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Abstract

In this paper we use the Selberg trace formula for Hecke op-
erators in order to obtain information on the distribution of the
eigenvalues of Hecke operators in the situation of the hyperbolic
3-space. We prove that the eigenvalues are equidistributed with
respect to a measure that tends to the Sato-Tate measure.

1 Introduction

Let E be an elliptic curve E over without complex multiplication and
let N(p) denote the number of points of E modulo p, p a prime. The Sato-

Tate conjecture says that, as p → ∞, the angles θ(p) = arccos
(

1+p−N(p)
2
√

p

)

are equidistributed with respect to the measure dµθ = 2
π sin2 θ dθ. Sim-

ilarly, for a Hecke eigenform f(z) =
∑

ρf(n)e2πinz of weight k for the
group SL2( ), the generalized Sato-Tate conjecture predicts that the an-
gles θf (p) in 2 cos θf(p) = p(1−k)/2ρf (p) are uniformly distributed with
respect to dµθ (cf. [Ser68]). This is a deep conjecture which is intimately
related to the analytic properties of symmetric power L-functions ([Mu]).
Recently in a major breakthrough R. Taylor [T], building on important
work by Clozel, Harris, Shepard-Barron and Taylor([CHT], [HS-BT]),
proved the Sato-Tate conjecture for an elliptic curve E over any totally
real field with multiplicative reduction at some prime.

For a general holomorphic cusp form or a Maaß form f one can also
change the viewpoint and try to understand the much easier problem of
distribution of the Hecke eigenvalues ρf(p) of non-CM f for fixed p and
varying f . This situation has been studied for holomorphic cusp forms in
[CDF], [Ser97] and for Maaß forms in [Sar]. Denote the set of cusp forms
of weight k for the modular group SL2( ) that are also eigenfunctions
of the Hecke operators by Sk. Then Conrey, Duke and Farmer [CDF]
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proved that for a fixed prime p, {ρ (f, p) := p(1−k)/2ρf (p) : f ∈ Sk} is
equidistributed with respect to

dµp(x) :=

⎧

⎨

⎩

1
2π

(

1 + 1
p

) √
4−x2

(1+ 1
p)

2
− 1

p x2
dx if |x| < 2,

0 otherwise

as k → ∞ and that as p → ∞, p prime, and k → ∞ with k > ep,
{ρ (f, p) : f ∈ Sk} becomes equidistributed with respect to the Sato-
Tate measure. We note that µp is essentially the Plancherel measure
of GL2( p). Apart from these results a discussion for congruence sub-
groups can also be found in [Ser97]. See also [Go] and [MS]. In both of
these papers the authors obtained error terms for the Serre and Conrey-
Duke-Farmer theorem. The error bound in [MS] is effective. As already
mentioned the analogue situation for Maaß forms is treated in [Sar]. If
∆ is the Laplace operator corresponding to the hyperbolic metric on the
upper half-plane 2 and the eigenfunctions (uj)j≥0 of the discrete spec-
trum of −∆ on L2(SL2( ) \ 2) are chosen such that Tnuj = ρj(n)uj

with Tn being the Hecke operator, then Sarnak [Sar] showed that if
xj ∈

∏

p[−(p−1/2+p1/2), p−1/2+p1/2] is defined by xj := (ρj(2), ρj(3), . . . ),
then (xj)j is equidistributed with respect to µ =

∏

p µp.

In this paper we turn to the case of SL2(O) where O is the ring of
integers of an imaginary quadratic field K of class number one. We con-
sider the hyperbolic 3-space 3 equipped with the hyperbolic metric and
regard it as a subset of Hamilton’s quaternions. The Laplace - Beltrami
operator corresponding to this metric is given by

∆ := r2

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

− r
∂

∂r
.

A careful treatment of its spectral theory can be found in [EGM]. The
groups SL2(O) :=

{

M ∈ Mat (2× 2, O) : det M = 1
}

and Γ :=PSL2(O)
:= SL2(O)/{±I} act on 3 and they can be thought of as the analogue
of SL2( ) and PSL2( ), respectively. It is well-known that the spectrum
of −∆ on L2(Γ \ 3) consists of a discrete part and an absolutely con-
tinuous part (cf. e. g. [EGM]). We denote the eigenfunctions belonging
to the discrete spectrum by (em)m≥0 and the corresponding eigenvalues
by (λm)m≥0 where the eigenvalues are counted with multiplicity and or-
dered according to their size. Moreover, we choose the eigenfunctions
(em)m≥0 so that they are also eigenfunctions of the Hecke operators Tp,
p ∈ O a prime. For the definition and basic properties of the Hecke op-
erators see section 2. Let ρm(p) be the eigenvalue of the Hecke operator
Tp that belongs to em, i. e. Tpem = ρm(p)em. Then our main theorem
shows that there exists a measure dµp with respect to which (ρm(p))m≥1

is equidistributed. More precisely, we prove
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Main Theorem. For a prime p ∈ O let ρm(p) be the eigenvalue of the
Hecke operator Tp with corresponding eigenfunction em. Then (ρm(p))m≥1

is equidistributed with respect to the measure

dµp(x) :=

⎧

⎨

⎩

1
2π

(

1 + 1
N(p)

) √
4−x2

(1+ 1
N(p))

2
− x2

N(p)

dx if |x| < 2,

0 otherwise.

Note that this measure tends to the Sato-Tate measure as N(p) → ∞.

Another natural question in this context is the dependence of the
distribution of Hecke eigenvalues on the level structure. The second
author has already made some progress in this direction.

2 The Hecke Operators

To introduce the Hecke operators we follow the approach of Heitkamp
[Hei]. First, we recall the action of GL2( ) := {M ∈ Mat(2 × 2, ) :
det M ̸= 0} on 3: If M = ( a b

c d ) ∈ GL2( ) and P ∈ , we set q :=√
det M and

MP := q−1(aP + b)(cP + d)−1q,

with the inverse being taken in the skew field of quaternions. Moreover,
for v ∈ O \ {0} let Mv := {M ∈ Mat (2× 2, O) : det M = v} and Vv be
a system of representatives for the right cosets of Mv modulo SL2(O).
Then the Hecke operator Tv is defined by:

(Tvf)(P ) :=
1

√

N(v)

∑

M∈Vv

f(MP ),

f being a Γ - invariant function. Note that the factor 1/
√

N(v) does not
appear in the definition of the Hecke operators in [Hei]. We prefer to work
with this factor because it simplifies the recurrence relation satisfied by
the Hecke operators. The theory of Hecke operators as it is needed for
the discussion in this paper is developed in [Hei]. Let O∗ be the set of
units of O. Then it follows from [Hei], p. 83 that for any prime p ∈ O
and n ∈ the set

Vpn :=

{(

a b
0 d

)

: d ∈ O/O∗, ad = p
n, b ∈ O/⟨d⟩

}

is a set of representatives of Mpn mod SL2(O). Thus

(Tpnf)(P ) =
1

N(p)n/2

∑

d∈O/O∗, ad=pn,
b∈O/⟨d⟩

f

((

a b
0 d

)

P

)

.
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Similarly to the two-dimensional case (cf. [Gun], p. 60) we find the fol-
lowing recurrence relation for the Hecke operators.

2.1 Lemma. For n ∈ and a prime p ∈ O \ {0} we obtain

TpTpn = Tpn+1 + Tpn−1.

Proof. The proof of this identity is very similar to the proof of the relation
of the Hecke operators for SL2( ). Let f be a Γ-invariant function and
note that

(

a2p b2p

0 d2

)

(z, r) =

(

a2pz + b2p

d2
,
|pn|
|d2|

r

)

=

(

a2z + b2

d2/p
,
|pn−1|
|d2/p|

r

)

for P = (z, r) ∈ 3. Then we get

N(p)
n+1

2 (TpTpnf)(P )

=
∑

d1∈O/O∗, a1d1=p,
b1∈O/⟨d1⟩

∑

d2∈O/O∗, a2d2=pn,
b2∈O/⟨d2⟩

f

((

a1 b1

0 d1

)(

a2 b2

0 d2

)

P

)

=
∑

d1∈O/O∗, a1d1=p,
b1∈O/⟨d1⟩

∑

d2∈O/O∗, a2d2=pn,
b2∈O/⟨d2⟩

f

((

a1a2 a1b2 + b1d2

0 d1d2

)

P

)

=
∑

b1∈O/⟨p⟩

∑

d2∈O/O∗, a2d2=pn,
b2∈O/⟨d2⟩

f

((

a2 b2 + b1d2

0 d2p

)

P

)

+
∑

d2∈O/O∗, a2d2=pn,
b2∈O/⟨d2⟩

f

((

a2p b2p

0 d2

)

P

)

=
∑

b1∈O/⟨p⟩

∑

d2∈O/O∗, a2d2=pn,
b2∈O/⟨d2⟩

f

((

a2 b2 + b1d2

0 d2p

)

P

)

+f

((

pn+1 0
0 1

)

P

)

+
∑

d2∈O/O∗, a2d2=pn,
p|d2, b2∈O/⟨d2⟩

f

((

a2p b2p

0 d2

)

P

)

= N(p)
n+1

2 (Tpn+1f)(P ) +
∑

d2∈O/O∗, a2d2=pn,
p|d2, b2∈O/⟨d2⟩

f

((

a2p b2p

0 d2

)

P

)

= N(p)
n+1

2 (Tpn+1f)(P ) + Np
∑

d′∈O/O∗, a′d′=pn−1,
b′∈O/⟨d′⟩

f

((

a′ b′

0 d′

)

P

)

= N(p)
n+1

2 (Tpn+1f)(P ) + N(p)N(p)
n−1

2 (Tpn−1f)(P ).



5

This proves the lemma.

2.2 Remark. This lemma can be compared to [Hei], Theorem 6. 5, p. 40.

With the help of Lemma 2.1 we infer the following lemma for the
Hecke operators.

2.3 Lemma. For any n ∈ and a prime p ∈ O the following identity
holds:

(Tp)
2n =

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

Tp2j .

Moreover, for n ∈ 0 = {0, 1, 2, . . .} and a prime p ∈ O

(Tp)
2n+1 =

n
∑

j=0

((

2n + 1
n − j

)

−
(

2n + 1
n − j − 1

))

Tp2j+1 .

Proof. If we consider the identity of Lemma 2.1 then induction yields

(Tp)
2n =

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

Tp2j .

The second formula follows by applying the Hecke operator to this iden-
tity.

2.4 Remark. A similar relation can be found in [Hei], Corollary 6. 6,
p. 43.

3 The Selberg trace formula

In order to obtain information on the statistical properties of the eigen-
values of the Hecke operators we use the Selberg trace formula. Our
notation in this section is the same as in [EGM] and in [Rau] where the
trace of a Hecke operator on a fixed eigenspace of the Laplace operator
is determined. The appropriate Selberg transform for our problem is the
same as the one used for proving Weyl’s law. In the situation of the
hyperbolic 3-space this function can e. g. be found in [EGM], p. 307.

3.1 Definition. For ϵ > 0 define the function hϵ by

hϵ(1 + t2) = e−ϵ(1+t2).

Furthermore, the Fourier transform gϵ of hϵ can be computed and we
have:
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3.2 Lemma. For ϵ > 0 the following identity holds:

gϵ(x) =
1

2π

∫ ∞

−∞
hϵ

(

1 + t2
)

e−itxdt =
e−ϵ−x2/(4ϵ)

√
4πϵ

.

Proof. See [EGM], p. 307.

By the inversion formulas of [EGM], Lemma 5. 5, p. 121 we can also
determine the corresponding point-pair invariant to hϵ.

3.3 Lemma. For ϵ > 0 and t > 1 we have

kϵ(t) =
log(t +

√
t2 − 1)

(4πϵ)3/2eϵ
√

t2 − 1

(

1

t +
√

t2 − 1

)
1
4π log(t+

√
t2−1)

.

and kϵ(1) = 1
(4πϵ)3/2eϵ . The corresponding point-pair invariant is given by

Kϵ(P, Q) := kϵ ◦ δ(P, Q).

Then the function hϵ is the Selberg transform of the point-pair invariant
Kϵ.

As in [Rau], p. 114 we introduce the following subset of PSL2( ).

3.4 Definition. For every prime p ∈ O \ {0} and l ∈ 0 let

Γ∗
pl :=

1
√

pl

⋃

d∈O/O∗, ad=pl,
b∈O/⟨d⟩

(

d −b
0 a

)

Γ.

Furthermore, as in [Rau], p. 114 we define the following invariant
functions that depend on the chosen point-pair invariant and the Hecke
operators.

3.5 Definition. For P , Q ∈ , p ∈ O \ {0}, l ∈ 0 and ϵ > 0 let

1. KΓ(P, Q) :=
∑

γ∈Γ

Kϵ(P, γQ),

2. HΓ(P, Q) :=
[Γ∞ : Γ′

∞]

4π |O|

∫ ∞

−∞
hϵ(1 + t2)E(P, it)E(Q, it) dt,

3. KΓ∗
pl

(P, Q) :=
∑

γ∈Γ∗
pl

Kϵ(P, γQ),

4. HΓ∗
pl

(P, Q) :=
[Γ∞ : Γ′

∞]

4π |O|
∑

M∈V
pl

∫ ∞

−∞
hϵ(1 + t2)E(MP, it)E(Q, it) dt.

Here E(P, s) denotes the Eisenstein series where we use the definition of
[EGM], chapter 6, p. 266, [Γ∞ : Γ′

∞] is the index of Γ′
∞ in Γ∞ and M runs

through a set Vpl of representatives of Mpl modulo SL2(O). Moreover,
|O| is the Euclidean measure of a fundamental domain of the lattice O.
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The following function that appears in the Fourier expansion of the Eisen-
stein series will also be important in our discussion.

3.6 Definition. Let ζK denote the zeta function of K and dK be the
discriminant of K. For s ∈ we set:

φ(s) :=
2π

s
√

|dK |
ζK(s)

ζK(1 + s)
.

3.7 Theorem. Let F be a fundamental domain of Γ and p ∈ O \ {0} a
prime. Then for ϵ > 0 and n ∈ the equation

∑

m≥0

ρ2n
m (p)hϵ(λm) =

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−j

×
∫

F

(

KΓ∗
p2j

(P, P ) − HΓ∗
p2j

(P, P )
)

dv(P )

holds and for n ∈ 0 we have

∑

m≥0

ρ2n+1
m (p)hϵ(λm) =

n
∑

j=0

((

2n + 1
n − j

)

−
(

2n + 1
n − j − 1

))

N(p)−j− 1
2

×
∫

F

(

KΓ∗
p2j+1

(P, P )− HΓ∗
p2j+1

(P, P )
)

dv(P ).

Proof. If (em)m≥0 is a complete orthonormal set of eigenfunctions of the
discrete spectrum of −∆ in L2 (Γ \ 3) with corresponding eigenvalues
(λm)m≥0 and if every eigenfunction em of −∆ is also an eigenfunction
of every Hecke operator Tp, p ∈ O \ {0}, with corresponding eigenvalue
ρm(p), then we infer from the decomposition

KΓ(P, Q) − HΓ(P, Q) =
∑

m≥0

hϵ(λm)em(P )em(Q)

(cf. [EGM], Proposition 4.1, pp. 278-279) and from Lemma 2.3
∑

m≥0

hϵ(λm)ρ2n
m (p)em(P )em(Q) = (Tp)

2n
∑

m≥0

hϵ(λm)em(P )em(Q)

=
n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

×N(p)−j
(

KΓ∗
p2j

(P, Q) − HΓ∗
p2j

(P, Q)
)

.

Thus the first formula of the theorem follows if we set P = Q and in-
tegrate over the fundamental domain F . In order to obtain the second
formula we just have to replace the identity for (Tp)2n by the formula for
(Tp)2n+1.
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For each fixed l ∈ {0, . . . , n} the integrals appearing in Theorem 3.7
can be computed using the approach of the Selberg trace formula, i. e.
by dividing the sets Γ∗

p2j and Γ∗
p2j+1 into Γ-conjugacy classes. For this let

l ∈ and let F(C(M)) denote a fundamental domain of C(M), M ∈ Γ∗
pl,

with C(M) being the centralizer of M in Γ. Furthermore, if M ∈ Γ∗
pl has

no cusps of Γ as fixed points, we define:

cϵ,l(M) :=

∫

F(C(M))

Kϵ(P, MP ) dv(P ).

It can be seen that the leading term in the asymptotics comes from the
contribution of the identity element. Since the contribution to the trace
of the identity, the elliptic elements and the loxodromic elements that do
not stabilize cusps of Γ are very similar to the ones in [Rau] we give the
results as a series of propositions below.

3.8 Proposition. If Γ∗
pl contains the identity I, i. e. if l ≡ 0 mod 2, we

get:

cϵ,l(I) =
|dK |3/2ζK(2)

(4π2)2

∫ ∞

−∞
hϵ(1 + t2) t2 dt =

|dK|3/2ζK(2)

32 π7/2 ϵ3/2
e−ϵ.

Proof. See [EGM], p. 307 and [Rau], Theorem 3. 2, p. 118.

3.9 Proposition. Let T be a loxodromic element of Γ∗
pl whose centralizer

C(T ) = ⟨T0⟩×E(T ) contains at least one element of infinite order. Then

we obtain:

cϵ,l(T ) =
log NT0

|E(T )||a(T )− a(T )−1|2 gϵ(log NT )

where |E(T )| is the order of the set E(T ) of all elements having finite order
contained in C(T ), and T0 is a primitive loxodromic element generating
the infinite cyclic group ⟨T0⟩. Here we call a loxodromic element T0 ∈ Γ
primitive if NT0 is minimal among all norms of loxodromic elements
from Γ having the same fixed points as T .

Proof. This proposition follows by generalizing the arguments of [EGM],
pp. 191–192. See also [Rau2] or [Rau], Theorem 3. 3, p. 119.

3.10 Proposition. If R is an elliptic element of Γ∗
pl having no cusps of

Γ as fixed points, then its contribution to the trace is given by:

cϵ,l(R) =
log NT0

4|E(R)| sin2(θ)
gϵ(0).

Here |E(R)| is the order of the maximal finite subgroup of C(R), T0 is
a primitive loxodromic element from C(R) and θ is defined by tr R =
2 cos θ.
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Proof. This proposition can be proved by generalizing the arguments of
[EGM], pp. 193–198. See also [Rau2] or [Rau], Theorem 3. 5, p. 119.

We next introduce the numbers cϵ(∞, l), l ∈ 0, coming from the con-
tinuous spectrum.

3.11 Definition. Let R denote a set of representatives of O/{±1} and
for l ∈ 0 and a prime p ∈ O set d(pl) :=

∑

ad=pl,
d∈O

1 = l + 1. Then for

ϵ > 0 we define

cϵ(∞, l) :=
|pl|

[Γ∞ : Γ′
∞]

(

δ2(l)fϵ(l) +
(l + 1)hϵ(1)

8

+
1

8π

∫ ∞

−∞
hϵ(1 + t2)

∑

ad=pl,
d∈O

(

|a|
|d|

)it
φ′

φ
(it) dt

+
1

2

∑

ad=pl,
a ̸=d∈R

∫ ∞

|log( |a|
|d|)|

gϵ(x)
sinh x dx

cosh x + |a−d|2
2|pl| − |a|2+|d|2

2|pl|

+
1

2

∑

ad=pl,
a ̸=d∈R,

b∈O/<a−d>

log

(

∣

∣

∣

a−d
(b, a−d)

∣

∣

∣

2
)

|a − d|2
gϵ

(

log

(

|a|
|d|

))

)

with

fϵ(l) := gϵ(0)

(

log |pl|
2

+
κO
2

− γ

)

+
hϵ(1)

4
− 1

2π

∫ ∞

−∞
hϵ(1+t2)

Γ′

Γ
(1+it) dt

and δ2(l) := 1 if l is even and δ2(l) := 0 otherwise.

With the help of this definition, Theorem 3.7, Proposition 3.8, Propo-
sition 3.9, Proposition 3.10 and the arguments of [Rau] we finally get:

3.12 Theorem. Let p ∈ O be a prime. For ϵ > 0 and n ∈ we obtain

∑

m≥0

ρ2n
m (p)e−ϵλm =

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−j

×

⎛

⎝cϵ,2j(I) +
∑′

{R}

cϵ,2j(R) +
∑′

{T}

cϵ,2j(T ) + cϵ(∞, 2j)

⎞

⎠
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and for n ∈ 0

∑

m≥0

ρ2n+1
m (p)e−ϵλm =

n
∑

j=0

((

2n + 1
n − j

)

−
(

2n + 1
n − j − 1

))

N(p)−j− 1
2

×

⎛

⎝

∑′

{R}

cϵ,2j+1(R) +
∑′

{T}

cϵ(T ) + cϵ(∞, 2j + 1)

⎞

⎠ .

Here the primes indicate that the sums on the right-hand side are extended

over the Γ-conjugacy classes of those elliptic or loxodromic elements in
Γ∗

p2j resp. Γ∗
p2j+1 not having cusps of Γ as fixed points.

In order to infer our main theorem we have to determine the behaviour
of the two expressions appearing in Theorem 3.12 as ϵ→ 0.

3.13 Lemma. For n ∈ and any ϵ′ > 0 we get, as ϵ→ 0,
∑

m≥0

ρ2n
m (p)e−ϵλm =

vol (Γ)

8π3/2

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−jϵ−3/2 + O
(

ϵ−1/2−ϵ′
)

and for n ∈ 0 we have, as ϵ→ 0,

∑

m≥0

ρ2n+1
m (p)e−ϵλm = O

(

ϵ−1/2−ϵ′
)

.

Proof. First of all note that for each l ∈ {1, . . . , 2n} there are only finitely
many Γ-conjugacy classes of elliptic elements R ∈ Γ∗

pl that do not stabilize
cusps of Γ. Hence due to the form of cϵ,l(R) their contribution to the
trace is O

(

ϵ−1/2
)

. For the contribution of the loxodromic elements that
do not stabilize cusps of Γ we infer from Lemma 3.9

∑

{T}

cϵ,l(T ) =
∑

{T}

log NT0

|E(T )||a(T )− a(T )−1|2
e−ϵ−(log NT )2/(4ϵ)

√
4πϵ

≪ 1

eϵ
√

4πϵ

∑

{T}

log NT0 e−(log NT )2/(4ϵ0)

|E(T )||a(T )− a(T )−1|2

= O

(

e−ϵ

√
ϵ

)

as ϵ → 0 since the last series on the right-hand converges as a result of
[Rau], Lemma 3. 1 if ϵ0 is sufficiently small (see also [Rau], Lemma 3. 25).
The simple terms of cϵ(∞, l) that contain hϵ or gϵ also yield O

(

ϵ−1/2
)

so
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that we only have to discuss the integrals appearing in cϵ(∞, l). Accord-
ing to [EGM], p. 307 we have

∫ ∞

−∞
hϵ(1 + t2)

Γ′

Γ
(1 + it)dt = O

(

ϵ−1/2−ϵ′
)

for any ϵ′ > 0. In order to treat the contribution of

∫ ∞

−∞
hϵ(1 + t2)

∑

ad=pl,
d∈O

(

|a|
|d|

)it
φ′

φ
(it) dt

we recall that

φ′

φ
(it) = 2 log

(

2π
√

|dK|

)

− Γ′

Γ
(1 + it) − Γ′

Γ
(1 − it) −

(

ζ ′K
ζK

(1 + it) +
1

it

)

−
(

ζ ′K
ζK

(1 − it) − 1

it

)

.

Then
ζ′K
ζK

(1 − it) = O (log |t|) (cf. [Pr], Theorem 7. 1, pp. 131–132) and

the form of hϵ(1 + t2) imply

∫ ∞

−∞
hϵ(1 + t2)

∑

ad=pl,
d∈O

(

|a|
|d|

)it
φ′

φ
(it) dt = O

(

ϵ−1/2−ϵ′
)

for any ϵ′ > 0. The statement of the lemma finally follows if we also
consider Lemma 3.8 and Theorem 3.12.

By means of a Tauberian theorem we then deduce

3.14 Theorem. Let p ∈ O be a prime. For n ∈ we obtain, as N → ∞,

∑

λm≤N

ρ2n
m (p) =

vol (Γ)

6π2

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−jN3/2

+O

(

N3/2

log N

)

and for n ∈ 0
∑

λm≤N

ρ2n+1
m (p) = O

(

1

log N

)

.
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Proof. The two results of the theorem follow from Lemma 3.13 and from
the Theorem of Karamata-Freud that can be found in the following form
in [Te], p. 231:

A(t) be a non-decreasing function such that the integral

F (σ) :=

∫ ∞

0

e−σtdA(t)

converges for all σ > 0. Suppose that two real numbers c ≥ 0,ω ≥ 0 and
an increasing function ψ(t) exist such that

ψ(t) → ∞, t−ωψ(t) decreases (t → ∞)

and

F (σ) =
c + O

(

ψ
(

1
σ

)−1
)

σω
(σ → 0+).

Then

A(x) =

(

c + O

(

1

logψ(x)

))

xω

Γ(ω + 1)
(x → ∞).

See also [EGM], p. 308.

We recall Weyl’s law:

3.15 Theorem. Let N (Γ, N) := |{m ≥ 0 : λm ≤ N}|. Then

N (Γ, N) ∼ vol(Γ \ 3)

6π2
N3/2.

Proof. See [EGM], Theorem 9.2, p. 405.

This yields

3.16 Theorem. For k ∈ 0 and a prime p of O we have, as N → ∞,

lim
N→∞

1

N (Γ, N)

∑

λm≤N

ρk
m(p) =

{

∑n
j=0

((

2n
n−j

)

−
(

2n
n−j−1

))

N(p)−j , if k = 2n,

0, otherwise.
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4 Equidistribution of the eigenvalues

Having obtained the analogue of Weyl’s law for powers of eigenvalues of
Hecke operators in the last section we determine the limit distribution in
this section. First of all, we recall the definition of equidistribution:

4.1 Definition. A sequence (xn) is equidistributed on a space X with
respect to the measure µ or simply µ-equidistributed if for every f ∈
Cc(X) the following identity holds:

lim
N→∞

1

N

∑

n≤N

f(xn) =

∫

X

f(x)dµ(x).

We want to show that we have equidistribution with respect to the mea-
sure

dµp(x) :=

⎧

⎨

⎩

1
2π

(

1 + 1
N(p)

) √
4−x2

(1+ 1
N(p))

2
− x2

N(p)

dx if |x| ≤ 2,

0 otherwise.

To this end we first note that an easy computation along the lines of
[CDF], p. 408 gives

4.2 Lemma. For k ∈ and a prime p ∈ O we have

∫ ∞

−∞
xkdµp(x) =

{

∑n
j=0

((

2n
n−j

)

−
(

2n
n−j−1

))

N(p)−j, if k = 2n,

0, otherwise.

Note that the polynomial functions are dense in the space Cc([−(
√

N(pl)+
1/
√

N(p)l),
√

N(pl) + 1/
√

N(p)l]. Now using the method of moments
(cf. e. g. [Fe], pp. 225–227 and [Fe], p. 251), Theorem 3.16, Lemma 4.2
and the definition of equidistribution proves the main theorem stated in
the introduction.

5 The error term

As is in the case of Weyl’s law, the error term in Theorem 3.14 can
be improved. Recently Lapid and Müller [LM], in a beautiful paper,
proved a general Weyl’s law with an error term for SL(n, )/SO(n).
Their method is more general than the method involving Selberg’s zeta
function and can also be applied in our situation.

In this section we use Hörmander’s method as in [M] to improve the
error term in Theorem 3.14 and prove
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5.1 Theorem. For n ∈ we obtain, as N → ∞,

∑

λm≤N

ρ2n
m (p) =

vol (Γ)

6π2

n
∑

j=0

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−jN3/2

+O (N) .

The rest of this section is devoted to the proof of this theorem where we
follow closely the arguments of [M]. Let g ∈ C∞

c ( ) be an even function
and h(z) :=

∫∞
−∞ g(u)e−iuzdu. For t ∈ we set ht(z) = h(t − z) + h(t +

z). Then ht(z) = ht(−z) and gt(u) = 1
2π

∫∞
−∞ ht(r)eirudr = e−itug(u) +

eitug(−u). Furthermore, we symmetrize the spectrum λm = 1 + r2
m,

m ≥ 0, of −∆ by r−m := −rm, m ∈ , so that λ−m = λm and we set
ρ−m(p) = ρm(p), m ∈ . Then the trace formula for Hecke operators
will read as in Theorem (3.7) with gt, ht instead of the functions gϵ, hϵ

that we had before. Namely,
∑

m∈

ρ2n
m (p)h(t − rm) = (1)

n
∑

j=0

M(j, n, p)

⎛

⎝ct,2j(I) +
∑′

{R}

ct,2j(R) +
∑′

{T}

ct,2j(T ) + c(t,∞, 2j)

⎞

⎠

with

M(j, n, p) :=

((

2n
n − j

)

−
(

2n
n − j − 1

))

N(p)−j .

Here the ct,2j ’s and c(t,∞, 2j) are given as in Proposition 3.8, 3.9, 3.10
and Definition 3.11. The primes on the right-hand side of (1) indicate
that the sums on the right-hand side are extended over the Γ-conjugacy
classes of those elliptic or loxodromic elements in Γ∗

p2j not having cusps
of Γ as fixed points. Now choose ϵ > 0 so small that log NT > ϵ for all
loxodromic T ∈ Γ∗

p2j that do not fix cusps of Γ and let the function g be
supported on (−ϵ, ϵ). Then formula (1) simplifies to

∑

m∈

ρ2n
m (p)h(t − rm) =

n
∑

j=0

M(j, n, p)

(

vol(Γ)

2π2

∫ ∞

−∞
h(t − r)r2dr

+ 4π
∑′

{R}

log NT0

4|E(R)| sin2(θ)

+ c(t,∞, 2j)

)

. (2)

As before |E(R)| denotes the order of the maximal finite subgroup of
C(R), T0 is a primitive loxodromic element from C(R) and θ is defined
by tr R = 2 cos θ.
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Moreover, we can assume that h ∈ S( ) was chosen in such a way
that h ≥ 0, h > 0 on [−a, a], a ∈ , ĥ(0) = 1 and that supp ĥ is
contained in (−ϵ, ϵ) (see proof of Lemma 2. 3 in [DG] or [M], p. 140).
Here ĥ(x) =

∫

h(r)e−irxdr is the Fourier transform of h.
In order to derive the asymptotics stated in the theorem we first deter-
mine the behaviour of the right-hand side of (2) as |t| → ∞.

5.2 Lemma. For h as above we have
∑

m∈

ρ2n
m (p)h(t − rm) = O

(

|t|2
)

.

Proof. First of all consider the contribution coming from the identity.
Here we get

∫ ∞

−∞
h(t − r)r2dr = O

(

t2
)

as |t| → ∞. Since there are only finitely many Γ-conjugacy classes of
non-cuspidal elliptic elements of Γ∗

p2j we easily see that

4π
∑′

{R}

log NT0

4|E(R)| sin2(θ)
= O(1)

as |t| → ∞.
In order to treat c(t,∞, 2j) recall that it has the following form. If

R denotes a set of representatives of O/{±1} then

c(t,∞, 2j) =
|p2j |

[Γ∞ : Γ′
∞]

(

ft(2j) +
(2j + 1)h(t)

4

+
1

4π

∫ ∞

−∞
h(t − r)

∑

ad=p2j ,
d∈O

(

|a|
|d|

)ir
φ′

φ
(ir) dr

+
1

2

∑

ad=p2j ,
a ̸=d∈R

∫ ∞

|log( |a|
|d|)|

gt(x)
sinh x dx

cosh x + |a−d|2
2|p2j | −

|a|2+|d|2
2|p2j |

+
1

2

∑

ad=p2j ,
a ̸=d∈R,

b∈O/<a−d>

log

(

∣

∣

∣

a−d
(b, a−d)

∣

∣

∣

2
)

|a − d|2
gt

(

log

(

|a|
|d|

))

)

with

ft(2j) = 2π

(

log |p2j|
2

+
κO
2

− γ

)

+
h(t)

2
− 1

2π

∫ ∞

−∞
h(t−r)

(

Γ′

Γ
(1 + ir) +

Γ′

Γ
(1 − ir)

)

dr.
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As in [M], p. 19 we have as |t| → ∞
∫ ∞

−∞
h(t − r)

Γ′

Γ
(1 ± ir) dr = O(log |t|) (3)

and

∫ ∞

−∞
h(t − r)

∑

ad=p2j ,
d∈O

(

|a|
|d|

)ir
φ′

φ
(ir) dr = O(log |t|) (4)

since

φ(s) =
2π

s
√

|dK |
ζK(s)

ζK(1 + s)
=

2π

s
√

|dK |
ζ(s)L(s,χK)

ζ(1 + s)L(1 + s,χK)
.

Here dK is the discriminant of K and χK denotes the character of K.
Using the functional equation of the zeta function and the L-function
it follows that in order to estimate the growth of φ′/φ(ir) we have to
determine the behaviour of terms of the form

Γ′

Γ
(1 ± ir),

ζ ′

ζ
(1 ± ir) and

L′

L
(1 ± ir,χK).

This can be done with Stirling’s formula (see e. g. [Brü], p. 55) and [Pr],
Theorem 7. 1, pp. 131–132 and then (4) follows. The remaining terms of
c(t,∞, 2j) contribute only O(1) as |t| → ∞. Thus we deduce

∑

m∈

ρ2n
m (p)h(t − rm) = O

(

|t|2
)

as |t| → ∞.

This estimate is valid if, in particular, the considered Hecke operator
is the identity and then by the same arguments as in the proof of [M],
Lemma 2. 2, p. 139 we obtain that for each a > 0 there exists a C > 0
such that

♯{m : |rm − µ| ≤ a} ≤ C(1 + |µ|2) (5)

for all µ ∈ . With the help of estimate (5), we obtain the following
analogue of [M], Lemma 2. 3, p. 140.

5.3 Lemma. For every h as above there exists a constant C = C(p, n)
depending on p and n such that for N ≥ 1 the following inequalities hold:

∑

|rm|≤N

∣

∣

∣

∣

∫

\[−N,N ]

ρ2n
m (p)h(t − rm) dt

∣

∣

∣

∣

≤ CN2, (6)

∑

|rm|>N

∣

∣

∣

∣

∫ N

−N

ρ2n
m (p)h(t − rm) dt

∣

∣

∣

∣

≤ CN2. (7)
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Proof. With some minor modifications the proof of the lemma follows
the proof of [M], Lemma 2. 3, p. 140. For the convenience of the reader
we give the details. Using the trivial bound on the Hecke eigenvalues
ρm(p) ≤ 2N(p), (5) and the fact that h(r) ≤ C(1+ |r|)−5 for some C > 0
we get

∑

|rm|≤N

∣

∣

∣

∣

∫ ∞

N

ρ2n
m (p)h(t − rm) dt

∣

∣

∣

∣

≤ C
∑

|rm|≤N

∫ ∞

N

|h(t − rm)| dt

≤ C
∑

|rm|≤N

∫ ∞

N−rm

1

(1 + |t|2)5
dt

= C
⌊N⌋−1
∑

k=−⌊N⌋

∑

k≤rm≤k+1

1

(1 + N − rm)4

≤ C
⌊N⌋−1
∑

k=−⌊N⌋

♯{m : |rm − k| ≤ 1}
(N − k)4

≤ C
⌊N⌋−1
∑

k=−⌊N⌋

1 + k2

(N − k)4
≤ O

(

N2
)

.

The inequality (7) follows from a similar argument.

Now we collect the above lemmata to prove Theorem 5.1.

Proof. We start with the following elementary identity
∫ N

−N

∞
∑

m=−∞

ρ2n
m (p)h(t − rm) dt =

∑

|rm|≤N

∫ ∞

−∞
ρ2n

m (p)h(t − rm) dt

−
∑

|rm|≤N

ρ2n
m (p)

∫

\[−N,N ]

h(t − rm) dt

+
∑

|rm|>N

ρ2n
m (p)

∫ N

−N

h(t − rm) dt (8)

and note that this identity together with ĥ(0) = 1 implies

∑

|rm|≤N

ρ2n
m (p) =

∫ N

−N

∑

m∈

ρ2n
m (p)h(t − rm) dt

+
∑

|rm|≤N

ρ2n
m (p)

∫

\[−N,N ]

h(t − rm) dt

−
∑

|rm|>N

ρ2n
m (p)

∫ N

−N

h(t − rm) dt. (9)
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To get the asymptotics of the theorem we integrate (2) from −N to N
with respect to the variable t:

∫ N

−N

∑

m∈

ρ2n
m (p)h(t − rm) dt =

n
∑

j=0

M(j, n, p)

(

vol(Γ)

2π2

∫ N

−N

∫ ∞

−∞
h(t − r)r2dr dt (10)

+ 4π
∑′

{R}

log NT0

4|E(R)| sin2(θ)

∫ N

−N

dt

+

∫ N

−N

c(t,∞, 2j) dt

)

.

By the estimate for the non-cuspidal elliptic elements, (3) and (4) the con-
tribution of the last two terms of (10) to the asymptotics is O(N log N).
Furthermore, using (6), (7), (9) and (10), yield

2
∑

rm≤N

ρ2n
m (p) =

vol(Γ)

2π2

n
∑

j=0

M(j, n, p)

∫ N

−N

∫ ∞

−∞
h(t − r)r2dr dt

+O
(

N2
)

. (11)

For the term involving the identity we obtain

∫ N

−N

∫ ∞

−∞
h(t − r)r2dr dt =

∫ N

−N

r2dr + O
(

N2
)

=
2

3
N3 + O

(

N2
)

as N → ∞. For justifying this identity we note that there exists a C > 0
such that |h(r)| < C(1+ |r|)−5 and imitate the arguments of [M], p. 140
with p(r) = r2. Inserting this result into (11) we finally get

∑

rm≤N

ρ2n
m (p) =

vol(Γ)

6π2

n
∑

j=0

M(j, n, p)N3 + O
(

N2
)

as N → ∞. Since λm = 1 + r2
m this proves the theorem.
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[Te] Tenenbaum, G.: Introduction à la théorie analytique et probabiliste
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