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Abstract. We give some new applications of Kronecker’s first limit formula to real qua-
dratic fields. In particular, we give a surprising geometrical relationship between the CM
points associated to two imaginary quadratic fields with discriminants d and d′ and certain
winding number functions coming from the closed geodesics associated to the real quadratic
field of discriminant d′d.

1. Introduction

The Kronecker limit formulas have been studied intensively and have inspired several
generations of mathematicians since Kronecker’s paper [30] of 1863. Weil devoted a book
[52] to their historical development. Siegel’s lucid treatment [44] makes their significance in
number theory, especially in the study of L-functions, apparent. They directly influenced
works by Weber [50], Lerch [34], Landau [32], Hecke [21], Herglotz [25], Chowla and Selberg
[7], Ramachandra [37], Siegel [45], Stark [47], Ray and Singer [38], Zagier [54] and Shintani
[42], to list chronologically a dozen prominent ones published at least forty years ago. The
last forty years has mostly seen a (substantial) development of various generalizations of
the classical limit formulas and the application of these generalizations in number theory,
geometry and physics.

In this paper we confine our attention almost exclusively to results closely connected to
Kronecker’s classical first limit formula (KLF for short). After stating KLF, we will illustrate
its application in some very special (and pretty) cases. Then we will sketch its proof and
recall its relation to certain L functions for quadratic fields. This build-up is to motivate and
place into context some new results we will present in the real quadratic case. In a sense this
paper is a companion piece to [15], where other new results on geometric invariants associated
to real quadratic fields can be found.

Acknowledgement: Duke and Tóth are grateful to FIM of ETH Zürich for its generous con-
tinued support of our joint research.

2. The first limit formula

Kronecker’s first limit formula is a two dimensional version of a familiar one for the Riemann
zeta function ζ(s) =

∑∞
n=1 n

−s at s = 1:

(1) lim
s→1+

(
ζ(s)− 1

s−1

)
= γ0,

Date: March 30, 2018.
Duke’s research on this paper was supported by NSF grant DMS 1701638, the Simons Foundation and the

Mathematisches Forschungsinstitut Oberwolfach.
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where γ0 = 0.577216 . . . is Euler’s constant. Let

Q(x, y) = ax2 + bxy + cy2

be a real binary quadratic form with discriminant D = b2−4ac. In case Q is positive definite,
that is a > 0 and D < 0, Kronecker obtained a limit formula analogous to (1) for the zeta
function

(2) ζQ(s) =
∑′

m,n∈Z

Q(m,n)−s.

Here the prime indicates that (0, 0) is omitted from the sum. Since Q is positive definite, the
sum defining ζQ(s) converges absolutely for Re s > 1, yet it blows up at s = 1, as does the
Riemann zeta function. Kronecker’s limit formula has the same shape as (1), except that on
the right hand side we have a term that depends on Q in a non-trivial way. This dependence
is necessarily modular in that ζQ(s) = ζγQ(s) for γ ∈ Γ = PSL(2,Z) with γQ arising from Q
by a unimodular change of variables. When the form Q is represented by

zQ =
−b+

√
D

2a
∈ H,

H the upper half-plane, it can be checked that zγ−1Q = γzQ where γ ∈ Γ acts as usual on
z ∈ H as a linear fractional map. The modular function that appears is

(3) H(z) = − log(y|η(z)|4)
(H for height) where, for q = e(z) = exp(2πiz),

η(z) = q1/24
∏
m≥1

(1− qm)

is the Dedekind eta function. This H is a counterpart to the usual modular j-function

j(z) = q−1 + 744 + 196844q + · · · .
Although it is non-holomorphic, H is bi-harmonic with respect to the hyperbolic Laplacian.

Figure 1. The function H(z)

Theorem 1 (KLF). For a > 0 and D < 0 we have

(4) lim
s→1+

(
|D|

s
2 ζQ(s)− 2π

s−1

)
= 2π

(
2γ0 − log 4 +H(zQ)

)
,

where γ0 is Euler’s constant.
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Some examples

Before describing a proof, here are some attractive classical applications of KLF that do
not require a lot of preparation to appreciate. All of these examples involve an interplay
between ζQ(s) and Dirichlet L-functions.

Consider for a prime q ≡ 3 (mod 4) the positive definite integral quadratic form

Q(x, y) = x2 − xy + q+1
4
y2

whose discriminant is D = −q. For a positive integer n plot the ellipse in R2 determined by
the equation Q(x, y) = n. It is a lovely fact that for some q we have a simple exact formula

Figure 2. Ellipses x2 − xy + q+1
4
y2 = n for q = 7, 23, 31 and n = 2
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as a function of n for the number rq(n) of lattice points in Z2 that lie on the ellipse:

(5) rq(n) = rq(1)
∑
d|n

(
d
q

)
,

where
( ·
q

)
is the Legendre symbol. Since the nineteenth century it has been known that

formula (5) holds for all n when

q ∈ {3, 7, 11, 19, 43, 67, 163}.

Unfortunately, (5) does not work for all q. It obviously does for n = 1. For n = 2 the right
hand side of formula (5) gives the value 4 when q ≡ 7 (mod 8) and Figure 2 illustrates that
this works when q = 7 since there are 4 lattice points on the outermost ellipse, which is
given by x2 − xy + 2y2 = 2. However, it fails for any larger q ≡ 7 (mod 8) as the resulting
narrowing ellipses (illustrated for q = 23 and 31) cannot possibly contain any lattice points.
It is instructive to try to extend this method to show that for any fixed q ≡ 3 (mod 8) other
than q = 3, 11, 19, 43, 67, 163, formula (5) must fail for some integer n > 0.

For fixed q ∈ {3, 7, 11, 19, 43, 67, 163} we can translate (5) into the form

(6) ζQ(s) = rq(1)ζ(s)L−q(s),

where for any fundamental discriminant D the Dirichlet L-function is defined by

LD(s) =
∑
n≥1

χD(n)n
−s,
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with χD(·) =
(
D
·

)
the Kronecker symbol. Here we have applied quadratic reciprocity. Of

course rq(1) = 2 unless q = 3, when r3(1) = 6. To avoid writing rq(1) we now leave out the
case q = 3 and also, for the rest of this section, write L(s) for LD(s), as long as the value of
D is understood.

For these forms Q, KLF together with (1) and (6) implies both the evaluation L(1) = π√
q

and the deeper fact that

(7)
√
q

π
L′(1) = γ0 − 1

2
log 4q +H(1+

√
−q

2
).

One way to go further with (7) is to utilize the Euler product

L(s) =
∏

p prime

(1−
(
p
q

)
p−s)−s.

Write
√
q

π
L′(1) = D logL(s)|s=1 in (7) and observe that it implies

(8)
∑

p prime

(
p
q

)
log p
p

= log q −H(1+
√
−q

2
) +O(1) = −π

6

√
q + log q +O(1).

Roughly speaking, since the negative term −π
6

√
q on the RHS of (8) dominates, this as-

ymptotic formula indicates that for (6) to hold for large q, there must be many quadratic
non-residues modulo q among the first few primes. For instance, the first 12 primes are non-
residues modulo 163. This is one way to become convinced that formula (5) cannot remain
true for large q, since the resulting imbalance in the distribution of quadratic residues should
contradict the generalized Riemann hypothesis.

A different kind of application of KLF to (7) makes use of the identity

(9)
√
q

π
L′(1) = γ0 + log 2π −

q−1∑
n=1

(
n
q

)
log Γ

(
n
q

)
,

which was derived in 1883 by Berger [2] and independently by Lerch [34] in 1897 using
Kummer’s formula

(10) log
(

1√
2π
Γ(x)

)
= (1

2
− x)(γ0 + log 2π) + 1

2
log(2 sin πx) + 1

π

∑
n≥1

n−1 log n sin(2πnx).

Taken together, (9) and (7) give for q = 7, 11, 19, 43, 67, 163 some remarkable evaluations:

(11)
∣∣∣η(1+

√
−q

2

)∣∣∣4 = 1
2πq

q−1∏
n=1

Γ
(
n
q

)(n
q
)
,

also due to Lerch [34]. Chowla and Selberg [7, 8] later independently derived (11) and
applied it to evaluate elliptic integrals having singular moduli, a connection already glimpsed
by Landau in 1902 [32, p.313]. An equivalent formulation can be given in terms of certain
hypergeometric series:

F (a, b, c; x) = 1 +
∑
n≥1

(a)n(b)n
(c)n

xn

n!
,

where (a)n = a(a+ 1) · · · (a+ n− 1). Their result can be put into an elegant form using the
Schläfli modular function

(12) f(τ) = e(− 1
48
)
η( τ+1

2
)

η(τ)
.
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For q = 7, 11, 19, 43, 67, 163 and f = f(
√
−q) it can be shown that (11) yields

(13) F (1
4
, 1
4
, 1; 26f−24) = (2qπ)−

1
2f 2

q−1∏
n=1

Γ
(
n
q

) 1
2
(n
q
)
.

Weber (see Tabelle VI. of [51]) computed explicitly all these values of f . Thus f(
√
−7) =√

2 and the others are algebraic integers of degree 3 over Q that may be expressed in the
(shockingly) simple form

3f(
√
−q) = αq + (βq + 3

√
3q)

1
3 + (βq − 3

√
3q)

1
3 ,

where αq = 2 except that α19 = 0 and β11 = 17, β19 = 27, β43 = 35, β67 = 53, β163 = 135.
In fact, diophantine properties of f are crucial in “resurrections” of Heegner’s proof ([24])

that 163 is the largest q for which (5) holds. See Stark’s ICM paper [46] for such a proof
and also [48] for his recent description of some of the drama surrounding this result. See also
Birch’s papers [3], [4] and that of Deuring [12].

Weber’s table of values of f also gives that for q = 5, 13, 37

(14) 1
2
f(
√
−q)8 = t+ u

√
q,

where (t, u) = (3, 1), (11, 3), (146, 24), respectively. It turns out that these (t, u) solve the
Pell equation

t2 − qu2 = 4

with tminimal among all solutions with t, u > 0. These give samples of Kronecker’s “solution”
of the Pell equation using modular functions. The connection with KLF comes from the fact
that for

Q(x, y) = x2 + qy2 and Q′(x, y) = 2x2 − 2xy + q+1
2
y2

when q = 5, 13, 37 we have that

2L−4(s)Lq(s) = ζQ(s)− ζQ′(s).

Now apply KLF to the right hand side and the famous result of Dirichlet
√
qLq(1) = log 1

2
(t+ u

√
q)

to the left hand side to get (14).

3. Proof of KLF

There are a number of proofs, starting with Kronecker’s own. See [52] for a discussion.
Here we will give a brief treatment of one of the most transparent ones. For z ∈ H and
Re s > 1 define E(z, s) by

(15) ζ(2s)E(z, s) = 1
2
ys

∑′

m,n∈Z

|m+ nz|−2s.

We may work with ζ(2s)E(z, s) to prove KLF since

(16) |D|
s
2 ζQ(s) = 2s+1ζ(2s)E(zQ, s).

The key input is the Fourier expansion of ζ(2s)E(z, s), which was found by Deuring [11] and
Chowla-Selberg [8]. We simply state the result; an excellent source for its proof is [33]. It is
convenient to state the result for the completion

(17) E∗(z, s) = π−sΓ(s)ζ(2s)E(z, s).
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As usual set Λ(s) = π− s
2Γ( s

2
)ζ(s). Then we have the Fourier expansion

(18) E∗(z, s) = Λ(2s)ys + Λ(2− 2s)y1−s + 4y1/2
∑
n≥1

n
1
2
−sσ2s−1(n)Ks− 1

2
(2πny) cos(2πnx),

where σs(n) =
∑

d|n d
s and Ks(y) is the usual Bessel function. By making use of (16) and

(17), the proof of KLF can be reduced to the following statement:

(19) 2E∗(z, s) =
1

s− 1
+ γ0 − log(4πy)− 4 log |η(z)|+O(s− 1).

To obtain (19), first note that

K 1
2
(y) =

√
π

2y
e−y.

By (18) it follows that

2E∗(z, s) =
1

s− 1
+ γ0 − log(4πy) + 1

3
πy + 4Re

(∑
n≥1

n−1σ1(n)q
n
)
+O(s− 1).

Now apply

Re
(∑

n≥1

n−1σ1(n)q
n
)
= Re

( ∑
m,n≥1

n−1qmn
)
= −

(
log |η(z)|+ πy

12

)
to finish the proof of (19), hence of KLF.

Remark: A quite different kind of proof was given by Shintani [43] using the Barnes double
gamma function.

Expansions around s = 0

It turns out to often be advantageous to have expansions of KLF–type around s = 0.
An added bonus of the Fourier expansion (18) is that it renders as obvious the analytic
continuation and functional equation of E∗(z, s). Using that Λ(1−s) = Λ(s), Ks(y) = K−s(y)
and

nsσ−2s(n) = n−sσ2s(n)

it follows from (18) that s(s− 1)E∗(z, s) is entire and that

(20) E∗(1− s, z) = E∗(z, s).

This makes it easy to compute the Laurent expansion of ζQ(s) around s = 0, which no longer
contains the mysterious Euler constant that occurs in the formulas around s = 1. By the
functional equation (20) and (19) we have

2E∗(z, s) = −s−1 + γ0 − log(4π) +H(z) +O(s) hence(21)

ζQ(s) = −1−
(
log(8π2|D|−

1
2 )−H(zQ)

)
s+O(s2).(22)

There is a connection of E(z, s) to the spectral theory of the Laplacian on Γ\H hinted at
by the occurrence of the Bessel function in the Fourier expansion (18), one that is somewhat
miraculous with hindsight. In fact we can write

(23) E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s,
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where Γ∞ is the usual parabolic subgroup generated by ± ( 1 1
0 1 ). Let

(24) ∆ = y2(∂2x + ∂2y)

be the hyperbolic Laplacian. Now ∆Imz = s(s−1)Imz and ∆ commutes with linear fractional
action. It follows that E(z, s) is an eigenfunction of −∆ :

(25) −∆E(z, s) = s(1− s)E(z, s).

For Re s = 1
2
it happens that E(z, s) gives the continuous part of the spectral decomposition

of ∆ on Γ\H. Consider the following expansion of E(z, s) around s = 0:

(26) E(z, s) = H0(z)−H1(z)s+H2(z)s
2 − · · · .

From (21) and (17) we see that H0(z) = 1 and H1 = H. Furthermore, upon using (25) in
(26), we also have that ∆H = 1 and

∆Hn = Hn−2 +Hn−1,

for n ≥ 2. In particular, H is bi-harmonic with respect to ∆. For related work see [31].

L-functions with genus characters

Perhaps the most important applications of Kronecker’s limit formulas are to L-functions
associated to quadratic fields and their abelian extensions. The first limit formula applies to
abelian extensions that are unramified. In fact, we will only consider L-functions associated
to unramified quadratic extensions, namely those with genus characters, for which there is
already an extremely rich theory.

Suppose that D ̸= 1 is a fundamental discriminant and K = Q(
√
D). Let σ : K → K

generate the Galois group of K/Q and for α ∈ K let N(α) = αασ. Let Cl+D be the group of
(narrow) fractional ideal classes in K. Thus two ideals a and b are in the same class if there
is α ∈ K with N(α) > 0 so that a = (α)b. Let

h(D) = #Cl+D

be the class number and w = wD be the number of roots of unity in K so that w = 2 unless
D = −3,−4 when w = 6, 4, respectively. If D > 1 let ϵD be the smallest unit of norm 1 that
is > 1 in the ring of integers OK of K.
Associated to an ideal class A is the partial zeta function

ζK(s, A) = ζ(s, A) =
∑
a

N(a)−s,

where a runs over all non-zero integral ideals in A. Note that ζ(s, A) = ζ(s, A−1). Dirichlet
applied his geometric method to evaluate

(27) lim
s→1+

(s− 1)|D|
s
2 ζ(s, A) =

{
2π
w

if D < 0

log ϵD if D > 1.
.
Given a character χ of Cl+D we have the L-function

(28) L(s, χ) =
∑
a⊂OK

χ(a)N(a)−s =
∑

A∈Cl+D

χ(A)ζ(s, A).

A genus is an element of the group of genera, which is (isomorphic to) the quotient group

(29) Gen(K) = Cl+D/(Cl
+
D)

2.
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It is known that Gen(K) ∼= (Z/2Z)ω(D)−1 so if GD is a genus in Cl+D then

(30) #GD = 21−ω(D)h(D),

where ω(D) is the number of distinct prime factors of D. The characters of Gen(K) descend
from the real characters of Cl+D and are in one to one correspondence with co-prime factor-
izations D = d′d where d and d′ are fundamental discriminants (including 1). Kronecker
discovered a factorization of L(s, χ) for such a χ that corresponds to D = d′d:

(31) L(s, χ) = Ld′(s)Ld(s).

In particular, the Dedekind zeta function of K satisfies

(32) ζK(s) = L(s, 1) = ζ(s)LD(s).

By (27) and well-known functional equations we get

(33) LD(0) =
2h(D)

w
if D < 0 and L′

D(0) =
1
2
h(D) log ϵD if D > 1.

The Hurwitz zeta function

A useful tool to study Dirichlet L-functions at s = 0 is the Hurwitz zeta function, which
is defined for x > 0 and Re(s) > 1 by

ζ(s, x) =
∑
n≥0

(n+ x)−s.

For fixed x > 0 it has an analytic continuation in s to an entire function except for a simple
pole at s = 1. It has the expansion due to Hurwitz [28] (see also p. 269 of [53]):

ζ(x, s) =
Γ(1− s)

(2π)1−s

(
sin πs

2

∑
n≥1

cos 2πnx

n1−s
+ cos πs

2

∑
n≥1

sin 2πnx

n1−s

)
,

valid for 0 < x ≤ 1 and Re s < 0. This can be used to find the Laurent expansion of ζ(x, s)
around s = 0. In particular we have

ζ(x, 0) = 1
2
− x,

and from Kummer’s formula (10)

∂sζ(x, 0) = log
(
(2π)−

1
2 Γ(x)

)
.

Since for any D we have

LD(s) = |D|−s

|D|∑
n=1

χD(n)ζ(s,
n
|D|)

we immediately deduce the following for D ̸= 1:

LD(0) = −|D|−1

|D|−1∑
n=1

nχD(n) and L′
D(0) = −LD(0) log |D|+

|D|−1∑
n=1

χD(n) log Γ
(

n
|D|

)
.(34)

Also, for D = 1 we have ζ(0) = −1
2
, ζ ′(0) = −1

2
log 2π. If D > 1, we have that LD(0) = 0 and

(35) L′
D(0) = −1

2

D∑
n=1

χD(n) log
(
sin nπ

D

)
,
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by using the identity Γ(x)Γ(1− x) = π
sinx

in the second formula of (34). Thus by (34), (35)
and (33) we recover Dirichlet’s results

h(D) = − w
2|D|

|D|−1∑
n=1

nχD(n) and h(D) log ϵD = −
D∑

n=1

χD(n) log
(
sin nπ

D

)
for D < 0 and D > 1, respectively. The function

(36) R(x) = −∂2sζ(x, 0)
was studied by by Landau [32] and Ramanujan [37, Chapter 8] and applied to KLF by
Deninger [10]. We have for D ̸= 1

(37) L′′
D(0) = −LD(0) log

2 |D| − 2L′
D(0) log |D| − 2

|D|−1∑
n=1

χD(n)R(
n
|D|).

KLF applied in the imaginary quadratic case

Happily, KLF applies directly when D < 0. The examples we outlined above had K
imaginary of class number 1 or 2. The general case when D < 0 and with a genus character
is very similar. To start,

(38) ζ(s, A) = 1
w
ζQ(s)

for some positive integral Q of discriminant D. Here A is represented by a = Z + zQZ. Set
zA = zQ for any such choice, for instance that zA ∈ F , the standard fundamental domain for
Γ. This point zA is often called a CM point, the CM short for “complex multiplication”.
It follows from (16) and the duplication formula for the gamma function that

(39) Λ(s, A) := |D|
s
2π−sΓ( s

2
)Γ( s+1

2
)ζ(s, A) = 4

√
π

w
E∗(zQ, s).

Thus ζ(s, A) is entire but for a simple pole at s = 1 and by (20) satisfies the functional
equation

Λ(s, A) = Λ(1− s, A).

A direct application of KLF in the form (22) to (38) gives the next result.

Theorem 2 (Kronecker). For D < 0 we have

ζ(0, A) = − 1
w

and

ζ ′(0, A) = − 1
w
log

(
8π2|D|−

1
2

)
+ 1

w
H(zA).

Given any character χ of Cl+D we can use this to give a formula for L′(0, χ). In case χ is a
genus character we obtain the following generalizations of the examples (11) and (14) from
above.

Corollary 1. Suppose that D < 0. Then for w = wD the following holds:

(40)
∑

A∈Cl+D

H(zA) =
1
2
h(D) log(16π2|D|)− w

2

|D|−1∑
n=1

χD(n) log Γ
(

n
|D|

)
(Lerch).

For D = d′d with d′ > 1 and d < 0 co-prime fundamental discriminants and χ the associated
genus character we have

(41)
∑

A∈Cl+D

χ(A)H(zA) =
wD

wd
h(d)h(d′) log ϵd′ (Kronecker).
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Chowla and Selberg [8] reproved (40) independently and applied it to show that a period
of an elliptic curve defined over an algebraic number field with CM by an order in K of
discriminant D < 0 is an algebraic multiple of

√
π

|D|−1∏
n=1

Γ
(

n
|D|

) wχD(n)

4h(D) .

Note that (41) can be put in the form of an average:

(42) 1
h(D)

∑
A∈Cl+D

χ(A)H(zA) =
(h(d)/wd)(h(d

′) log ϵd′)

h(D)/wD

.

Indefinite binary quadratic forms: Zagier’s limit formula

From now on we assume that D > 0. Since real quadratic field norms comes from indefinite
binary quadratic forms, KLF does not apply directly to compute ζ(s, A) when K is real
quadratic. To address this problem, Zagier [54] gave an analogue of KLF for zeta functions
associated to certain indefinite forms, which we will state here without proof. Let now

Q(x, y) = ax2 + bxy + cy2

be a real binary quadratic form with positive coefficients and positive discriminant D =
b2 − 4ac. Then the roots w′ < w of Q(1,−x) = 0 are positive. Define

ZQ(s) =
∑
n≥1

∑
m≥0

Q(n,m)−s.

Theorem 3 (Zagier’s limit formula). The function ZQ(s) has an analytic continuation to
the half-plane Res > 1

2
with a simple pole at s = 1 and

lim
s→1

(
D

s
2ZQ(s)−

1
2
log w

w′

s− 1

)
= P (w,w′),

where P (x, y) = F(x)− F(y) + Li2(
y
x
)− π2

6
+ (log x

y
)(γ0 − 1

2
log(x− y) + 1

4
log x

y
) and

F(x) =
∑
n≥1

ψ(nx)− log(nx)

n
,

where ψ(x) = Γ′(x)
Γ(x)

is the digamma function.

In fact, by [56, Satz 1, p.132] we have that ZQ(s) has an analytic continuation to Re s > −1
2

with a (possible) additional simple pole only at s = 1
2
and that

(43) ZQ(0) =
1
24
( b
a
+ b

c
− 6).

To proceed, we must relate ZQ(s) to ζ(s, A). Each A ∈ Cl+D contains fractional ideals of
the form wZ+ Z ∈ A where w ∈ K is such that w > wσ. Consider the minus (or backward)
continued fraction of w:

(44) w = Ja0, a1, a2, . . .K = a0 −
1

a1 −
1

a2 −
1

a3 − · · ·
where aj ∈ Z with aj ≥ 2 for j ≥ 1. This continued fraction is eventually periodic and has
a unique primitive cycle ((n1, . . . , nℓ)) of length ℓ, only defined up to cyclic permutations.
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Different admissible choices of w lead to the same primitive cycle. The continued fraction is
purely periodic precisely when w is reduced in the sense that

0 < wσ < 1 < w

(see [54],[56]). The cycle ((n1, . . . , nℓ)) characterizes A; it is a complete class invariant. The
length ℓ = ℓA, which is also the number of distinct reduced w, is another invariant as is the
sum

(45) m = mA = n1 + · · ·+ nℓ.

It is convenient to define a third class invariant

(46) Ψ(A) = mA − 3ℓA.

Note that the cycle of A−1 is given by that of A reversed:

(47) ((nℓ, . . . , n1)) .

To see this observe that A−1 is represented by (1/wσ)Z+Z and by [56, p.128] the continued
fraction of 1/wσ has (47) as its cycle. Thus

(48) Ψ(A−1) = Ψ(A).

Similarly, using the relation between the minus continued fractions and regular simple con-
tinued fractions, it is shown in [27, p. 49] that

(49) Ψ(A) = ℓAJ − ℓA,

where J denotes the class of the different (
√
D) of K. Hence we also have that

Ψ(A−1J) = Ψ(AJ) = −Ψ(A),

using the conjugacy invariance of Ψ, (48) and that J2 = I, where I is the principal class.
Let w1, w2, . . . , wℓ be the reduced values, which may be obtained from (44) and the cyclic

permutations of the cycle. For each wk we define the indefinite binary quadratic form

Qk(x, y) =
1

wk−wσ
k
(y + xwk)(y + xwσ

k ),

which has positive coefficients and discriminant one. Then Zagier gave the following impor-
tant decomposition:

(50) ζ(s, A) =
ℓ∑

k=1

ZQk
(s).

By evaluating the corresponding limit for each ZQk
(s) we get a formula for the constant term

in the Laurent expansion of |D| s2 ζ(s, A) around s = 1 that involves a summation over the
roots wk and wσ

k of the fixed function P from above.

Theorem 4 (Zagier). For D > 0

(51) lim
s→1

(
D

s
2 ζ(s, A)− log ϵD

s− 1

)
=

ℓ∑
k=1

P (wk, w
σ
k ).

Remarks:
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1. To get the residue in (51), Zagier showed directly that

(52) ϵ2D =
ℓ∏

k=1

wk

wσ
k

.

In particular, this together with (51) gives an apparently non-geometric proof of Dirichlet’s
(27) when D > 1.

2. In a recent paper [49], Vlasenko and Zagier generalize (51) to s = 2, 3, . . . and interpret
that in terms of the cohomology of Γ.

Hecke’s results

Zagier’s paper followed earlier work of Hecke on the problem of extending Kronecker’s
ideas to real quadratic fields. Hecke’s approach to KLF for a real quadratic field K was to
integrate the definite version over appropriate cycles coming from the unit group of OK. His
method is a direct descendent of that used by Dirichlet to prove his class number formula.

A subtlety about real quadratic fields, which turns out to be crucial, is the possible existence
of units with negative norm. As above we denote by I the principal class and by J the class
of the different (

√
D) of K, which coincides with the class of principal ideals (α) where

N(α) = αασ < 0. Then Cl+D/J is the class group in the wide sense, which is trivial iff OK is
a UFD. Clearly J ̸= I iff OK contains no unit of norm −1. In this case each wide ideal class
is the union of two narrow classes, say A and JA. A sufficient condition for J ̸= I is that D
is divisible by a prime p ≡ 3 (mod 4).

For a fixed narrow ideal class A ∈ Cl+D and a = wZ + Z ∈ A with w > wσ, let Sw be the
geodesic in H with endpoints wσ and w. The modular closed geodesic CA on Γ\H is defined
as follows. Define γw = ± ( a b

c d ) ∈ Γ, where a, b, c, d ∈ Z are determined by

ϵDw =aw + b(53)

ϵD =cw + d,

with ϵD our unit. Then γw is a primitive hyperbolic transformation in Γ with fixed points
wσ and w. Since

(cw + d)−2 = ϵ−2
D < 1,

we have that w is the attracting fixed point of γw. This induces on the geodesic Sw a clock-
wise orientation. Distinct a and w for A induce Γ-conjugate transformations γw. If we choose
some point z0 on Sw then the directed arc on Sw from z0 to γw(z0), when reduced modulo Γ,
is the associated closed geodesic CA on Γ\H. It is well-defined for the class A and gives rise
to a unique set of oriented arcs (that could overlap) in F . We also use CA to denote this set
of arcs.

It is not difficult to show that the closed geodesic CA−1J has the same image as CA but
with the opposite orientation. The arcs of CA retrace back over themselves when A−1J = A
or, equivalently, A2 = J , i.e. J is in the principal genus. Sarnak [41] gave a nice account of
these reciprocal geodesics.

It is possible to compute γw associated to a reduced w as above simply using the ordering
of the cycle ((n1, . . . , nℓ)) that corresponds to w. In fact, if as usual we set T = ± ( 1 1

0 1 ) , S =
± ( 0 1

−1 0 ) ∈ Γ then

(54) γw = T n1ST n2S · · ·T nℓS.
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A nice treatment of this is given by S. Katok in [29, p.11.]. The class invariant Ψ(A) can
now be computed in terms of the entries in γw. The Rademacher symbol is defined for any
γ = ± ( a b

c d ) ∈ Γ by

(55) Ψ(γ) = Φ(γ)− 3 sign(c(a+ d)).

Here Φ(γ) is the Dedekind symbol given for all γ =
(
a b
c d

)
∈ Γ by

(56) Φ(γ) =

{
b
d

if c = 0
a+d
c

− 12 sign c · s(a, c) if c ̸= 0,

where s(a, c) is the Dedekind sum, defined for gcd(a, c) = 1, c ̸= 0 by

s(a, c) =

|c|∑
n=1

((n
c

))((na
c

))
.

As usual, ((x)) = 0 if x ∈ Z and otherwise ((x)) = x − ⌊x⌋ − 1/2. Rademacher showed that
Ψ(γ) is invariant under conjugation in Γ. We also have that

(57) Ψ(A) = Ψ(γw).

This follows from a well known formula for Ψ(γ) given by Rademacher [19] which, when
applied to the expansion of γw in (54) gives Ψ(A) as defined in (46).

Even and Odd characters. Say a character χ of Cl+D is even if χ(J) = 1 and odd if χ(J) = −1.
In the more general terminology of [20], the odd characters are norm class characters of
norm-signature type. Clearly the even characters are precisely those that induce wide class
characters. It can be checked that a genus character coming from a decomposition D = d′d
is odd if and only if d and d′ are both negative.

In order to adapt (39) for the presence of an infinite groups of units, Hecke invented his
famous trick of dividing out the action of the unit group on generators of principal ideals.
For real quadratic fields this procedure amounts to either integrating the Eisenstein series
with respect to arc length over the associated closed geodesic CA or integrating its derivative
over this geodesic. In case I ̸= J it is necessary to define

ζ±(s, A) =
1
2

(
ζ(s, A)± ζ(s, JA)

)
and their completions

(58) Λ+(s, A) = D
s
2π−sΓ( s

2
)2ζ+(s, A) and Λ−(s, A) = D

s
2π−sΓ( s+1

2
)2ζ−(s, A).

In general

L(s, χ) =
∑

A∈Cl+D

χ(A)ζ±(s, A)

where χ(J) = ±1.
Hecke found the following integral representations (see [44, Chap. II § 5 pp. 114–149.]):

Λ+(s, A) =

∫
CA
E∗(z, s)y−1|dz|(59)

Λ−(s, A) =

∫
CA
i ∂zE

∗(z, s) dz.(60)

These show, in particular, that s(1− s)Λ±(s, A) are entire and invariant under s 7→ 1− s.
First we examine the even case. By (59) and (21) we derive the following theorem.
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Theorem 5 (Hecke). For D > 1 we have that ζ+(0, A) = 0 and

ζ ′+(0, A) = −1
8

∫
CA
y−1|dz| = −1

4
log ϵD(61)

ζ ′′+(0, A) =
1
4

∫
CA

(
H(z) + 1

2
log( D

(2π)4
)
)
y−1|dz|.(62)

Given any even character χ of Cl+D we can use these to give a formulas for L′(0, χ) and
L′′(0, χ). In case χ is a genus character the resulting formulas imply the following. Recall the
definition of R(x) from (36) and (37).

Corollary 2. For D > 1∑
A∈Cl+D

∫
CA
y−1|dz| = 2h(D) log ϵD and(63)

∑
A∈Cl+D

∫
CA
H(z)y−1|dz| = (logD + 2 log 2π)h(D) log ϵD + 4

D−1∑
n=1

χD(n)R(
n
D
).(64)

For D = d′d with d′, d > 1 co-prime fundamental discriminants and χ the associated genus
character,

(65)
∑

A∈Cl+D

χ(A)

∫
CA
H(z)y−1|dz| = 2h(d)h(d′) log ϵd log ϵd′ .

Of course (63) is due to Dirichlet. The formulas (64) and (65) seem to have been first
written down by Deninger [10] and Siegel [44, p.97.], respectively.

In response to Hecke’s paper, Herglotz [25] managed to express the integral
∫
CA
H(z)y−1|dz|

in terms of integrals of elementary functions, but in general the resulting formula is pretty
complicated. Before becoming aware of Herglotz’s papers, Zagier applied his more general
formula (51) to ζ+(s, A) to give another (equivalent) version. As an interesting application of
his formula, Herglotz applied it to (65) in special cases to evaluate some elementary integrals
that seem to defy other proofs. Recently Muzaffar and Williams [35] found another equivalent
formulation and gave several more examples, including∫ 1

0

log(1 + x2+
√
3)

1 + x
dx =

π2

12
(1−

√
3) + log 2 log(1 +

√
3).

Finally, note that (65) can be put in the form

(66) 1∑
A

∫
CA

y−1|dz|

∑
A∈Cl+D

χ(A)

∫
CA
H(z)y−1|dz| = (h(d) log ϵd)(h(d

′) log ϵd′)

h(D) log ϵD
,

which is a real quadratic average analogous to (42).

Expansion of ζ−(s, A) around s = 0: the value ζ−(0, A)

From now on we consider only the remaining cases of ζ−(s, A) and L(s, χ) with odd genus
characters χ. In view of the second formula of (58) and the functional equation we wish to
evaluate ζ−(0, A) and ζ

′
−(0, A).

As far as we know, of these only ζ−(0, A) has been evaluated before. We review this here
and consider ζ ′−(0, A) in the following section. There are several approaches to ζ−(0, A).
Probably the most direct is that of Zagier in [56], where it is evaluated in terms of the



KRONECKER’S FIRST LIMIT FORMULA, REVISITED 15

invariant Ψ of (46). Using (43), (49) and (50) it is elementary to deduce the following (see
[56, Satz 2, p.132]):

Theorem 6. For A a narrow ideal class in the real quadratic field K = Q(
√
D)

ζ−(0, A) =
1
12
Ψ(A).

Given any odd character χ of Cl+D we can use this to give a formula for L(0, χ). In case χ
is a genus character the resulting formula implies the following.

Corollary 3. For D = d′d > 1 with d′, d < 0 co-prime fundamental discriminants and χ the
associated genus character,

(67)
∑

A∈Cl+D

χ(A)Ψ(A) =
48h(d)h(d′)

wdwd′
.

A nice special case is when D = 4q where q ≡ 3 (mod 4) is prime and h(4q) = 2, which
is equivalent to Z[√q] being a UFD. This happens for the q of our first set of examples and,
according to a well-known conjecture of Cohen and Lenstra [9], occurs for > 75% of all primes
q ≡ 3 (mod 4). For these q > 3, (67) gives

h(−q) = 1
3

ℓ∑
k=1

nk − ℓ

where ((n1, . . . , nℓ)) is the cycle of
√
q. Alternatively, using (49), we have

h(−q) = 1
3
(ℓ′ − ℓ),

where ℓ′ is the length of the cycle of −√
q. For example,

√
163 has the cycle given by:

((5, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 5, 26))

so h(−163) = 1
3
· 108− 35 = 1. One may check that the cycle of −

√
163 has length 38. See

[26] and [56] for more insight into these examples.
Given (57) we can use Hecke’s representation (60) for another way to prove Theorem 6.

The Fourier expansion of E∗(z, s) from (18) yields Hecke’s limit formula

lim
s→0

∂zE
∗(z, s) = −πi

12
E∗

2(z),

where E∗
2(z) = E2(z)− 3

πy
and

E2(z) = 1− 24
∑
n≥1

σ1(n)q
n.

Therefore by (58) and (60) we have

(68) ζ−(0, A) =
1
12

∫
CA
E∗

2(z) dz.

Now apply Dedekind’s [10] evaluation of the transformation law for log η(z). For any γ =(
a b
c d

)
∈ Γ we have

(69) log η(γz)− log η(z) = 1
4
log(−(cz + d)2) + πi

12
Φ(γ),

where Φ(γ) is given by the formula (56) and where we choose arg(−(cz + d)2) ∈ (−π, π).
Since

1
12
E2(z) =

1
πi

d
dz
log η(z),
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a careful evaluation of the integral of − 1
4πy

shows that∫
CA
E∗

2(z) dz = Ψ(γw).

This is in essence the first proof of Theorem 6 historically, modulo identity (57). Hecke
[23, p. 416.] indicated how the evaluation of ζ−(0, A) depends on the transformation formula
for log η(z) (see also [22], [36], [44, p.134.] and [55]).

We propose yet another proof of Theorem 6, one that will adapt well to computing ζ ′−(0, A)
in terms of an integral of H(z). Let j(z) be the usual modular j-function as before. Write
j′ = 1

2πi
dj
dz

and let dµ(z) = dxdy
y2

and F be the standard fundamental domain for Γ. The kernel

function

(70) K(z, τ) =
j′(τ)

j(z)− j(τ)
,

which is weight 0 in z and weight 2 in τ , shows up a lot in the theory of modular forms (see
e.g. [1], [14]). It has the expansion, convergent for Im z < Im τ ,

(71) K(z, τ) =
∑
m≥0

jm(z)q
m
τ

where qτ = e(τ) and jm(z) = q−m +O(q) is weakly holomorphic.

Figure 3. The function νI(z) for D = 12

Define

(72) νA(z) =

∫
CA

j′(τ)

j(z)− j(τ)
dτ

This function is Γ-invariant and is zero for Im z sufficiently large. The value of νA(z) for z
not on CA is an integer that counts with signs the number of crossings that a path from i∞
to z in F makes with CA. This is easily verified using the winding number and well-known
properties of j.

We claim that Theorem 6 is equivalent to the statement that

(73) 3
π

∫
F
νA(z)dµ(z) = Ψ(A).
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This equivalence may be deduced from (68) and the following elegant formula, which is a
consequence of Lemma 1 proven below and is obtained from it by taking s→ 0 :

(74) E∗
2(τ) =

3
π
j′(τ)

∫
F

1

j(z)− j(τ)
dµ(z).

Here is an example illustrating the formula (73). Take D = 12 = (−3)(−4) as above with
h(12) = 2. We have the reduced root wI = 2 +

√
3 = ϵ12 with wZ + Z = OK and with cycle

((4)) . Thus Ψ(I) = 4− 3 = 1. In Figure 3 we have plotted CI , where the arcs are all oriented
left to right and are given by the equations

y =
√
3− x2 and y =

√
3− (x± 1)2.

The values of νI(z) are also shown. It can be checked that (73) holds in this case since

3
π

∫
F
νI(z)dµ(z) = A(0) + A(1) + A(−1) = 1, where A(u) = 6

π

∫ 1/2

0

∫ √
3−(x+u)2

√
1−x2

dµ(z).

(75)

In general, (73) was obtained in [5] for certain surfaces using topological arguments (Gauss-
Bonnet) and adapted in [6] to Γ\H, but without using the analytic expression for νA(z) in
(72). Partially motivated by their work and also by a desire to combine Zagier’s approach
using continued fractions with the more geometric methods of Dirichlet/Hecke, in [15] we
constructed a hyperbolic surface FA (an orbifold, actually) associated to A that is bounded
by CA and has area ℓAπ, also a consequence of the Gauss-Bonnet theorem. This surface is a
partial cover of F with mA − νA(z) points of FA over z ∈ F . In particular, we get a more
analytic proof of (73) by combining this counting interpretation with (46).
The Rademacher symbol has many other geometric/algebraic/topological interpretations.

See Hirzebruch’s article [26] for relations to Hilbert modular surfaces. More recently, Ghys
[18] gave the beautiful result that the Rademacher symbol gives the linking number of a
modular knot (a lift of CA to the unit tangent bundle) with a certain trefoil knot. See also
[16].

Evaluation of ζ ′−(0, A): new results

We now turn to the problem of computing ζ ′−(0, A), Returning to Hecke’s representation
(60), we see that to evaluate ζ ′−(0, A) using it directly we must integrate ∂zH2(z) from (26)
over CA. Following the example of the third proof of Theorem 6 given above, we will instead
integrate H(z) against νA(z) over F . The following result appears to be a new contribution
to the classical theory of KLF.

Theorem 7. For A a narrow ideal class in the real quadratic field K = Q(
√
D), where

D = d′d with d and d′ negative co-prime fundamental discriminants, we have

ζ−(0, A) =
1
4π

∫
F
νA(z)dµ(z) and

ζ ′−(0, A) = − 1
4π

∫
F
νA(z)

(
H(z) + 1 + 1

2
log( D

28π4 )
)
dµ(z),

where νA(z) is defined in (72).

When applied to an odd genus character this yields an analogue of Lerch’s formula (40).
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Corollary 4. Write h = h(d) and h′ = h(d′) and similarly w = wd and w′ = wd′ . For
D = d′d with d′, d < 0 co-prime fundamental discriminants and χ the associated genus
character,

3
π

∑
A∈Cl+D

χ(A)

∫
F
νA(z)dµ(z) =

48hh′

ww′ and

3
π

∑
A∈Cl+D

χ(A)

∫
F
νA(z)H(z)dµ(z) = −24

(
h′

w′

|d|−1∑
n=1

χd(n) log Γ
(

n
|d|

)
+ h

w

|d′|−1∑
n=1

χd′(n) log Γ
(

n
|d′|

))
+ 48hh′

ww′ (
1
2
logD − 1 + log(16π2)).

This corollary implies, after some computation, an identity that is somewhat analogous
to (42) and (66) and is the main new result of this paper. It gives a surprising geometrical

relationship between the CM points associated to the imaginary quadratic fields Q(
√
d) and

Q(
√
d′) and the winding number functions νA(z) coming from the closed geodesics associated

to the real quadratic field Q(
√
D) = Q(

√
d′d).

Corollary 5. Assumptions as above,∑
C∈Cl+D

χ(C)
∫
F νC(z)H

∗(z)dµ(z)∑
C∈Cl+D

χ(C)
∫
F νC(z)dµ(z)

= 1
h(d)

∑
A∈Cl+d

H∗(zA) +
1

h(d′)

∑
B∈Cl+

d′

H∗(zB),

where H∗(z) = H(z)− 1.

In case d and d′ are prime discriminants there are exactly two genera, one containing I
and the other containing J . If h(D) = 2, Corollary 5 simplifies to

(76) 1∫
F νI(z)dµ(z)

∫
F
νI(z)H

∗(z)dµ(z) = 1
h(d)

∑
A∈Cl+d

H∗(zA) +
1

h(d′)

∑
B∈Cl+

d′

H∗(zB).

For example, when D = 12 we have numerically

3
π

∫
F
H∗(z)νI(z)dµ(z) = B(0) +B(1) +B(−1) = 0.0882075 . . . ,

where

B(u) = 6
π

∫ 1/2

0

∫ √
3−(x+u)2

√
1−x2

H∗(z)dµ(z).

By (76) and (75) this must equal

H∗(i) +H∗(1+
√
−3

2
) = −2− log

(3Γ(1
3
)6Γ(1

4
)4

512π7

)
,

as may be verified numerically.
Given (73), the proof of Theorem 7 comes down to Hecke’s representation (60) and the

following result.

Lemma 1. For τ ∈ intF and K(z, τ) defined in (70) we have

i∂τE
∗(τ, s) = s(s−1)

2

∫
F
K(z, τ)E∗(z, s)dµ(z).
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Proof. Note that for fixed τ ∈ F and y > Im τ + 1 we have that K(z, τ) = O(e−2πy) where
as usual z = x+ iy. Clearly

4y2∂z∂z = ∆

for ∆ from (24). Thus by (25) we need to show

g(τ) = −
∫
F
K(z, τ)∂z g(z)dzdz,

after using that dzdz = 2idx dy and writing g(z) = ∂zE
∗(z, s) for fixed s ̸= 0, 1.

For δ > 0, let Dτ (δ) = {z ∈ C : |z − τ | < δ} and F(Y ) = {z ∈ F : y ≤ Y }. Since K(z, τ)
is holomorphic, for τ ∈ intF we need to show

g(τ) = − lim
Y→∞
δ→0

∫
F(Y )\Dτ (δ)

∂z
(
g(z)K(z, τ)

)
dzdz.

For τ ∈ intF choose Y large enough and δ small enough so we may apply Stokes’ theorem
to get ∫

F(Y )\Dτ (δ)

∂z
(
g(z)K(z, τ)

)
dzdz =

∫
∂FY

g(z)K(z, τ)dz −
∫
∂Dτ (δ)

g(z)K(z, τ)dz.

Now limY→∞
∫
∂FY

g(z)K(z, τ)dz = 0 and limδ→0

∫
∂Dτ (δ)

g(z)K(z, τ)dz = g(τ), giving the

result.
□

The main goal of our companion paper [15] was to study the distribution properties of the
surfaces FA when A is averaged over a genus. For this we needed to make use of integrals
over FA of Maass cusp forms as well as the Eisenstein series E(z, s), but only for Res = 1

2
,

since these are the eigenfunctions that occur in the spectral expansion of ∆. It is notable
that H(z), which comes from s = 0, is not integrable on FA with respect to dµ. This is
one reason for our use here of νA(z) and the singular kernel K(z, τ) in Lemma 1, instead of
simply integrating H(z) over the surface FA.

4. Concluding remarks

We have only looked at the applications of KLF to L-functions for quadratic K with genus
characters. Already here there are interesting applications to certain quadratic extensions
of K giving class number relations, but this is just the beginning, even when one is only
interested in abelian extensions of quadratic fields (see [44]). A lot of attention has been
devoted to finding elaborations of the ideas originated by Kronecker with his limit formula
to other L-functions and other values of s.

A rather different theme, one that we have emphasized without actually saying so, is the
use of KLF to study averages of the height function H, like in (42), (66) and Corollary 5. The
height function H(τ), thought of as being defined through KLF, gives the height of the torus
C/L, where L = (Im τ)−1/2(Z+ τZ). This definition has been generalized using spectral zeta
functions of curves of genus greater than one. The corresponding higher dimensional versions
of KLF and their applications to Riemann surfaces and in physics, pioneered in papers of
Ray-Singer [38], Fay [17], D’Hoker–Phong [13] and Sarnak [39], [40], represent another major
topic initiated by Kronecker’s ideas.
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