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Abstract. It is known that the 3-manifold SL(2,Z)\ SL(2,R) is diffeomorphic to the
complement of the trefoil knot in S3. E. Ghys showed that the linking number of this
trefoil knot with a modular knot is given by the Rademacher symbol, which is a homog-
enization of the classical Dedekind symbol. The Dedekind symbol arose historically in
the transformation formula of the logarithm of Dedekind’s eta function under SL(2,Z).
In this paper we give a generalization of the Dedekind symbol associated to a fixed mod-
ular knot. This symbol also arises in the transformation formula of a certain modular
function. It can be computed in terms of a special value of a certain Dirichlet series
and satisfies a reciprocity law. The homogenization of this symbol, which generalizes
the Rademacher symbol, gives the linking number between two distinct symmetric links
formed from modular knots.

1. Introduction

Let G = SL(2,R) and Γ = SL(2,Z). The homogeneous space Γ\G is diffeomorphic to
the 3-manifoldM the complement of a trefoil knot in the 3-sphere S3. In [31] Milnor gives
a proof (that he attributes to Quillen) of this remarkable fact. The diagonal geodesic flow
on Γ\G has arithmetically interesting periodic orbits. Suppose that γ =

(
a b
c d

)
∈ Γ is a

primitive hyperbolic element with an eigenvalue ε > 1. Fix a g ∈ G so that g−1γg =(
ε 0
0 1/ε

)
. Then

Γg 7→ Γg

(
et 0
0 e−t

)
where t ∈ [0, log ε] gives a primitive oriented closed orbit in Γ\G which depends only on
the conjugacy class of γ. The image of this orbit in M is a modular knot. Ghys [20]
gave the beautiful result that the linking number of this knot with the trefoil (with some
orientation) is given by the Rademacher symbol

(1.1) Ψ(γ) = Φ(γ)− 3 sign(c(a+ d)).

Here Φ(γ) is the Dedekind symbol defined for all γ =
(
a b
c d

)
∈ Γ by

(1.2) Φ(γ) =

{
b
d

if c = 0
a+d
c
− 12 sign c · s(a, c) if c 6= 0,

where s(a, c) is the Dedekind sum defined for gcd(a, c) = 1, c 6= 0 by

(1.3) s(a, c) =

|c|−1∑
n=1

((n
c

))((na
c

))
.

As usual, ((x)) = 0 if x ∈ Z and otherwise ((x)) = x− bxc − 1/2.
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The Rademacher symbol defined for all γ ∈ Γ by (1.1) is a conjugacy class invariant
[35] and, for γ hyperbolic, it is the homogenization of the Dedekind symbol Φ(γ) [5] [9].
More precisely,

(1.4) Ψ(γ) = lim
n→∞

Φ(γn)

n

In addition to its role here, the Dedekind sum s(a, c) occurs in surprisingly diverse
contexts (see e.g. [4], [35], [25]). Among its many properties we note here only the
famous reciprocity formula for a, c > 0

(1.5) s(a, c)− s(−c, a) = 1
12

(
a2+c2+1

ac

)
− 1

4
.

The Dedekind symbol arose in Dedekind’s [11] evaluation of the transformation law for
the logarithm of

∆(z) = q
∏
m≥1

(1− qm)24

where as usual q = e(z) = e2πiz for z ∈ H. Thus for any γ =
(
a b
c d

)
∈ Γ we have

(1.6) log ∆(γz)− log ∆(z) = 6 log(−(cz + d)2) + 2πiΦ(γ),

where Φ(γ) is given by the formula (1.2) and where we choose arg(−(cz+ d)2) ∈ (−π, π).
Sarnak [36] applied the modular forms connection to study the distribution of modular
knots with a given linking number by means of the trace formula. See also [32]. At the
end of his paper Ghys mentions the problem of interpreting the linking number between
two modular knots.

In this paper we approach this question from the modular point of view by giving an
appropriate generalization of the Dedekind symbol. Perhaps surprisingly this also leads
to a linking number; in this case that of two symmetric links. To outline our method
we first give an equivalent but slightly different approach to the above results about the
Dedekind symbol: it arises as a limiting value of the weight 0 cocycle whose derivative is
12c
cz+d

. This limiting value is an integer and its homogenization is also an integer that gives
the linking number with the trefoil.

To put this into perspective, let P be the space of holomorphic functions f on H such
that f(z)� yα + y−α for some α depending on f . For any integer k ∈ 2Z, γ ∈ Γ acts on
P by the usual slash action defined via f |kγ = (cz + d)−kf(γz). A 1-cocycle of weight k
for Γ with coefficients in P is a map Γ→ P given by γ 7→ r(γ, z) with

r(σγ, z) = r(σ, z)|kγ + r(γ, z)

for all γ, σ ∈ Γ. Now given a 1-cocycle r(γ, z) of weight 2 for Γ there will be a unique
1-cocycle R(γ, z) of weight 0 for Γ such that

(1.7)
d

dz
R(γ, z) = r(γ, z),

the uniqueness following from the fact that H1(Γ,C) = {0}. We call R(γ, z) the primitive
of r(γ, z).

The weight 2 cocycle relevant to the Dedekind sum is given for γ = ( a bc d ) by

r(γ, z) =
12c

cz + d

which, up to a constant, appears in the transformation formula of the weight 2 Eisenstein
series E2(z) (a multiple of ∆′/∆). It follows from (1.6) that the primitive for this cocycle
is

R(γ, z) = 6 log(−(cz + d)2) + 2πiΦ(γ),
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provided c 6= 0, from which we have the limit formula for Φ(γ) in (1.2):

(1.8) Φ(γ) = 1
2π

lim
y→∞

ImR(γ, iy).

As an attempt to generalize the linking number formula of Ghys to two closed orbits,
we will associate to any conjugacy class C of hyperbolic σ ∈ Γ with tr σ > 2 the weight
two 1-cocycle defined for c 6= 0 and γ =

(
a b
c d

)
∈ Γ by

(1.9) rC(γ, z) := εC
∑ 1

z − w
− 1

z − w′
,

where the sum is over the fixed points w′, w of σ ∈ C, satisfying w′ < −d/c < w and

(1.10) εC =

{
1 if σ 6∼ σ−1

2 if σ ∼ σ−1
.

If c = 0 we let rC(γ, z) = 0. We then have

Theorem 1. Let rC(γ, z) be defined as in (1.9). Then rC(γ, z) is a weight 2 cocycle for
Γ.

Let RC(γ, z) be the unique primitive of rC(γ, z). Next we define the Dedekind symbol
for C and any γ ∈ Γ by

(1.11) ΦC(γ) = 2
π

lim
y→∞

ImRC(γ, iy)

Then we have

Theorem 2. ΦC(γ) exists and is an integer.

The homogenization of ΦC possesses a linking number interpretation. Even though
our point of view is two dimensional this is not unexpected as this symbol is closely
related to a Green function. (See (3.2) and the paragraph that follows.) In order to
define the linking number of two cycles in a manifold we must assume that they are each
homologous to 0 and that they don’t intersect. For two orbits as above one can either
fill in the trefoil appropriately to get S3, as is done in [21], or restrict attention to orbits
that are null-homologous as in [12]. It is not immediately clear how modular forms may
enter in the first approach. We follow the second course and use a theorem that goes back
to Birkhoff that shows that the link determined by a primitive hyperbolic element and
its inverse is null-homologous and the linking number of two such links is given by the
number of unsigned intersections (with appropriate multiplicities) of their porojection on
SL2(Z)\H. Based on this and properties of our new symbol we show that for two such
distinct symmetric links, denoted also by Cγ, and Cσ, their linking number Lk(Cσ, Cγ) is
given by the homogenization of ΦCσ . More precisely;

Theorem 3. Let Cσ and Cγ denote also the links associated to two different primitive
conjugacy classes and let

ΨCσ(γ) = lim
n→∞

ΦCσ(γn)

n
.

Then

Lk(Cσ, Cγ) = ΨCσ(γ)

Of course it is desirable to have a simple closed form expression for ΦC(γ) like that for
Φ(γ) in (1.2). While it seems unlikely that such a simple sum can be given in general,
we are able to express ΦC(γ) in terms of a special value of a certain Dirichlet series
that has some properties analogous to the Dedekind sum s(a, c) from (1.3), including the
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reciprocity formula (1.5). That something like this might be possible is indicated by the
fact that for the Dirichlet series

L(s, a/c) =
∑
n≥1

σ(n)e(a
c
n)n−s,

where σ(n) is the usual divisor sum, we have the limit formula (proven below in Corol-
lary 2.2)

(1.12) s(a, c) = 1
2πi

lim
s→1

[
L(s, a

c
) + 1

2s−2

]
,

assuming c > 0.
The Dirichlet series associated to the cocycles of Theorem 1 are given explicitly as

follows. For each m ≥ 0 let jm be the unique modular function holomorphic on H whose
Fourier expansion begins

jm(z) = q−m + O(q)

and define for α ∈ Q the Dirichlet series

(1.13) LC(s, α) =
∑
n≥1

aC(n)e(nα)n−s,

where the coefficient aC(n) is given by the cycle integral

(1.14) aC(m) =
√
D′
∫ σz0

z0

jm(z) dz
Qσ(z)

.

Here σ =
(
a′ b′

c′ d′

)
∈ C is primitive and we set Qσ(z) = c′z2 + (d′ − a′)z − b′ and D′ =

(a′+ d′)2− 4. The path of integration can be taken as any path from z0 to σz0. Note that
the integral is independent of the choice σ ∈ C and z0. In particular, if λ is the eigenvalue
> 1 of σ2 then

aC(0) = log λ,

assuming that trσ > 2.
Our next theorem gives the connection of this Dirichlet series to ΦC(γ).

Theorem 4. Let γ =
(
a b
c d

)
∈ Γ with c 6= 0 and and LC(s, a/c) be the Dirichlet series as

in (1.13). Then LC(s, a/c) converges for Re(s) > 9/4, has a meromorphic continuation
to s > 0 and is holomorphic at s = 1. Moreover

(1.15) ΦC(γ) = − 1
π2 ReLC(1, a/c).

It is interesting that ΦC(γ) depends only on a/c mod 1. Furthermore, we have the
following reciprocity formula, which will be proved in Theorem 4.3:

For zi ∈ C ∪ {∞}, let [z1, z2, z3, z4] = (z1−z3)(z2−z4)
(z1−z2)(z3−z4)

denote the cross ratio. We assume

that (a, c) = 1 and ac 6= 0. Then

(1.16)
1

iπ
[LC(1, a/c)− LC(1,−c/a)] = −2

(
a2+c2+1

ac

)
log λ+ εC

∑
w′<0<w

log[a
c
, w, w′,− c

a
]

Here we interpret the imaginary part of the logarithm of a negative real number to be π.
Note that (1.16) is in some sense analogous to (1.5) and allows for a fast calculation of
LC(1, a/c) and hence also of ΦC(γ).

The rest of the paper is organized as follows. First in section 2 we define the Dirichlet
series associated to a general modular integral, prove its analytic properties and express
the weight 0 cocycle in terms of it. In section 3 we prove Theorem 1 that the function
rC(γ, z) defined by (1.9) is a weight 2 parabolic cocycle for Γ and introduce the modular
integral FC(z) associated to the rational period function rC(γ, z). In the next section we
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give a formula for the unique weight zero cocycle RC(γ, z) in terms of special values
of the Dirichlet series LC(s, a/c) associated to FC(z). In this section we also give two
applications of the cocycle relation for RC(γ, z). The first one gives the reciprocity formula
for LC(1, a/c) where as the second one provides a geometric interpretation for LC(1, a/c)+
LC(1,−d/c). In section 5 we turn our attention to the analog of the Dedekind symbol,
ΦC(γ) and establish that ΦC(γ) is an intersection number, hence an integer. In the last
section we review some properties of Γ\SL2(R) that are used in the paper. To make the
paper self-contained we also give here an elementary demonstration of the important result
of Birkhoff that identifies linking numbers of modular knots with intersection numbers
of closed geodesics. We finish section 6 by proving that homogenization of ΦC gives
the linking number of two symmetric links formed from modular knots. Finally for the
convenience of the reader, in Appendix A we give Ghys’ argument for the identification
of the Rademacher symbol with the linking number.

Duke and Toth thank the FIM at ETH Zurich for generous ongoing support of our joint
research, including this project. We especially thank Marc Burger for numerous inspiring
conversations. We also thank Pierre Dehornoy for providing us a detailed history of
Birkhoff’s theorem. This paper was motivated by Ghys’ beautiful exposition at ICM 2006.
The relation of our results to Ghys’ problem on modular knots was clarified by helpful
exchanges with the referees. We thank them for their careful reading of the manuscript
and for several remarks which further clarified and improved our exposition.

2. Dirichlet series associated to weight 2 cocycles

Recall that a (strongly) parabolic cocycle of weight k for Γ with coefficients in P is a
map Γ→ P given by γ 7→ r(γ, z) with

r(σγ, z) = r(σ, z)|kγ + r(γ, z)

for all γ, σ ∈ Γ which also satisfies r(T, z) ≡ 0.
It follows from a more general result of Knopp [29] that given a parabolic cocycle r(γ, z)

for Γ there is F (z) =
∑

n≥0 ane
2πinz with an � nC for some C > 0 such that ∀γ ∈ Γ,

F |kγ(z) = F (z) + r(γ, z).

The function F (z) is called the modular integral associated to r(γ, z). We now restrict
ourselves to the case of k = 2 and let r(γ, z) be a cocycle of weight 2. We associate to
r(γ, z) and its modular integral a Dirichlet series

L(F, s, a/c) =
∑
n≥1

ane(
an

c
)n−s.

In this section we will first prove a general theorem giving the relation of the special value
of L(F, 1, a/c) to the unique weight 0 cocycle R(γ, z) which satisfies R′(γ, z) = r(γ, z).

This is based on the fact the function G(z) = a0z +
∑

n>0
an

2πin
e2πinz is a primitive of

F (z) and satisfies d
dz

(G(γz)−G(z)) = r(γ, z). This gives a relation between R(γ, z) and
γz∫
z

(F (w)−a0)dw, which in turn expresses limy→∞R(γ, iy) in terms of the “period-integral”∫ i∞

a/c

(F (w) − a0)dw. If F were a weight 2 cusp form, it is well known that this period

integral is expressible in terms of the central value of a twisted Dirichlet series of F . The
next theorem shows the case of modular integrals is similar. More precisely we have the
following theorem.
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Theorem 2.1. Let r(γ, z) ∈ P be a cocycle of weight 2 and F (z) =
∑

n≥0 anq
n be its

modular integral. Assume that an � nα for some α > 0. For γ =
(
a b
c d

)
, let

(2.1) Λ(s, a
c
) = Λ(F, s, a

c
) =

(
2π
c

)−s
Γ(s)

∑
n≥1

ane(
an

c
)n−s

and

(2.2) H(s, a
c
) = Λ(s, a

c
) +

∫ ∞
1

r(γ,−d/c+ it/c)t1−sdt+
a0

s
− a0

2− s
.

Then H(s, a
c
) is entire and satisfies the functional equation H(s, a

c
) = H(2−s, −d

c
). More-

over if

(2.3) R(γ, z) = −i
c
H(1, a

c
) +

∫ z

− d
c

+ i
c

r(γ, w)dw + a0

(
a+d
c

)
Then R(γ, z) is the weight zero cocycle such that R′(γ, z) = r(γ, z).

Proof. Let zt = −d
c

+ i
ct

so that γzt = a
c

+ it
c

and czt + d = i/t. Then

Λ(s, a/c) =

∫ ∞
0

(F (γzt)− a0)ts−1dt

=

∫ 1

0

(F (γzt)− a0)ts−1dt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
−
∫ ∞

1

F (γz1/t)(it)
−2t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
−
∫ ∞

1

[F (z1/t) + r(γ, z1/t)]t
1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

=− a0

s
+

a0

2− s
−
∫ ∞

1

r(γ, z1/t)t
1−sdt

−
∫ ∞

1

(F (z1/t)− a0)t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt

Hence

H(s, a
c
) =Λ(s, a

c
) +

∫ ∞
1

r(γ,−d/c+ it/c)t1−sdt+
a0

s
− a0

2− s

=−
∫ ∞

1

(F (z1/t)− a0)t1−sdt+

∫ ∞
1

(F (γzt)− a0)ts−1dt(2.4)

Both integrals in (2.4) converge for all s ∈ C due to the exponential decay of the
integrands proving the analytic continuation of H(s, a

c
) to the whole complex plane. The

functional equation H(s, a/c) = H(2− s,−d/c) also follows easily from (2.4) since z1/t =
−d
c

+ it
c

and γzt = a
c

+ it
c
.

We next take the limit s→ 1 to get

H(1, a
c
) =− c

i

∫ i∞

z1

(F (z)− a0)dz +
c

i

∫ i∞

γz1

(F (z)− a0)dz

=− c

i

(
G(γz1)−G(z1)− a0

(
a+ d

c

))
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where G(z) = a0z +
∑

n≥1
an

2πin
qn. Since G′(z) = F (z),

G(γz)−G(z) =

∫ z

z1

r(γ, w)dw + Φ(γ)

with Φ(γ) = (G(γz1)−G(z1)).
Hence

R(γ, z) =

∫ z

z1

r(γ, w)dw + (G(γz1)−G(z1)) = G(γz)−G(z)

is a cocycle being the boundary of a function G. This finishes the proof of the theorem
since clearly R′(γ, z) = r(γ, z). �

As an immediate corollary of Theorem 2.1 we prove the limit formula (1.12) for the
classical Dedekind sums defined as in (1.3).

Corollary 2.2. Let s(a, c) be the Dedekind sum and

L(s, a/c) =
∑
n≥1

σ(n)e(a
c
n)n−s,

Then
s(a, c) = 1

2πi
lim
s→1

[
L(s, a

c
) + 1

2s−2

]
.

Proof. We apply Theorem 2.1 in the case of Eisenstein series F (z) = E2(z) = 1 −
24
∑
σ(n)qn and its cocycle r(γ, z) = 6

πi
c

cz+d
, so that L(F, s, a/c) = −24L(s, a/c). For

simplicity assume c > 0. As a primitive of r(γ, z) we choose 6
πi

log
(
cz+d
i

)
. Using (2.2)

and (2.3) we have

R(γ, z) = lim
s→1

[
− 24

2πi
L(s, a/c)− 6

πi

1

s− 1

]
+

6

πi

∫ z

−d/c+i/c

c

cw + d
dw +

(
a+ d

c

)
(2.5)

=
12

2πi
log

cz + d

i
+ Φ(γ)(2.6)

where

Φ(γ) = lim
s→1

[
−12

πi
L(s, a/c)− 6

πi

1

s− 1

]
+

(
a+ d

c

)
The limit formula (1.12) now follows from Dedekind’s formula (1.2) for Φ(γ). �

3. Weight 2 rational cocycles for the modular group

In this section we restrict ourselves to cocycles of weight 2 which are rational functions.
The simplest example is r(γ, z) = 12c/(cz + d) whose poles are in Q. In the case r(γ, z)
is a rational cocycle whose poles are not rational it is known that r(S, z) can be written
as a finite linear combination of functions of the form

(3.1)
√
D
∑
AC<0

signA

Az2 +Bz + C

where Q(X, Y ) = AX2 + BXY + CY 2 runs over quadratic forms in the class C (see
[3, 10, 33]). Rational period functions were introduced by Knopp in the 1970s [27, 28]
who showed using results from [26] that they have modular integrals. His construction
arises from a meromorphic Poincaré series formed out of cocycles and is very difficult
to compute (see also [16]). On the other hand in [14] and [15] certain explicit modular
integrals were constructed whose Fourier coefficients are given by cycle integrals of weakly
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holomorphic forms. These functions are parametrized by classes of indefinite quadratic
forms C and are given by the Fourier expansion

(3.2) FC(z) =
∑
m≥0

aC(m)e(mz).

with

(3.3) aC(m) =
√
D

∫ σz0

z0

jm(z) dz
Q(z)

.

Here jm is the unique modular function whose Fourier expansion has the form q−m+O(q),
Q is any quadratic form in the class C, σ = σQ is a distinguished generator of the group
of automorphs of Q. The value of the integral is independent of the path and the point
z0 ∈ H. In [14] it is shown that the function FC arises from the cycle integral of the Green

function j′(z)
j(z)−j(w)

. The cycle integral of this Green function is modular but with jump

singularities along the geodesic. FC is then the analytic continuation from the connected
component of the cusp. It is holomorphic, but no longer invariant.

The association Q 7→ σQ sets up a bijection between elements of the class C of the
quadratic form Q and the conjugacy class of σQ, which by abuse of notation will also
be denoted by C. Since it is more convenient for us to express our results in terms
of the hyperbolic conjugacy class, we briefly recall this correspondence. If Q(X, Y ) =
AX2 + BXY + CY 2 has discriminant D = B2 − 4AC, and t, u are the smallest positive
solutions of Pell’s equation t2 −Du2 = 4 then

σQ =

(
t+Bu

2
Cu

−Au t−Bu
2

)
.

Conversely if σ =
(
a′ b′

c′ d′

)
∈ C is a primitive hyperbolic element and we set Qσ(z) =

(c′X2 + (d′ − a′)XY − b′Y 2), and Q = −1
u
Qσ with u = gcd(c′, d′ − a′, b′) then σQ = σ. It

follows that with D′ = (a′ + d′)2 − 4 we also have

aC(m) =
√
D′
∫ σz0

z0

jm(z) dz
Qσ(z)

as in (1.14).
As in [14] one can show that aC(m) � m5/4+ε for any ε > 0 and FC satisfies the

transformation property

(3.4) z−2FC(−1/z)− FC(z) = εC
∑

w′Q<0<wQ

1

z − w
− 1

z − w′
.

Note that the rational function on the right hand side above is the same as in (3.1).
Here for Q ∈ C, w′Q < wQ are the two roots of Q(t, 1) = 0. If σ = σQ then these are

also the fixed points w′σ < wσ of σ, and εC is defined as in (1.10).
If C denotes the class of Q or the class of the hyperbolic element σQ we let

(3.5) WC =
{

(w′Q, wQ) : Q ∈ C
}

= {(w′σ, wσ) : σ ∈ C}
the ordered pairs of roots of Q ∈ C or equivalently the fixed points of σ.

For a fixed γ ∈ SL2(Z), we let as in (1.9),

rC(γ, z) := εC
∑ 1

z − w
− 1

z − w′

where the sum is over (w′, w) ∈ WC, satisfying w′ < −d/c < w if c 6= 0 and rC(γ, z) ≡ 0
otherwise.
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Remark 3.1. Although the set WC is infinite, the sum defining rC(γ, z) is finite. To see
this note that in the case that −d/c is an integer the number of terms is the same as
the number of quadratic forms [A,B,C] for which AC < 0. Otherwise consider a form

[A,B,C] satisfying −B−
√
D

2A
< −d

c
< −B+

√
D

2A
, then the form [A, cB, c2C] has discriminant

c2D and its roots are separated by −d, and integer.

For later use we give another description of rC(γ, z). For σ ∈ C a fixed hyperbolic
element, let wσ, w

′
σ be its two fixed points, Γσ = {g ∈ Γ : g−1σg = σ}, and Sσ be the

semicircle whose endpoints are wσ and w′σ. Let ∂H = R ∪ i∞ and H = H ∪ ∂H.
For z1, z2 ∈ H we denote the geodesic segment joining z1 and z2 by `z1,z2 . Let

(3.6) IC(z1, z2) = {α ∈ Γ/Γσ : αSσ intersects `z1,z2}.
and let |IC(z1, z2)| denote the cardinality of IC(z1, z2).
Note that if we define the net of σ, Nσ as the preimage of the closed geodesic associated

to σ in H so that

(3.7) Nσ :=
⋃
g∈Γ

gSσ =
⋃
g∈Γ

Sg−1σg,

then |IC(α, β)| counts the number of intersections of the geodesic segment `α,β with the
semicircles inNσ, the net of σ. MoreoverWC is simply the set of end points of the geodesics
in the net Nσ.

With the above notation we also have

(3.8) rC(γ, z) =
∑

α∈IC(−d/c,i∞)

sign(αwσ − αw′σ)

(
1

z − αwσ
− 1

z − αw′σ

)
Theorem 3.2. For any γ, σ ∈ Γ, with γ =

(
a b
c d

)
(3.9) rC(σγ, z) = rC(σ, γz)(cz + d)−2 + rC(γ, z)

Proof. To ease the notation the dependence on C, which is fixed, is suppressed. As usual
let T and S denote the two generators of Γ corresponding to the translation z → z + 1
and the inversion z → −1/z respectively. First note that r(Tγ, z) = r(γ, z). Hence if we
prove

(3.10) r(Sγ, z) = r(S, γz)(cz + d)−2 + r(γ, z)

the proposition follows by induction on the word length expressing σ in terms of the
generators S and T. Recall that for z, w ∈ C and γ ∈ Γ

(3.11)
w − w′

(γz − w)(γz − w′)
(cz + d)−2 =

γ−1w − γ−1w′

(z − γ−1w)(z − γ−1w′)

Since Sγ =
(
−c −d
a b

)
to prove (3.10), using (3.11) we have to prove that

(3.12)∑
w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w

(
1

z − w
− 1

z − w′

)
=

∑
w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
all sums over pairs (w′, w) ∈ W .

Assume first that ac > 0 so that −d/c < −b/a. On the left hand side of (3.12) we have

(3.13)
∑

−d/c<w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w<−b/a

(
1

z − w
− 1

z − w′

)
On the other hand we can write for the right hand side of (3.12)
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∑
w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
=

(3.14)
∑

w′<0<w<a/c

(
1

z − γ−1w
− 1

z − γ−1w′

)
+

∑
w′<0<a/c<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
Now note that

γ−1z = −d
c
− 1

c2(z − a/c)
and the function x → −d

c
− 1

c2(x−a/c) is monotonic for x ∈ (−∞, a/c) and also for x ∈
(a/c,∞).

It follows that for w′ < 0 < w < a/c,

(3.15) −d/c < γ−1w′ < −b/a < γ−1w

and similarly that for w′ < 0 < a/c < w

(3.16) γ−1w < −d/c < γ−1w′ < −b/a.

Using (3.15) and (3.16) in (3.14) we get that

(3.17)
∑

w′<0<w

(
1

z − γ−1w
− 1

z − γ−1w′

)
=

∑
w′<0<w<a/c

(
1

z − γ−1w
− 1

z − γ−1w′

)
+

∑
w′<0<a/c<w

(
1

z − γ−1w
− 1

z − γ−1w′

)

=
∑

−d/c<w′<−b/a<w

(
1

z − w
− 1

z − w′

)
−

∑
w′<−d/c<w<−b/a

(
1

z − w
− 1

z − w′

)
This proves (3.12) when ac > 0. The case ac < 0 follows in the same manner. The case
ac = 0 can be checked easily since c = 0 corresponds to γ = Tm whereas a = 0 rises from
γ = STm.

This proves Theorem 3.2 and hence also Theorem 1 from the introduction. �

Extending our earlier work we show that

Theorem 3.3. For any hyperbolic conjugacy class C the function FC(z) is holomorphic
on H and satisfies

(3.18) (cz + d)−2FC(γz) = FC(z) + rC(γ, z)

Proof. The claim is trivial for T and has been established for the generator S = ( 0 −1
1 0 ) in

[15]. It is possible to give a proof of the general case along the lines of the proof of (3.4)
given in [15]. However the algebraic proof above already established that the rational
function rC(γ, z) defined in (1.9) is a weight 2 cocycle. Since it agrees with the cocycle
associated to FC(z) for the generators γ = S = ( 0 −1

1 0 ) and T = ( 1 1
0 1 ) the difference is a

1-cocycle that vanishes on both S and T and so must vanish identically. �



MODULAR COCYCLES AND LINKING NUMBERS 11

4. The Dirichlet Series associated to FC(z)

Guided by the example of the Eisenstein series E2(z) and its primitive log ∆(z), it is
natural to study a primitive of a general modular integral, and the associated weight zero
cocycle that appears in its transformation property.

We look at this problem in the case of the function FC(z) and determine the unique
weight 0 primitive RC(γ, z) of the cocycles rC(γ, z) in terms of the special values of the
Dirichlet series L(FC, s, a/c).

The next theorem and its corollary, which are based on Theorem 2.1, proves Theorem 4
from the introduction.

Theorem 4.1. Let FC(z) be the modular integral in (3.2) and LC(s, a/c) := L(FC, s, a/c)
be its associated Dirichlet series. Then LC(s, a/c) converges for Re(s) > 9/4, has a
meromorphic continuation to s > 0 and is holomorphic at s = 1. Moreover if RC(γ, z) is
the unique weight 0 cocycle such that R′C(γ, z) = rC(γ, z) then

(4.1) RC(γ, z) = εC
∑

w<−d
c
<w′

log(z − w)− log(z − w′) + 1
2πi
LC(1, a/c) + aC(0)

(
a+ d

c

)
Proof. The convergence of LC(s, a/c) for Re(s) > 9/4 follows from the bound aC(m) �
m5/4+ε which was proved in Proposition 6 of [14].

To prove (4.1), in Theorem 2.1 we let r(γ, z) = rC(γ, z) = εC
∑

w′<−d/c<w
1

z−w −
1

z−w′ .

As a primitive of rC(γ, z) we choose

εC
∑

w′<−d/c<w

log(z − w)− log(z − w′).

Once again using (2.2) and (2.3) we have

RC(γ, z) =
−i
c

lim
s→1

[(
2π

c

)−s
Γ(s)LC(s, a/c) +

∫ ∞
1

rC(γ,−d/c+ it/c)t1−sdt

]
(4.2)

+

∫ z

z1

rC(γ, w)dw + aC(0)

(
a+ d

c

)
where z1 = −d/c+ i/c.

Contrary to the case of E2, the Dirichlet series LC(s, a/c) has no pole at s = 1. This is
due to the fact that at s = 1 the first integral in (4.2) has the finite value

εC
∑

w′<−d/c<w

log(z1 − w)− log(z1 − w′).

To finish the proof of Theorem 4.1 we combine the two integrals in (4.2) to get

RC(γ, z) =
1

2πi
LC(1, a/c) +

∫ z

∞
rC(γ, z)dw + aC(0)

(
a+ d

c

)(4.3)

=
1

2πi
LC(1, a/c) + εC

∑
w′<−d/c<w

log(z − w)− log(z − w′) + aC(0)

(
a+ d

c

)
.

�

Since aC(0) = log λ is real, the following corollary easily follows from (4.1)
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Corollary 4.2. Let ΦC(γ) = 2
π

limy→∞ ImRC(γ, iy). Then

ΦC(γ) = − 1
π2 ReLC(1, a/c).

In the rest of the section we will give two applications of Theorem 4.1 and the cocycle
relation

RC(σγ, z) = RC(σ, γz) +RC(γ, z).

The first one is an analog of the Dedekind’s reciprocity formula (1.5) for the Dirichlet
series LC(1, a/c). More precisely we have

Theorem 4.3. For zi ∈ C∪ {∞}, let [z1, z2, z3, z4] = (z1−z3)(z2−z4)
(z1−z2)(z3−z4)

denote the cross ratio.

We assume that (a, c) = 1 and ac 6= 0. Then

(4.4)
1

iπ
[LC(1, a/c)− LC(1,−c/a)] = −2

(
a2+c2+1

ac

)
log λ+ εC

∑
w′<0<w

log[a
c
, w, w′,− c

a
]

Here we interpret the imaginary part of the logarithm of a negative real number to be π.

Proof. Let γ = ( a bc d ) and S = ( 0 −1
1 0 ) . From (4.3) we have

RC(γ, z) =
1

2πi
LC(1, a/c) +

∫ z

i∞
rC(γ, w)dw + aC(0)

(
a+ d

c

)
Since RC(γ, z) is a cocycle it satisfies

(4.5) RC(Sγ, z) = RC(S, γz) +RC(γ, z).

Hence

RC(Sγ, z) =
1

2πi
LC(1,−c/a) +

∫ z

i∞
rC(Sγ,w)dw + aC(0)

(
b− c
a

)
(4.6)

=
1

2πi
LC(1, 0) +

∫ γz

i∞
rC(S,w)dw

+
1

2πi
LC(1, a/c) +

∫ z

i∞
rC(γ, w)dw + aC(0)

(
a+ d

c

)
We let z → i∞ to get

1

2πi
[LC(1,−c/a)− LC(1, a/c)] =aC(0)

(
a2 + c2 + 1

ac

)
(4.7)

+
1

2πi
LC(1, 0) +

∫ a/c

i∞
rC(S,w)dw(4.8)

Hence

(4.9)
1

2πi
[LC(1,−c/a)− LC(1, a/c)]

= aC(0)

(
a2 + c2 + 1

ac

)
+

1

2πi
LC(1, 0)

+ εC
∑

w′<0<w

log(
a

c
− w)− log(

a

c
− w′)
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Now replacing the roles of −c with a and a with c gives

(4.10)
1

2πi
[LC(1, a/c)− LC(1,−a/c)]

= −aC(0)

(
a2 + c2 + 1

ac

)
+

1

2πi
LC(1, 0)

+ εC
∑

w′<0<w

log(
−c
a
− w)− log(

−c
a
− w′)

Finally noting that aC(0) = log λ and taking the difference of the last two equations prove
(4.4). �

As a second application we have the following geometric interpretation of the special
value of the Dirichlet series LC(s, a/c).

Theorem 4.4. Let LC(s, a/c) be the Dirichlet series associated to FC(z). Then

1

2πi
[LC(1, a/c) + LC(1,−d/c)](4.11)

= −εC
∑

w′<−d
c
<w

log(−d
c
− w)− log(−d

c
− w′)(4.12)

=− εC

2 log

∣∣∣∣∣∣
∏

w′<−d
c
<w

tan

(
θw
2

)∣∣∣∣∣∣+ iπ
∑

w′<−d
c
<w

1

(4.13)

where the sum and the product runs over elements (w′, w) ∈ WC that are separated by −d
c
.

θw is the angle of intersection of the vertical line (−d/c,−d/c + i∞) with the semicircle
with end points w′ and w. Here θw is the angle containing the line segment connecting
this intersection to w′.

Proof. Let γ = ( a bc d ) . Using the cocycle relation 0 = RC(γ, γ
−1z)+RC(γ

−1, z), the formula
(4.1) and taking the limit as z → i∞ leads to the first equality (4.12). Since −d/c, w, w′
all lie on the real axis, the argument of each logarithm term in the sum in (4.12) is π.
Here we interpret the imaginary part of the logarithm of a negative real number to be π.
This proves that the imaginary part of (4.12) is indeed given by π

∑
w′<−d

c
<w 1.

The fact that the real part (4.12) is given as in (4.13) follows easily using elementary
geometry. (See also [6] p.116.)

�

5. Intersection numbers

In this section we restrict ourselves to the imaginary part of RC(γ, z). Recall from (4.2)
that

ΦC(γ) = 2
π

lim
y→∞

ImRC(γ, iy) = − 1
π2 ReLC(1, a/c).

Our first goal is to prove that ΦC(γ) is an intersection number, hence an integer.
We start by noting that Theorem 4.4 gives

ΦC(γ) + ΦC(γ
−1) = 2

∑
w′<−d

c
<w

1

and hence as a simple corollary we have
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Proposition 5.1. Let C be the conjugacy class of a hyperbolic element σ, γ = ( a bc d )
another hyperbolic element in Γ and IC(γ

−1(i∞), i∞) = IC(−d/c, i∞) be as defined in
(3.6). Then

ΦC(γ) + ΦC(γ
−1) = −2|IC(−d/c, i∞)|

The next result shows that ΦC(γ) is already an integer.

Theorem 5.2. Let γ ∈ Γ be a hyperbolic element. Then ΦC(γ) = −|IC(−d/c, i∞)| and
hence ΦC(γ) ∈ Z.

Proof. For γ1 =
(
a1 b1
c1 d1

)
, γ2 =

(
a2 b2
c2 d2

)
, two not necessarily hyperbolic elements of Γ, let

δC(γ1, γ2) = ΦC(γ1γ2)− ΦC(γ1)− ΦC(γ2).

Note that IC(−d1/c1, i∞) = IC(γ
−1
1 i∞, i∞). We will show that

(5.1) δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ−1

2 i∞, i∞)| − |IC((γ1γ2)−1i∞, i∞)|.
This will prove the theorem since this then γ 7→ ΦC(γ) + |IC(γ−1i∞, i∞)| is a homomor-
phism of Γ into C and so is identically 0.

First note that if either γ1 or γ2 is T n for some n ∈ Z then δC(γ1, γ2) = 0 and the
identity holds trivially. So we assume that γ1, γ2 are not parabolic.

To prove (5.1) note that from definition (1.11) of ΦC(γ) and the cocycle property we
have

δC(γ1, γ2) =
2εC
π

lim
y→∞

Im(RC(γ1, γ2iy)−RC(γ1, iy))

which by (4.3) equals

2εC
π

lim
y→∞

[∑
arg

(
γ2iy − w
γ2iy − w′

)
−
∑

arg

(
iy − w
iy − w′

)]
the sums are over (w′, w) ∈ WC, w′ < −d1/c1 < w . The second sum in the limit clearly
goes to zero. Since γ2iy → a2/c2 when y →∞
(5.2) δC(γ1, γ2) = 2εCn(γ−1

1 , γ2)

where n(γ−1
1 , γ2) is the number of (w′, w) ∈ WC, for which w′ < −d1/c1, a2/c2 < w. By

the definition (3.6) we have

εCn(γ−1
1 , γ2) = |IC(γ−1

1 i∞, i∞) ∩ IC(γ2i∞, i∞)|
Any geodesic that does not go through the vertices of an ideal hyperbolic triangle

intersects exactly two sides of the triangle if it intersects the triangle at all. Applying this
fact to the ideal hyperbolic triangle with vertices i∞, a2/c2 = γ2i∞ and −d1/c1 = γ−1

1 i∞
shows that the sets

IC(γ
−1
1 i∞, i∞) ∩ IC(γ2i∞, i∞),

IC(γ
−1
1 i∞, i∞) ∩ IC(γ2i∞, γ−1

1 i∞) and

IC(γ2i∞, γ−1
1 i∞) ∩ IC(γ2i∞, i∞)

are mutually disjoint. A standard inclusion exclusion argument then gives

δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ2i∞, i∞)| − |IC(γ−1

1 i∞, γ2i∞)|
Finally we use that |IC(z2, z1)| = |IC(z1, z2)| = |IC(γz1, γz2)| for all γ ∈ Γ to establish

that

(5.3) δC(γ1, γ2) = |IC(γ−1
1 i∞, i∞)|+ |IC(γ−1

2 i∞, i∞)| − |IC(γ−1
2 γ−1

1 i∞, i∞)|.
�
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Note that formula (5.2) for the co-boundary δC of ΦC allows one to calculate ΦC(γ)
successively by writing γ in terms of some set of generators of the group Γ. We give an
alternative approach for establishing that ΦC takes integer values. This method does not
identify ΦC geometrically but also gives a fast algorithm to compute it.

Note that since LC(1, a/c) depends only on a/c mod 1, so does ΦC(γ) and hence for
c 6= 0 we can write ΦC(a/c) = ΦC(γ). The following is a simple corollary of Theorem 4.4
and Corollary 4.2.

Lemma 5.3. Let S = ( 0 −1
1 0 ) . Then

ΦC(0) = ΦC(S) = −εC
∑

w′<0<w

1

The following theorem is an analogue of Dedekind’s reciprocity formula. It allows for,
via Euclid’s algorithm, a quick computation of ΦC(γ).

Theorem 5.4. Let C be a hyperbolic conjugacy class and γ = ( a bc d ). For ac 6= 0 we have

(5.4) ΦC(a/c) = ΦC(−c/a) +
εC
2

∑
w′<0<w

(1− sign[a
c
, w, w′,− c

a
])

Proof. The formula follows from Theorem 4.3 and Corollary 4.2. Note that our definition
of the argument gives Im log x = 0 for a positive real number x, and Im log x = π for a
negative real number x. �

Remark 5.5. Note that

1

2

∑
w′<0<w

(1− sign[a
c
, w, w′,− c

a
])

counts those w′ < 0 < w for which exactly one of {a
c
,− c

a
} is in the open interval (−w′, w).

Therefore once all the conjugates of σ ∈ C whose fixed points are separated by 0 are listed
(an easy task, see Remark 3.1) the right hand side in the above theorem is an easily
computable elementary function of a

c
. This in turn allows a fast calculation of ΦC(a/c)

in view of ΦC(
a
c
) = ΦC(

a+nc
c

) for any n ∈ Z. Since ΦC(0) is an integer, it also establishes
that ΦC(

a
c
) is an integer.

We finish this section by collecting some results about the hyperbolic geometry that will
be needed to prove Theorem 3 from the introduction, In particular it will be important
for us to compare |ICσ(γ−1z0, z0)| and |ICσ(γ−1i∞, i∞)|. We start with a simple lemma
about hyperbolic quadrangles. Recall that for z1, z2 ∈ H the geodesic segment connecting
z1 and z2 is denoted by `z1,z2 .

Lemma 5.6. Let z1, z2 ∈ H and x1, x2 ∈ ∂H. If ` is a geodesic that intersects neither the
geodesic half line `z1,x1 nor the geodesic half line `z2,x2 then ` intersects either both `x1,x2
and `z1,z2 or it intersects neither of them.

Proof. By applying a hyperbolic isometry if necessary we may assume that ` = `0,i∞. The
geodesic arc from z1 to x1 does not intersect ` = (0, i∞), so x1 and Re(z1) have the same
sign. Similarly the geodesic arc from z2 to x2 does not intersect (0, i∞), so x2 and Re(z2)
have the same sign. Finally the arc from z1 to z2 intersects (0, i∞) if and only if their
real parts have opposite signs. This proves that ` either intersects both the arc from z1

to z2 and the geodesic from x1 to x2 or that intersects neither of them.
�
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Proposition 5.7. Let σ, γ be hyperbolic elements, and fix a point z0 ∈ Sγ. Then

(5.5)
∣∣ |ICσ(γ−1z0, z0)| − |ICσ(γ−1i∞, i∞)|

∣∣ ≤ 2|ICσ(z0, i∞)|.

Note that we do not assume γ to be primitive.

Proof. Let γ = ( a bc d ). Consider the geodesic circular arc L1 connecting γ−1z0 to γ−1i∞ =
−d/c and the half-line L2 connecting z0 to i∞. Assume that αSσ intersects neither L1

nor L2. Then it follows from Lemma 5.6 that either αSσ intersects both the arc from z0

to γ−1z0 and the line from −d/c to i∞ or αSσ intersects neither of them.
Hence we have shown that the symmetric difference of the sets IC(−d/c, i∞) and

IC(z0, γ
−1z0) is a subset of IC(z0, i∞) ∪ IC(−d/c, γ−1z0);

IC(−d/c, i∞)4IC(z0, γ
−1z0) ⊂ IC(z0, i∞) ∪ IC(−d/c, γ−1z0, )

Since

| |IC(z0, γ
−1z0)| − |IC(−d/c, i∞)| | ≤ |IC(−d/c, i∞)4IC(z0, γ

−1z0)|

and IC(z0, i∞) and IC(−d/c, γ−1z0) have the same cardinality |ICσ(z0, i∞)| this proves the
proposition.

�

6. Linking numbers in Γ\SL2(R)

In this section we prove Theorem 3. This is based on results of the previous section
and a theorem of Birkhoff [7].

If γ is a primitive hyperbolic element such that tr γ > 2 there is an associated closed
periodic orbit of the geodesic flow whose linking number with the trefoil is given by the
Rademacher symbol (see [4], [5],[20]).

Ψ(γ) = Φ(γ)− 3 sign c(a+ d) = lim
n→∞

Φ(γn)

n
.

For the convenience of the reader we sketch Ghys’ argument for the identification of
the Rademacher symbol with the linking number with the trefoil in the Appendix.

Our goal in this section is to provide the background for a similar interpretation for the
homogenization of ΦC(γ) of Theorem 3,

ΨC(γ) := lim
n→∞

ΦC(γ
n)

n

as a linking number.
As alluded above this is based on Theorem 6.3, originally due to Birkhoff, (cf. [7])

which relates this linking number to the geometry of the net Nσ of a primitive hyperbolic
element σ ∈ C. Birkhoff’s theorem [7, Section 27] which proves the existence of a certain
surface bounding symmetric curves which is a surface of section of the geodesic flow,
is more general than what is needed for us. This theorem was popularized by Fried
[17] who named them Birkhoff sections. The theorem holds in even more generality
as shown in [1, 2, 22, 24]. As is clear from this rich history there are a number of
proofs of this theorem especially for compact hyperbolic surfaces (see e.g. [8] and the
references therein, also [12] and esp. section 3 of [13]). For the convenience of the reader
we also give one which is self contained and very elementary; it is based on a simple
computation of the sign of the triple product of three vectors in the Lie-algebra sl2(R),
(Proposition 6.2). The relation to the invariant ΨC(γ) follows from a careful book-keeping
of potential multiplicities (Lemmas 6.5, 6.6, and 6.7).
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To make this explicit note that if γ ∈ Γ has tr γ > 2 and fixed points w′ < w then both
γ and γ−1 are diagonalized by M = 1√

w−w′ (
w w′
1 1 ). By replacing γ with γ−1 if necessary

we may assume that

γM = M

(
ε 0
0 1/ε

)
where ε > 1. When a+ d > 2 this is equivalent to sign c > 0. Both

γ̃+(t) = Mφ(t) and γ̃−(t) = MSφ(t)

are periodic orbits of the geodesic flow g 7→ gφ(t) on Γ\SL2(R). Here φ(t) =
(
et 0
0 e−t

)
.

We now move on to interpret linking numbers combinatorially as intersection numbers.
Let [γ̃+] and [γ̃−] be the homology class of the curves t 7→ Mφ(t), t ∈ [0, log ε] and
t 7→ MSφ(t), t ∈ [0, log ε], respectively. Note that γ̃+(t)i, t ∈ [0 log ε] maps into a
geodesic arc in H connecting Mi to γMi on the semicircle with endpoints w and w′. On
the quotient space Γ\H this is a closed geodesic, and γ̃−(t)i simply travels this closed
geodesic backwards. The natural Seifert surface bounding [γ̃+] and [γ̃−] is just formed by
the collection of unit tangent vectors rotating counterclockwise continuously through 180
degrees from the one orientation of the circle to the other. This is the geometric content
of the following

Lemma 6.1. [γ̃+] + [γ̃−] is null-homologous in Γ\SL2(R).

Proof. In fact we even have that Mφ(t) and MSφ(−t) are homotopic via

h : [0, log ε]× [0, π/2] → G

(t, θ) 7→Mφ(t)k(θ)

where as usual

k(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

�

Note the image of h is an immersed sub-manifold Xγ in the quotient space Γ\SL2(R).
This follows readily from the fact that φ(t1)k(θ1) = φ(t2)k(θ2), for θi ∈ [0, π/2] implies
t1 = t2, θ1 = θ2 and so the image of h when viewed in SL2(R) is an embedded submanifold.

Now assume that Cσ and Cγ are two (different) primitive conjugacy classes. The above
construction of the null-homologous chains associated to σ, γ have a well-defined linking
number [19], [30] which we denote by Lk(Cσ, Cγ). (This is well defined as the chains
themselves depend only on the conjugacy class.) A geometric interpretation of this linking
number between the trivial homology class [γ̃+] + [γ̃−] and [σ̃+] + [σ̃−] is given as the
number of signed intersections of Xγ (the surface defined above by the homotopy map h)
and σ̃+(s) and σ̃−(s), s ∈ [0, log λ], the closed orbits associated to σ. The geodesic flow
has the interesting property that all intersections of Xγ and σ̃+ have the same sign.

We fix the sign by fixing an orientation as follows. We think of SL2(R) as a subspace
of the space of real 2 × 2 matrices. The tangent space at the identity is the set of 2 × 2
real matrices with trace 0 where we fix the basis (see [23] pg 27)

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
and we say the orientation of three tangent vectors tangent to SL2(R) at g is positive,
i.e. three matrices v1, v2, v3 are positively oriented if g−1v1, g

−1v2, g
−1v3, are positively

oriented at the identity. We then have the following proposition.
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Proposition 6.2. Let N = 1√
wσ−w′σ

(
wσ w′σ
1 1

)
, where wσ, w

′
σ are the two fixed points of σ.

Assume that the trajectory Nφ(s) is disjoint from [γ̃+] + [γ̃−] and intersects Xγ̃ at a point
g. Then the sign of the intersection is negative.

Proof. Let
g = Mφ(t)k(θ) = Nφ(s).

To compute the sign of the intersection we have to compute the determinant of the
coefficient matrix of the tangent vectors

g−1Mφ′(t)k(θ), g−1Mφ(t)κ′(θ) and g−1Nφ′(s).

Since φ′(t) = φ(t)h and κ′(θ) = κ(θ)(y − x) we have

g−1Mφ′(t)k(θ) = k(−θ)hk(θ),

g−1Mφ(t)k′(θ) = (y − x),

and

g−1Nφ′(s) = h.

Since k(−θ) ( 1 0
0 −1 ) k(θ) =

(
cos 2θ − sin 2θ
− sin 2θ − cos 2θ

)
= − sin 2θx − sin 2θy + cos 2θh the value of

the determinant we need to compute is −2 sin 2θ, always negative since θ ∈ (0, π/2).
�

An immediate consequence of Proposition 6.2 is the following theorem.

Theorem 6.3. Let M = 1√
wγ−w′γ

(
wγ w′γ
1 1

)
, N = 1√

wσ−w′σ

(
wσ w′σ
1 1

)
, with {wγ, w′γ} and

{wσ, w′σ}, the fixed points of γ and σ respectively so that

γM = M

(
ε 0
0 1/ε

)
, σN = N

(
λ 0
0 1/λ

)
and let

(6.1) A = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [0, π/2) : ∃α ∈ Γ,Mφ(t)k(θ) = αNφ(s)}
and

(6.2) B = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [0, π/2) : ∃α ∈ Γ,Mφ(t)k(θ) = αNSφ(s)}.
For the linking number we have

Lk(Cσ, Cγ) = −|A| − |B|.

Proof. By definition each point in the set A corresponds to an intersection of the surface
Xγ with the curve [σ̃+] and similarly points in B correspond to intersections of Xγ with
the curve [σ̃−]. Hence for the linking number, using Proposition 6.2, we have

Lk(Cσ, Cγ) = −|A| − |B|
which proves Theorem 6.3. �

Note that it is natural to interpret (see for example [12]) the elements of A as values
{(s, t) ∈ [0, log λ)× [0, log ε) : Mφ(t)i = Nφ(s)i ∈ Γ\H}, i.e. the number of intersections
of the closed geodesics in Γ\H associated to γ, σ, and similarly for B, since each time the
underlying path of σ in H crosses the underlying curve of γ, precisely one of its two lifts
will intersect the Seifert surface. The proper interpretation of this geometric idea requires
care due to both multiplicities arising from self-intersections and the presence of elliptic



MODULAR COCYCLES AND LINKING NUMBERS 19

elements in Γ = SL2(Z). To avoid these complications we go directly to |IC(z0, γz0)|
which counts the group elements in IC(z0, γz0). In this notation Birkhoff’s theorem takes
the following form:

Theorem 6.4 (Birkhoff). If we let z0 = Mi ∈ Sγ then

Lk(Cσ, Cγ) = −|ICσ(z0, γz0)|

The theorem will follow from a series lemmas relating |A|+ |B| to |ICσ(z0, γz0)|.

Lemma 6.5. For A,B as in (6.1), (6.2) we have A ∩B = ∅.

Proof. Recall that each point in A, (resp in B) corresponds to an intersection of Xγ with
the curve σ̃+ ( resp σ̃−).

Assume that (s, t, θ) ∈ A∩B with Mφ(t)k(θ) = αNφ(s) and Mφ(t)k(θ) = βNSφ(s) for
some α, β ∈ Γ. It follows that β−1α = NSN−1. Recall that N = 1√

wσ−w′σ

(
wσ w′σ
1 1

)
, where

wσ, w
′
σ are the two fixed points of σ. Now a simple matrix multiplication shows that

the matrix NSN−1 cannot have integer entries, contradicting β−1α ∈ SL(2,Z). Hence
A ∩B = ∅. �

Lemma 6.6. There is a bijection between B in (6.2) and

B′ = {(s, t, θ) ∈ [0, log λ)× [0, log ε)× [π/2, π) : ∃α ∈ Γ,Mφ(t)k(θ) = αNφ(s)}
given by for s 6= 0

(s, t, θ) 7→ (log λ− s, t, θ + π/2).

and for s = 0 by
(0, t, θ) 7→ (0, t, θ + π/2)

Proof. Assume (s, t, θ) ∈ B. The case s = 0 is trivial and otherwise ∃α ∈ Γ such that

Mφ(t)k(θ) = αNSφ(s).

Since σN = Nφ(log λ)
Mφ(t)k(θ) = ασ−1Nφ(log λ− s)S.

This gives the claim since S−1 = −k(π/2). �

Lemma 6.7. There is a bijection between the set A ∪ B′ and ICσ(z0, γz0) and hence
|A ∪B′| = |IC(z0, γz0)|.

Proof. We define a map

f : A ∪B′ → Γ/Γσ(6.3)

(s, t, θ) 7→ αΓσ.(6.4)

Here α is the unique element in Γ given by

(6.5) Mφ(t)k(θ)φ(−s)N−1 = α.

To see that f is injective let f(s, t, θ) = f(s′, t′, θ′) with Mφ(t)k(θ)φ(−s)N−1 = α and
Mφ(t′)k(θ′)φ(−s′)N−1 = β. Then ασk = β for some k ∈ Z. Hence

φ(t)k(θ)φ(−s)N−1σkN = φ(t′)k(θ′)φ(−s′).
Since N−1σkN = φ(k log λ) we have

φ(t− t′)k(θ)φ(k log λ− s+ s′) = k(θ′).
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Now a simple matrix multiplication shows that this equality holds only if (s, t, θ) =
(s′, t′, θ′), proving the injectivity of f .

To show that f(s, t, θ) ∈ IC(z0, γz0), let (s, t, θ), α be such that

Mφ(t)k(θ) = αNφ(s).

Now Mφ(t)i is in Aγ, the geodesic arc connecting z0 = Mi and γz0 where as Nφ(s)i is
in Sσ and hence αΓσ ∈ IC(z0, γz0).

Finally to see that this map is onto ICσ(z0, γz0), let α be such that αΓσ ∈ ICσ(z0, γz0)
so that there is τ ∈ Sσ for which ατ ∈ Aγ, and so ατ = Mφ(t)i for some t ∈ [0, log ε), and
also τ = σkNφ(s)i for some s ∈ [0, log λ). Since the stabilizer of i in SL2(R) is SO(2),
there exists θ ∈ [0, 2π), such that

Mφ(t)k(θ) = ασkNφ(s).

Replacing α by −α if necessary we may assume that θ ∈ [0, π) proving surjectivity.
�

Proof of the Theorem 6.4.

By Birkhoff’s theorem for the linking number we have

Lk(Cσ, Cγ) = −|A| − |B|.

By Lemma 6.5 , A ∩ B = ∅ and we have Lk(Cσ, Cγ) = −|A ∪ B|. Finally by Lemma 6.6
and Lemma 6.7, |A ∪B| = |ICσ(z0, γz0)|.

This finishes the proof of the Theorem 6.4. �

We are now ready to prove

Theorem 6.8. Let Cσ and Cγ be different primitive conjugacy classes. Then

Lk(Cσ, Cγ) = ΨCσ(γ)

Proof. By Theorem 6.4 we have

Lk(Cσ, Cγn) = −|IC(z0, γ
nz0)|

and by Theorem 5.2

ΦC(γ
n) = −|IC(γ−ni∞, i∞)|

Clearly IC(z0, γ
−nz0) = IC(z0, γ

nz0) and hence

|nLk(Cσ, Cγ)− ΦCσ(γn)| = | |IC(z0, γ
−nz0)| − |IC(γ−ni∞, i∞)| |

Now using Proposition 5.7 we have

|Lk(Cσ, Cγ)−
ΦCσ(γn)

n
| ≤ 2|IC(z0, i∞)|

n

Since |IC(z0, i∞)| is independent of n this proves

Lk(Cσ, Cγ) = lim
n→∞

ΦCσ(γn)

n
= ΨCσ(γ).

�
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Appendix A. Ghys’ theorem

We sketch Ghys’ argument for the identification of the Rademacher symbol with the
linking number. Let

∆(z) = q
∏
m≥1

(1− qm)24

and define ∆̃ : SL2(R)→ C by

∆̃(g) = ∆(gi)j12(g, i)

where for g = ( a bc d ) ∈ SL2(R)

j12(g, z) = (cz + d)−12.

Similar lifts Ẽ4, Ẽ6 of the classical Eisenstein series E4 and E6 give an embedding of
Γ\SL2(R) into C2. The 3-manifold {(Ẽ4(g), Ẽ6(g) : g ∈ SL2(R)} is disjoint from the
hypersurface V = {(z, w) : z3 = w2} and is easily seen to be homeomorphic to the
complement of V ∩ S3, the trefoil knot, in S3. Let γ ∈ SL2(R) be hyperbolic, with
tr γ > 2. We are looking for the linking number of the closed periodic orbit γ̃+ with

the trefoil (after the above identification). Since Ẽ4
3 − Ẽ6

2
= ∆̃, a general topological

argument shows that this linking number is the same as the winding number of ∆̃(γ̃+(t))
around 0. This in turn can be computed as follows

2πi ind(∆̃(γ̃+(t)), 0) =

∫
γ̃+

d∆̃

∆̃
=

∫
γ̃+

d∆

∆
+

∫
γ̃+

dj12

j12

.

The first integral can be evaluated from the transformation formula of log ∆ from
γ̃+(0)i = Mi = z0 to γ̃+(log ε)i = γz0

log ∆(γz0)− log ∆(z0) = 12 log

(
cz0 + d

i sign c

)
+ 2πiΦ(γ)

with Φ(γ) as in (1.2). (See [35] equation (60) on page 49.)
Similarly the value of the second integral is 12 log(cz0 + d) and the linking number of

the closed orbit of a hyperbolic γ is given by

6

πi

(
log

(
cz0 + d

i sign c

)
− log(cz0 + d)

)
+ Φ(γ)

Finally for Im z0 > 0

6

πi

(
log

(
cz0 + d

i sign c

)
− log(cz0 + d)

)
= −3 sign c

leading to Ghys’ theorem.
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