
Hierarchical Testing of Variable Importance

Nicolai Meinshausen

367 Evans Hall
University of California, Berkeley

Berkeley, CA 94720
nicolai@stat.berkeley.edu

Abstract. A frequently encountered challenge in high-dimensional regression is the detec-

tion of relevant variables. Variable selection suffers from instability and the power to detect

relevant variables is typically low if predictor variables are highly correlated. When taking

the multiplicity of the testing problem into account, the power diminishes even further.

To gain power and insight, it can be advantageous to look for influence not at the level of

individual variables but rather at the level of clusters of highly correlated variables. We

propose a hierarchical approach. Variable importance is first tested at the coarsest level,

corresponding to the global null hypothesis. If possible, the method tries then to attribute

any effect to smaller sub-clusters or even individual variables. The smallest possible clusters

which still exhibit a significant influence on the response variable are retained.

It is shown that the proposed testing procedure controls the family-wise error rate at a pre-

specified level, simultaneously over all resolution levels. The method has comparable power

to Bonferroni-Holm on the level of individual variables and dramatically larger power for

coarser resolution levels. The best resolution level is selected adaptively.

Keywords: Multiple linear regression, Multiple testing, Hierarchical clustering, Higher Crit-

icism, High-dimensional alternatives

1. Introduction

It is increasingly common nowadays in many fields of the sciences that data are col-
lected at a large scale, the number of measured variables often going into the hundreds
or thousands. It is furthermore often believed that a small subset of the variables car-
ries most or all of the interesting information. It is, however, usually not known in
advance which those relevant variables are, which is the justification for gathering all
the information in the first place. It is furthermore unknown whether there is indeed
one unique set of important variables.

While one might only be interested in optimal predictive performance for some ap-
plications (see also Breiman, 2001), it can in other cases be interesting to find the
variables that carry most or all of the relevant information.
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We make matters more precise below for the simple case of a linear model. Considering
the standard setting of a fixed design, the n-dimensional response vector Y is given
by

Y = Xβ + ε, (1)

where ε is i.i.d. standard normal distributed variable and X is the n×m-dimensional
matrix which columns consist of the m predictor variables Xi, i = 1, . . . ,m.

A sparsity assumption would entail that most entries of β = (β1, . . . ,βm) are actually
zero or close to zero. These variables could be discarded as all the information about
the response variable Y can be learned from the remaining variables.

In the following, we show some fallacies when testing for each variable whether βk =
0, as routinely done when fitting a standard or generalized linear model in R (R
Development Core Team, 2005) and some other software packages. We show that the
problem of testing for variable importance is in some sense ill-posed if there is a large
number of correlated predictor variables in the model. Hierarchical testing of variable
importance addresses this concern and leads to stable recovery of important clusters
of variables.

Understanding variable importance can have many faces. While testing for variable
importance is one approach, the issue is clearly related to the much broader “age
old” problem of model selection in statistics. Abramovich et al. (2006) write: “The
problem of model selection has attracted the attention of both applied and theoretical
statistics for as long as anyone can remember”. There is indeed by now an immense
literature on model selection (Akaike, 1970; Schwarz, 1978; Mallows, 1973; Breiman
and Freedman, 1983; Foster and George, 1994, to name a few). We only note that
some of the known fallacies of model selection, most notably instability of the selected
subset of variables (Breiman, 1995), are directly related to problems when testing the
null hypothesis of a vanishing regression coefficient for each variable separately.

1.1. Hierarchical testing of variable importance.

For the linear model in (1), a test of variable importance is routinely done by many sta-
tistical software packages by testing for each variable k = 1, . . . ,m the null hypothesis
that the regression coefficient is zero

H0,k : βk = 0, versus

HA,k : βk 6= 0 (2)

Note that each test is multivariate and considers all other variables as nuisance pa-
rameters. This is very different from (and arguably more desirable than) testing only
the marginal association between all predictor variables and the response variable.
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If it is unrealistic to assume that regression coefficients are identically zero, one might
want to use instead of (2) the null hypothesis that the absolute value of the regression
coefficient is smaller than some constant. Nevertheless, we focus in the following on
(2) for simplicity of exposition.

There are two reasons why testing at the level of individual variables is cursed with
weak power.

• Correlation. The variance of β̂k is very high if variable k is strongly correlated
with other variables.

• Multiplicity. The multiplicity of the testing problem has to be taken into account
(Westfall and Young, 1993; Shaffer, 1995; Benjamini and Hochberg, 1995). If
there are many predictor variables, this leads to a further reduction in the power
to detect important variables.

To demonstrate the first point, a very simple example might be instructive. Consider
m = 2 predictor variables with empirical correlation 0 ≤ ρ ≤ 1. For an increasing
correlation ρ, the variance of the estimators β̂1 and β̂2 increases like (1− ρ2)−1. The
sample size required to attain a certain power, when testing either the null hypothesis
H0,1 or H0,2, diverges if ρ → 1. For values of ρ close to 1, it might be possible to
say that at least one of the variables 1 and 2 is relevant for prediction of the response
variable, but it might be very difficult to establish which of the two variables has
a non-vanishing regression coefficient (or, indeed, to establish whether both of them
have a non-vanishing regression coefficient).

The question arises then if a cluster of, say, five highly correlated variables should be
treated as one entity or five separate hypotheses. If treated as one entity, the null
hypothesis for a cluster C of variables can be formulated as

H0,C : βk = 0 for all k ∈ C, versus (3)

HA,C : βk 6= 0 for at least one k ∈ C (4)

A null hypothesis for a cluster of variables is considered false if at least one variable
in the cluster has a non-vanishing regression coefficient. A false null hypothesis at a
coarse level indicates thus that some variables in this cluster are relevant. It is then of
interest to find out which of these variables are the important ones. Conversely, if the
null hypothesis is true for a cluster C, it is by definition also true for all subclusters
C ′ ⊆ C and the search for relevant variables in C can be terminated.

Here, we propose a hierarchical approach to the challenge of testing variable impor-
tance. If there is a significant effect in a cluster C and the null hypothesis H0,C can
be rejected, an attempt is made to attribute the effect to individual variables in the
cluster. The aim is to identify the smallest possible clusters of variables that exhibit
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a significant influence on the response variable (an individual variable is considered as
a cluster with cardinality 1).

1.2. Related work.

A related hierarchical approach to testing has been proposed by Blanchard and Ge-
man (2005), where certain hierarchical testing designs are analyzed in terms of their
cost-effectiveness, with applications in image analysis. Here we focus more on the
statistical part of hierarchical testing procedures. While Pacifico et al. (2004) show
FDR-control for random fields, a more closely related work is the technical report of
Benjamini and Yekutieli (2003), where FDR-control for hierarchical tests is proposed.
Their method relies, however, strongly on the independence assumption between test
statistics. This assumption is, almost by definition, not fulfilled in the present con-
text. For datasets with many correlated predictor variables, as they occur frequently
in computational biology, Hastie et al. (2001) proposed Tree Harvesting. The main
aim of Tree Harvesting is to improve prediction through use of a hierarchical clustering
structure, whereas the contribution of the current work is a formal testing procedure
for such hierarchical structures.

Some more recent work has focused on achieving model selection through `1-penalization
of the coefficient vector (Frank and Friedman, 1993; Tibshirani, 1996; Knight and Fu,
2000; Fan and Li, 2001; Efron et al., 2004). It is often cited as an advantage of the
Lasso over, say, Ridge regression that the Lasso leads to model selection as some re-
gression coefficients are set to zero. The question turns up if the the Lasso (or any
other model selection procedure for that matter) selects the “right” variables? From
an asymptotic point of view, the answer seems to be often positive, even if the number
of variables is very large (Meinshausen and Bühlmann, 2006). However, the consis-
tency requires a condition on the design matrix (Meinshausen and Bühlmann, 2006;
Zou, 2005; Zhao and Yu, 2006). Furthermore, Zou and Hastie (2005) point out that
the Lasso has a tendency to pick just one variable in a cluster of highly correlated
variables and disregard all other variables in this cluster. They propose the elastic net
as an alternative to the Lasso; the elastic net tends to pick all variables in the cluster,
thus reducing the variance of the selected set of coefficients. Incorporating a priori
hierarchical knowledge into the penalization procedure has been proposed recently by
(Yuan and Lin, 2006; Zhao et al., 2006; Meier et al., 2006). In contrast, the hierar-
chical structure is in this manuscript not imposed by prior knowledge, although the
approach could be extended in this direction if one is dealing with factors as predic-
tor variables for example. More fundamentally, the current approach is not so much
about penalized estimation as it is about rigorous testing of variable importance. The
price to pay for this is the current limitation to m ≤ n situations, as no test for the
influence of a group of variables is available if the number of variables m exceeds the
number n of samples.
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2. Hierarchical Testing

Hierarchical testing steps through a given hierarchy of clusters. First, collective effects
are measured at the coarsest level possible (the global null hypothesis that no variable
exhibits an influence on the response variable.) If this global null hypothesis can be
rejected, finer resolution levels are tested for an effect until the level of individual
variables is reached. The motivation for hierarchical testing can be summarized as
follows.

• Any effect at all? The influence of a group of variables on the response variable
can be examined by testing whether the regression coefficients of all variables
in the cluster can plausibly be zero.

• Attribution of effects to sub-clusters. If it is established that a cluster of variables
does indeed have an influence on the response variable, it is desirable to attribute
the effect to one or several subclusters.

If possible, the influence of a cluster of variables on the response variable is attributed
to its subclusters. In each subcluster, it is again examined whether the collective effect
can be attributed to even smaller subclusters of variables. The procedure retains the
smallest possible clusters which exhibit a significant influence on the response variable.

The outlined idea assumes that there is a natural hierarchy of clusters of variables
available. After discussing the choice of the hierarchy, the actual testing procedure is
given in detail and error control is shown.

2.1. Hierarchies

The hierarchical testing procedure is based on a given hierarchy of clusters. This
hierarchy can be derived from specific domain knowledge. In computational biology,
it might for example be interesting to use the Gene Ontology (Ashburner et al., 2000)
when testing for the influence of particular genes on survival times. The Gene Ontology
does not posses the hierarchical nature of the hierarchies used below, but the approach
could be made feasible (with some more cumbersome notation) for Gene Ontology and
related hierarchies derived from domain knowledge.

If no specific domain knowledge exists and the hierarchies cannot be derived in another
natural way (as possible for example for factor variables), one can employ hierarchi-
cal clustering (Hartigan, 1975; Ward, 1963) to select a suitable hierarchy of clusters.
As discussed above, it is difficult to distinguish between effects of highly correlated
variables. With hierarchical clustering, highly correlated variables tend to end up in
a single small cluster. If such a cluster contains truly important variables, it can be
easily identified with the chosen approach.
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For the following, we assume that a hierarchy T is given, which is a set of clusters
C ⊆ {1, . . . ,m}. The cardinality of clusters C is denoted by |C|. The root node
{1, . . . ,m} contains all variables and has cardinality m. The hierarchical structure
implies that any two clusters C,C ′ ∈ T either have an empty intersection, C ∩C ′ = ∅,
or that one cluster is a subset of the other.

2.2. Testing procedure

The null hypothesis (4) for a cluster C ∈ T is fulfilled if and only if all variables in
this cluster have vanishing regression coefficients. A test for this hypothesis would
typically be the partial F-test. However, other tests can be more powerful in the
high-dimensional setting (Goeman et al., 2005). We assume for the moment that such
a test is available. The p-value of a test of H0,C is denoted by pC .

P-value adjustment. To take the multiplicity of the testing problem into account,
p-values have to be adjusted. Define the adjusted p-value pC

adj as

pC
adj = pC m

|C|
. (5)

The adjustment amounts to multiplying the p-value of each cluster C with the inverse
of the fraction |C|/m of variables it contains. The adjustment is thus resolution-
dependent. At coarse resolutions, the penalty for multiplicity is weak, and it increases
for finer resolution levels. The p-value of the root node is thus unadjusted, whereas
individual variables receive a Bonferroni-type adjustment.

The hierarchical testing procedure rejects now all hypotheses H0,C with C ∈ T for
which

(a) the adjusted p-value pC
adj is below or equal to the specified level α and

(b) the parent node is rejected (this is always considered to be fulfilled for the root
node).

Note that condition (b) is not a severe restriction. The null hypothesis H0,C of a node
C is by definition always true if the null hypothesis H0,pe(C) is true for the parent
node pe(C). Hence it makes sense to stop testing in subtrees of nodes whose null
hypothesis could not be rejected.

Hierarchical p-value adjustment. For notational simplicity, the procedure given
above is expressed in a slightly different way. The hierarchically adjusted p-value is
defined as

pC
h,adj = max

D∈T :C⊆D
pD
adj . (6)



Hierarchical Testing 7

The hierarchically adjusted p-value of a node is thus always smaller than the hierar-
chically adjusted p-value of the parent node. Using the definition of a hierarchically
adjusted p-value, the set of rejected clusters in the hierarchy T is then given by

Trejected = {C ∈ T : pC
h,adj ≤ α}. (7)

It is easy to see that the set of rejected nodes is completely equivalent to the set of
rejected nodes with the previous procedure. In particular, no node can be rejected if
its parent node has not been rejected.

Remarks. The global null hypothesis can be tested at level α and there is no ad-
justment for multiplicity at this coarsest resolution. The largest penalty is incurred
at the finest resolution level, where individual variables are tested.

Even though the procedure offers simultaneous control over all resolution levels, the
penalty for coarser resolutions (larger clusters) is not influenced by the fact that the
procedure will turn to finer resolution levels later on. The global null hypothesis
(corresponding to the root node) can for example be tested at level α, even though
the procedure offers simultaneous control over all resolutions at level α.

It is shown below that the procedure offers indeed simultaneous control of the family-
wise error rate at level α. It will be seen later that the method can be improved upon,
so that the penalty at the level of individual hypothesis can be reduced by a factor 2
in general.

2.3. Control of the family-wise error rate

A node fulfills the respective null hypothesis H0,C according to (4) if and only if all
regression coefficients of variables in this cluster are zero. The set of nodes (or clusters)
that fulfill the null hypothesis is denoted by

T0 :=
{
C ∈ T : H0,C is fulfilled

}
. (8)

Family-wise error rate control entails that the probability of rejecting any cluster in
T0 is smaller than the pre-specified level.

Theorem 1. For Trejected defined as in (7), the family-wise error rate is controlled at
level α,

P
(
Trejected ∩ T0 = ∅

)
≥ 1− α (9)

Proof. The probability of an error can be rewritten as

P
(
Trejected ∩ T0 6= ∅

)
= P

(
∃ C ∈ T0 : pC

h,adj ≤ α
)
.
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Define the set T̃0 as the set of all clusters which fulfill the null hypothesis and which
are maximal in the following sense,

T̃0 :=
{
C ∈ T0 : @D ∈ T0 with C ⊂ D

}
. (10)

It holds that T̃0 ⊆ T0. It follows from the definition in (6) of a hierarchically adjusted
p-value, that an error committed in a cluster C ∈ T0 \ T̃0 implies an error in a set
C ′ ∈ T̃0, where C ⊂ C ′. It follows that it is sufficient to focus on the probability of
making an error in the set T̃0 ⊆ T0

P
(
∃ C ∈ T0 : pC

h,adj ≤ α
)

= P
(
∃ C ∈ T̃0 : pC

h,adj ≤ α
)

≤ P
(
∃ C ∈ T̃0 : pC

adj ≤ α
)
.

The right hand side is bounded by Bonferroni’s inequality from above by∑
C∈T̃0

P (pC
adj ≤ α) ≤

∑
C∈T̃0

(α |C|/m), (11)

where the last inequality follows from the definition (5) of the adjusted p-value. It is
thus sufficient to show that

∑
C∈T̃0

|C| ≤ m. Note that by definition of T̃0 in (10),

∀C,C ′ ∈ T̃0 : C ∩ C ′ = ∅.

On the other hand it clearly holds that ∪C∈T̃0
C ⊆ {1, . . . ,m}. Hence it follows indeed

that
∑

C∈T̃0
|C| ≤ m, which completes the proof.

2.4. Shaffer-Improvement

In the current proposal (5) for hierarchical p-value adjustment, the adjustment for a
cluster C ∈ T is achieved through multiplication of the relevant p-value with m/|C|,
where |C| is the number of variables that the cluster contains. The root node is thus
not penalized at all, whereas individual variables receive a penalty proportional to the
total number m of variables. The adjustment of p-values for individual variables is
thus identical to the Bonferroni adjustment.

The Bonferroni adjustment assumes the worst case, namely that all hypotheses are
true null hypotheses (similar for the Bonferroni-Holm adjustment). This possibility
cannot be excluded a priori if one is just looking at the level of individual variables. In
a hierarchical structure, not all combinations of null hypotheses are possible. Incor-
porating the constraints on the possible combinations can increase the power of the
procedure, as already shown in a more general context by Shaffer (1986).

As will be seen, the penalty factor can in general be reduced by a factor 2. The im-
provement will be developed for binary trees only. Similar improvements are possible
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Fig. 1. An example of the testing process for a binary tree. The global null hypothesis is

tested first at level α (left panel), and the level of individual variables is reached last (right

panel). Note that individual hypotheses can be tested at level α/4 and not α/8 as one might

expect at first.

for non-binary trees but are of marginal interest in this context and thus omitted for
ease of exposition.

As a motivation, consider the case of a cluster C = {X1, X2} of two variables. If
both variables are true null hypotheses, then C fulfills the null hypothesis H0,C . By
definition of T̃0, only the cluster C will appear in the set T̃0 in this case (and the
individual variables will not). If the cluster appears in T̃0, the adjustment at the level
of the individual variables X1, X2 is irrelevant for the probability of making errors,
as an error at the level of individual variables can only be made if the cluster C was
already falsely rejected. Thus, one only needs to prepare for the case that one of the
two individual variables corresponds to a true null hypothesis.

The sibling si(C) of a node C is defined as the children ch(D) of the parent node
which are not identical to C, that is si(C) := ch(pa(C)) \ C. With this definition,
the adjusted p-value is now computed in analogy to (5) as

pC
adj = pC m

|C|eff
, (12)

where the effective cluster size |C|eff is now given by

|C|eff =
{
|C| if si(C) is not a leaf node
|C|+ |si(C)| if si(C) is a leaf node

Clusters which have a leaf node as a sibling have a larger effective cluster size and
receive thus less penalty. If both children of a cluster are leaf nodes (and contain
just one variable), this amounts to dividing the penalty for individual variables by a
factor 2. The procedure remains unchanged otherwise.
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Example. The improved procedure is demonstrated for a toy example with 8 hy-
potheses that form a binary tree in Figure 1. First, the global null hypothesis is tested
at level α (leftmost panel). It is rejected. In the next step (second panel), it is exam-
ined if the effect can be attributed to one or both of the sub-clusters that follow in
the hierarchy. Each of these two sub-clusters is tested at level α/2. They are again
both rejected in this example and the procedure turns to the next four clusters, which
are tested at level α/4 (third panel). Of these four hypotheses, one cluster made up
of variables 5 and 6 is not rejected. Consequently, variables 5 and 6 are not tested
anymore at the individual level in the last step (rightmost panel).

Note that the remaining 6 hypotheses can be tested at level α/4 and not α/8, as one
might expect. At the level of individual variables, the procedure gains thus potentially
additional power compared to a Bonferroni or Bonferroni-Holm testing.

Error control with the improved method. It is now shown that the level is still
maintained after the improvement.

Theorem 2. For Trejected defined as in (7) with the adjusted p-values using defini-
tion (12) instead of (5), the family-wise error rate is still controlled at level α,

P
(
Trejected ∩ T0 = ∅

)
≥ 1− α (13)

Proof. Starting from (11) in the proof of Theorem 1, it is sufficient to show that∑
C∈T̃0

|C|eff ≤ m. For simplicity of exposition, one can assume for the moment that
there is only one cluster D ∈ T̃0 for which |D|eff > |D|. Then∑

C∈T̃0

|C|eff =
∑

C∈T̃0\D

|C|+ |D|eff =
∑

C∈T̃0\D

|C|+ |D|+ |si(D)|. (14)

As |D|eff > |D| by assumption, it follows that the null hypothesis H0,si(D) for the
sibling si(D) is false. If this would not be the case, the null hypothesis H0,pa(D) of
the parent node pa(D) of node D would be true, which would imply that D /∈ T̃0 by
definition of T̃0 in (10). By contradiction, we can thus conclude that H0,si(D) is not
fulfilled. As H0,si(D) is not fulfilled, it holds for all C ∈ T̃0 that si(D) ∩ C = ∅. Thus∑

C∈T̃0\D

|C|+ |D| ≤ m− |si(D)|,

which shows that the right hand side of (14) is indeed smaller than m, which completes
the proof.

As the improved method is uniformly more powerful than the first proposal, it is
always worthwhile to incorporate the improvement.
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Fig. 2. The hierarchical testing procedure illustrated for Example (d) of Zou and Hastie

(2005). The hierarchical clustering structure that enters the testing procedure (top left);

the true model structure (top right), where false null hypotheses are indicated by a dot and

darker edges; the testing result (bottom left), where rejected nodes are indicated by darker

edges; a visualization of the significance of the nodes (bottom right), where rejected nodes

are again indicated by filled boxes and darker edges. In this latter plot, a larger height of

a cluster of variables corresponds to a higher significance of the rejection and clusters that

cannot be rejected are shown as one entity to give an uncluttered representation of the results.

Hierarchical testing identifies the three relevant clusters of variables.
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2.5. Visualization

The procedure is illustrated graphically for Example (d) of Zou and Hastie (2005). On
the top left of Figure 2, the hierarchical clustering structure is shown, as produced by
complete linkage, with the distance taken as the Spearman correlation. Note that, at
this stage, the response variable has not been used. A visualization of the “true model
structure” is shown on the top right. All clusters which contain at least one variable
with non-vanishing regression coefficient are indicated by a dot and darker edges.

The test result is shown on the bottom left. Clusters which show a significant effect
(after multiplicity correction) are shown as dark boxes, whereas non-significant clusters
are shown as unfilled boxes. Testing starts at the root node and progresses down the
tree, stopping at the first non-significant result. There are two nodes that do have a
significant adjusted p-value but whose hierarchically adjusted p-value is not significant;
the procedure stops before it reaches those two nodes.

A compact visualization of the test result is shown in the bottom right panel. The
height of a cluster node C is now taken to be − log10(pC), where pC is the adjusted p-
value of the cluster node. Every node above − log10(0.05) ≈ 1.3 is hence significant at
the 5% level. The higher the node, the more significant is the rejection of its respective
null hypothesis. Due to the hierarchical p-value adjustment, nodes are always at the
same height or below their parent nodes. Rejections are again shown by dark edges
and filled boxes. To unclutter the visual display, non-significant clusters are only
represented by their common node (“C of 25” stands for “Cluster of 25 variables”).

The first cluster of five variables is broken apart and variable 2 is identified as individ-
ually significant. The other two relevant clusters are identified as significant entities
of five variables each. The main principle of the hierarchical approach can be seen
in this simple example. The method retains the smallest clusters possible that still
exhibit a significant influence on the response variable.

2.6. Testing against high-dimensional alternatives

Above, we specified the hierarchical testing procedure under the condition that a test
of H0,C is available for every cluster C in the hierarchy.

As pointed out in Goeman et al. (2005), the partial F-test has often rather weak power
when testing against high-dimensional alternatives. Goeman et al. (2005) suggested
as an alternative a Score test, which is a locally most powerful tests in some specific
neighborhood of the distribution that corresponds to H0,C .

As a third alternative, we consider Higher Criticism, which was introduced by Donoho
and Jin (2004), based on a proposal by Tukey, and was shown to posses certain optimal
properties for multiple testing when there are just very few false null hypotheses
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(Donoho and Jin, 2004). Two modifications are necessary for the present purpose.
First, Higher Criticism assumes independent test statistics. For a fixed design matrix,
the covariance between parameter estimates is known, and we rotate the estimates of
all variables in a considered cluster into a coordinate system such that the estimates
are decorrelated. Second, the variance is estimated from the data. This additional
source of variation is, however, easily incorporated in a simulation-based approach, as
for example in Meinshausen (2006).

A drawback of all of these tests is that they require the number of samples n to
be larger than the number of variables m. Developing a test for n < m situations,
possibly based on a regularized estimator, seems highly desirable yet challenging.
For the moment, we are thus restricted to m ≤ n situations. This is not directly a
restriction of the hierarchical approach. The method itself could easily be extended
to m > n if an appropriate test would be available.

3. Numerical Examples

To test the power of the proposed method, one needs artificial datasets with knowledge
about the true underlying model. Here, we choose the four examples put forth in Zou
and Hastie (2005). For sake of completeness, the four examples are described below.
Complete linkage was chosen as the hierarchical clustering method, with the distance
based on the Spearman correlation.

3.1. Datasets.

The response variable Y is sampled as Y = Xβ + σε, where εi
iid∼ N (0, 1) for all

i = 1, . . . , n. The n× p matrix X of predictor variables is generated as follows.

(a) Sparse Toeplitz
In example (a), β = (3.1, 5, 0, 0, 2, 0, 0, 0), σ = 3, and n = 20. The pairwise
correlation between Xk and Xl is 0.5|k−l| for all k, l ∈ {1, . . . , 8}.

(b) Non-sparse Toeplitz
Example (b) is the same as example (a), except that βk = 0.85 for all k =
1, . . . , 8.

(c) Uniform correlation
For example (c), n = 50, σ = 15 and β = (0, . . . , 0, 2, . . . , 2, 0, . . . , 0, 2, . . . , 2),
where each block of 0 or 2 entries respectively has length 10. The correlation
between variables k and l is set 0.5 for all k, l ∈ {1, . . . , 40}.
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(d) Factor model
For example (d), n = 50, σ = 15 and β = (3, . . . , 3, 0, . . . , 0), where the first
block has length 15 and the second block has length 25. The predictor variables
are generated as follows:

Xk = Zj(k) + ε,

where εi
iid∼ N (0, 1) for all i = 1, . . . , 40,

j(k) =


1 k ≤ 5
2 6 ≤ k ≤ 10
3 11 ≤ k ≤ 15
4 k > 15

,

and, for j = 1, . . . , 4, the vector Zj has i.i.d. N (0, σ2
j ) distributed entries with

σ2
1 , σ2

2 , σ2
3 = 1 and σ2

4 = 0.

It is maybe of interest that these datasets were used in Zou and Hastie (2005) in a
similar context. It was in particular demonstrated that the elastic net performs well on
these datasets, as all variables in a cluster tend to be selected. The Lasso in contrast
tends to pick just one variable from a cluster of highly correlated variables and sets
the coefficients of all other variables in the cluster to zero. The idea of hierarchical
testing is similar to that of elastic net in this regard: if it is not possible to reliably
single out the important variables, try at least to capture the important clusters of
variables.

3.2. Power.

The power of the hierarchical testing procedure is clearly a function of the “resolution
level” at which we are looking. The global null hypothesis is always tested at level α.
The power at this coarsest resolution is rather large. For finer resolution levels, the
power diminishes in general, as both the multiplicity of the testing problem increases
and the effect of highly-correlated variables can be very difficult to separate.

Measuring power at different resolutions. To measure the power at a given
resolution level, we fix a cluster size c with 1 ≤ c ≤ m. Ideally, one would like
to measure the power for clusters with cardinality equal to c. There are in general
very few clusters with any given cardinality. To gain better estimates, we measure
the power over all clusters that have almost cardinality c. First, select the set of all
clusters D(c) who do not fulfill the null hypothesis and whose cardinality does not
exceed c,

D(c) = {C ∈ T : |C| ≤ c and H0,C is false }.
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Fig. 3. The power of the hierarchical testing procedure as a function of cluster size. Shown

are the results for the F-test (◦, − ), Higher Criticism (4, −−), and the Score test (+, ·),
compared with the power of Bonferroni-Holm (large circle at cluster size 1 and horizontal

dashed line) for Examples (a)-(d) (from top left to bottom right).
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Fig. 4. The effect of an increasing sample size on the hierarchical testing procedure. A plot of

the rejected cluster nodes and rejected single variables, as in the bottom right panel of Figure

2 for Example (c) of Zou and Hastie (2005), where the height of each cluster is proportional

to the logarithm of its significance. Sample size increases from top left to bottom right from

50 to 1600 (doubling at each step). The resolution of the test procedure increases as more

samples become available.

Of these cluster, we select the set D̃ ⊆ D that contains the largest clusters in the sense
that

C ∈ D̃ iff {C ∈ D} ∧ {@ C ′ ∈ D : C ⊂ C ′},

where the dependence on the cluster size c has been omitted for notational simplicity.
The power at cluster size c is then computed as the mean rejection rate of the clusters
in D̃(c). In Figure 3, the power is shown as a function of cluster size for three mentioned
tests of collective effects: the F-test, Higher Criticism of Donoho and Jin (2004) and
the Score test proposed by Goeman et al. (2005).

Results. There are three main observations. First, at the finest resolution level
(where individual variables are tested) the proposed hierarchical testing procedure
has comparable power to the traditional Bonferroni-Holm testing. One could expect
the hierarchical approach to have higher power at this level, as variables just have to
be tested at level 2α/m in general compared to α/m with the Bonferroni correction
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or α/(m − q + 1) with the Bonferroni-Holm procedure (where q is the rank of the
p-value in question), see Holm (1979). However, due to the hierarchical nature, some
variables are not even tested at this level as the procedure already stopped at a coarser
resolution. These two effects seem to balance each other out.

Second, the power to detect important clusters of variables can be dramatically higher
than the power to detect individual variables. Consider Example (d). The power to
detect individual variables in the three important clusters is practically zero, as the
correlation between the variables is so high that the effect of the cluster cannot be
attributed to the individual variables. The power to detect the three important clusters
of variables is in contrast around 0.8 with either the Score test or Higher Criticism
and jumps to above 0.99 if the sample size is increased to n = 100 (not shown here).

Third, the choice of the test really does matter. The F-test seems to have the weakest
power, as could already be expected from results in Goeman et al. (2005). Higher
Criticism is the most powerful test for Example (a), while the same is true for the
Score test for Examples (b)-(d). Both tests seem to be reasonable alternatives to the
F-test when testing against high-dimensional alternatives.

3.3. Increasing sample size.

Figure 4 illustrates the effect of an increasing sample size on the “resolution” of the
hierarchical testing procedure. Given only very few samples, the procedures returns
just a few large clusters that exhibit significant influence on the response variable. If
more samples become available, the resolution of the testing procedure increases as
the effect can be attributed to smaller clusters of variables or individual variables.

4. Discussion

Model selection is in general very unstable with respect to small perturbations in the
data, particularly if there are many highly correlated variables. Testing individual
variables for relation with the response variable is thus cursed with weak power in
such settings.

A hierarchical approach looks for the smallest possible clusters of variables that still
have a significant relation with the response variable. If possible, the effect is at-
tributed to individual variables.

The power of the hierarchical procedure is a function of the resolution. The power to
detect variables at the individual level was shown to be comparable to the Bonferroni-
Holm procedure. The detection rate of important small clusters is already dramatically
higher, and increases further for coarser resolution levels.
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Most importantly, the proposed method selects adaptively the right resolution. If
evidence is weak, only a few large clusters are detected. For larger sample sizes, the
effect can be attributed to increasingly smaller clusters. Even though the resolution
level is chosen adaptively, the approach offers simultaneous control of making a single
false rejection over all resolution levels.
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