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1. Introduction

In this paper, which is an outgrowth of [3], we will give some applications of the theory of
weakly holomorphic modular forms to rational period functions for the modular group and
their modular integrals. First we give a simple basis when k > 2 is an even integer for the
space Wk−2 of period polynomials, which can be defined as the space of all polynomials that
satisfy

(1) ψ(z) = ψ(1 + z) + (z + 1)k−2ψ( z
z+1

).

The existence of such a basis is well-known, and our aim here is to illustrate the effectiveness
of using weakly holomorphic forms in providing one. Our main goal is to construct modular
integrals for certain rational solutions ψ to (1) for any k ∈ Z made out of indefinite binary
quadratic forms. A modular integral for ψ is a periodic function F holomorphic on the upper
half-plane H and meromorphic at i∞ that satisfies

(2) ψ(z) = F (z) − zk−2F (−1/z).

Knopp [8], [9] introduced rational period functions and proved the first results about them.
In particular, he showed using results from [7] that they have modular integrals, but his
construction arises from a meromorphic Poincaré series formed out of cocycles and is very
difficult to compute (see also [6]). The modular integrals we construct are canonical in the
sense that their order at i∞ is maximal among all modular integrals with period function ψ.
Their Fourier coefficients are given by cycle integrals of certain weakly holomorphic forms
and are quite explicit. When k > 2 this construction gives, in combination with the basis for
Wk−2, some well-known evaluations of the zeta functions attached to indefinite binary forms.
A special case when k = 0 of this construction was given in [3]. Among the many additional
references for the theory of rational period functions are [10], [2] and [13].

2. Statement of results

For any k ∈ 2Z let M !
k be the space of weakly holomorphic modular forms of weight k for

the modular group Γ = PSL(2,Z). Each f ∈ M !
k is a holomorphic function f on H of the

form

f(z) =
∑

n≥n0

a(n)e(nz),

where e(z) = e2πiz, that satisfies f = f |kg for all g ∈ Γ, where we define as usual

f |kg(z) = (cz + d)−kf(az+b
cz+d

)
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for any g = ± ( a b
c d ) ∈ PSL(2,R). Thus a weakly holomorphic modular form is a meromorphic

modular form with no pole except possibly at the cusp i∞. Set ord∞f = n0 if a(n0) 6= 0 and
let

(3) ℓ = ℓk =

{

⌊ k
12
⌋ − 1 if k ≡ 2 (mod 12)

⌊ k
12
⌋ otherwise.

Note that ℓ2−k + ℓk = −1. The space M !
k has a canonical basis in the following sense.

Theorem 1. For each m ≥ −ℓ there is a unique fk,m ∈M !
k of the form

(4) fk,m(z) = e(−mz) +
∑

n>ℓ

ak(m,n) e(nz)

where ak(m,n) ∈ Z satisfy ak(m,n) = −a2−k(n,m). The set {fk,m}m≥−ℓ is a basis for M !
k.

When ℓ = 0 this result was given in [1]. For k = 0 the first three basis elements are

f0,0(z) = 1 f0,1(z) = j(z) − 744 f0,2(z) = j(z)2 − 1488j(z) + 159768,

where j is the usual modular function (19). For general k a proof of Theorem 1 was given
in [4], and for convenience we will sketch the proof below in section 3. Let Sk ⊂ Mk be
the subspace of cusp forms, which are those forms that vanish at ∞. It is easily seen that
{fk,m}−ℓ≤m<0 is a basis for Sk, hence dimSk = ℓ, provided that k > 2.

Suppose that k > 2. For each non-zero m with m ≥ −ℓ we may define the Eichler integral
of the basis element fk,m by

(5) Fk,m(z) = (−m)1−ke(−mz) +
∑

n>ℓ

ak(m,n)n1−ke(nz).

Bol’s identity states that for any g ∈ PSL(2,R)

Dk−1(F |2−kg) = (Dk−1F )|kg where D = 1
2πi

d
dz
.

This (or a direct calculation) shows that

(6) ψk,m(z)
(def)
= Fk,m(z) − zk−2Fk,m(−1

z
) ∈Wk−2.

A proof of the following result is given in Section 3.

Theorem 2. For k > 2 the set {1−zk−2}∪{ψk,m(z)}0<|m|≤ℓ gives a basis for the space Wk−2.
In particular, dimWk−2 = 2ℓ+ 1.

Apparently it was Poincaré who first had the idea that the classical theory of abelian
integrals and their periods on a compact Riemann surface can be extended to integrals
of higher order, but now having polynomial periods.1 Poincaré worked in the context of
quotients of H by Fuchsian groups and gave details for the modular group, but indicated
that the results hold more generally. Roughly speaking, he gave a correspondence between
essentially distinct sets of polynomial periods and meromorphic modular forms of the second
kind modulo exact forms. In particular, as vector spaces he showed that they have the same
finite dimension, which is explicitly computable by means of the Riemann-Roch theorem.
Our proof of Theorem 2 is similar except that we employ forms with no poles except in the
cusp at i∞.

1See [14, p. 99-108 or Œuvres V. p. 213-223]. This volume of Crelle’s Journal from 1905, which was
dedicated to the centenary of Dirichlet’s birth, contains papers by Dedekind, Frobenius, Hensel, Hilbert,
Hurwitz, Klein, Minkowski, Picard, Poincaré, and Weber, among others.
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Poincaré’s (general) result was independently rediscovered by Eichler [5] about 50 years
later. In this paper Eichler also interpreted the sets of polynomials as cohomology classes
and applied the theory to obtain the trace formula for Hecke operators, thereby opening up
its arithmetic side. Because of the ensuing connections with L-functions, it is now more usual
to identify the even and odd parts of a period polynomial with those of two different cusp
forms, the resulting isomorphism being the Eichler-Shimura Theorem.

Turning now to our main result, for d > 0 a non-square discriminant let Qd be the set
of all binary quadratic forms Q(x, y) = ax2 + bxy + cy2 = [a, b, c] with integral coefficients
and d = b2 − 4ac. The modular group acts naturally on Qd splitting it into finitely many
classes Γ\Qd. The group ΓQ = {g ∈ Γ; γQ = Q} of automorphs of Q is infinite cyclic with
a distinguished generator gQ given below in (25). For f ∈ M !

k and Q ∈ Qd define the cycle
integral

(7) rQ(f) =

∫

CQ

f(z)Q(z, 1)k/2−1dz,

where the integral is over any smooth curve CQ from τ to gQτ for some fixed τ ∈ H. This
integral is a class invariant of Q that does not depend on the choice of τ ∈ H. For fixed
Q ∈ Qd define the generating function

(8) F (z,Q) = Fk(z,Q) =
∑

m≥−ℓ

rQ(fk,m)e(mz).

Our main result is that for any weight k ∈ 2Z , F (z,Q) defines a modular integral with a
rational period function.

Theorem 3. For any k ∈ 2Z and form Q ∈ Qd the function F (z,Q) is holomorphic on H
and satisfies

(9) F (z,Q) − zk−2F (−1/z,Q) = ψQ(z),

where
ψQ(z) =

∑

[a,b,c]∈(Q)
ac<0

sgn(c)(az2 + bz + c)k/2−1.

Here (Q) ∈ Γ\Qd denotes the class containing Q.

The proof of this result, which is given in Section 3, is elementary and uses mainly contour
deformation techniques. If k ≥ 2 then ψQ(z) ∈ Wk−2 so by Theorem 2 we know that ψQ

is a linear combination of the ψk,m with m 6= 0 and 1 − zk−2. In fact we have the following
explicit expansion

(10) ψQ(z) = rQ(fk,0)(1 − zk−2) +
∑

0<|m|≤ℓ

mk−1rQ(fk,m)ψk,−m(z).

This has some well-known consequences in case k ∈ {4, 6, 8, 10, 14}. Here we have that ℓ = 0
and fk,0 = Ek, the Eisenstein series defined for any k ∈ 2Z by

(11) Ek(z) = 1 + 2
ζ(1−k)

∑

n≥1

σk−1(n)e(nz),

where as usual σ is the sum of divisors function. Thus rQ(Ek)(1 − zk−2) = ψQ(z) giving the
remarkable fact that for such k

(12) rQ(Ek) =
∑

[a,b,c]∈(Q)
ac<0

sgn(c)ck/2−1,
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which is an integer. After Siegel [15, p.12, Hilfssatz 1] we get analogues of Euler’s zeta
evaluations in case k ∈ {4, 6, 8, 10, 14}:

(13)
∑′

(m,n)∈Z2/ΓQ

Q(m,n)−k/2 = ck d
1
2
(1−k) rQ(Ek) ck = − (2π)k Bk

kΓ(k/2)2
,

the prime indicating that (0, 0) be omitted from the sum. Here Bk is the Bernoulli number.
Thus for example

∑′

(m,n)∈Z2/ΓQ

Q(m,n)−2 =
2π4d−3/2

15

∑

[a,b,c]∈(Q)
ac<0

|c|.

This evaluation is equivalent to one of Kohnen-Zagier [11, Cor p.223], who make use of period
polynomials of hyperbolic Poincaré series of the type

(14)
∑

[a,b,c]∈(Q)

(az2 + bz + c)−k/2

in their proof and express their result in terms of reduced forms. Summing (13) over classes
and applying the functional equation gives Siegel’s well-known formulas for special values of
the Dedekind zeta function of a real quadratic field K of discriminant d when k ∈ {4, 8}

(15) ζK(1 − k
2
) =

1

15k

∑

b≡d(2)

σk
2
−1

(

d−b2

4

)

.

When k ≤ 0 our construction of the modular integral F (z,Q) should be compared with
that of Parson [12], who noticed that for some k a partial version of the Poincaré series in
(14) is a modular integral. In fact we have when k < 0 that

(16) F (z,Q) =
∑

[a,b,c]∈(Q)
a>0

(az2 + bz + c)k/2−1 + f(z)

for some f ∈ S2−k. It appears to be difficult to make Hecke’s convergence trick work here
when k = 0.

3. Weakly holomorphic forms and period polynomials

In this section we will prove Theorems 1 and 2. Any nonzero f ∈M !
k satisfies the Riemann-

Roch formula

(17)
k

12
= ord∞f + 1

2
ordif + 1

3
ordρf +

∑

z∈F\{i,ρ}
ordzf,

where ρ = e(1/6) = 1
2

+ i
√

3
2

and F is the usual fundamental domain for Γ given by

F = {z ∈ H;−1
2
≤ Re z ≤ 0, |z| ≥ 1} ∪ {z ∈ H; 0 < Re z < 1

2
, |z| > 1}.

One obtains this easily by integrating the Γ-invariant differential (f ′(z)
f(z)

− k
4πy

)dz around the

boundary of F , with the usual detours. In particular, for a nonzero f ∈M !
k we have

(18) ord∞f ≤ ℓ.

For each integer m ≥ −ℓ we have fk,m = ∆ℓEk−12ℓP (j), where P is a monic polynomial of
degree ℓ+m with integer coefficients,

(19) ∆ = 1
1728

(E3
4 − E2

6) ∈ S12 and j = E3
4/∆ ∈M !

0.
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Since Ek−12ℓ,∆, j and P all have integer coefficients it follows that ak(m,n) is integral. It
follows from (18) that the fk,m are unique and that they form a basis for M !

k. Set

fk = ∆ℓEk−12ℓ.

We have the following expansion (see [4])

(20)
fk(τ)f2−k(z)

j(z) − j(τ)
=
∑

m≥−ℓ

fk,m(τ)e(mz),

which converges uniformly on compacta in z for fixed τ ∈ H if Im z > Im τ . This yields the
duality relation ak(m,n) = −a2−k(n,m) and completes the proof of Theorem 1.

For fixed z with E14(z) 6= 0 the expression on the left hand side of (20) has a simple pole
at τ = z. Since

fk(z)f2−k(z) = E14(z)/∆(z) = −Dj(z),
in this case we have

(21) Resτ=z
fk(τ)f2−k(z)

j(z) − j(τ)
= lim

τ→z

(τ − z)fk(z)f2−k(z)

j(z) − j(τ)
=

1

2πi
.

We now prove Theorem 2. The proof we give follows that of [14] rather closely, except
that Poincaré made use of forms with poles in H, which he constructed via his famous
series. Note that 1 − zk−2 ∈ Wk−2 is associated to the constant 1 through (2). The set
{1− zk−2} ∪ {ψk,m}0<|m|≤ℓ must be linearly independent since otherwise one could construct
a nonzero form F ∈ M !

2−k having ord∞F > −1 − ℓ = ℓ2−k from a linear combination of a
constant and the Fk,m from (5) with 0 < |m| ≤ ℓ, contradicting (18). Theorem 2 will follow
if we can show that {1− zk−2} ∪ {ψk,m}0<|m|≤ℓ spans Wk−2, and for this it is enough to show
that

(22) dimWk−2 ≤ 2ℓ+ 1.

As is well known, Γ is generated by the elliptic transformations S = ± ( 0 1
−1 0 ) and U =

± ( 1 −1
1 0 ) with the defining relations S2 = U3 = ±1. Note that T = US = ± ( 1 1

0 1 ). Let Pk−2

be the space of all complex polynomials of degree at most k − 2. For ψ(z) ∈ Pk−2 define the
action of A ∈ PSL(2,C) in the usual way as

ψ|A = (cz + d)k−2ψ

(

az + b

cz + d

)

and extend the definition by linearity to the group ring. Observe that

Wk−2 = {ψ ∈ Pk−2;ψ|(1 + S) = ψ|(1 + U + U2) = 0}.
See [?, Proposition p. 249] for the short proof. Let

W S
k−2 = {ψ ∈ Pk−2;ψ|(1 + S) = 0} and WU

k−2 = {ψ ∈ Pk−2;ψ|(1 + U + U2) = 0}.

It is not hard to check that the linear map from Wk−2 ⊕ Pk−2 to W S
k−2 ⊕WU

k−2 defined by

(ψ, φ) 7→
(

ψ + φ|(1 − S), ψ + φ|(1 − U)
)

is an injection. Hence

(23) dimWk−2 ≤ dimW S
k−2 + dimWU

k−2 + 1 − k.
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Note that S and U are conjugate in PSL(2,C) to S̃ = ± ( i 0
0 −i ) and Ũ = ±

(

ρ 0
0 ρ̄

)

, respectively,

where ρ = e(1/6) = 1
2

+ i
√

3
2

. Now a brief calculation shows that
(

k−2
∑

r=0

arz
r

)

|(1 + S̃) = 2
∑

r≡k/2+1 (2)

arz
r.

and
(

k−2
∑

r=0

arz
r

)

|(1 + Ũ + Ũ2) = 3
∑

r≡k/2−1 (3)

arz
r.

Hence

dimW S
k−2 = #{0 ≤ n ≤ k−2| n ≡ k

2
(2)} and dimWU

k−2 = #{0 ≤ n ≤ k−2| n ≡ k
2
, k

2
+1 (3)},

and a simple counting argument gives that

dimW S
k−2 = 2⌈k−2

4
⌉ and dimWU

k−2 = 2⌈k−2
3
⌉

from which we deduce (22), hence Theorem 2, in view of (23).

4. Cycle integrals

In this section we will prove Theorem 3. First we make some preparatory observations
about quadratic forms and cycle integrals. Recall that Qd is the set of integral binary
quadratic forms Q(x, y) = ax2 + bxy + cy2 = [a, b, c] of discriminant d = b2 − 4ac. Let
Q 7→ gQ be the usual action of Γ that is compatible with linear fractional action on the roots
of Q(τ, 1) = 0. Explicitly, and with an obvious abuse of notation,

(24) (g−1Q)(τ, 1) = Q(gτ, 1)(cτ + d)2 if g = ± ( a b
c d ) ∈ Γ.

As is well known, the resulting set of classes Γ\Qd is finite and those classes consisting of
primitive forms form an abelian group under composition. Let ΓQ = {g ∈ Γ; gQ = Q} be the
group of automorphs of Q. If d > 0 then ΓQ is infinite cyclic with a distinguished generator
denoted by g

Q
, which for primitive Q is given by

(25) g
Q

= ±
(

t+bu
2

cu
−au t−bu

2

)

where t, u are the smallest positive integral solutions of t2 − du2 = 4. If δ = gcd(a, b, c) then
g

Q
= g

Q/δ
. For Q ∈ Qd with d > 0 not a square let SQ be the oriented semi-circle defined by

a|τ |2 + (Re τ)b+ c = 0,

directed counterclockwise if a > 0 and clockwise if a < 0. Clearly

(26) SgQ = gSQ,

for any g ∈ Γ. Given z ∈ SQ let CQ = CQ(τ0) be the directed arc on SQ from τ0 to g
Q
τ0. It

can easily be checked that CQ has the same orientation as SQ. Let2

dτQ = Q(τ, 1)k/2−1 dτ.

For any continuous function f on H that satisfies

(27) f |kg = f |g = f

2Here we omit the factor
√

d that was given in the corresponding definition in [3].
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for all g ∈ Γ, the integral
∫

CQ
f(τ)dτQ is both independent of τ0 ∈ SQ and is a class invariant.

This is an immediate consequence of the following lemma that expresses this cycle integral
as a sum of integrals over arcs in a fixed fundamental domain for Γ.

Lemma 1. Let Q ∈ Qd be a form with d > 0 not a square and F ′ = gF be the image of F
under any fixed g ∈ Γ. Suppose that f satisfies (27) and is continuous on SQ. Then for any
τ0 ∈ SQ we have

∫

CQ(τ0)

f(τ)dτQ =
∑

q∈(Q)

∫

Sq∩F ′

f(τ)dτq,(28)

where (Q) denote the class of Q.

Proof. Let f̃(τ) = f(τ) if τ ∈ F ′ and f̃(τ) = 0 otherwise, so f(τ) =
∑

g∈Γ f̃ |g(τ) with only
a discrete set of exceptions, Thus

∫

CQ

f(τ)dτQ =

∫

CQ

∑

g∈Γ

f̃ |g(τ)dτQ =
∑

g∈Γ/ΓQ

∑

σ∈ΓQ

∫

CQ

f̃ |g|σ(τ)dτQ

=
∑

g∈Γ/ΓQ

∫

SQ

f̃ |g(τ)dτQ =
∑

g∈Γ/ΓQ

∫

SgQ

f̃(τ)dτgQ,

where in the last step we have changed variable τ 7→ g−1τ and have used (26) and (24). This
immediately yields (28). �

We now prove Theorem 3. First we prove that

F (z,Q) =
∑

m≥−ℓ

rQ(fk,m)e(mz)

has an analytic continuation to H. Now from (20)

∑

m≥−ℓ

fk,m(τ)e(mz) =
fk(τ)f2−k(z)

j(z) − j(τ)

converges uniformly on compacta in z for fixed τ ∈ H if Im(z) > Im(τ). Thus for Im(z)
sufficiently large we have that

(29) F (z,Q) =

∫

CQ

fk(τ)f2−k(z)

j(z) − j(τ)
dτQ

where we may take for CQ any smooth curve connecting an arbitrary point τ0 ∈ H and gQτ0.
Let z0 ∈ H be an arbitrary point. The images of CQ under Γ separate H into infinitely many
connected components each with a piecewise smooth boundary. Clearly we may choose CQ

so that z0 is in the interior of one of these components. The integral in (29) defines in each
component an analytic function. To get the analytic continuation it is enough to show that
we can continue across finitely many adjacent components and thus reach a neighborhood of
z0. By the monodromy theorem we will get a unique continuation since H is simply connected.

Let Ω1 be a component in which (29) holds and let Ω2 be an adjacent component. Let
F2(τ, Q) be the analytic function in Ω2 defined by the integral in (29). Choose any simple
point z1 on the edge between Ω1 and Ω2. Make a small semi-circular deformation of CQ so
that the new integral continues F (z,Q) to a neighborhood A of z1. Now assuming that A is
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chosen to not contain any elliptic point of Γ, for each z in A ∩ Ω2 the value of the analytic
continuation of F (z,Q) is given by

(30) F (z,Q) = F2(z,Q) ±Q(z, 1)k/2−1,

coming from the pole of the integrand at τ = z. Here the sign is the same for all such z and
depends only on the orientation of the edge. Since Q(z, 1)k/2−1 is holomorphic in H, we see
that (30) gives the continuation of F (z,Q) to all of Ω2. Continue this process starting with
F2(τ, Q)±Q(z, 1)k/2−1 and repeat until we have continued F to the component Ωn containing
z0. It follows that F (z,Q) is holomorphic in H and that its Fourier expansion converges in
H.

In order to prove the functional equation of Theorem 3 let P be the closure of F∪F ′, where
F ′ = −F−1 is the image of the standard fundamental domain F under inversion z 7→ −1/z.
Take z with Im z sufficiently large. By Lemma 1 we have

F (z,Q) = 1
2

∑

q

∫

Aq

fk(τ)f2−k(z)

j(z) − j(τ)
dτq

where the sum runs over all q ∈ (Q) for which Sq intersects the interior of P , giving the arc
Aq = Sq ∩ P . It is easily seen that S[a,b,c] intersects P if and only if ac < 0. Now we deform
each arc Aq in the sum to a curve Bq that is still within P and has the same endpoints as
Aq, but leaves z and −1/z in the same connected component. The images of these curves
under inversion will also do this. By evaluating each resulting residue at z using (21) we get
the formula

F (z,Q) = 1
2

∑

[a,b,c]∈(Q)
ac<0

∫

B[a,b,c]

fk(τ)f2−k(z)

j(z) − j(τ)
(aτ 2+bτ+c)

k
2
−1dτ− 1

2

∑

[a,b,c]∈(Q)

ac<0

sgn(a)(az2+bz+c)
k
2
−1,

which is also valid at −1/z. A simple calculation now shows that (9) holds in a neighborhood
of z, hence for all z ∈ H. Thus Theorem 3 follows.
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