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Abstract

We propose a confidence envelope for false discovery control when test-
ing multiple hypotheses of association simultaneously. The method is valid
under arbitrary and unknown dependence between the test statistics and
allows for an exploratory approach when choosing suitable rejection regions
while still retaining strong control over the proportion of false discoveries.
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1 Introduction

Testing of multiple hypotheses has attracted considerable interest recently due to

the availability of ever larger data sets. Many fields have adopted the practice of

screening over many candidate hypotheses to filter out a few interesting “discov-

eries”. To control the probability of erroneously rejecting true null hypotheses,

traditional techniques rely mostly on control of the family-wise error rate (Sidak,

1967; Simes, 1986; Holm, 1979; Westfall & Young, 1993). It is well known that

control of the family-wise error rate is very conservative if the number of tests is

large. The false discovery rate (FDR) was introduced by Benjamini & Hochberg
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(1995) to alleviate this problem by controlling the expected proportion of false

discoveries among all rejections.

We follow here the notation by Genovese & Wasserman (2002) and call the

false discovery proportion FDP the ratio of the number V of true null hypotheses

among all rejections R,

FDP =

 V/R R 6= 0

0 R = 0
.

If rejecting all hypotheses with p-value in the region [0, t], we write FDP = FDP(t)

to indicate the dependence of the proportion of false discoveries on the chosen re-

jection region. The notion of FDP(t), t ∈ [0, 1], as a stochastic process is discussed

in Genovese & Wasserman (2004). For details of the notation see Genovese &

Wasserman (2002). The false discovery rate is defined in Benjamini & Hochberg

(1995) as the expectation of this quantity,

FDR = E(FDP).

It was argued in Genovese & Wasserman (2002) and Genovese & Wasserman

(2004) that instead of controlling the expectation of FDP, it is of considerable

more interest to control the random variable FDP itself, as we are really con-

cerned about the number of false rejections in the given experiment (and not in

an average of FDP for hypothetical replications of the experiment). See as well

Korn et al. (2004) or the original technical report Korn et al. (2001). In Genovese

& Wasserman (2004), confidence envelopes for FDP are developed. Confidence

envelopes FDP(t) are random functions such that at any chosen level α > 0,

P (FDP(t) ≤ FDP(t) for all t ∈ [0, 1]) ≥ 1− α. (1)

A confidence envelope allows to choose the rejection region adaptively while still

retaining control over the number of false discoveries. A confidence envelope for

the proportion of false discoveries is equivalent to a confidence envelope for the

number of false rejections.

Even though test statistics are strongly dependent in most applications, e.g.

microarray gene expression data analysis, most work on FDR uses the assumption

of independence. The confidence envelopes in Genovese & Wasserman (2004) are

no exception. Some success in broadening the applicability of FDR-controlling
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procedures to the case of dependent test statistics has been made in Storey &

Tibshirani (2001); Benjamini & Yekutieli (2001); Storey et al. (2004).

In this paper, we consider multiple tests of association as they occur e.g.

in microarray gene expression experiments. The structure of the data allows

for permutation-based testing. In this setting, a method to control the FDP is

proposed in Korn et al. (2004) which takes the dependence between test statistics

into account. It does not, however, provide a confidence envelope for FDP. A

simultaneous bound in the sense of (1) is useful as it allows the user to choose the

appropriate rejection region in an exploratory fashion while still retaining strong

control over the proportion of false discoveries. We show that confidence envelopes

like (1) can be constructed for multiple tests of association under arbitrary and

unknown dependence between the test statistics.

2 A simultaneous upper bound for the propor-

tion of false discoveries

Let X = (X1, X2, . . . , Xm) be a m-dimensional random vector and Y a real-valued

response variable. We are interested in finding components of X which are asso-

ciated with the response variable Y . In microarray gene expression experiments,

the components of X might e.g. correspond to expression values of m genes and Y

to the some clinical variable. We note that the following approach is valid as well

for designed experiments, where a non-random class variable y takes the place of

Y .

Let N ⊆ {1, . . . ,m} be a set of components of X, which are jointly indepen-

dent of the response variable,

Y ⊥ {Xk, k ∈ N}. (2)

The set N is potentially not uniquely defined, e.g. there might be several blocks

of components of X, which are jointly independent of Y . In this case, let N be

any set of interest which fulfills (2) . The null hypothesis H0,k for each component

k = 1, . . . ,m is that k belongs to the set N . The alternative H1,k is true if k /∈ N .

Given a sample of size n of independent realizations of (Y,X), one can conduct

tests of association individually for every component Xk, k = 1, . . . ,m. The
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outcome of this multiple test procedure is a m-dimensional vector P of p-values.

Denote the p-values under the original sample of (X,Y ) by P1, P2, . . . and let

P(1), P(2), . . . in the following be the ordered version such that P(1) ≤ P(2) ≤ . . . ≤
P(m). We assume for the following that rejection of some hypothesis entails that

all hypotheses with identical or more significant test results are rejected as well.

P-values are allowed to be tied but we require that hypotheses that belong to tied

p-values are either all rejected or neither of them is rejected. The total number

of rejections R(t) for a rejection region [0, t] is

R(t) = #{k ∈ {1, . . . ,m} : Pk ≤ t},

while the number V (t) of false rejections and S(t) of correct rejections, with

R(t) = V (t) + S(t), are given by

V (t) = #{k ∈ N : Pk ≤ t},
S(t) = #{k ∈ {1, . . . ,m} \ N : Pk ≤ t}.

The false discovery proportion FDP(t) for a rejection region [0, t] is then

FDP(t) =
V (t)

max{R(t), 1}

We aim to bound FDP(t) from above by a random function FDP(t) such that (1)

is fulfilled. The bound relies essentially on a lower simultaneous bound S(t) for

the number of true discoveries S(t). Given a bound S(t) with

P (S(t) ≥ S(t) for all t ∈ [0, 1]) ≥ 1− α,

a simultaneous bound for the number of false discoveries is given by V (t) = R(t)−
S(t). A bound for the false discovery proportion which fulfills (1) is then FDP(t) =

V (t)/ max{R(t), 1}. All three bounds S(t), V (t) and FDP(t) for the total number

of true discoveries, false discoveries and the proportion of false discoveries are

completely equivalent. Given one, the other two can be calculated immediately.

2.1 Algorithm

The confidence envelope S(t) for S(t) is obtained in three steps. Note that the

algorithm works as well with raw test statistics without explicit computation of
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p-values. Basing the approach on test statistics rather than on p-values is in

particular useful if computation of p-values involves a computationally intensive

step, as e.g. for the exact computation of p-values under the Wilcoxon-test. For

simplicity of notation we chose to work with p-values exclusively.

Step 1: Compute p-values for all hypotheses under permuted samples of the re-

sponse variable.

Let Π = {π1, π2, . . . , πw} be a set of w random permutations of {1, 2, . . . , n}, where

every permutation has probability 1/n!. For every permutation π ∈ Π, consider

the permuted version of Y . (For computational efficiency we might focus on the

set of permutations that lead to distinguishable outcomes if applied to Y, draw-

ing each permutation independently from this set with appropriately reweighted

probabilities.) For this permuted version and the original values of X, p-values for

all m hypotheses are calculated. For each permutation, a m-dimensional vector

P π = (P π
1 , P π

2 , . . . , P π
m) of p-values is obtained. The result for all permutations

can be arranged in a w ×m matrix of p-values,
P π1

1 P π1
2 . . . P π1

m

P π2
1 P π2

2 . . . P π2
m

. . .

 (3)

Step 2: Ordering of the p-values.

The first column of the previous matrix contains the p-values of the first hypothesis

under random permutations of the class labels, while the second column contains

the p-values of the second hypothesis under the same permutations. For each

column, these p-values are now permuted randomly. Consecutively, for each row,

the p-values are put into increasing order, so that the first row contains the ordered

p-values of all m hypotheses under a random permutation of the class labels (where

the permutations can be different for the various hypotheses). Next, the values

within each column are put into increasing order and the result is written, for

each column 1 ≤ k ≤ m as an w-dimensional vector (Q1
k, Q

2
k, . . . , Q

w
k ) with

Q1
k ≤ Q2

k ≤ . . . ≤ Qw
k ∀1 ≤ k ≤ m,
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where w denotes again the cardinality of the set of permutations. The result of

the second step is again an w ×m matrix, given by
Q1

1 Q1
2 . . . Q1

m

Q2
1 Q2

2 . . . Q2
m

. . .

 (4)

We denote the row vectors of this matrix by Q` = (Q`
1, Q

`
2, . . . , Q

`
m) for ` =

1, . . . , w. By construction, it holds that the smallest p-value from each permuta-

tion is larger than or equal to Q1
1, while the second smallest p-value from each

permutation is larger than or equal to Q1
2 and so on. The first row Q1 gives thus

a natural bound for the empirical distributions of p-values under permutation of

the response variable. The bound is, however, rather conservative. A less conser-

vative bound is found in Step 3 by stepping through the rows Q1, Q2, . . . , Qw and

selecting -as a bound for the empirical distribution of p-values under permutations

of the response variable- the largest row which fulfills a suitable criterion.

Step 3: Compare with permutation matrix from Step 1.

For each row Q`, ` = 1, . . . , w of matrix (4), calculate the quantity β(`) as the

proportion of permutations for which the ordered p-values are bounded from below

by Q`,

β(`) =
|{π ∈ Π : Q` ≤ P π}|

w
, (5)

where the inequality Q` ≤ P π is fulfilled if it is fulfilled for all m components, that

is Q` ≤ P π ⇔ Q`
k ≤ P π

(k), ∀k = 1, . . . ,m, and (P π
(1), P

π
(2), . . . , P

π
(m)) is the ordered

version of (P π
1 , P π

2 , . . . , P π
m). Find the largest row index `(α) such that β(`) is still

larger than 1− α,

`(α) = max{` ∈ {1, . . . , w} : β(`) ≥ 1− α}. (6)

Note that it holds in general that 1 ≤ `(α) ≤ (1− α)w. Define for all t ∈ [0, 1],

B(t) := #{k ∈ {1, . . . ,m} : Q
`(α)
k ≤ t}. (7)

This function corresponds to the quantile bounding functions in Meinshausen &

Bühlmann (2005). The lower bound for the number of true discoveries is defined

as

S(t) := max
0≤τ≤t

R(τ)−B(τ). (8)
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Upper bounds for the number of false discoveries and the false discovery propor-

tion are then given by V (t) := R(t) − S(t) and FDP(t) := V (t)/ max{R(t), 1}
respectively.

2.2 Simultaneous probabilistic bound

We verify that FDP(t) = V (t)/ max{R(t), 1} is indeed a simultaneous upper

probabilistic bound for FDP(t) = V (t)/ max{R(t), 1} in the sense of (1). For

this, it is sufficient to show that V (t) is an upper bound for the number of false

discoveries.

Theorem 1 Let S(t) be defined as in (8) for some α > 0 and V (t) = R(t)−S(t).

Under arbitrary distribution of (Y, X),

P (S(t) ≥ S(t) for all t ∈ [0, 1]) ≥ 1− α,

P (V (t) ≤ V (t) for all t ∈ [0, 1]) ≥ 1− α,

Proof of Theorem 1. Let P̃ be the vector with components

P̃k =

 Pk k ∈ N
1 k ∈ N c

∀ k = 1 . . . , m.

The ordered vector is denoted by (P̃(1), P̃(2), . . . , P̃(m)) so that P̃(1) ≤ P̃(2) ≤ . . . ≤
P̃(m). The number of false rejections, for a rejection region [0, t], is given by

V (t) = #{k ∈ N : Pk ≤ t}. Hence, for t < 1,

V (t) = #{k ∈ {1, . . . ,m} : P̃(k) ≤ t} (9)

If it holds that

P (P̃(k) ≥ Q
`(α)
k for all k ∈ {1, . . . ,m}) ≥ 1− α, (10)

then, by comparing (9) with (7), it follows that

P (V (t) ≤ B(t) for all t) ≥ 1− α. (11)

Thus B(t) is an upper simultaneous bound for V (t) if (10) holds true. Continuing

with this assumption for the moment, the number of true discoveries S(t) = #{k ∈

7



{1, . . . ,m} \N : Pk ≤ t} can be written as the total number of rejections less the

number of false discoveries, S(t) = R(t)− V (t). Note that any realization of S(t)

is monotonously increasing in t. Hence

S(t) = max
0≤τ≤t

S(τ) = max
0≤τ≤t

R(τ)− V (τ).

If (10) is indeed true, then, using (11), it holds with probability at least 1 − α

that

S(t) ≥ max
0≤τ≤t

R(τ)−B(τ) for all t ∈ [0, 1],

and the result follows.

It hence remains to show (10). Consider the statistic T that includes the

sample of {Xk, k ∈ N} and the ordered sample of Y . Conditional on T , P̃ and P̃ π

have the same multivariate distribution for a random permutation π ∈ Π, where

P̃ π is the vector of p-values P̃ after a random permutation π of the observed

response variable Y . Let ˜̀(α) be defined as `(α) in (6), yet using p-values P̃

instead of P in the definition of β in (5). It holds that ˜̀(α) ≥ `(α) and hence

Q
˜̀(α)
k ≥ Q

`(α)
k for all k. Thus, for any T ,

P (P̃(k) ≥ Q
`(α)
k for all k ∈ {1, . . . ,m}|T ) ≥ P (P̃ π

(k) ≥ Q
˜̀(α)
k for all k ∈ {1, . . . ,m}|T ).

(12)

By definition of ˜̀(α), P (P̃ π
(k) ≥ Q

˜̀(α)
k for all k ∈ {1, . . . ,m}) ≥ 1− α. Integrating

over T and using (12), equation (10) follows. This completes the proof.

3 Properties

The algorithm discussed above is well suited for implementation. However, it

does not provide good intuition about the rationale behind it. We discuss a

few properties of the proposed bounds and discuss relation to previous work.

Hopefully this sheds a little light on how and why the algorithm works.

3.1 Simultaneous bound

The main property of the estimate, and the motivation for the work, is that

the bound (for either the total number of false discoveries or its proportion) is

valid simultaneously for all possible rejection regions under arbitrary dependence
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between the test statistics. The latter condition requires a special structure of

the data. The algorithm is e.g. not going to work if one is just given a list of

possibly dependent p-values. This is what distinguishes our estimate from the one

proposed in Genovese & Wasserman (2004). Somewhat related to our method, a

bound for the number of false rejections is proposed in Korn et al. (2004). Their

false discovery control works like this: one specifies an absolute number u of false

rejections one is willing to make. Based on this choice, the algorithm returns a

number of rejections. The true number of false rejections is then larger than u only

with small probability α. The same works as well when specifying proportions

instead of absolute numbers of acceptable false discoveries. However, the estimate

lacks the property of simultaneous control and is not a confidence envelope in the

sense of property (1). Choosing the number of rejections adaptively invalidates

in particular the conservative property of the bound in Korn et al.. As with the

confidence envelope proposed in this paper, the estimate of Korn et al. utilizes

permutation of the response variables. It will be seen in the numerical examples

that the bounds are rather close numerically. This is no coincidence. Indeed,

the number of false discoveries V (t) is conservatively estimated in Korn et al.

essentially by

B̃(t) = #{l ∈ {1, . . . ,m} : Q
(1−α)w
k ≤ t}. (13)

This is almost the bound B(t) in (7), except for the fact that (1− α)w has been

replaced by k(α) ≤ (1−α)w. Note that B̃(t) offers point-wise control in the sense

that, for any chosen t ∈ [0, 1],

P (V (t) ≤ B̃(t)) ≥ 1− α.

Instead of providing point-wise control at level α like B̃(t), the bound B(t) offers

point-wise control at some level smaller than α. Thus it holds in general that

B̃(t) ≤ B(t). The level at which B(t) offers point-wise control is chosen such that

B(t) is a simultaneous bound at level α,

P (V (t) ≤ B(t) for all t ∈ [0, 1]) ≥ 1− α.

However, we do not bound the number of false discoveries directly by B(t). By

inspection of the algorithm, it can be seen that the number of false discoveries is

instead bounded by

V (t) = R(t)− max
0≤τ≤t

(R(τ)−B(τ)),
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which is smaller than or equal to B(t). It still produces a valid simultaneous

upper bound for V (t) due to the simultaneous nature of the bound B(t) and

monotonicity of S(t). Using V (t) is hence less conservative than B(t). Indeed,

it can be less conservative than the point-wise bound B̃(t). Consider the limit

t → 1. The total number of rejections R(t) converges in this setting to m. Both

B̃(t) and B(t) converge as well to m irrespective of the level α. The upper bound

V (t), in contrast, converges in general to some smaller value, giving an upper

bound for the number of true null hypotheses, as explained below.

In conclusion, building a confidence envelope is only slightly more conservative

than using point-wise control (sometimes even less conservative), while offering

the possibility of choosing the rejection region in an exploratory fashion and still

retaining strong control over the proportion of false discoveries.

3.2 Monotonicity

Note that the number of true discoveries S(t) is monotonously increasing with t.

When rejecting more hypotheses, the total number of correct rejections cannot

decrease. By definition (8) of S(t),

S(t) = max
0≤τ≤t

R(τ)−B(τ)

it is clear that the proposed lower bound is as well monotonously increasing with

t. Interpretation would be somewhat difficult for a non-monotone bound: con-

sider the statement that there are at least 5 true discoveries among the first 10

hypotheses, but only 4 true discoveries among the first 20? Clearly, given the

first statement, we expect to find at least 5 true discoveries among the first 20

rejections. Monotonicity is hence a desirable feature of any lower bound for the

number of true discoveries. Note that even when only requiring point-wise con-

trol, the method in Korn et al. (2004) cannot produce a monotonic lower bound

for the number of true discoveries.

3.3 Total number of false null hypotheses

In some applications it might be of interest to just estimate the total number

of false null hypotheses m1 (Liang et al., 2002; Turkheimer et al., 2001). By
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definition of S, it holds that m1 = S(1). The function S(t) leads thus directly

to a lower probabilistic bound for m1, by setting m̂1 = S(1). It follows from the

above properties that indeed

P (m1 ≥ m̂1) ≥ 1− α. (14)

Note that no parameters have to be tuned to obtain the estimate m̂1 and it gives a

natural estimate of the total amount of true alternative hypotheses. Property (14)

is valid under arbitrary dependence between the test statistics. This has already

been established in Meinshausen & Bühlmann (2005). The estimate m̂1 is in par-

ticular equivalent to the estimate in Meinshausen & Bühlmann (2005) under the

quantile bounding function. In Meinshausen & Rice (2006), the asymptotic prop-

erties of a similar estimate are discussed for the case of independent test statistics.

These papers are, however, just concerned with estimating the total number of

false null hypotheses. It was only established later that similar techniques can be

used to give confidence envelopes for the proportion of false discoveries, as shown

in this paper.

4 Numerical Examples

4.1 Simulation study

We study the properties of the proposed bound for a few numerical examples.

To reflect the dimensions of microarray gene expression datasets considered later,

the number of hypotheses is chosen as m = 1000. The response variable Y has

a Bernoulli distribution with p = 0.5. The predictor variable X is normally

distributed X ∼ N (µ, Σ) where the covariance matrix Σ is given by Σii = 1 and

Σij = ρ for i 6= j and some 0 ≤ ρ ≤ 1. The mean is given by µi = 0 if Yi = 0

or i ≤ 600 and µi = 1 otherwise. Hence there are 600 true null hypotheses. Test

statistics are calculated under a two-sided Wilcoxon test. 500 randomly chosen

permutations of the response variable are used for the construction of the lower

bound S. The level is always chosen in the following as α = 0.05. The lower

bound S(t) is plotted as a function of the true number S(t) of true discoveries

in Figure 1. The more observations are made, the closer the lower bound S is

to S. The bound is particularly tight if only a few hypotheses are rejected. For
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the dependent test statistics the variance of false discoveries is larger, at least for

fixed rejection regions. The bound has to accommodate this and hence tends to

be more conservative.

[Figure 1 about here]

Next, we examine the probability of

∃t ∈ [0, 1] : FDP(t) < FDP(t), (15)

which is the same event as ∃t ∈ [0, 1] : S(t) > S(t), e.g. there is at least one

t ∈ [0, 1] for which the lower bound for the number of true discoveries is larger

than the actual number of true discoveries. The probability of these events is

limited by construction by the level α. The setup is exactly the same as above.

However, we do not only use m1 = 400 but test the procedure as well with a

considerably smaller amount of false null hypotheses, m1 = 10. The results are

shown in Table 1 as an average over 500 simulations.

[Table 1 about here]

It can be seen that the bound is in general rather tight. The true level at which

one is controlling seems to be in general above 3% when using α = 5%. The bound

is unduly conservative only for independent test statistics and many false null

hypotheses (m1 = 400, ρ = 0). For ρ = 0.4 and m1 = 10, the proportion of false

discoveries is underestimated with the proposed bound in 5.4% of all simulations.

This is above the 5% level but does not represent a significant deviation.

To illustrate the usefulness of a simultaneous bound, we consider again the

above setup with n = 60, ρ = 0, m = 1000, and m1 = 10 false null hypotheses.

For a given threshold of b permitted false rejections (where b is chosen as either

5, 10, or 50), as many rejections as possible are made, once with the proposed

method and once with the method of Korn et al. (2004), both at nominal level 5%.

For the simultaneous bound and 500 simulations, the average number of rejected

hypotheses is 8.36, 13.78, 54.02 for b = 5, 10, and 50 respectively. Of theses rejec-

tions, 7.19, 8.70, and 9.78 are on average correctly rejected false null hypotheses

(there are m1 = 10 false null hypotheses in total). The probability of rejecting

more than b hypotheses for any b ∈ {5, 10, 50} is 0.2% in the simulation study and
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hence bounded by the nominal level 5%, as expected from the simultaneous nature

of the bound. For the method of Korn et al., the average number of rejections

is 10.46, 16.01, and 57.05, of which 8.04, 8.93, and 9.79 are on average correctly

rejected null hypotheses. The average number of correctly rejected hypotheses is

thus slightly larger than for the simultaneous bound and the probability of reject-

ing more than b hypotheses is bounded by 5% for each b separately. However, the

probability that the number of false rejected null hypotheses is larger than b for

some b ∈ {5, 10, 50} cannot be controlled with this method and is indeed 12.6%

in the simulation study, larger than the nominal level 5%.

4.2 Microarray gene expression data

We illustrate the method for three microarray gene expression data sets. In

a microarray gene expression experiment the expression levels of thousands of

genes (about 5000) are measured simultaneously. The number of observations is

on the other hand typically small, in the region of about 50. Specifically, the

datasets of Singh et al. (2002) about prostate cancer (102 observations, 6033

genes), Golub et al. (1999) about leukemia (72 observations, 3571 genes), and

Alon et al. (1999) about colon cancer (62 observations, 2000 genes) are consid-

ered. The three datasets contain a binary response variable Y ∈ {0, 1} which is

typically the subtype of a specific cancer under consideration. We note that one

might rather tend to consider these studies as designed experiments and think of

a binary non-random class variable y in this context. The method is unaffected

by this choice, however. Gene k = 1, . . . ,m is called differentially expressed if the

expression values Xk of gene k and the response variable Y are not independent.

Here we consider the more specific case of over-expression, that is we test for each

gene with the one-sided Wilcoxon-test if its mean expression level is higher for

class 1 than for class 0.

[Figure 2 about here]

We compute the lower bound S(t) for the number of true discoveries as in the

previous section. The result is shown in Figure 2. The lower bound bound has in

all three experiments a distinctive shape, first growing almost as fast as R(t) and

then levelling off slowly. While the optimal number of rejections will in general
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depend on the gain from making a true discovery versus the loss of making a false

discovery, it does not seem worthwhile to reject hypotheses that fall into the “flat”

region of the bound S(t).

Finally, we compare the bound FDP(t) to the bound implied by the method

in Korn et al. (2004). The results are shown in Figure 3 for the three datasets.

The proposed bound FDP(t) tends to be more conservative for smaller rejection

regions. This is intuitively clear as the proposed bound holds simultaneously for

all possible number of rejections. For larger rejection regions, the situation is

reverse and the proposed bound is tighter than the point-wise bound. For reasons

explained above, the proposed bound does not converge to 1 as t → 1. Instead,

it gives for t = 1 an upper bound for the total proportion of true null hypotheses.

For all three datasets, the bound implies e.g. roughly that there are at least 10%

of genes for which expression levels are higher for the specified class. This relative

proportion corresponds of course to the highest level that S(t) reaches, compare

Figure 2. The important feature of the proposed method is, in our view, that

the bound for the number of true discoveries holds simultaneously for all rejection

regions and allows thus for an explorative approach when choosing a rejection

region without giving up strict control over the proportion of false discoveries.

[Figure 3 about here]
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Figure 1: Boxplots of the lower bound S(t) as a function of the true value S(t)

for 100 simulations and t ∈ [0, 1]. The continuous line corresponds to S(t) = S(t).

The number n of observations in each sample is increasing from n = 20 (left

column) to n = 80 (right column) in steps of 20. The dependence between the

test statistics is ρ = 0 (upper row) and ρ = 0.4 (lower row) respectively.
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Figure 2: The lower bound S(t) as a function of the number R(t) of rejections for

(from left to right) leukemia, colon, and prostate cancer data, broken line. The

unbroken line corresponds to the total number of rejections R(t).
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Figure 3: For the same data as in Figure 2, the simultaneous bound FDP(t) as a

function of the number of rejections R(t), broken line, and the pointwise bound,

dotted line.

Table 1: The probability (in %) of underestimating the true pro-

portion of false discoveries (using α = 5%) for some t ∈ [0, 1].

m1 = 400 m1 = 10

n = 20 n = 60 n = 100 n = 20 n = 60 n = 100

ρ = 0 1.6 1.4 0.8 3.0 4.2 4.8

ρ = 0.2 3.2 3.8 3.0 3.8 3.6 4.6

ρ = 0.4 5.0 4.8 4.4 4.4 5.4 4.0
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