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Abstract. To an ideal class of a real quadratic field we associate a certain surface. This
surface, which is a new geometric invariant, has the usual modular closed geodesic as its
boundary. Furthermore, its area is determined by the length of an associated backward
continued fraction. We study the distribution properties of this surface on average over a
genus. In the process we give an extension and refinement of the Katok-Sarnak formula.

1. Introduction

In this paper we will introduce a new geometric invariant associated to a (narrow) ideal
class of a real quadratic field. This invariant is a finite area hyperbolic surface1 with a
boundary that is naturally immersed in the modular surface. The boundary is a simple closed
geodesic whose image in the modular surface is the usual modular closed geodesic associated
to the ideal class. Its length is well-known to be expressible in terms of a fundamental unit
of the field. The area of the surface is determined by the length of an associated minus (or
backward) continued fraction. Since the surface contains more information than the closed
geodesic alone, it might be hoped that an investigation of its geometric properties could lead
us to a better understanding of the class groups of real quadratic fields. Their mysterious
behavior as the discriminant varies has tantalized number theorists since the time of Gauss.
One purpose of this work is to initiate this investigation.

For the present at least, our main goal is to obtain a result about the distribution properties
of the surface as it lies in the modular surface. To obtain good results we need to average over
a genus of classes. This problem is closely allied with (and in fact completes in a natural way)
the problem, introduced in [13], of showing the uniform distribution of the closed geodesics on
the modular surface when ordered by their associated discriminant. The analytic approach
to the closed geodesic problem leads to estimating the Fourier coefficients of Maass cusp
forms of weight 1/2. For the surface problem this approach also leads to estimating these
Fourier coefficients (for different indices), but requires interesting and non-trivial extensions
of formulas of Hecke and Katok-Sarnak. The needed extensions for surface integrals involve
genus characters associated to two negative discriminants, as opposed to the closed geodesic
case, which leads to two positive discriminants. Discriminants of different signs arise in the
case of CM points, where the quadratic field is imaginary. Thus points, curves and surfaces
associated to quadratic ideal classes all occur in a natural way.
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Á. Tóth is supported by OTKA grant NK 104183 and by NKFIH (National Research, Development and

Innovation Office) grant ERC HU 15 118946.
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We begin by presenting some background material about real quadratic fields, continued
fractions, binary quadratic forms, Fuchsian groups and modular closed geodesics. Then
in Section 3 we introduce the surfaces we will study and give some of their properties in
Theorem 1. The main uniform distribution result is stated in Section 4 as Theorem 2.
Section 5 contains statements of the extended formulas of Hecke (Theorem 3) and Katok-
Sarnak (Theorem 4). Assuming these, we prove the main result in Section 6. Theorem 3
is proven in Section 7. The rest of the paper (Sections 8 to 10) is devoted to the proof of
Theorem 4.

Acknowledgements. Duke and Tóth thank the FIM at ETH in Zürich for generous ongo-
ing support of our joint research, including this project. We also thank Alex Kontorovich for
his comments, Nickolas Andersen for independently verifying some of our numerical compu-
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2. Preliminaries

Real quadratic fields. Let K/Q be a real quadratic field. Then K = Q(
√
D) where D > 1 is

the discriminant of K. Let σ : K→ K be the non-trivial Galois automorphism w 7→ wσ and
for α ∈ K let N(α) = αασ. Let Cl+(K) be the group of fractional ideal classes taken in the
narrow sense. Thus two ideals a and b are in the same narrow class if there is a α ∈ K with
N(α) > 0 so that a = (α)b. Let h(D) = #Cl+(K) be the (narrow) class number and εD > 1
be the smallest unit with positive norm in the ring of integers OK of K. We denote by I the
principal class and by J the class of the different (

√
D) of K, which coincides with the class

of principal ideals (α) where N(α) = αασ < 0. Then

Cl(K) = Cl+(K)/J

is the class group in the wide sense. Clearly J 6= I iff OK contains no unit of norm −1. In
this case each wide ideal class is the union of two narrow classes, say A and JA. A sufficient
condition for J 6= I is that D is divisible by a prime p ≡ 3 (mod 4).

Minus continued fractions. Each ideal class A ∈ Cl+(K) contains fractional ideals of the
form wZ + Z ∈ A where w ∈ K is such that w > wσ. Consider the minus (or backward)
continued fraction of w:

w = Ja0, a1, a2, . . .K = a0 −
1

a1 −
1

a2 −
1

a3 − · · ·
where aj ∈ Z with aj ≥ 2 for j ≥ 1. This continued fraction is eventually periodic and has
a unique primitive cycle ((n1, . . . , n`)) of length `, only defined up to cyclic permutations.
Different admissible choices of w lead to the same primitive cycle. The continued fraction is
purely periodic precisely when w is reduced in the sense that

0 < wσ < 1 < w

(see [34], [64]). The cycle ((n1, . . . , n`)) characterizes A; it is a complete class invariant. The
length ` = `A, which is also the number of distinct reduced w, is another invariant as is the
sum

(2.1) m = mA = n1 + · · ·+ n`.
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The cycle of A−1 is given by that of A reversed:

(2.2) ((n`, . . . , n1)) .

To see this observe that A−1 is represented by (1/wσ)Z+Z and by [66, p.128] the continued
fraction of 1/wσ has (2.2) as its cycle.

Binary quadratic forms. In place of ideal classes, it is sometimes more convenient to use
binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2,

where a, b, c ∈ Z and D = b2− 4ac. Quadratic forms are especially useful when one wants to
consider arbitrary discriminants D. For fundamental D all quadratic forms are primitive in
that gcd(a, b, c) = 1 and we have a simple correspondence between narrow ideal classes of K
and equivalence classes of binary quadratic forms of discriminant D with respect to the usual
action of PSL(2,Z). This correspondence is induced by a 7→ Q(x, y), where a = wZ+Z with
wσ < w and

Q(x, y) = N(x− wy)/N(a).

The map takes the narrow ideal class of a to the Γ-equivalence class of Q. The inverse map
is given by Q(x, y) 7→ wZ + Z where

w =
−b+

√
D

2a
,

provided we choose Q in its class to have a > 0. The following table of correspondences is
useful. Suppose that Q = [a, b, c] represents in this way the ideal class A. Then

[a,−b, c] represents A−1(2.3)

[−a, b,−c] represents JA(2.4)

[−a,−b,−c] represents JA−1.(2.5)

Fuchsian groups and closed geodesics. Let H be the upper half plane. As usual, lengths and
areas on H are hyperbolic and determined by the metric and measure

ds = y−1|dz| and dµ(z) = y−2dxdy,

respectively, where z = x+ iy. Define the cross ratio of z1, z2, z3, z4 ∈ C by

(2.6) [z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
.

A useful formula for the distance between z and z∗ in H is given by

(2.7) d(z, z∗) = log |[w, z, z∗, w∗]|,
where w,w∗ ∈ R are the points where the geodesic arc joining z to z∗ intersects R and where
the order in which this arc passes through the points is given by w, z, z∗, w∗ (see e.g. [2]).

Suppose that Γ ⊂ PSL(2,R) is a non-elementary Fuchsian group (see [2] for background).
Let Λ be the limit set of Γ. The group Γ is said to be of the first kind when Λ = R,
otherwise of the second kind. In general, R − Λ is a countable union of mutually disjoint
open intervals. Let NΓ be the intersection of the (non-Euclidean) open half-planes that
lie above the geodesics having the same endpoints as these intervals. This NΓ is called
the Nielsen region of Γ. It is shown in [2, Thm 8.5.2] that NΓ is the smallest non-empty
Γ-invariant open convex subset of H. Clearly NΓ = H exactly when Γ is of the first kind.
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Suppose now that Γ is finitely generated. Let H∗ be the upper half-plane with all elliptic
points of Γ removed. Then Γ\H∗ becomes a Riemann surface of genus g with t < ∞
conformal disks and finitely many points removed. The group Γ is said to have signature
(g;m1, . . . ,mr; s; t) where m1, . . . ,mr are the orders of the elliptic points and there are s
parabolic cusps of Γ\H∗. The boundary circle of each removed disk, assumed positively
oriented, is freely homotopic in Γ\H∗ to a unique closed geodesic (see e.g. [24, Prop. 1.3]).
These geodesics form the boundary of the image in Γ\H∗ of (the closure of) the Nielsen
region.

Thus Γ\NΓ is a Riemann surface with signature having t geodesic boundary curves, s
cusps, and r orbifold points. Let FΓ ⊂ H be a fundamental domain for Γ\NΓ. For simplicity
we will identify the surface with FΓ. This should cause no confusion as long as it is understood
that for us ∂FΓ denotes the pre-image of the boundary of the surface as a subset of the
boundary of the fundamental domain. In other words, we will not count as part of the
boundary of FΓ those sides of FΓ that are identified by Γ. The Gauss-Bonnet theorem [2,
Thm 10.4.3] gives

(2.8) 1
2π

area(FΓ) = 2(g − 1) + s+ t+
r∑
j=1

(
1− 1

mj

)
.

Suppose now that Γ = PSL(2,Z) is the usual modular group. As is well-known, Γ is
generated by

S = ±
(

0 1
−1 0

)
and T = ±

(
1 1
0 1

)
and has signature (0; 2, 3; 1, 0). Let F denote the standard fundamental domain for Γ :

F = {z ∈ H;−1/2 ≤ Rex ≤ 0 and |z| ≥ 1} ∪ {z ∈ H; 0 < Rex < 1/2 and |z| > 1}.

By (2.8) or otherwise we have that area(F) = π
3
.

For a fixed narrow ideal class A ∈ Cl+(K) and a = wZ+Z ∈ A with w > wσ let Sw be the
geodesic in H with endpoints wσ and w. The modular closed geodesic CA on Γ\H is defined
as follows. Define γw = ± ( a bc d ) ∈ Γ, where a, b, c, d ∈ Z are determined by

εDw =aw + b(2.9)

εD =cw + d,

with εD our unit. Then γw is a primitive hyperbolic transformation in Γ with fixed points
wσ and w. Since

(cw + d)−2 = ε−2
D < 1,

we have that w is the attracting fixed point of γw. This induces on the geodesic Sw a clock-
wise orientation. Distinct a and w for A induce Γ-conjugate transformations γw. If we choose
some point z0 on Sw then the directed arc on Sw from z0 to γw(z0), when reduced modulo
Γ, is the associated closed geodesic CA on Γ\H. It is well-defined for the class A and gives
rise to a unique set of oriented arcs (that could overlap) in F . We also use CA to denote this
set of arcs. It is well-known and easy to see using (2.9) that

(2.10) length(CA) = 2 log εD.
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For a primitive quadratic form Q(x, y) = [a′, b′, c′] with any non-square discriminant d′ > 1
its group of automorphs in Γ is generated by

(2.11) γQ = ±
(

t−b′u
2

−c′u

a′u t+b′u
2

)
,

where (t, u) gives the smallest solution with t, u ≥ 1 to t2 − d′u2 = 4 (see [51]). If

Q(x, y) = N(x− wy)/N(a)

as above then γQ = γw and εD = t+u
√
D

2
. Using (2.5) we see that the closed geodesic CJA−1

has the same image as CA but with the opposite orientation.

Remark. The arcs of CA might retrace back over themselves. When this happens CA is said
to be reciprocal. In terms of the class A, it means that JA−1 = A or equivalently A2 = J .
Sarnak [53] has given a comprehensive treatment of these remarkable geodesics for arbitrary
discriminants.

3. Hyperbolic surfaces

The basic object we will study is a certain hyperbolic surface with boundary associated
to A. This surface is built out of the cycle ((n1, . . . , n`)) of A. For each class A choose once
and for all a fixed wZ + Z ∈ A with w reduced, hence a fixed `-tuple (n1, . . . n`). For each
k = 1, . . . ` define the elliptic element of order 2 in Γ:

(3.1) Sk = T (n1+···nk)ST−(n1+···nk).

Consider the subgroup of the modular group

(3.2) ΓA = 〈S1, S2, . . . , S`, T
m〉 = 〈S, S1, . . . , S`−1, T

m〉,
where m was defined in (2.1). We will show below in Theorem 1 that ΓA is an infinite index
(i.e. thin) subgroup of Γ, hence a Fuchsian group of the second kind. A different choice of
wZ + Z ∈ A with reduced w leads to a conjugate subgroup ΓA in Γ, in fact conjugate by
a translation. In case ` = 1 we have that ΓA = 〈S, T n1〉, which is among those studied by
Hecke [32].

Let NA = NΓA be the Nielsen region of ΓA and FA = FΓA the associated surface. Before
giving its properties, it is useful to see some examples.

Example. Consider the quadratic field Q(
√

7), for which D = 28 = 4 · 7. There are 2
classes: the principal class I with associated cycle ((3, 6)) and J with cycle ((3, 3, 2, 2, 2)).

Figure 1. Fundamental Domain for ΓI when d = 28.
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Figure 2. The Surface FI .

Figure 3. The Surface FI .

The fundamental norm one unit is ε28 = 8 + 3
√

7. The class I contains

(3+
√

7
2

)Z + Z

with reduced w = 3+
√

7
2

= J3, 6K. A fundamental domain for the Fuchsian group of the second
kind

ΓI = 〈S, T 3ST−3, T 9〉
is indicated in Figure 1. It has signature (0; 2, 2; 1, 1). The surface FI is depicted in Figure
2 and is bounded from below by the simple closed geodesic ∂FI consisting of the two large
circular arcs. The length of ∂FI is 2 log(8+3

√
7) and the area of FI is 2π. Another depiction

is in Figure 3, where the two distinguished points are the points of order 2 and segments
connect them to the boundary geodesic.

Figure 4. Fundamental Domain for ΓJ in case d = 28.

The other class J contains the ideal (5+
√

7
3

)Z + Z with reduced

5+
√

7
3

= J3, 3, 2, 2, 2K.
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Figure 5. The Surface FJ .

A fundamental domain for the Fuchsian group of the second kind

ΓJ = 〈S, T 3ST−3, T 6ST−6, T 8ST−8, T 10ST−10, T 12〉
is indicated in Figure 4. It has signature (0; 2, 2, 2, 2, 2; 1, 1). The surface FJ is pictured in
Figure 5. It has area 5π. The closed geodesic that bounds FJ also has length 2 log(8+3

√
7).

When either surface FI or FJ is mapped to F we obtain overlapping polygons and the
image of their boundaries are the closed geodesics CI and CJ , which have the same image as
sets but with opposite orientations. This is depicted in Figure 6.

Figure 6. Projection of FI and ∂FI to the modular surface.

Theorem 1. The group ΓA defined in (3.2) is Fuchsian of the second kind with signature

(0; 2, . . . , 2︸ ︷︷ ︸
` times

; 1; 1).

The hyperbolic Riemann surface FA thus has genus 0, contains ` points of order 2 and has
one cusp and one boundary component. The boundary ∂FA is a simple closed geodesic whose
image in F is CA. We have

(3.3) length(∂FA) = 2 log εD and area(FA) = π`A.

The conformal class of FA determines A.
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Proof. The first two statements of Theorem 1 follow easily from an examination of the
fundamental domain for

ΓA = 〈S, S1, . . . , S`−1, T
m〉

constructed like in the examples above. That this construction is valid is an easy consequence
of the Poincaré theorem for fundamental polygons [49] (see also [46]). It also follows that
ΓA is isomorphic to the free product

Z ∗ Z/2Z ∗ · · · ∗ Z/2Z︸ ︷︷ ︸
` times

.

Note that the unique boundary circle of ΓA\H∗ can be visualized by identifying endpoints
of the intervals on R bounding the fundamental domain using elliptic elements and the
translation of ΓA.

We next show that the boundary component of FA is a simple closed geodesic whose image
in Γ\H is CA. Recall that we have fixed a choice of reduced w for each ideal class A. Using
the minus continued fraction of w we have by [39] that for γw from (2.9)

(3.4) γw = S1S2 · · ·S`Tm,

where Sk is given in (3.1) and m in (2.1). In particular,

γw ∈ ΓA = 〈S1, S2, . . . , S`, T
m〉.

Set w1 = w and for k = 2, . . . ` set wk = Sk−1 · · ·S1(w). By the construction of the minus
continued fraction expansion we have that

(3.5) n1 + · · ·+ nk−1 < wσk < n1 + · · ·+ nk−1 + 1 ≤ n1 + · · ·+ nk − 1 < wk < n1 + · · ·+ nk

for k = 1, . . . ` where, when k = 1, the first two inequalities mean that 0 < wσ < 1. Therefore
the intersection of the unit circle with the geodesic in H with endpoints wσ and w exists and
defines a point z. We have by (3.4) that

γw(z) = γ(z) = S1S2 · · ·S`Tm(z), so

(3.6) T−mS` · · ·S2S1γ(z) = z.

The circular arc from z to γ(z) will intersect the circle with equation (x − n1)2 + y2 = 1
at some z∗ since by (3.5) we have that n1 − 1 < w < n1. The image of the arc from
z∗ to γ(z) under S1 covers part of the geodesic joining wσ2 to w2. Again the excess arc
from S1(z∗) to S1γ(z) will intersect the circle (x − n1 − n2)2 + y2 = 1 at some z∗∗ since
n1 + n2 − 1 < w2 < n1 + n2. Using now S2 we can map the new excess arc from S2(z∗∗)
to S2S1γ(z). We can repeat this process of cutting off arcs until we have applied S`. Now
observe that by (3.6), upon application of T−m, we have returned to z. Since the maps are
orientation preserving isometries we see that the bounding geodesic arcs piece together to
give exactly one copy of CA, known to have length 2 log εD. See Figure 7 for an illustration

of this argument when w = 3+
√

7
2

from our first example above.
It is easily seen that the constructed geodesic is freely homotopic to the boundary circle

of ΓA\H∗ and hence by uniqueness is the boundary curve of FA. Furthermore, FA can be
identified with the intersection of the fundamental domain for ΓA with the region above this
boundary curve.

The fact that the area of FA is π`A is an immediate consequence of (2.8).
Finally we must show that the conformal type of FA determines A to complete the proof of

Theorem 1. We will do this by demonstrating that this conformal type determines the cycle
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Figure 7. Cutting up ∂FA.

((n1, . . . n`)). By the above construction of FA, each elliptic fixed point in FA determines a
unique point on the boundary geodesic that is closest to it. The boundary geodesic (which
is simple and oriented) determines an ordering of these points, which is unique up to cyclic
permutations. This determines an ordering of the elliptic fixed points. Using (2.7) we
compute the cycle of hyperbolic distances between successive fixed points of S0, S1, . . . S`
in H. This is given by (V (n1), V (n2), . . . V (n`)), where V (x) is the monotone increasing
function

V (x) = log
(x

2

(√
x2 + 4 + x

)
+ 1
)
.

The cycle of distances is a conformal invariant since these distances and the orientation of
the boundary geodesic are preserved under conformal equivalence. The cycle of distances
clearly determines the cycle ((n1, . . . n`)) since V is monotone increasing.

This completes the proof of Theorem 1. �

4. Uniform distribution

In this section we state the main result of this paper. To obtain satisfactory results about
the uniform distribution of FA, we average over a genus of ideal classes of K. A genus is an
element of the group of genera, which is (isomorphic to) the quotient group

(4.1) Gen(K) = Cl+(K)/(Cl+(K))2.

It is classical that Gen(K) ∼= (Z/2Z)ω(D)−1 so if GD is a genus in Cl+(K) then

(4.2) #GD = 21−ω(D)h(D),

where ω(D) is the number of distinct prime factors of D.

Theorem 2. Suppose that for each positive fundamental discriminant D > 1 we choose a
genus GD ∈ Gen(K). Let Ω be an open disc contained in the fundamental domain F for
Γ = PSL(2,Z) and let ΓΩ be its orbit under the action of Γ. We have

(4.3) π
3

∑
A∈GD

area(FA ∩ ΓΩ) ∼ area(Ω)
∑
A∈GD

area(FA),

as D →∞ through fundamental discriminants.
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In view of Theorem 1, the uniform distribution of closed geodesics proven in [13] (gener-
alized to genera) can be stated in the following form2:

(4.4) π
3

∑
A∈GD

length(∂FA ∩ ΓΩ) ∼ area(Ω)
∑
A∈GD

length(∂FA)

as D →∞ through fundamental discriminants.
The statement of (4.4) given in [13] has averaging over the entire class group. Unlike

(4.4), (4.3) is actually trivial when one averages over the whole group since we get an even
covering in that case and the ∼ can be replaced by equality. The reason is that FA and FJA−1

are complementary in that their union covers F evenly and the images of their boundary
geodesics are the same as sets but with opposite orientations. For instance, the surfaces FI
and FJ are complementary. In general, (4.3) is trivial when J is in the principal genus. This
happens if and only if D is not divisible by any primes p ≡ 3 (mod 4) or, equivalently, when
D is the sum of two squares (see e.g. [29, Prop. 3.1]). In particular, for any class A that
satisfies A2 = J , so that CA is reciprocal, we have that FA covers F evenly.

An interesting special case for which (4.3) is non-trivial is when D = 4p where p ≡ 3
(mod 4) is prime. The case p = 7 was illustrated above. There are exactly two genera, one
containing I and the other containing J . Cohen and Lenstra [10] have conjectured that I
and J are the only classes in their respective genera for > 75% of such p. This happens
exactly when K has wide class number one. Suppose that arbitrarily large such p exist.
Then Theorem 2 and (4.4) imply that as p→∞ through such p we have that

area(FI ∩ ΓΩ)

area(FI)
∼ area(Ω)

area(F)
and

length(∂FI ∩ ΓΩ)

length(∂FI)
∼ area(Ω)

area(F)
.

Remarks. Since FI and FJ are complementary, their distribution properties are directly
related. A pretty class number formula of Hirzebruch and Zagier [34] (see also [64]) states
that for such p > 3

`J − `I = 3h(−p),
where h(−p) is the class number of the imaginary quadratic field Q(

√
−p). Upon using that

area(FA) = π`A, this is equivalent to the area formula

area(FJ)− area(FI) = 3πh(−p).
There is a third hyperbolic distribution problem, one associated to imaginary quadratic

fields. For K = Q(
√
D) with D < 0 we may again associate to each ideal class A a geometric

object, a CM point we denote by zA ∈ F where zAZ + Z ∈ A. Choose for each D a genus
GD, noting that (4.1) and (4.2) are valid for D < 0. Then by [13] generalized to genera we
have that

(4.5) π
3

#{A ∈ GD | zA ∈ Ω} ∼ area(Ω) #GD

as D → −∞ through fundamental discriminants.

5. The analytic approach

Here we give a brief review of the analytic method and then state the extensions of formulas
of Hecke and Katok-Sarnak that we will use to prove Theorem 2. Since it creates no new
difficulties, we will allow both positive and negative D and set things up so that only obvious
modifications are needed to prove the other two uniform distribution results (4.4) and (4.5).

2Recall our convention concerning ∂FA.
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The analytic approach that we follow is based on the spectral theory of the Laplacian for
automorphic forms and strong sub-convexity estimates for L-values, or equivalently non-
trivial estimates of Fourier coefficients of modular forms of half-integral weight. Standard
references for this section are Hejhal’s book [33], the book of Iwaniec [36] and that of Iwaniec
and Kowalski [37]. Some other related distribution problems are treated in Sarnak’s book
[52].

In this paper we will make use of many standard special functions, including the Bessel
functions Is, Js, Ks and the Whittaker functions Mr,s,Wr,s. Some standard references for
their properties are [45] and [62].

Spectral expansion. First we review the spectral expansion. The initial idea is to employ
hyperbolic Weyl integrals, which are analogous to the usual Weyl sums used in proving the
uniform distribution of sequences of points on a circle. One approximates the characteristic
function of ΓΩ from above and from below by smooth Γ-invariant functions with compact
support. If f : H → R+ is such a function we expand it spectrally:

(5.1) f(z) = c0 +
1

4π

∫ ∞
−∞

c(t)E(z, 1
2

+ it)dt+
∑
ϕ

c(ϕ)〈ϕ, ϕ〉−1ϕ(z),

where 〈ϕ, ϕ〉 =
∫
F |ϕ(x)|2dµ(z). Here E(z, s) is the Eisenstein series of weight 0 given for

Re(s) > 1 by

(5.2) E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s = 1
2
(Im z)s

∑
gcd(c,d)=1

|cz + d|−2s,

where Γ∞ is the subgroup of Γ generated by T . Clearly E(z, s) is an eigenfunction of

∆ = −y−2(∂2
x + ∂2

y)

with eigenvalue λ = s(1− s). If we define E∗(z, s) = Λ(2s)E(z, s), the Fourier expansion of
E∗(z, s) is given by (see e.g. [37])

(5.3) E∗(z, s) = Λ(2s)ys + Λ(2− 2s)y1−s + 2y1/2
∑
n6=0

|n|s−1/2σ1−2s(|n|)Ks− 1
2
(2π|n|y)e(nx),

where Λ(s) = π−s/2Γ( s
2
)ζ(s). Then E∗(z, s) is entire except at s = 0, 1 where it has simple

poles and satisfies the functional equation

(5.4) E∗(z, 1− s) = E∗(s).

Furthermore we have that

(5.5) Ress=1E
∗(z, s) = −Ress=0E

∗(z, s) = 1
2
.

The residue at s = 1 gives rise to constant term c0 in (5.1).
The second sum in (5.1) is over the countably infinite set of Hecke-Maass cusp forms ϕ.

Like the Eisenstein series, these are Maass forms in that they are Γ-invariant eigenfunctions
of ∆ with ∆ϕ = λϕ, where we express the eigenvalue uniquely as

(5.6) λ = λ(ϕ) = 1
4

+ r2

and choose r ≥ 0. Being a Hecke-Maass cusp form means that, in addition, ϕ is an eigen-
function of all the Hecke operators, that ‖ϕ‖2 = 〈ϕ, ϕ〉 < ∞ and that the constant term in
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its Fourier expansion at i∞ is zero. We can and always will normalize such a Hecke-Maass
cusp form ϕ so that this Fourier expansion has the form3

(5.7) ϕ(z) = 2y1/2
∑
m6=0

a(m)Kir(2π|m|y)e(mx),

where a(1) = 1. We can also assume that

a(−n) = a(−1)a(n) = ±a(n).

If a(−1) = 1 we say that ϕ is even, otherwise odd since ϕ(−z) = a(−1)ϕ(z) or equivalently
ϕ(z) = a(−1)ϕ(z). Thus the associated L-function has an Euler product (for Re(s) > 1):

(5.8) L(s;ϕ) =
∑
n≥1

a(n)n−s =
∏

p prime

(1− a(p)p−s + p−2s)−1.

Furthermore, its completion

(5.9) Λ(s;ϕ) = π−sΓ( s+ir+ε
2

)Γ( s−ir+ε
2

)L(s;ϕ),

is entire and satsfies the functional equation Λ(s;ϕ) = (−1)εΛ(1− s;ϕ), where ε = 1−a(−1)
2

.

Remark. Note that the Eisenstein series is also an even Hecke eigenform and that its asso-
ciated L-function

L(s; t) =
∑
n≥1

nitσ−2it(m)m−s = ζ(s+ it)ζ(s− it),

defined for a fixed t, satisfies Λ(s, t) = π−sΓ( s+it
2

)Γ( s−it
2

)L(s, t) = Λ(1− s, t). Unlike Λ(s;ϕ),
it has poles, reflecting the fact that E(z, s) is not a cusp form.

Weyl’s law gives that as x→∞

(5.10) #{ϕ;λ(ϕ) ≤ x} ∼ x

12
.

The first five values of λ to five decimal places (see [5]) are

(5.11) 91.14134, 148.43213, 190.13154, 206.41679, 260.68740.

It appears to be likely that each λ is simple but this is open. The eigenvalues in (5.11), all
belong to odd forms except the third.

For our f the spectral expansion (5.1) converges uniformly on compact subsets of H.

Hyperbolic Weyl integrals. The Weyl integrals give the remainder terms in the asymptotics
and are of two types depending on whether they come from the Eisenstein series or the
Hecke-Maass cusp forms. Let u(z) denote either E(z, s) for Re(s) = 1/2 or 〈ϕ, ϕ〉−1ϕ(z).
Note that E(z, s) is absolutely integrable over FA for Re(s) = 1/2 by (5.3). To pick out
genera we need genus characters, or what is the same thing, real characters of Cl+(K). These
are in one to one correspondence with factorizations D = d′d where d′, d are fundamental
discriminants. See Section 7 for more information about the genus characters. Given such a
χ define

(5.12) Weyl(u, χ) =
∑

A∈Cl+(K)

χ(A)


λ
2

∫
FA
u(z)dµ(z) if d′, d < 0∫

∂FA
u(z)y−1|dz| if d′, d > 0

1
ωD

u(zA) if d′d < 0.

3Note the 2 in front!
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Here ωD = 1 except that ω−3 = 3 and ω−4 = 2.
To prove uniform distribution by the analytic method we need estimates for Weyl(u, χ)

for real χ that are non-trivial in the D-aspect and uniform (but weak) in the spectral aspect.
This is enough since the Weyl integral in (5.12) in the first case is zero when d′, d > 0 as is
that in the second case when d′, d < 0.

When u(z) = E(z, s), we apply a version of a classical formula of Hecke. Let L(s, χd) be
the Dirichlet L-function with character given by the Kronecker symbol χd(·) =

(
d
·

)
and for

α = 1
2
(1− sign d) define the completed L-function

(5.13) Λ(s, χd) = π−s/2Γ( s+α
2

)|d|s/2L(s, χd).

Theorem 3. For the genus character χ associated to D = d′d and Re(s) = 1
2

we have

Λ(s, χd′)Λ(s, χd) =
∑

A∈Cl+(K)

χ(A)


λ
2

∫
FA
E∗(z, s)dµ(z) if d′, d < 0∫

∂FA
E∗(z, s)y−1|dz| if d′, d > 0

2
√
πω−1

D E∗(zA, s) if d′d < 0.

This formula, due to Hecke except when d′, d < 0, reduces the problem of estimating
non-trivially the Weyl integrals for Eisenstein series to obtaining a sub-convexity bound for
Dirichlet L-functions in the conductor aspect. Of course, this is one of the first such to be
done and is a famous result of Burgess.

Theorem 3 can be expressed in terms of Maass forms of weight 1/2. These generalize the
(modified) Jacobi theta series,

θ(z) = Im(z)1/4
∑
n∈Z

e(n2z),

which is a modular form of weight 1/2 for Γ0(4). Set

(5.14) J(γ, z) =
θ(γz)

θ(z)
for γ ∈ Γ0(4).

Say F defined on H has weight 1/2 for Γ0(4) if

F (γz) = J(γ, z)F (z) for all γ ∈ Γ0(4).

Set for fundamental d
b(d, s) = (4π)−1/4|d|−3/4Λ(s, χd)

and define b(dm2, s) for m ∈ Z+ by means of the Shimura relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2 , s

)
= ms−1/2σ1−2s(m)b(d, s).

Then it follows from [17, Proposition 2 p.959] that

E∗1/2(z, s) = Λ(2s)2sy
s
2

+ 1
4 + Λ(2− 2s)21−sy

3
4
− s

2 +
∑

n≡0,1(mod 4)
n 6=0

b(n, s)W 1
4

sgnn, s
2
− 1

4
(4π|n|y)e(nx)

has weight 1/2 for Γ0(4). The idea behind this example originates in the papers of H. Cohen
[9] and Goldfeld and Hoffstein [26]. See also [58], [16].

The formula

(5.15) Λ(s, χd′)Λ(s, χd) = 2
√
π|D|3/4b(d′, s)b(d, s)
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in connection with Theorem 3 hints strongly as to what should take place for cusp forms;
this is the extension (and refinement) of the formula of Katok-Sarnak mentioned earlier.
Their result from [40], together with [1], gives the case d = 1 in the following.4

Theorem 4. Let

ϕ(z) = 2y1/2
∑
n6=0

a(n)Kir(2π|n|y)e(nx)

be a fixed even Hecke-Maass cusp form for Γ. Then there exists a unique nonzero F (z) with
weight 1/2 for Γ0(4) with Fourier expansion

F (z) =
∑

n≡0,1(mod 4)
n6=0

b(n)W 1
4

sgnn, ir
2

(4π|n|y)e(nx),

such that for any pair of co-prime fundamental discriminants d′ and d we have

(5.16) 12
√
π|D|

3
4 b(d′)b(d) = 〈ϕ, ϕ〉−1

∑
A∈Cl+(K)

χ(A)


λ
2

∫
FA
ϕ(z)dµ(z) if d′, d < 0∫

∂FA
ϕ(z)y−1|dz| if d′, d > 0

2
√
π ω−1

D ϕ(zA) if d′d < 0,

where χ is the genus character associated to D = d′d. Here 〈F, F 〉 =
∫

Γ0(4)\H |F |
2dµ = 1 and

the value of b(n) for a general discriminant n = dm2 for m ∈ Z+ is determined by means of
the Shimura relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
= a(m)b(d).

Remarks. The
√
π in (5.15) and (5.16) is an artifact of the normalization of the Whittaker

function. Also, if we choose F in Theorem 4 so that 〈F, F 〉 = 6, which is the index of Γ0(4)
in Γ, then we get 2 in the LHS of (5.16) instead of 12, which matches the Eisenstein series
case (5.15). Perhaps not coincidentally,

Ress=1E
∗
1/2(z, s) = 1

2
θ(z)

and by [8] we have 〈1
2
θ(z), 1

2
θ(z)〉 = 6.

It is also possible to evaluate |b(d)|2. When d = 1 this was done in [40] and in general by
Baruch and Mao [1]. Here we quote their result in our context. Under the same assumptions
as in Theorem 4 we have

(5.17) 12π|d||b(d)|2 = 〈ϕ, ϕ〉−1Γ(1
2

+ ir
2
− sign d

4
)Γ(1

2
− ir

2
− sign d

4
)L(1

2
, ϕ, χd),

where

L(s, ϕ, χd) =
∑
n≥1

χd(n)a(n)n−s.

Hence in the cuspidal case our problem also reduces to obtaining a sub-convexity bound,
this time for a twisted L-function.

Results like Theorem 4 and (5.17) have a long history, especially in the holomorphic
case. Some important early papers are those by Kohnen and Zagier [42], Shintani [56] and
Waldspurger [61]. All of these relied on the fundamental paper of Shimura [55].

4Except that when d′ < 0 we get in (5.16) on the RHS 2
√
π ω−1D instead of their (2

√
π ωD)−1.
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Examples. It is interesting to evaluate numerically some examples of Theorem 4. This
is possible thanks to computations done by Strömberg [59]. Note that half-integral weight
Fourier coefficients, even in the holomorphic case, are notoriously difficult to compute.

For example, for ϕ(z) we take the first occurring even Hecke-Maass form with eigenvalue

λ = 190.13154731 · · · = 1
2

+ r2,

where r/2 = 6.889875675 . . . . We have

〈ϕ, ϕ〉 = 7.26300636× 10−19.

A large number of Hecke eigenvalues for this ϕ are given (approximately, but with great
accuracy) in the accompanying files of the paper of Booker, Strömbergsson and Venkatesh
[5]. The first six values to twelve places are given in Table 1.

Table 1. Hecke eigenvalues

p a(p)

2 1.549304477941
3 0.246899772453
5 0.737060385348
7 -0.261420075765
11 -0.953564652617
13 0.278827029162

A few values of b(d) for fundamental d (except for d = 1, which we computed indepen-
dently) are computed from Strömberg’s Table 5 and given in our Table 2.

Table 2. Weight 1/2 coefficients

d > 0 b(d) d < 0 b(d)

1 10894.40532 -3 6404.69711
5 894.31877 -4 11927.63292
8 2191.95607 -7 8495.02618
12 -1298.74136 -8 -4512.60385

Let us illustrate Theorem 4 in a few cases. Consider first the quadratic field Q(
√

3), for
which D = 12 = 4 · 3. There are 2 classes: the principal class I with associated cycle ((4))
and J with cycle ((2, 3)). For D = 12 = (1)(12)

127/4
√
π b(1)b(12) = 2〈ϕ, ϕ〉−1

∫
∂FI

ϕ(z)y−1|dz| = −1.94029× 109

and for D = (−3)(−4)

127/4
√
π b(−3)b(−4) = λ〈ϕ, ϕ〉−1

∫
FI
ϕ(z)dµ(z) = 1.04759× 1010.

Two examples when D < 0: D = (1)(−3)

18 33/4 b(1)b(−3) = 〈ϕ, ϕ〉−1ϕ(1+
√
−3

2
) = 2.86296× 109
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and D = (1)(−4)

12 43/4 b(1)b(−4) = 〈ϕ, ϕ〉−1ϕ(i) = 4.41046× 109.

In these examples the integrals and special values were computed by approximating ϕ by its
Fourier expansion and using the Fourier coefficients given in the files accompanying [5].

6. Proof of Theorem 2

We now show how to deduce Theorem 2 (and (4.4) and (4.5)) from Theorems 3 and 4. In
order to show that we actually have an asymptotic formula we need a lower bound for the
main term that is larger than the remainder terms. The main term comes from the constant
c0 in the spectral expansion (5.1). It is a little more complicated to obtain a lower bound
for the main term in (4.3) than the corresponding bounds for geodesics or CM points, which
we get almost directly from Siegel’s theorem. For the geodesic case we have by the class
number formula and (4.2) that∑

A∈GD

length(∂FA) = 22−ω(D)h(D) log εD.

Similarly, when D < 0 we have

#GD = 21−ω(D)h(D).

By Siegel’s theorem we obtain that the main term in either case is�ε |D|1/2−ε for any ε > 0,
where the implied constant is not effective.

Unlike the lengths of the closed geodesics, the areas of the surfaces FA are not the same
for different A! Still, we have the needed lower bound.

Proposition 1. For any ε > 0 we have that

(6.1)
∑
A∈GD

area(FA)�ε D
1/2−ε.

The implied constant is not effectively computable for a given ε.

Proof. We have by Theorem 1 that

(6.2)
∑
A∈GD

area(FA) =
∑
A∈GD

`A.

We have the identity (see [66, p.167] or [66, p.138])

(6.3)
∏

w reduced

w = εD.

Now for a reduced w there are a, b, c ∈ Z with D = b2 − 4ac and

a, c > 0 and a+ b+ c < 0

so that w = −b+
√
D

2a
. Thus √

D ≥
√
D
a

= w − wσ > w − 1.

We conclude that w <
√
D + 1, so (6.3) easily implies that

(6.4) `A >
log εD

log(
√
D + 1)

.

Using (6.2), (6.4), (4.2) and Siegel’s theorem (see [12]), we derive (6.1).
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�

Remark. It is also possible to give an upper bound for `A. For example, Eichler [22] gave a
general argument that yields for the modular group that

`A < c log εD

for an explicit c.

We now turn to estimating the Weyl integrals.

Proposition 2. There is a constant C > 0 such that for any ε > 0 we have

Weyl(E(·, s), χ)�ε |s|C |D|7/16+ε(6.5)

Weyl(〈ϕ, ϕ〉−1ϕ, χ)�ε r
C |D|13/28+ε(6.6)

where Re(s) = 1/2 and ϕ is any even Hecke–Maass cusp form with Laplace eigenvalue 1
4
+r2.

Proof. By Theorem 3 and standard estimates for the gamma function quotient and for ζ(2s),
we have for Re(s) = 1/2 that

(6.7) Weyl(s, χ)�ε |s|C |L(s, χd′)L(s, χd)|D1/4+ε.

Thus (6.5) now follows from the subconvexity bound of Burgess [7] made uniform in s (see
[37, Theorem 12.9 p.329]): for any ε > 0 we have

L(s, χd)� |s||d|3/16+ε,

where the implied constant depends only on ε.
Part (6.6) of Proposition 2 follows straight from Theorem 4 and Theorem 5 of [13]. �

To see that it is enough to restrict to even Maass cusp forms observe that for an odd form all
the Weyl integrals are identically zero. To see this first observe that χ(A) = χ(A−1). There
is a symmetry under A → A−1 of all the geometric objects that forces the corresponding
sum of integrals for A and A−1 to cancel for an odd form ϕ. For example, when d′, d < 0 we
have that

(6.8)

∫
FA−1

ϕ(z)dµ(z) = −
∫
FA
ϕ(z)dµ(z).

To get (6.8) observe that by (2.2) the cycle for A−1 is that for A reversed. This has the effect
of making a left translate by T−mA of the fundamental domain FA−1 a mirror image in the
imaginary axis of FA. Here we are using the fundamental domains constructed in the proof
of Theorem 1. The cases d′, d > 0 and d′d < 0 are handled similarly by using (2.3).

Theorem 2 follows from Propositions 1 and 2 and the fact that the spectral coefficients in
(5.1) satisfy

c(t)� |s|−A and c(ϕ)� |r|−A

for any A > 0 and by the Weyl law (5.10). See e.g. [36].

Remarks. There has been a lot of progress on subconvexity estimates since the paper [13]
that we quote was written. We were content to use the result of [13] here since any strong
non-trivial estimate is enough to get the uniform distribution results. By “strong” we mean
a power savings in the exponent, and this is required due to our use of Siegel’s theorem for
the main term.
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After the fundamental paper of Iwaniec [35], techniques for dealing directly with the L-
functions were developed in a series of papers starting with [14]. See also [15]. Currently the
best known subconvexity bound for the L-functions (5.17) was obtained in the breakthrough
paper [11] of Conrey and Iwaniec, which gives the exponent 1/3 + ε of |D| in both estimates
of Proposition 2 but under the technical assumption that D is odd. This result was improved
by Young [63], who gives the same value 1/3 + ε for the exponent of C in these estimates.
See also the paper of Blomer and Harcos [4]. Although we have not pursued this here, such
explicit hybrid estimates would allow one to improve the ranges of certain parameters in the
distribution results.

In a different direction, it would be interesting to see if the methods of arithmetic ergodic
theory could be applied here along the lines of the paper [23] of Einsiedler, Lindenstrauss,
Michel and Venkatesh.

7. Proof of Theorem 3

To prove Theorem 3, we begin by giving some background on Hecke’s L-functions. The
zeta function for an ideal class A is given for Re(s) > 1 by

ζA(s) =
∑
a∈A

N(a)−s

where a runs over all integral ideals in A. When K = Q(
√
D) with D < 0 we have

(7.1) π−sΓ(s)ζA(s) = 2s

ωD
|D|−

s
2 E∗(zA, s).

In order to generalize this in the presence of an infinite groups of units, Hecke invented his
famous trick of dividing out the action of the unit group on generators of principal ideals.
For real quadratic fields this procedure amounts to either integrating the Eisenstein series
with respect to arc length over the associated closed geodesic CA or integrating its derivative
over this geodesic. He showed

π−sΓ( s
2
)2Ds/2

(
ζA(s) + ζJA(s)

)
= 2

∫
CA
E∗(z, s)y−1|dz| and(7.2)

π−sΓ( s+1
2

)2Ds/2
(
ζA(s)− ζJA(s)

)
= 2

∫
CA
i ∂zE

∗(z, s) dz.(7.3)

Hecke’s L-function for a character χ of Cl+(K) is given for Re(s) > 1 by

L(s, χ) =
∑
a

χ(a)N(a)−s =
∏
p

(1−N(p)−s)−1,

where a runs over all integral ideals in K and p over all (finite) primes. Clearly

L(s, χ) =
∑
A

χ(A)ζA(s).

When D < 0 the completed L-function is

(7.4) Λ(s, χ) = π−sΓ( s
2
)Γ( s+1

2
)|D|s/2L(s, χ) = 21−sπ1/2−s|D|s/2Γ(s)L(s, χ),

while when D > 0 it is

Λ(s, χ) = π−sΓ( s+α
2

)Γ( s+α
2

)Ds/2L(s, χ),
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where

(7.5) α = αχ = 1
2
(1− χ(J)).

Then from (7.1) and (7.4) we have when D < 0 that

(7.6) Λ(s, χ) = 2
√
π

ωD

∑
A∈Cl+(K)

χ(A)E∗(zA, s),

while from (7.2) and (7.3) we have when D > 0 that

(7.7) Λ(s, χ) =
∑

A∈Cl+(K)

χ(A)

{ ∫
CA
E∗(z, s)y−1|dz| if χ(J) = 1,∫

CA
i ∂zE

∗(z, s) dz if χ(J) = −1.

These equations show that the analytic properties of Λ(s, χ) are inherited from those of
E∗(z, s). For instance, (5.4) gives the functional equation

Λ(1− s, χ) = Λ(s, χ).

When χ(J) = 1 the narrow class character χ descends to a character of the wide class group,
so these formulas are usually given in terms of the wide class group Cl(K) in this case. When
χ(J) = −1 the character is a norm class character (see [29], [30]).

Genus characters. The characters of Cl+(K) that we need are the genus characters, which
are the same as the real characters. See [57] for their basic theory. The genus characters
are in 1-1 correspondence with decompositions D = d′d where d and d′ are fundamental
discriminants. Given such a decomposition, the associated character χ is defined for a prime
ideal p of K by

χ(p) =

{(
d

N(p)

)
if p - d(

d′

N(p)

)
if p - d′

,

where
(
d
·

)
is the Kronecker symbol. From now on by χ we shall always mean, unless otherwise

specified, the genus character associated to D = d′d. Later we need a generalization of χ to
some cases where d is fundamental but d′, hence D, need not be.

We have that χ(J) = sign d = sign d′ and we also have Kronecker’s decomposition
L(s, χ) = L(s, χd′)L(s, χd). Equivalently,

Λ(s, χ) = Λ(s, χd′)Λ(s, χd).

By (7.6) we have when D < 0 that

Λ(s, χd′)Λ(s, χd) = 2
√
π

ωD

∑
A∈Cl+(K)

χ(A)E∗(zA, s),

while by (7.7) we get when D > 0 that

(7.8) Λ(s, χd′)Λ(s, χd) =
∑

A∈Cl+(K)

χ(A)

{ ∫
CA
E∗(z, s)y−1|dz| if d′, d > 0,∫

CA
i ∂zE

∗(z, s) dz if d′, d < 0.
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Stokes’ theorem. To get the surface case of Theorem 3 we need to express the Weyl surface
integrals in terms of cycle integrals. Of course, the main tool for this is Stokes’ theorem. We
do the cusp form case at the same time.

Lemma 1. For u as in (5.12) we have

(7.9) λ
2

∫
FA
u(z)dµ(z) =

∫
CA
i ∂zu(z)dz.

By an integral over CA we always mean the integral from z0 ∈ Sw to γw(z0) ∈ Sw along
the arc on Sw, assuming that the integral is independent of z0.

A little more generally we have the following lemma. Recall that m was defined in (2.1).

Lemma 2. Suppose that F (z) is any real analytic ΓA-invariant function on H that satisfies

(7.10) ∆F = −y2(Fxx + Fyy) = s(1− s)F

and the growth condition
∫ m

0
∂zF (x+ iY )dx = o(1) as Y →∞. Then we have

(7.11) s(1−s)
2

∫
FA
F (z)dµ(z) =

∫
∂FA

i ∂zF (z)dz.

Proof. By Stokes’ theorem we have∫
FA(Y )

∂z(∂zF (z))dz dz = −
∫
∂FA

∂zF (z)dz +

∫ m

0

∂zF (x+ iY )dx,

where FA(Y ) = {z ∈ FA; Im(z) < Y }. Using that dz dz = −2idx dy, we have by (7.10)

∂z∂zF (z)dz dz = i
2
s(1− s)F (z)dµ(z).

By our growth assumption on F we get (7.11) by letting Y →∞. �

To deduce Lemma 1, note that both E(z, s) and ϕ(z) satisfy (7.10) and that the growth
condition for ϕ is clear while that for E(z, s) when Re(s) = 1/2 follows from its Fourier
expansion (5.3). Finally, since both ϕ(z) and E(z, s) are Γ-invariant we may replace the
integrals over ∂FA by integrals over CA.

Applying Lemma 1 when u(z) = E(z, s) we finish the proof of Theorem 3.

8. Maass forms and the resolvent kernel

Our proof of Theorem 4 is similar in spirit to that of Hecke’s for the Eisenstein series
case. We will employ resolvent kernels for the Laplacians of weight 0 and weight 1/2. The
residue of such a resolvent at a spectral point gives the reproducing kernel for the associated
eigen-space. Our principal reference here is the paper of Fay [25]. Other references include
Hejhal [33] and Roelcke [50].

We begin with the case of Maass cusp forms of weight 0 for Γ. For Re(s) > 1 consider the
Poincaré series

(8.1) Fm(z, s) =
∑

γ∈Γ∞\Γ

fm(γz, s),

where f0(z, s) = ys and for m 6= 0

fm(z, s) = y1/2Is−1/2(2π|m|y)e(mx) = |m|−1/2

2π
Γ(s)
Γ(2s)

M0,s− 1
2
(4π|m|y)e(mx).
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The function Fm(z, s), which was first studied by Neunhöffer [47] and Niebur [48], is a
Γ-invariant eigenfunction of ∆:

∆Fm(z, s) = s(1− s)Fm(z, s).

We will get to the Maass cusp forms through residues of Fm(z, s).

Proposition 3. For any m 6= 0 we have that Fm(z, s) has meromorphic continuation in s
to Re(s) > 0 and that

Ress= 1
2

+ir(2s− 1)Fm(z, s) =
∑
ϕ

〈ϕ, ϕ〉−12a(m)ϕ(z),

where the (finite) sum is over all Hecke-Maass cusp forms ϕ with Laplace eigenvalue 1
4

+ r2

and a(m) is defined in (5.7).

Proof. For u ∈ L2(F , dµ) the resolvent kernel G(z, z′; s) for ∆ satisfies

(8.2)
(
∆− s(1− s)

) ∫
F
G(z, z′; s)u(z)dµ(z) = u(z′).

The function Fm(z, s) occurs in the Fourier expansion of G(z, z′; s), which is given by

(8.3) G(z, z′; s) =
√
y′
∑
m∈Z

F−m(z, s)Ks−1/2(2π|m|y′)e(mx′),

valid when y′ > y. This follows from Theorem 3.1 on p.173 of [25]. The meromorphic
continuation of the resolvent kernel in s is proven in [33] (see also [50]). If s = 1

2
+ ir is such

that the eigenspace with eigenvalue 1
4

+ r2 is non-empty and {u} is an orthonormal basis for
this eigenspace, the integral kernel

(8.4) H(z, z′, s) = G(z, z′; s)− 1
1
4

+ r2 − s(1− s)
∑

u(z)u(z′)

has a holomorphic extension to s = 1
2
+ir. This is a consequence of the fact that it represents

the resolvent on the orthogonal complement of this eigenspace, and vanishes identically on
the eigenspace itself.

Now let u = ϕ
‖ϕ‖ , where ϕ is a Hecke-Maass cusp form. The set {u} of all such is an

orthonormal basis for our eigenspace. Then by (8.3) and (8.4) we have for 0 < y < y′ that∫ 1/2

−1/2

H(z, z′, s)e(−mx′)dx′ =
√
y′F−m(z, s)Ks−1/2(2π|m|y′)

− 1
1
4

+ r2 − s(1− s)
∑
〈ϕ, ϕ〉−1ϕ(z)2a(m)Kir(2π|m|y′),

after referring to (5.7). Since the left hand side is holomorphic at s = 1
2

+ ir we get that

Ress= 1
2

+ir(2s− 1)F−m(z, s) =
∑
ϕ

〈ϕ, ϕ〉−12a(m)ϕ(z).

Replacing m with −m and noting that a(−m)ϕ(z) = a(m)ϕ(z) from below (5.7) we get
Proposition 3. �
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For comparison with the weight 1/2 case that we will treat next, it is instructive to carry
the analysis one step further. The Fourier expansion of Fm(z, s) is given by (see [25],[17])

Fm(z, s) = fm(z, s) + 2|m|1/2−sσ2s−1(|m|)
(2s−1)Λ(2s)

y1−s + 2y1/2
∑
n6=0

Φ(m,n; s)Ks− 1
2
(2π|n|y)e(nx),

where for Re(s) > 1

Φ(m,n; s) =
∑
c>0

c−1K(m,n; c) ·

{
I2s−1(4π

√
|mn| c−1) if mn < 0

J2s−1(4π
√
|mn| c−1) if mn > 0.

Here K(m,n; c) is the Kloosterman sum

K(m,n; c) =
∑

a(mod c)

(a,c)=1

e
(
ma+na

c

)
.

It follows that for fixed m,n with mn 6= 0 the function Φ(m,n; s) has meromorphic contin-
uation to Re(s) > 0 and

Ress= 1
2

+ir(2s− 1)Φ(−m,n; s) = 2
∑
ϕ

〈ϕ, ϕ〉−1a(m)a(n),

where the sum is over all Hecke-Maass cusp forms ϕ for Γ with eigenvalue 1
4

+ r2.
There is a parallel (yet more intricate) development for Maass forms of weight 1/2. The

invariant Laplace operator of weight 1/2 is given by

∆1/2 = −y2(∂2
x + ∂2

y) + 1
2
iy∂x.

This means that for all γ ∈ Γ0(4) we have

(∆1/2F )(γz) = J(γ, z)∆1/2F (z).

A Maass form of weight 1/2 for Γ0(4) has weight 1/2, is smooth and satisfies ∆1/2F = λF,
where we write λ = λ(F ) = 1

4
+ ( r

2
)2. Usually we also require some growth conditions as well

in the three cusps of Γ0(4). In particular, a Maass cusp form F is in L2(Γ0(4)\H, dµ) and
has the further property that its zeroth Fourier coefficient in each cusp vanishes.

The resolvent kernel G1/2(z, z
′; s) for ∆1/2 in this case was also studied by Fay [25] (see

also [50]). It satisfies

(8.5)
(
∆1/2 − s(1− s)

) ∫
Γ0(4)\H

G 1
2
(z, z′; s)u(z)dµ(z) = u(z′)

for u ∈ L2(Γ0(4)\H, dµ) with weight 1/2. By Theorem 3.1 of [25] we have the Fourier
expansion5

G1/2(z
′, z; s) =

∑
n

F1/2,n(z, s)W 1
4

signn,s− 1
2
(4π|n|y′)e(−nx′)

valid for Im z′ > Im z, where for n 6= 0 and Re(s) > 1

(8.6) F1/2,n(z, s) =
Γ(s− 1

4
signn)

4π|n|Γ(2s)

∑
γ∈Γ∞\Γ0(4)

J(γ, z)−1f1/2,n(γz, s)

5Note that in the notation of Fay, F1/2,n(z, s) = −Fn(z, s). The minus sign comes from his definition of

∆1/2. We are also using his (38), which gives G1/2(z, z
′; s) = G1/2(z

′, z; s). Observe as well that for weight

1/2 his k = 1/4.
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with

f1/2,n(z, s) = M 1
4

signn,s− 1
2
(4π|n| Im z)e(nRe z).

As above it follows that F1/2,n(z, s) has a meromorphic continuation to Re(s) > 0 with simple
poles at the points 1

2
+ ir

2
giving the discrete spectrum of ∆1/2 and that

Ress= 1
2

+ ir
2

(2s− 1)G1/2(z′, z) =
∑

ψ(z′)ψ(z)

and

(8.7) Ress= 1
2

+ ir
2

(2s− 1)F1/2,n(z, s) =
∑
ψ

b(n)ψ(z).

Here the sum is over an orthonormal basis {ψ} of Maass cusp forms for Vr and b(n) is defined
by

(8.8) ψ(z) =
∑
n 6=0

b(n)W 1
4

signn, ir
2

(4π|n|y)e(nx).

Plus space. There is an important distinguished subspace of Vr, denoted by V +
r and called

after Kohnen the plus space, that contains those Maass cusp forms ψ ∈ Vr whose n-th
Fourier coefficient b(n) vanishes unless n ≡ 0, 1 (mod 4). It is clearly invariant under ∆1/2.
We shall apply to F1/2,n(z, s) from (8.6) the projection operator pr+ : Vr → V +

r defined by
pr+ = 2

3
WU + 1

3
, where6

Uψ(z) =
√

2
4

3∑
ν=0

ψ( z+ν
4

) and W ψ(z) = e
iπ
4

(
z
|z|

)− 1
2ψ(− 1

4z
).

We will need an expansion of each of the Fourier coefficients of pr+F1/2,m(z, s) when m ≡ 0, 1

(mod 4). These involve certain Kloosterman sums of weight 1/2 that we now recall. Let
(
c
a

)
be the extended Kronecker symbol (see [55]) and set

εa =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4).

Then for c ∈ Z+ with c ≡ 0 (mod 4) and m,n ∈ Z

K1/2(m,n; c) =
∑

a(mod c)

(
c
a

)
εae
(
ma+na

c

)
defines the weight 1/2 Kloosterman sum. Here a ∈ Z satisfies aa ≡ 1 (mod c). It is conve-
nient to define the modified Kloosterman sum

K+(m,n; c) = (1− i)K1/2(m,n; c)×

{
1 if c/4 is even

2 otherwise.

It is easily checked that

(8.9) K+(m,n; c) = K+(n,m; c) = K+(n,m; c).

6The constant
√

2 which is not present in [17] is due to the factor y1/4 that comes from our normalization.
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It follows7 from [17, Proposition 2 p.959] that for Re(s) > 1 and d any non-zero integer
with d ≡ 0, 1 (mod 4) we have

pr+F1/2,d(z, s) =
2

3

Γ(s− sign d
4

)

4π|d|Γ(2s)
M 1

4
sign d,s− 1

2
(4π|d|y)e(dx)(8.10)

+
∑

n≡0,1(4)

Φ+(n, d; s)W 1
4

signn,s− 1
2
(4π|n|y)e(nx)

where for n 6= 0 we have

Φ+(n, d; s) =
1

|nd| 12
Γ(s− signn

4
)Γ(s− sign d

4
)

3
√
π 22−2s Γ(2s− 1

2
)

∑
c≡0(4)
c>0

K+(n, d; c)

c

I2s−1

(
4π
√
|nd|
c

)
if nd < 0

J2s−1

(
4π
√
|nd|
c

)
if nd > 0.

(8.11)

As in [25, Cor 3.6 p.178] we have that Φ+(n, d; s) has a meromorphic continuation to all s
and it is now straightforward to get from (8.10) and (8.7) the following residue formula.

Proposition 4. For fixed discriminants d′, d the function Φ+(d′, d; s) has meromorphic con-
tinuation to Re(s) > 0 and

Ress= 1
2

+ ir
2

(2s− 1)Φ+(d′, d; s) =
∑
ψ

b(d′)b(d),

where the sum is over an orthonormal basis of cusp forms ψ for V +
r and b(d) is the Fourier

coefficient of ψ as in (8.8).

9. Cycle integrals of Poincaré series

We next give an identity from which the extended Katok–Sarnak formula will be derived.
Our main source is [17], where other relevant references are also given. As in the previous
section, we will deal with general discriminants. This causes no essential new difficulties and
makes it easier to quote some of our previous results. It also makes it clear how one could
approach our main theorem for non-fundamental discriminants. Thus we need to define
genus characters for arbitrary discriminants. We will use the language of binary quadratic
forms. As in [17], let QD be the set of Q with discriminant D that are positive definite when
D < 0. For Q = [a, b, c] with discriminant D = d′d where d is fundamental we define

χ(Q) =

{(
d
m

)
if (a, b, c, d) = 1 where Q represents m and (m, d) = 1,

0, if (a, b, c, d) > 1.

In case D > 0 is fundamental and Q is any binary quadratic form associated to a ∈ A as in
Section 2, we have that χ(Q) = χ(A). When D > 0 and Q is primitive and n ∈ Z+ define

CnQ = CQ as in [17] using (2.11).8 When D < 0 let zQ = −b+
√
D

2a
∈ H if Q = [a, b, c] and let

ωQ be the number of automorphs of Q in Γ.
The following result together with Propositions 3 and 4, will be used to derive the extended

Katok-Sarnak formula. The first and second parts follow directly from [17], but we include
them here for the sake of completeness. Recall that Fm was defined in (8.1) and Φ+ in (8.11).

7There is a typo in (2.19) of [17]. It should read P+
d (τ, s) = 3

2pr+(Pd(τ, s)).
8Actually, we use gQ = γ−1Q in [17].
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Proposition 5. Let m 6= 0 and Re(s) > 1. Suppose that d is a fundamental discriminant
and that d′ is any discriminant such that D = d′d is not a square. Then

6π
1
2 |D|

3
4 |m|

∑
n|m
n>0

n−
3
2

(
d
n

)
Φ+
(
d′, m

2d
n2 ; s

2
+ 1

4

)
=

∑
Q∈Γ\QD

χ(Q)


2
√
πω−1

Q Fm(zQ, s) if d′d < 0,∫
CQ
Fm(z, s)y−1|dz| if d′, d > 0,∫

CQ
i ∂zFm(z, s)dz if d′, d < 0.

We assume that d is a fundamental discriminant and that D = d′d. We need an associated
exponential sum, defined for c ≡ 0 (mod 4) by

(9.1) Sm(d′, d; c) =
∑

b(mod c)

b2≡D (mod c)

χ
(
[ c
4
, b, b

2−D
c

]
)
e
(

2mb
c

)
.

Clearly

S−m(d′, d; c) = Sm(d′, d; c) = Sm(d′, d; c).

Lemma 3. For m 6= 0, d′d < 0 and Re(s) > 1 we have∑
Q∈Γ\QD

χ(Q)ω−1
Q Fm(zQ, s) = 2−1/2|D|1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Is−1/2(4π|m|
√
D
c

).

Proof. This follows directly from [17, Prop.4 p.970]. �

Similarly we have for the second case the following.

Lemma 4. For m 6= 0, d′, d > 0 with d′d not a square and Re(s) > 1 we have∑
Q∈Γ\QD

χ(Q)

∫
CQ
Fm(z, s)y−1|dz| = 2s−1/2 Γ( s

2
)2

Γ(s)
D1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Js−1/2(4π|m|
√
D
c

).

Proof. Again this follows directly from [17, Prop.4]. Note that
√
D

Q(z,1)
dz = y−1|dz| on CQ. �

The third case requires some new computations.

Lemma 5. For m 6= 0, d′, d < 0 with d′d not a square and Re(s) > 1 we have∑
Q∈Γ\QD

χ(Q)

∫
CQ
i∂zFm(z, s)dz = 2s−1/2 Γ( s+1

2
)2

Γ(s)
D1/4

∑
0<c≡0(4)

Sm(d′,d;c)√
c

Js−1/2(4π|m|
√
D
c

).

Proof. Now (8.1) and a calculation using differentiation formulas for the Whittaker functions
in [45, p.302] gives for that for Re(s) > 1

−2i∂zFm(z, s) =
∑

γ∈Γ∞\Γ

f2,m(γz, s)
d(γz)

dz

where

(9.2) f2,m(z) = −s|m|−1/2(2πy)−1 Γ(s)
Γ(2s)

Msgn(m),s−1/2(4π|m|y)e(mx).

The proof proceeds in a very similar way as for Lemma 4 except that we need the analogs
of two technical lemmas in [17].
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For a smooth function φ(y) that satisfies φ(y)� y1+ε as y → 0, let f(τ) = e(mRe τ)φ(Im τ)
and

Pm(τ, φ) =
∑

γ∈Γ∞\Γ

f(γτ)
d(γz)

dz
.

Then the following is the weight 2 analog of Lemma 7 in [17].

Lemma 6. Suppose that d′, d < 0 and that dd′ = D is not a square. Then for all m ∈ Z∑
Q∈Γ\QD

χ(Q)

∫
CQ

Pm(τ, φ)dτ =
∑

0<c≡0(4)

Sm(d, d′; c)Φm

(
2
√
D
c

)
where

(9.3) Φm(t) = it

∫ π

0

e(mt cos θ)φ(t sin θ)eiθdθ

Taking φ(t) = −s|m|−1/2(2πy)−1 Γ(s)
Γ(2s)

Msgn(m),s−1/2(4π|m|y) in (9.3) reduces the proof of

Lemma 5 to the the following lemma about special functions.

Lemma 7. For µ ∈ C, t > 0 and Re(s) > 0

(9.4)

∫ π

0

e±i(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ
= G(s, µ)t1/2Js−1/2(t)

where

G(s, µ) = e(±µ/4)(2π)3/2 2−sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)
.

Proof. See the Appendix. �

The following identity, which allows us to relate the cycle integrals to the spectral coeffi-
cients, is proved by a slight modification of the proof given by Kohnen in [41, Prop. 5, p.
259] (see also [13], [38] and [60]).

Lemma 8. For positive c ≡ 0 (mod 4), d,m ∈ Z with d′ ≡ 0, 1 (mod 4) and d a fundamental
discriminant, we have

Sm(d′, d; c) =
∑

n|(m, c4)

(
d
n

)√
n
c
K+

(
d′, m

2d
n2 ; c

n

)
.

Proceeding as in [17], Proposition 5 follows from Lemmas 4,5 and 8.
�

Remarks. For the purpose of proving the extended Katok–Sarnak formula by the method of
spectral residues we actually have many choices of Poincaré series to use since we can add a
holomorphic form without changing the residues. Thus we could employ the Poincaré series
originally used by Selberg [54] (see also [28]). This might make some of the calculations
somewhat simpler but that would not give an exact formula like we obtain in Proposition
5. One advantage of an exact formula is that we can also use it to show that cycle integrals
of modular functions give weight 1/2 weak Maass forms. This was done in [17] for the first
two cases of Proposition 5. The last case can also be applied in this way. It is also possible
to prove Theorem 3 by these methods.
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10. Proof of Theorem 4

Recall the plus space V +
r of Maass cusp forms of weight 1/2 defined in Section 8 above.

It is shown in [40] that V +
r has an orthonormal basis Br = {ψ} consisting of eigenfunction

of all Hecke operators Tp2 where p > 2 is prime. Fix such a basis Br. Given ψ ∈ Br with
Fourier expansion

(10.1) ψ(z) =
∑
n 6=0

b(n)W 1
4

sgnn, ir
2

(4π|n|y)e(nx)

and a fundamental discriminant d with b(d) 6= 0 the Hecke relation Tp2ψ = aψ(p)ψ implies
that

Ld(s+ 1
2
)
∑
n≥1

b(dn2)n−s+1 = b(d)
∏
p

(1− aψ(p)p−s + p−2s)−1.

Define the numbers aψ(n) via

(10.2)
∏
p

(1− aψ(p)p−s + p−2s)−1 =
∑
n≥1

aψ(n)n−s

and let

(10.3) Shimψ(z) = y1/2
∑
n 6=0

2aψ(|n|)Kir(2π|n|y)e(nx).

Note that for some d we must have that b(d) 6= 0 so that this is always defined.
It is convenient to define

T (ϕ, χ) =
1

〈ϕ, ϕ〉
∑

Q∈Γ\QD

χ(Q)


2
√
πω−1

Q ϕ(zQ) if d′d < 0∫
CQ
ϕ(z)y−1|dz| if d′, d > 0,∫

CQ
i ∂zϕ(z)dz if d′, d < 0,

Theorem 4 follows easily from the next Proposition together with Lemma 1.

Proposition 6. For any even Hecke-Maass cusp form ϕ for Γ with Laplace eigenvalue 1
2
+r2

there is a unique ψ ∈ Br with Fourier expansion given in (10.1) so that ϕ = Shimψ and
such that for d a fundamental discriminant and d′ any discriminant such that D = d′d is
not a square we have

T (ϕ, χ) = 12π
1
2D

3
4 b(d′)b(d),

where χ is the genus character associated to the factorization D = d′d.

Proof. Let m > 0 and suppose that D = d′d > 1 where d is fundamental. First we will show
that

(10.4) 12π
1
2D

3
4

∑
ψ∈Br

b(d′)b(d)aψ(m) =
∑
ϕ

a(m)T (ϕ, χ),

where ϕ is summed over all Hecke–Maass cusp forms with Laplace eigenvalue 1
2

+ r2. We
have from Propositions 3 and 5 that for every m 6= 0

6π
1
2D

3
4 |m|

∑
n|m
n>0

n−
3
2

(
d
n

)
Ress= 1

2
+ir(2s− 1)Φ+

(
d′, m

2d
n2 ; s

2
+ 1

4

)
=
∑
ϕ

2a(m)T (ϕ, χ).(10.5)
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Observe that

Ress= 1
2

+ir(2s− 1)Φ+
(
d′, d; s

2
+ 1

4

)
=2ir lim

s→1
2

+ir

(
s− (1

2
+ ir)

)
Φ+
(
d′, d; s

2
+ 1

4

)
which, setting s = 2w − 1

2
, =4ir lim

w→1
2

+
ir
2

(
w − (1

2
+ ir

2
)
)
Φ+ (d′, d;w)

= 4Res
s=

1
2

+
ir
2

(2s− 1)Φ+ (d′, d; s) .

Therefore, Proposition 4 gives

Ress= 1
2

+ir(2s− 1)Φ+
(
d′, m

2d
n2 ; s

2
+ 1

4

)
= 4

∑
ψ

b(d′)b(m
2d
n2 ),

where the sum is over an orthonormal basis of cusp forms {ψ} for V +
r and b(d) is the Fourier

coefficient of ψ as in (8.8). By (10.5) we get

24π
1
2D

3
4m

∑
ψ∈Br

b(d′)
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
=
∑
ϕ

2a(m)T (ϕ, χ),

and we obtain (10.4) by using the Hecke relation

m
∑
n|m
n>0

n−
3
2

(
d
n

)
b
(
m2d
n2

)
= aψ(m)b(d).

It follows from (10.4) and (10.3) that

(10.6) 12π1/2D3/4
∑
ψ

b(d′)b(d)Shim(ψ) =
∑
ϕ

T (ϕ, χ)ϕ.

This identity is valid for all discriminants d, d′ where d is fundamental, and dd′ is not a
square. As in the proof of Theorem 1 on p.129 of Biró in [3], one can conclude that Shim(ψ)
is a weight 0 Maass form with eigenvalue 1

2
+ r2 and by (10.2) it is some ϕ. This leads to

12π1/2D3/4
∑
ϕ

∑
Shim(ψ)=ϕ

b(d′)b(d)ϕ =
∑
ϕ

T (ϕ, χ)ϕ.

The linear independence of the Maass forms ϕ now gives the following version of the propo-
sition:

12π1/2D3/4
∑

Shim(ψ)=ϕ

b(d′)b(d) = T (ϕ, χ).

Finally, it is known (see [1, Theorem 1.2]) that ψ 7→ ϕ = Shim(ψ) gives a bijection between
Br and the even Hecke-Maass cusp forms ϕ with Laplace eigenvalue 1

2
+ r2, thus finishing

the proof of Proposition 6.
�

Remarks. Some of our arguments in the proof of Theorem 4 are quite similar in spirit to
those of Biró in [3], who applies the Kuznetsov formula to prove a generalization of the
Katok-Sarnak formula to general levels, but still for only positive discriminants d.

The method employed by Katok-Sarnak to prove their formula is based on a theta corre-
spondence. This idea, which is a refinement of that introduced by Maass [44], was first used
by Siegel to study indefinite quadratic forms. It would be interesting to apply this method
to give our extension.
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Appendix A. An integral

In this appendix we give a proof of the following integral formula which was given in
Lemma 7. For µ ∈ C, t > 0 and Re(s) > 0

(A.1)

∫ π

0

e±i(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ
= G(s, µ)t1/2Js−1/2(t)

where

G(s, µ) = e(±µ/4)(2π)3/2 2−sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)
.

Proof. To prove the lemma we will restrict to the case when the signs in (A.1) are positive
since the formula with negative signs follows by complex conjugation. To prove the Lemma
we will prove that both sides of (A.1) satisfy the same order differential equation and that
the Taylor series coefficients of both sides agree up to order 2.

Let λ = s− 1/2 and g(t) = t1/2Jλ(t). A simple computation shows that

t3/2
[
g′′(t) + (1 + (1/4− λ2)/t2)g(t)

]
= t2J ′′λ(t) + tJ ′λ(t) + (t2 − λ2)Jλ(t) = 0.

Hence we want to show that the left hand side of (A.1) also satisfies

f ′′(t) + (1 + (1/4− λ2)/t2)f(t) = 0.

Factoring out the t-dependent part we need to compute

h′′(t) +

(
1 +

1/4− λ2

t2

)
h(t)

for h(t) = ei(tcosθ)Mµ,λ(2t sin θ).
The fact that the Whittaker function Mµ,λ satisfies the differential equation

M ′′
µ,λ(2t sin θ) =

(
1

4
− µ

2t sin θ
− 1/4− λ2

4t2 sin2 θ

)
Mµ,λ(2t sin θ)

and

h′′(t) = [− cos2 θMµ,λ(2t sin θ) + 4 sin2 θM ′′
µ,λ(2t sin θ)]ei(tcosθ)

+4i cos θ sin θM ′
µ,λ(2t sin θ)ei(tcosθ)

leads to

h′′(t) +
(

1− λ2−1/4
t2

)
h(t) =

(
2 sin2 θ − 2µ sin θ

t

)
h(t) + 2i sin 2θe±i(tcosθ)M ′

µ,λ(2t sin θ).

Using this last equation gives for the integral in (A.1)(
d2

dt2
+

(
1 +

1/4− λ2

t2

))∫ π

0

ei(tcosθ+µθ)Mµ,λ(2t sin θ)
dθ

sin θ

=

∫ π

0

(
2 sin θ − 2µ

t

)
h(t)eiµθdθ + 2i

∫ π

0

2 cos θei(tcosθ)+iµθM ′
µ,λ(2t sin θ)dθ.

Now we use d
dθ
Mµ,λ(2t sin θ) = M ′

µ,λ(2t sin θ)2t cos θ and integration by parts to get

2i

π∫
0

ei(tcosθ+µθ)M ′
µ,λ(2t sin θ)2 cos θdθ = −2i

t

π∫
0

d

dθ

(
ei(tcosθ+µθ)

)
Mµ,λ(2t sin θ)dθ
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as
[
ei(tcosθ+µθ)Mµ,λ(2t sin θ)

]π
0

= 0. Finally, since

−2i

t

π∫
0

d

dθ

(
ei(tcosθ+µθ)

)
Mµ,λ(2t sin θ)dθ =

∫ π

0

(
2µ

t
− 2 sin θ

)
h(t)eiµθdθ

we have (
d2

dt2
+

(
1 +

1/4− λ2

t2

))∫ π

0

ei(tcosθ+µθ)Mµ,λ(2t sin θ)
dθ

sin θ
= 0.

This proves that both sides of (A.1) satisfy the same differential equation.
To prove the Lemma we still need to check the Taylor coefficients. To this end we use the

Taylor expansions of the exponential function and of the Whittaker function, namely

Mµ,s−1/2(x) = e−x/2xs
∞∑
n=0

(s− µ)n
(2s)n

xn

n!
.

Then ∫ π

0

ei(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ

=
∞∑
n=0

∞∑
m=0

(s− µ)n
(2s)nn!

(2t)n+s (it)m

m!

∫ π

0

ei(m+µ)θ(sin θ)n+s−1dθ.

Using the integral formula (see [27, p 511, 3.892(1)])∫ π

0

eiβx sinν−1 xdx =
πeiπβ/2Γ(ν)

Γ(ν+β+1
2

)Γ(ν−β+1
2

)

and (a)n = Γ(a+n)
Γ(a)

gives

(A.2)

∫ π

0

ei(tcosθ+µθ)Mµ,s−1/2(2t sin θ)
dθ

sin θ

= (2π)e(µ/4)
Γ(2s)

Γ(s− µ)

∞∑
`=0

∑
m+n=`

(−1)mΓ(s− µ+ n)Γ(s+ n)

m!n!Γ(2s+ n)Γ(n+s+m+µ+1
2

)Γ(n+s−m−µ+1
2

)
ts+`

On the other hand using the Taylor expansion

t1/2Js−1/2(t) =
∞∑
r=0

(−1)r(t/2)s+2r

r!Γ(s+ 1/2 + r)

gives for the right hand side of (A.1)

(A.3) G(s, µ)t1/2Js−1/2(t) =
(π)3/2e(µ/4)22−2sΓ(2s)

Γ( s+1+µ
2

)Γ( s+1−µ
2

)

∞∑
r=0

(−1)r2−2r

r!Γ(s+ 1/2 + r)
ts+2r

A straightforward calculation shows that the coefficients of ts, ts+1 and ts+2 in (A.2) and
(A.3) match, which is more than what is needed to finish the proof of the Lemma.

�
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