(X,N) of probability measures turning

both X and N into (local) martingales.

Lemma 3.1. Assume that X satisfies (X1) and that (P1) and (P2) hold. If

in addition

(3.4) Z̃T :=
dP̃

dP
∈ L2(P ) ,

then A is absolutely continuous with respect to 〈M〉P with a density α, and a
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right-continuous version of the process Z̃t := E
[
Z̃T
∣∣Ft

]
(0 ≤ t ≤ T ) is given by

Z̃t = E
(
−
∫
αdM

)

t

(3.5)

:= exp


−

t∫

0

αu dMu −
1

2
·
t∫

0

|αu|2 d〈M c〉Pu


·

∏

0≤u≤t
(1− αu ·∆Mu)·eαu·∆Mu

P -a.s. for all t ∈ [0, T ]. Here M c denotes the continuous martingale part of M ,

and ∆Mu := Mu −Mu− is the jump of M in u.

Proof. (3.4) and (3.3) yield the Kunita-Watanabe decomposition

Z̃T = 1 +

T∫

0

µu dMu +

T∫

0

νu dNu P − a.s.

Since N is a P̃ -martingale by (P2), it must be P -orthogonal to Z̃. This implies

that Z̃ ·
∫
ν dN is a P -martingale, hence

0 = E


Z̃T ·

T∫

0

νu dNu


 = E




T∫

0

ν2
u d〈N〉Pu




by the orthogonality of M and N −N0 under P . Therefore ν = 0 PN -a.e., and Z̃

is given by

(3.6) Z̃t = 1 +

t∫

0

µu dMu , 0 ≤ t ≤ T.

Furthermore, the process 〈M, Z̃〉P exists and is given by

〈M, Z̃〉Pt =

t∫

0

µu d〈M〉Pu , 0 ≤ t ≤ T.

By Theorem 13.14 of Elliott [3], this implies that M is a special P̃ -semimartingale

with the canonical decomposition

Mt =


Mt −

t∫

0

1

Z̃u−
d〈M, Z̃〉Pu


+

t∫

0

1

Z̃u−
d〈M, Z̃〉Pu

=


Mt −

t∫

0

µu

Z̃u−
d〈M〉Pu


+

t∫

0

µu

Z̃u−
d〈M〉Pu , 0 ≤ t ≤ T.
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But M can also be written as

Mt = Xt −X0 −At , 0 ≤ t ≤ T
under P̃ ; since A is predictable, uniqueness of the canonical decomposition implies

that

At = −
t∫

0

µu

Z̃u−
d〈M〉Pu =

t∫

0

αu d〈M〉Pu , 0 ≤ t ≤ T

with

α := − µ

Z̃−
.

Inserting this into (3.6), we conclude that Z̃ satisfies the equation

Z̃t = 1−
t∫

0

Z̃u− ·αu dMu , 0 ≤ t ≤ T

whose unique solution is given by (3.5); cf. Elliott [3], Theorem 13.5.

q.e.d.

Remarks. 1) Lemma 3.1 has several implications. First of all, it tells us that

P̃ , if it exists, is essentially unique. Secondly, (3.5) shows the effect of switching

from P to P̃ : this change of measure is achieved by a Girsanov transformation

which removes the drift A from X. Furthermore, (3.5) can be used as a starting

point for constructing P̃ . We simply define Z̃ by (3.5), and the question to decide

is then whether this yields an equivalent probability measure P̃ or not. General

integrability conditions for this are given by Jacod [10] and Novikov [11]. Finally,

(3.5) shows another minimality property of P̃ : only the information about X is

required for its construction.

2) The existence of any equivalent martingale measure P ∗ for X already

implies the absolute continuity of A with respect to 〈M〉P ; this can be seen from

the proof of Lemma 3.1. Thus, the assumption (X4) reduces to an integrability

condition.

Let us now consider a contingent claim H ∈ L2(P̃ ). Due to (P2) and Propo-

sition 1.3, there exists a unique trading strategy ϕH;P̃ = (ξH;P̃ , ηH;P̃ ) which is R-

minimizing with respect to P̃ . The process ξH;P̃ is given by the Kunita-Watanabe

decomposition (with respect to P̃ )

(3.7) H = Ẽ[H] +

T∫

0

ξH;P̃
u dXu +

T∫

0

νH;P̃
u dNu P̃ − a.s. ;
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ηH;P̃ is then determined by the condition

(3.8) Vt(ϕ
H;P̃ ) = Ẽ

[
H
∣∣Ft

]
P̃ − a.s. , 0 ≤ t ≤ T.

ϕH;P̃ might seem to be a candidate for a locally R-minimizing strategy under P ,

and the next result tells us that this is indeed the case.

Theorem 3.2. Assume that X satisfies (X1) and that (P1) and (P2) hold.

Let H ∈ L2(P ) be a contingent claim and assume that H ∈ L2(P̃ ), νH;P̃ ∈ L2(PN )

and that ξH;P̃ satisfies (1.3). Then the following assertions hold:

1) ξH;P̃ is a solution of the optimality equation (2.13).

2) If νH;P ∈ L2(P̃N ) and if ξ is a solution of (2.13) which satisfies the

conditions (1.3), ξ ∈ L2(P̃X) and νξ,A;P ∈ L2(P̃N ), then ξ = ξH;P̃

P̃X -a.e.

3) If X also satisfies (X2) – (X5), then ϕH;P̃ is locally R-minimizing with

respect to P .

Proof. 1) Let us first note that we need not qualify a.s. because P and P̃

are equivalent. Since ξH;P̃ satisfies (1.3), we obtain from (P1)

T∫

0

ξH;P̃
u dAu = E




T∫

0

ξH;P̃
u dAu


+

T∫

0

µξ
H;P̃,A;P
u dMu +

T∫

0

νξ
H;P̃,A;P
u dNu .

Again using (1.3), we can therefore rewrite (3.7) as

H = Ẽ[H] +

T∫

0

ξH;P̃
u dMu +

T∫

0

ξH;P̃
u dAu +

T∫

0

νH;P̃
u dNu

= E[H] +

T∫

0

(
ξH;P̃
u + µξ

H;P̃,A;P
u

)
dMu +

T∫

0

(
νH;P̃
u + νξ

H;P̃,A;P
u

)
dNu ;

note that (P2) implies

E[H] = Ẽ[H] + E




T∫

0

ξH;P̃
u dAu


 .
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From the uniqueness of the Kunita-Watanabe decomposition (2.10), we now con-

clude that

µH;P = ξH;P̃ + µξ
H;P̃,A;P PM − a.e.

so that (2.13) is indeed satisfied.

2) Setting δ := ξH;P̃ − ξ, we obviously have

µδ,A;P = µξ
H;P̃,A;P − µξ,A;P

and therefore

δ + µδ,A;P = 0 PM − a.e. ,

since both ξH;P̃ and ξ are solutions of (2.13). From the Kunita-Watanabe decom-

position (with respect to P )

T∫

0

δu dXu = E




T∫

0

δu dXu


+

T∫

0

(
δu + µδ,A;P

u

)
dMu +

T∫

0

νδ,A;P
u dNu ,

we conclude that

T∫

0

δu dXu = E




T∫

0

δu dXu


+

T∫

0

νδ,A;P
u dNu P̃ − a.s.

But since X −X0 and N −N0 are P̃ -orthogonal by (P2), we must have

δ = 0 P̃X − a.e.

so that 2) holds.

3) Because of 1) and Theorem 2.4, it is sufficient to show that ϕH;P̃ is mean-

self-financing with respect to P . But (3.7) yields

CT (ϕH;P̃ ) = H −
T∫

0

ξH;P̃
u dXu = Ẽ[H] +

T∫

0

νH;P̃
u dNu ,

and (3.8) implies by (3.7)

Ct(ϕ
H;P̃ ) = Ẽ

[
H
∣∣Ft

]
−

t∫

0

ξH;P̃
u dXu

= Ẽ[H] +

t∫

0

νH;P̃
u dNu , 0 ≤ t ≤ T ,
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since both X and N are martingales under P̃ . Hence, the assertion follows from

νH;P̃ ∈ L2(PN ) and the fact that N is also a martingale under P .

q.e.d.

Theorem 3.2 has several aspects. First of all, it gives an existence and unique-

ness result for the solution of the optimality equation (2.13). Furthermore, it also

provides us with a procedure for finding a locally R-minimizing trading strategy.

In a first step, we have to look for the minimal equivalent martingale measure

P̃ . Then we can take the strategy ϕH;P̃ which is (strongly) R-minimizing with

respect to P̃ and whose existence and uniqueness is guaranteed by Proposition

1.3. Due to (3.7) and (3.8), this optimal strategy can be described in terms of P̃

alone, in analogy to the complete case where ξ∗ and V ∗ were determined by P ∗.
The uniqueness of P ∗ in the complete case now corresponds to the uniqueness of

the minimal martingale measure P̃ , and the optimal value process

(3.9) Ṽt := Ẽ
[
H
∣∣Ft

]
, 0 ≤ t ≤ T

of (3.8) can therefore be viewed as a plausible candidate for the valuation of the

option H.

If we combine Proposition 1.3 and Theorem 3.2, we obtain an interesting

stability result . In a complete model, every contingent claim H can be reproduced

with R ≡ 0, and the generating self-financing strategy is independent of the initial

measure P in the sense that any equivalent measure will yield the same optimal

strategy. If the model is incomplete, both these aspects become more subtle. In a

martingale model, Proposition 1.3 shows that we can at least still generate H with

an R-minimizing strategy. Furthermore, Theorem 3.2 tells us that this strategy

is robust : it will again be optimal for a whole class of semimartingale models P ,

namely all those which admit P̃ as their minimal equivalent martingale measure.

In this sense, two key properties of complete models are at least partially preserved.

4. Special cases and examples

This section is devoted to several special cases and examples of the preceding

results. We begin by showing that local R-minimization can be viewed as an

extension of R-minimization and then give two explicit examples where we use the

methods of section 3.

4.1. Let us first consider an attainable claim H with a representation (1.9).
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Combining this with (2.11), we obtain the Kunita-Watanabe decomposition

(4.1) H = H0 + E




T∫

0

ξ∗u dAu


+

T∫

0

(
ξ∗u + µξ

∗,A;P
u

)
dMu + Lξ

∗,A;P
T P − a.s.

The resulting optimality equation is

(4.2) ξ∗ + µξ
∗,A;P − ξ − µξ,A;P = 0 PM − a.e.

with the obvious solution ξ = ξ∗. Of course, this is not surprising: The self-

financing trading strategy ϕ in Proposition 1.1 has R ≡ 0 and is therefore a

fortiori locally R-minimizing.

4.2. Next we examine the case where X is not a general semimartingale, but

a martingale under P . This means that M ≡ X −X0 and A ≡ 0. The optimality

equation (2.13) simplifies to

ξH − ξ = 0 PX − a.e.

so that the unique locally R-minimizing trading strategy coincides with the R-

minimizing strategy ϕH given by Proposition 1.3. Hence, local R-minimization

generalizes R-minimization.

4.3. Example. Let (W 1,W 2) be a 2-dimensional Brownian motion, (Ft) its

natural filtration and β = (βt)0≤t≤T a bounded adapted process. Defining X and

N by

dXt = Xt dW
1
t +Xt ·βt dt

dNt = Nt dW
2
t

yields

Mt =

t∫

0

Xu dW
1
u , 0 ≤ t ≤ T

〈M〉t =

t∫

0

X2
u du , 0 ≤ t ≤ T

At =

t∫

0

βu ·Xu du , 0 ≤ t ≤ T

αt =
βt
Xt

, 0 ≤ t ≤ T.
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Furthermore, it is clear that W 1 and W 2 form a P -basis of L2(P ). A suitable

Girsanov transformation will remove the drift β and yield the unique equivalent

measure P̃ with respect to which

W̃ 1
t := W 1

t +

t∫

0

βu du , 0 ≤ t ≤ T

and W 2 form a 2-dimensional Brownian motion and therefore a P̃ -basis of L2(P̃ ).

Note that X satisfies

dXt = Xt dW̃
1
t

with respect to P̃ so that stochastic integrals with respect to W̃ 1 can be rewritten

as stochastic integrals with respect to X. Hence, for every contingent claim H

satisfying certain integrability conditions, there exists by Theorem 3.2 a unique

locally R-minimizing trading strategy. Its ξ-component can be computed quite

explicitly: If we set

Ṽt := Ẽ
[
H
∣∣Ft

]
, 0 ≤ t ≤ T,

it is given as

(4.3) ξH;P̃
t =

d〈Ṽ , X〉t
d〈X〉t

=
1

X2
t

· d
dt
〈Ṽ , X〉t , 0 ≤ t ≤ T.

Note that (4.3) can be evaluated path by path since both Ṽ and X can be taken

as continuous.

If the claim H is of the special form

H = h(XT , NT )

for some function h, we can give even more explicit formulas. Let us denote by

g(x, y, t) the solution of the partial differential equation

(4.4) gt +
1

2
·
(
x2 ·gxx + y2 ·gyy

)
= 0

with the boundary condition

(4.5) g(x, y, T ) = h(x, y) for all x, y ∈ IR.

Then it is well-known that

Ṽt = g(Xt, Nt, t) , 0 ≤ t ≤ T,
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and Itô’s formula implies

(4.6) ξH;P̃
t = gx(Xt, Nt, t) , 0 ≤ t ≤ T.

Thus, we have solved the optimality equation (2.13) by solving a partial differential

equation which is independent of β — although (2.13) does depend on β because of

the term µξ,A;P . This is explained by Theorem 3.2 which allows us to work again

in a martingale model. Of course, there are many equivalent martingale measures

P ∗ for X in this example; removing the drift β in the first coordinate and adding

any drift γ in the second is enough. Only the minimal martingale measure P̃ ,

however, will give such a simple solution. Finally, note that the η-component of

the optimal strategy ϕH;P̃ is also independent of β due to (3.8). This “stability”

of the model P̃ corresponds exactly to the fact that in the Black/Scholes model,

both price and hedging strategy do not depend on the drift parameter.

Remark. In this example, one could also think of translating the optimality

equation (2.13) directly into a partial differential equation. Assuming that β is of

the form

βt = b(Xt, Nt, t) ,

that the optimal strategy ξ can be written as

ξt = f(Xt, Nt, t)

and that H is of the form

H = h(XT , NT )

for suitably regular functions b, f and h, one would then need explicit expressions

for the integrands µH;P and µξ,A;P in the representations (2.10) and (2.11), re-

spectively. Such expressions are provided by the Haussmann filtering formula (cf.

Davis [2]); however, the required computations turn out to be rather involved. It is

fortunate that they are not really necessary for our purposes: thanks to Theorem

3.2, we can work with the martingale measure P̃ , and this easily yields (4.4) and

(4.5).

4.4. Example. Let (S1, S2) be a 2-variate point process with P -intensities

λi = (λit)0≤t≤T (i = 1, 2), and take (Ft) to be the natural filtration of (S1, S2).

Let ṗ1 = (ṗ1
t )0≤t≤T be a positive adapted process and define

(4.7) Xt := X0 + S1
t −

t∫

0

ṗ1
u du , 0 ≤ t ≤ T.
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Setting

M i
t := Sit −

t∫

0

λiu du , 0 ≤ t ≤ T (i = 1, 2)

M := M1

N := M2 ,

this yields

X = X0 +M +A

〈M〉Pt =

t∫

0

λ1
u du , 0 ≤ t ≤ T

At =

t∫

0

(λ1
u − ṗ1

u) du =

t∫

0

(
1− ṗ1

u

λ1
u

)
d〈M〉Pu , 0 ≤ t ≤ T.

Under suitable integrability and boundedness conditions (see Schweizer [12] for

more specific details) on the processes λ1, λ2 and ṗ1, M and N will form a P -

basis of L2(P ). Now we use a Girsanov transformation to construct the unique

equivalent measure P̃ such that S1 has the P̃ -intensity ṗ1. It can then be shown

that X and N form a P̃ -basis of L2(P̃ ) so that again every suitable contingent

claim H admits a unique locally R-minimizing trading strategy. Its ξ-component

can be computed as

(4.8) ξH;P̃
t =

1

ṗ1
t

· d
dt
〈Ṽ , X〉P̃t , 0 ≤ t ≤ T

with

Ṽt := Ẽ
[
H
∣∣Ft

]
, 0 ≤ t ≤ T

as before. In the special case where ṗ1 is deterministic and H = (S1
T −K)+, (4.8)

can be written explicitly as

ξH;P̃
t =

∑

j≥max(0,K−S1
t−)

e−(p1(T )−p1(t)) ·
(
p1(T )− p1(t)

)j

j!

with p1(t) :=

t∫

0

ṗ1
u du (0 ≤ t ≤ T ).
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Remark. If one thinks of S1 as a cumulative claim process and of p1 as the

corresponding cumulative premium process, then the special contingent claim H in

our example describes a stop-loss contract. The observation that this is the exact

analogue of a call option was made by Sondermann [14]. He used the methods

of option pricing in order to analyze stop-loss contracts in a complete model with

a single process. Example 4.4 shows how this approach can be extended to an

incomplete situation.
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[4] H. Föllmer and M. Schweizer, “Hedging by Sequential Regression: An Intro-

duction to the Mathematics of Option Trading”, The ASTIN Bulletin 18/2

(1989), 147–160
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[13] M. Schweizer, “Risk-Minimality and Orthogonality of Martingales”, Stochas-

tics and Stochastics Reports 30 (1990), 123–131

[14] D. Sondermann, “Reinsurance in Arbitrage-Free Markets”, discussion paper

no. B–82, University of Bonn (1988)


