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ABSTRACT. Gross, Kohnen and Zagier proved an averaged version of
the algebraicity conjecture for special values of higher Green’s functions
on modular curves. In this work, we study an analogous problem for
special values of Green’s functions on hyperbolic 3-space. We prove that
their averages can be computed in terms of logarithms of primes and
logarithms of units in real quadratic fields. Moreover, we study twisted
averages of special values of Green’s functions, which yield algebraic
numbers instead of logarithms.
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1. INTRODUCTION

In a seminal paper, Gross and Zagier [19] related the central values of
derivatives of L-functions of elliptic curves to heights of Heegner points on
modular curves. Moreover, they found a striking factorization of the norms
of differences of singular moduli [20]. The proof uses the fact that the
function log |j(71) — j(72)| is essentially given by the constant term at s = 1
of the automorphic Green’s function

71— y7|?

SLz(Z
G, (11,72) Z QS 1<1 + 21m(7'1)1m(’77'2)>

~ESL2(Z

on the modular curve X(1) = SLQ( J)\H. Here Qs_1(x) denotes the Le-
gendre function of the second kind and Im(7) denotes the imaginary part of
the point 7 in the complex upper-half plane H. The Green’s function con-
verges absolutely for s € C with Re(s) > 1 and has a simple pole at s = 1.
Moreover, it is an eigenfunction of the hyperbolic Laplacian in both vari-
ables, and has a logarithmic singularity along the diagonal in X (1) x X (1).

At the end of [19], Gross and Zagier made a deep conjecture about the

algebraicity properties of the values of the level N > 1 Green’s function
GEO(N )(

T1,T2) at positive integer values s = k > 2 and CM points 71, 7.
They predicted that (under some technical conditions) the values at CM
points 71, 7o of the “higher Green’s function” Gl,;O(N) (11, 72) are essentially
given by logarithms of absolute values of algebraic numbers. There has
been a lot of interesting work on this conjecture over the last years (see
[5, 9, 24, 28, 35, 36]). A major step in this direction was taken by Li
[25] who proved the conjecture in the case of level 1 and when one of the
discriminants is fundamental. The general case has recently been solved by
Bruinier, Li, and Yang [9].

In the present work we study an analogous problem for Green’s functions
on the hyperbolic 3-space H3. A major obstacle in this case is the fact that
H? does not have a complex structure. In particular, the theory of complex
multiplication, which played an important role in the proof of the Gross—
Zagier algebraicity conjecture over modular curves, is not available on HS3.
Hence, it is not clear whether the special values of Green’s functions on H?
still have good algebraic properties. In fact, our results suggest that the
analogue of the Gross—Zagier conjecture for the individual special values of
Green’s functions on H? might not be true; see Example 1.6 below.
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In order to obtain a convenient algebraicity result, we study an averaged
version of the problem. Gross, Kohnen and Zagier [18] proved an averaged
version of the algebraicity conjecture over modular curves by summing 7
and 7o over all classes of CM points of fixed discriminants d; and ds. They
showed that these “double traces” are essentially given by logarithms of
rational numbers. Inspired by this result, we consider the double traces
of Green’s functions on hyperbolic 3-space. We show that they are given
by algebraic linear combinations of logarithms of primes and logarithms of
units in real quadratic fields. For the proof of our results we follow ideas of
Bruinier, Ehlen, and Yang [5], who proved a partially averaged version of
the algebraicity conjecture over modular curves: they fix 7 and sum 75 over
all classes of discriminant do. It will become clear during our proof why we
cannot fix one of the variables in the hyperbolic 3-space case, but instead
need to take the double trace.

Let us describe our results in some more detail. We use the setup of [16].
Let Q(v/D) be an imaginary quadratic field of discriminant D < 0, and let
Op be its ring of integers. The group

I' = PSLy(Op)
acts on the hyperbolic 3-space
H}={P=z24rj:2€C,rcR"}

(viewed as a subset of the quaternions R[i, j, k]) by fractional linear trans-
formations, and this action preserves the hyperbolic distance d(P;, P»). For
Py, P, € H3 which are not in the same I'-orbit, and s € C with Re(s) > 1,
the automorphic Green’s function for ' is defined by!

(1.1) Go(P1, Py) =7 ) s(cosh(d(Pr, v P2))),
vyel’

with the function
(1.2) ps(t) = (t Ve 1)_5(152 e,

The Green’s function converges absolutely for Re(s) > 1, is I'-invariant in
both variables, and symmetric in P;, P». Moreover, it satisfies

(Ap, — (1= 5%))Gs(P1, P2) =0,

where Ap, is the usual invariant Laplacian on H?3, taken with respect to the
variable P;. The Green’s function has meromorphic continuation to s € C
with s = 1 a simple pole, and singularities precisely at the points P» in the
T-orbit of P;.

We want to investigate the algebraic properties of the Green’s function
G4(Py, Py) at special points P;, P, € H3, and positive integer values s > 2.

1We use a different normalization than [16] and [21] to obtain nicer algebraicity results.
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The special points we consider are defined as follows. For a number m in
ﬁN (where N = {1,2,...}) we let
(1.3) L%:{){:(Z I;) : a,CEN,bEDDl,det(X):m}

be the set of positive definite integral binary hermitian forms of determinant
m over Q(v/D). Here 9! denotes the inverse different of Q(v/D). The group
[ acts on L} by v.X = X7, and T\ L, has finitely many classes. To a
form X € L} we associate the special point
Px = b + vm j e H3.
c c

We may view it as an analogue of a CM point on H?. Moreover, we define
the m~th trace of the Green’s function by

tim(Go( P) = 3 |F1X|GS(PX,P),

Xel\L}

where 'y denotes the stabilizer of X in I'. Here we need to be careful not to
evaluate the Green’s function at a singularity, so P should not be in the same
I'-orbit as one of the special points Px. We remark that, unlike the case
of binary quadratic forms, the order |I'x| really depends on the individual
hermitian form X, not just on its determinant m. If we also take the trace
in the second variable, we obtain the double trace

1 1
1.4 tr,tr, (Gs) = —— ——G4(Px, Py).
( ) rm rm( S) Z ‘FX‘ ’FY‘ S( X) Y)
XeT\L,
Yer\L',

In the following we will tacitly assume that m and m’ are chosen in such a
way that we do not evaluate the Green’s function at a singularity.

From now on we will work with prime discriminants, so either D =
—4,D = =8, or D = —/ for an odd prime ¢ = 3 (mod 4). Moreover, for
simplicity we will assume in the introduction that a certain space of cusp
forms is trivial. Namely, for an odd positive integer k we consider the space
S (To(|D]), xp) of cusp forms f = >, . ar(n)g" of weight k for T'o(|D|)
and character xp = (Q) satisfying the “plus space” condition ay(n) = 0 if
xp(n) = —1. Assuming S;" ([o(|D|), xp) = {0} we have the following alge-
braicity result. In the body of the paper we lift this restriction by taking
suitable linear combinations of double traces of the Green’s function; see
Corollary 4.17.

Theorem 1.1. Let D < 0 be a prime discriminant and let n > 1 be a
natural number such that S, ,, (Do(|D]), xp) = {0}. Let m,m’ € |—[1)‘N such

that mm’ is not a rational square. Then the double trace

1
/| Dlmm/

tr bt (Gan)



SPECIAL VALUES OF GREEN’S FUNCTIONS ON HYPERBOLIC 3-SPACE 5

of the Green’s function at positive even s = 2n is a rational linear combina-
tion of log(p) for some primes p and of log(ea)/VA for some fundamental
discriminants A > 0, where ea denotes the smallest totally positive unit > 1

in Q(VA).

Remark 1.2. The numbers log(ea)/v/A in the theorem arise as special L-
values L(xa, 1) via Dirichlet’s class number formula. The fundamental dis-
criminants that appear are among the discriminants of the real quadratic
fields Q(v/(4mm’D? — r2)|D|) with r € Z satisfying |r| < 2|D|v/mm/. The
logarithms of rational primes p can appear only if (4mm/D? — r?)|D| is a
square for some r € Z, and if p is the only prime divisor of 2m’|D| satisfying
(—m’, D), = —1; see Remark 4.16. Note that when (4mm’D? — r?)|D| is
a square, we have (—m, D), = (—m/, D), by properties of Hilbert symbols.
In this case (—m/, D), = —1 implies that p also divides 2m/|D|, which shows
that these conditions are symmetric in m and m/'.

One can give an explicit evaluation of tr,,tr,, (Ga,) using Theorem 4.12.
The following example is an illustration of such an evaluation.

Example 1.3. Let D = —4, m = 1 and m’ = 1/2. For n = 1 we have
S (To(4),x—4) = {0}, hence there exists a weight —1 weakly holomorphic
modular form f € M' (To(4),x_4) with principal part ¢—'. Using the
formula given in Theorem 4.12 we find that

1 log(es)

—tritry9(G2) = L(xs, 1) = ,

2 1tr1/2(G2) (xs,1) NG

where g = 34-/8 is the smallest totally positive unit > 1in Q(+/8). Modulo

', there are unique special points of determinants 1 and 1/2, given by j and

1+i | V2
2+2

j, with stabilizers of size 4 and 12, respectively. Hence, we find

(.1+i V2

1
— TP Y25 ) = 48L(vs, 1).
J—+ 5 ]) (xs,1)

G
\/§ 2

Similarly, we can compute

Jlial ( A ﬁj) = 481og(2) — 48L(xs. 1).

P
We refer to Example 4.14 for more details. Note that the fundamental dis-
criminant A = 8 equals the discriminant of Q(y/4mm/|D[2 — r2)|D|) when
r = 0. Moreover, when 7 = 4 the number (4mm/|D|?> — r?)|D| is a square,
and 2 is the only prime dividing 2m’|D| satisfying (—m/, D)y = —1, in ac-
cordance with Remark 1.2.

The proof of Theorem 1.1 uses a method of Bruinier, Ehlen, and Yang
[5], and consists of the following four major steps.
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(1)

First, we show that the trace tr,, (ng( . ,P)) can be written as a
regularized theta lift of a harmonic Maass form F},, of weight 1 —2n.
More explicitly, we have an integral representation

reg
tTm, (Gzn( . ,P)) = /}_ ( ’fﬁQnFm) (1)O(T, P)du(r),

where the integral over the fundamental domain F for SLa(Z) has
to be regularized as explained by Borcherds [2] or Bruinier [3], du(7)
denotes the usual invariant measure on H, and O(7, P) is a real-
analytic Siegel theta function associated with a suitable lattice of
signature (1,3). Here R = Ry1on—20 -0 R, denotes the iterated
version of the raising operator R, = 22'5% + kv~ where v = Im(7).
See Theorem 4.3 for the details.

Now we evaluate tr,, (ng( . ,Po)) at a special point Py. Then the
Siegel theta function ©(7, Py) essentially splits as a product of a
holomorphic theta function of weight 1/2 and the complex conjugate
of a holomorphic theta function of weight 3/2,

(7, Py) = Oy2(7) - @3/2(T)U3/2-

If we now take the trace tr,, over Py, an application of the Siegel—
Weil formula allows us to replace the theta function ©3/5(7) by an
Eisenstein series Fj5 /2(7'), and we obtain the splitting

tr (O(7, ) = O1)(7) - E3/2(T)7)3/2-

We refer to Theorem 4.10 for the precise statement.
If we plug the splitting of tr,, (©(r, -)) into the theta lift represen-
tation of try,(G2,) from step (1), we obtain

reg
gy (Gi) = /f (RY_ Fo) (1)O1jo(r) B (7)o 2dp(r).

The right-hand side can be interpreted as the regularized Peters-
son inner product of the form (R{_,, F;n) (7)1 5(7) and the Eisen-
stein series E3/o(7). By the fundamental results of Bruinier and

Funke [6], there exists a harmonic Maass form E; /2(T) of weight
1/2 with shadow FEj/5(7), and an application of Stokes’ Theorem
shows that the above Petersson inner product can be evaluated in
terms of the coefficients of 5, (1) and ©,/5(7), and the coefficients
of the holomorphic part of El /2(7'). Here we need the assump-
tion Si",,(To(|D|),xp) # {0}, which implies that F,, is weakly
holomorphic.

Since the coefficients of ©y/5(7) and Fy,(7) are rational numbers
(here we again use that F), is weakly holomorphic), the algebraic
properties of try,tr,,/(Ga,) are controlled by the coefficients of the
harmonic Maass form El /2(7). In general, the algebraic nature of
the coefficients of harmonic Maass forms is a deep open problem,
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compare [10]. However, since the shadow of E; /2(7) is an Eisenstein

series, F /2(7) itself can be constructed as a Maass Eisenstein series,
and its Fourier coefficients can be computed very explicitly using a
method of Bruinier and Kuss [8]; see Theorem 3.6. It turns out that
the coefficients of the holomorphic part of El /2(7) are given by simple
multiples of logarithms of primes, or by the special value L(xa, 1) of
Dirichlet L-functions for positive fundamental discriminants A > 0.
By Dirichlet’s class number formula, the latter L-values are rational
multiples of log(ea)/VA.

Remark 1.4. Step (4) explains why we need to take the double trace try,tr,, (Gay,)
to obtain a convenient algebraicity result. Steps (1) to (3) work without tak-
ing the trace tr,,, and show that, for each fixed special point Py, we can
interpret the single trace tr,,(Gan(-, Py)) as a regularized Petersson inner
product of (R}_y,Fy)(7)O1/2(7) with a weight 3/2 holomorphic theta func-
tion O3/5(7) associated to an even lattice of rank 3. However, it is believed
that the harmonic Maass forms corresponding to these ternary theta func-
tions in general do not have good algebraic properties. Taking the additional
trace tr,,s allows us to apply the Siegel-Weil formula and replace O3 /2(7)
by an Eisenstein series Fs /2(7'), whose corresponding harmonic Maass form

El /2(7) has better algebraic properties. In contrast, in the modular curve
case, the ternary theta function O3,y is replaced with a binary theta func-
tion O of weight 1. Using the theory of complex multiplication, Duke and
Li [15] and Ehlen [17] proved that these binary theta functions possess cor-
responding harmonic Maass forms whose coefficients are essentially given
by logarithms of absolute values of algebraic numbers. Hence, in the mod-
ular curve case it is not necessary to take the double trace to obtain an
algebraicity result.

Next, we consider twisted double traces of the Green’s function, which are
defined as in (1.4), but with additional signs xp(X),xp(Y) € {-1,0,1}.
Recall that we assume that D is a prime discriminant. Let ¢ denote the

unique prime dividing D. For X = (a lc’) € L;”D' with m € N, we define

(%), if £1a,
xp(X) = (%), if £1c,
0, otherwise.

This function was previously considered in [12, 17] for D > 0 in order to
study twisted Borcherds produts on Hilbert modular surfaces. One can
check that xp(X) is well-defined and invariant under the action of I'. In
particular, for m, m’ € N the doubly-twisted double trace

xp(X) xp(Y)
trm‘DlaXDtrm/‘DleD (GS) = Z |1—\X| |FY’ GS(PXa PY)
XEF\L:FMD‘
Yer\L"

m/|D|
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is well-defined. Similarly, we can consider the partially-twisted double trace

xp(X) 1
tI"m|D\,XDtrm’(Gs) = Z |FX| ﬁGs(PXa PY)7
Xer\L} o,
ver\L?,

where we only twist one of the traces. Note that here m’ can be a rational
number in |—5|N .

There are two main reasons why we are interested in the twisted double
traces of the Green’s function. Firstly, in Theorem 1.1 we considered the
non-twisted double trace of G, for even s = 2n, but we did not get informa-
tion for odd s. However, we will compute the twisted double traces of G4 for
odd s = 2n + 1. Secondly, we can sometimes compute both the non-twisted
and the twisted double traces of GG and use this to get formulas for some
individual special values of the Green’s function, even if the class numbers
of the involved binary hermitian forms are not equal to 1. For an instance
of such a case, we refer to Example 1.6 below.

We have the following algebraicity results for the twisted double traces
of the Green’s function. Once again, for simplicity, we assume that certain
spaces of cusp forms are trivial. In the general case we take suitable linear
combinations of twisted double traces; see Corollaries 5.19, 5.22 and 5.25.

As usual, for an integer k we denote by Si(SL2(Z)) the space of cusp
forms of weight k for the full modular group.

Theorem 1.5. Let D < 0 be a prime discriminant.

(1) Let n € N such that Sot2,(SLa(Z)) = 0. Let m,m' € N such that
mm’ is not a square. Then the doubly-twisted double trace

Em| D], xp | Dl (G2n+1)
is a rational linear combination of log(p) for some primes p and of
log(ea)/VA for some fundamental discriminants A > 0, where ea
denotes the smallest totally positive unit > 1 in Q(v/A).

(2) Letn € N withn > 2. Ifn is even, assume that S7,,(Do(|D|), xp) =
{0}, and if n is odd, assume that S11,(SL2(Z)) = 0. Letm € N,m/ €
ﬁN such that mm’|D| is not a square. Then the partially-twisted

double trace

trm\D|,XDtrm’ (Gn)

1$ a rational multiple Ofﬂ'(\/ mm’) hn

The proofs of these results, which can be found in Section 5.6, use the
same strategy as the proof of Theorem 1.1 sketched above. However, in
step (1) of the proof sketch we use a twisted theta lift, and in step (2) we
apply a twisted version of the Siegel-Weil formula, which is due to Snitz
[34]. Roughly speaking, this twisted Siegel-Weil formula says that a certain
twisted integral of a theta function is a distinguished cusp form, namely
a weight 3/2 unary theta function, instead of an Eisenstein series. These
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unary theta functions admit harmonic Maass forms with rational Fourier
coefficients in the holomorphic part, up to a fixed square root factor (see
[11, 26]). Hence, in part (4) of the proof sketch we obtain rational numbers
instead of logarithms (up to a factor of 7 and possibly some square roots).
This explains the different algebraic properties of the doubly-twisted and
the partially-twisted traces in Theorem 1.5.

Example 1.6. By combining our explicit evaluations of the twisted and
non-twisted double traces of the Green’s function we can sometimes compute
the individual values Ga, ( Py, P»), even if the class numbers of the two special
points Pp, P» are not equal to 1. For example, modulo I' = PSLy(Z]i]) there
is one form (}9) of determinant m = 1, with corresponding special point
j, and there are two primitive forms (3 (1’) and (1?11 1?) of determinant
m' = 4, with corresponding special points 25 and % +j. Using the formula
for the non-twisted double trace of G5 from Theorem 4.12, we find

o C14i
G2(5,25) + G (J, 5 +J> = 32L(x12,1) — 8L(x28,1) + 56 L(x60,1).

On the other hand, the formula for the partially-twisted double trace of Ga
from Theorem 5.17 yields

o 144
G2(4,27) — G2 <J, 5 +J> = —4.

Combining these two evaluations, we obtain
G2(j,27) = 16L(x12,1) — 4L(x28,1) + 28L(x60,1) — 2.

In particular, the algebraicity results for the double traces of Go are in
general not true for the individual values. We refer to Section 5.6.1 for the
details.

This work is organized as follows. In Section 2 we discuss the necessary
preliminaries about vector-valued harmonic Maass forms for the Weil rep-
resentation associated with an even lattice, and some basic properties of
Siegel theta functions. In Section 3 we recall the construction of vector-
valued holomorphic and harmonic Maass Eisenstein series of half-integral
weight, and we give the Siegel-Weil formula in our setup. The results of
this section are mostly well known. However, in Theorem 3.6 we write out
an explicit formula for the Fourier coefficients of a harmonic Eisenstein series
of weight 1/2, which is not readily available in the literature and might be of
independent interest. Section 4 is the heart of the paper. Here we first show
that the trace of the Green’s function can be written as a theta lift (Theo-
rem 4.3). The next key step is to rewrite the double traces into an adelic
language in order to apply the Siegel-Weil formula and determine a precise
splitting of the Siegel theta function at special points (Theorem 4.10). Fi-
nally, we give our explicit evaluation of the double traces in terms of Fourier
coefficients of Maass Eisenstein series (Theorem 4.12). In Section 5 we con-
sider the twisted double traces of the Green’s function. The proofs of the
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results in this last section are very similar to the proofs of their non-twisted
counterparts in Section 4, so we will skip some details there.

Acknowledgments. We are grateful to Yingkun Li for pointing out the
paper of Snitz [34] to us.

2. PRELIMINARIES

Throughout this section, we let L be an even lattice of signature (p,q)
with bilinear form (-,-) and associated quadratic form Q(z) = %(z,z). The
dual lattice of L will be denoted by L’. The abelian group L’/L is finite and
of cardinality |det(L)|, where det(L) denotes the determinant of the Gram

matrix of L.

2.1. Vector-valued modular forms for the Weil representation. Let
C[L'/L] be the group ring of L, which is generated by the standard basis
vectors ey for v € L' /L. We let

< Z av%) < Z b*/%) = Z ayby

~veL!/L ~veL!/L ~veL'/L

be the natural bilinear pairing on C[L'/L].

Let Mpy(Z) be the metaplectic double cover of SLa(Z), realized as the set
of pairs (M, ¢) with M = (‘é 3) € SLy(Z) and ¢ : H — C a holomorphic
function with ¢?(7) = c7 +d. The Weil representation py, of Mpy(Z) associ-
ated to L is defined on the generators T'= (({1),1) and S = ((} '), v7)
by

_ellg—p)/8) o(—
- \/W Bg;/[/ ( (/877))6137

where we put e(x) = €™ for x € C. We let p; denote the dual Weil
representation. Note that p; is the Weil representation p;- associated to
the lattice L~ = (L, —Q).

For k € %Z we let Ay be the set of all functions f : H — C that
transform like modular forms of weight k for pr, which means that f is
invariant under the slash operator

(2.1) FlkL(M, ) = o(1) " pr(M, ¢) " f (M)

for (M,¢) € Mpy(Z). If K C L is a sublattice of finite index, we can
naturally view modular forms for p; as modular forms for px as follows.
We have the inclusions K C L C I/ C K’ and thus L/K C L'/K C K'/K.
We have the natural projection L'/K — L'/L,~v + 7. There are maps

pr(T)e, = e(Q(7))ey,  pr(S)ey

resp /i ¢ Agr — Ak, [ [k,

trr et Ak — Apr, g+ g-,
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which are defined for f € Ay 1 and v € K'/K by

(f) _ fVa lf’YGL//Ka
B0, iy ¢ LYK,

and for g € Ay, x and ¥ € L'/L by

Z 9B+

BeL/K

They are adjoint with respect to the bilinear pairings on C[L’/L] and C[K'/K].
We refer the reader to [12, Lemma 3.1] for more details.

2.2. Harmonic Maass forms. Recall from [6] that a harmonic Maass form
of weight k € %Z for pr, is a smooth function f : H — C which is annihilated
by the weight k Laplace operator

0? 0? , 0 0 ,

Ay = U<W+&)>+2kv(8u+28v> (T =u+ v e H),
which transforms like a modular form of weight k£ for pr, and which is at
most of linear exponential growth at the cusp co. The space of harmonic
Maass forms of weight & for py, is denoted by Hj, ;. We let M, ,L ;, be subspace

of weakly holomorphic modular forms, which consists of the forms that are
holomorphic on H. The antilinear differential operator

& 0
or
maps Hy, 1, onto M _pp-- We let HPol and H;'7® be the subspace of Hy,

which is mapped to the space My_j, 1~ of holomorphic modular forms or the
space Sy_j, 1~ of cusp forms under &, respectively. For k # 1 every f € H,?"Ll

& = 2iv

decomposes as a sum f = fT + f~ of a holomorphic and a non-holomorphic
part, having Fourier expansions of the form

= > D af(n)q"e,

~yeL'/L neQ
n>—oo
(2.2)
o= > <— V'Y a0, )DL =k, 4rinfo)g )ev,
~yeL'/L ni(%

where ajf(n 7) €C, q=e>", and I'(s,2) = [ e~ 't5"1dt is the incomplete
Gamma function. Note that f € H}' 77 is equivalent to ay(0,7) = 0 for all
veL'/L.

Examples of harmonic Maass forms can be constructed using Maass Poincaré
series, compare [3, Section 1.3]. For k € %Z, s € Cand v > 0 we let

(2.3) My s(v) = v_k/2M—k/2,s—1/2(v)a
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with the usual M-Whittaker function. For p € L'/L and m € Z —Q(u) with
m > 0, and s € C with Re(s) > 1 we define the Maass Poincaré series

1
Fiomu(7,8) = 2T (25) > Mi,s(dmmu)e(—mu)ey |k, (M, @),
(M,$)€T o0 \Mpy(Z)

where I's, is the subgroup of Mp,(Z) generated by T = ((§1),1). It con-
verges absolutely for Re(s) > 1, it transforms like a modular form of weight
k for pr, and it is an eigenform of the Laplace operator Ay with eigenvalue
5(1 — 5) + (k? — 2k) /4. Hence, for k < 0 the special value

k
Freompu(7) = Fremop <7'> 1 - 2>

usp

defines a harmonic Maass form in H whose Fourier expansion starts with

Fiemp(T) = q_m(eu +e ) +O().
In particular, for k£ < 0 every harmonic Maass form f € quLSp with Fourier
expansion as in (2.2) can be written as a linear combination

,LLEL’ /L m>0

of Maass Poincaré series.
The Maass raising and lowering operators on smooth functions on H are
defined by
Rif = 21’% + kot Ly = —21U2£
They raise or lower the weight of an automorphic form of weight k& by 2,
respectively. Also note that we have L, = v?>7%€,. We also define the

iterated raising operator by
R} = Rgiop—20---0 Ry, RY =id.
The action of the raising operator on Maass Poincaré series is given as
follows; see, e.g., [5, Proposition 3.4].
Lemma 2.1. We have
Rka,m,u(Ta S) = 47rm(s + k/z)Fk—i-Q,m,,u(T; 8).

2.3. Rankin—Cohen brackets. Let K and L be even lattices. For n € Ny
and functions f € A g and g € Ay with k,¢ € %Z we define the n-th
Rankin—Cohen bracket

[f,9ln = Z(—1)5<k " Z - 1) (ej:; 1>f(”_5) ®g",

s=0

where f(5) (2711) Brs " f, and the tensor product of two vector-valued func-

tions f =3 fuey € Agx and g = >°, gue, € Ay is defined by f® g =
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Z/w fugveusr € Apterer- We can write the Rankin-Cohen bracket in
terms of the raising operator as

1 - sf(k+n—1\/[l+n—-1Y\ . . s
[f’g]”:(_47r)nz(1)< 5 >< n—s >Rk f® Ryg,

s=0
(see [5, Equation (3.7)]) which implies that we have

[, 9ln € Apprvon koL

We will need the following formula from [5, Proposition 3.6] for the action
of the lowering operator on Rankin—Cohen brackets.

Proposition 2.2. Let f € Hp g and g € Hy 1, be harmonic Maass forms.
For n € Ng we have

(—=47)" Lieq2nlf, gln

l4+n—1 k+n—1
~(“ N mrenes o (T s o m
2.4. Rational relations for spaces of cusp forms. A sequence

(2'5) {)‘<mvu)}m€(@+,u€L’/L - Q
is called a rational relation for Sy, if the following conditions are satisfied:
(1) For each p € L'/L we have X\(m,—u) = A(m, ),
(2) For each € L'/L we have X\(m, u) = 0 for all but finitely many m €
QF,
(3) Xoper/r 2om=0 AN, p)ep(m, p) = 0 for all cusp forms f € Sy 1 with
Fourier expansion f(7) = 3_,c//1, 2 om0 ¢f(m, 1) ey
Similarly, given a discriminant D < 0, one defines rational relations {A(t) }sen
for the space of scalar-valued cusp forms S; (Io(|D|), xp) as in [19, p. 316].
We now recall the well known fact (see, e.g., [3, Theorem 1.17]) that a
sequence as in (2.5) satisfying conditions (1) and (2) above, is a rational
relation for Sy if and only if there is a form f € MQ!_,C 1~ with Fourier
coefficients a¢(m, ) such that A(m,pu) = ar(—m,p) for all m > 0 and
all pe L'/L.
For a prime discriminant D < 0 and the lattice L of determinant |D|, the

assignment
Z fu(T)ep — Z fu(IDI7)
pel! /L pel! /L
defines a linear map Sy, — S; (To(|D|), xp) (see [4]). This implies the
following lemma.

Lemma 2.3. Assume D < 0 is a prime discriminant and the even lat-
tice L has determinant |D|. Then, for every rational relation {\(t)}en
for S (To(|D|), xp) the sequence X (m,u) = A(m|D|) defines a relation
for Sy.1. (that is independent of € L'/L).
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2.5. Siegel theta functions and special points. As before, we let L
be an even lattice of signature (p,q). Let Gr(L) be the Grassmannian of
positive definite p-dimensional subspaces of V(R) = L®R. The Siegel theta
function associated to L is defined by

Or(r,0) =Im(1)”* >~ 3" e(Q(X\)T + Q(X,1)T)ey,

~eL'/L Xe€L+v

where 7 € H and v € Gr(L), and X, denotes the orthogonal projection of X
to v. The Siegel theta function transforms like a modular form of weight 254
for pr in 7 (see [2, Theorem 4.1]) and is invariant in v under the subgroup
of O(L) fixing L’/ L.

We call v € Gr(L) a special point if it is defined over Q, that is, if there
exists v9 € L ® Q such that v = vp ® R. For a special point v € Gr(L)
its orthogonal complement v in V(R) is also defined over Q and we obtain
the rational splitting L ® Q = v @ v’ which yields the positive and negative
definite lattices

P=LnNo, N =Lnv*.
Note that P@N is a sublattice of L of finite index. The Siegel theta functions
associated to L and P @ N are related by

(2.6) OL = (Opan)”,
with the trace operator defined in Section 2.1. Moreover, by identifying

C[(P&® N)' /(P @& N)] with C[P'/P] ® C[N'/N] the Siegel theta function
associated to P @ N splits as a tensor product

Opgn(T,v) = Op(T) ® ON(T),

where

(2.7) Op(r)= > > e(QX)T)ey € Mypp

YEP!'/P X€EP+y

is the usual holomorphic (vector-valued) theta series associated with P, and
On(7) = Im(r)”*O - (1)

with the holomorphic theta series © x- € Mg/ y-, where N~ = (N, —Q).

3. VECTOR-VALUED EISENSTEIN SERIES AND THE SIEGEL—WEIL
FORMULA

In this section, we construct vector-valued holomorphic and harmonic
Eisenstein series on positive definite lattices. The holomorphic Eisenstein
series appear in the Siegel-Weil formula, which we will state at the end of
this section. The Fourier coefficients of the harmonic Eisenstein series will
be needed for the explicit evaluation of the double traces of our Green’s
function.

Throughout this section, we let (L,Q) denote a positive definite even
lattice of rank r > 1, and L™ = (L, —Q).
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3.1. Holomorphic Eisenstein series. Following [7], for k € %Z with 2k +
r =2 (mod 4) and s € C we consider the C[L’/L]-valued non-holomorphic
Fisenstein series

Borlns)=7 Y @eles(M.)

(M,$)€T o \Mp, (Z)

where T'o, is the subgroup generated by T = ((§1),1) € Mp,(Z), and |51,
denotes the vector-valued slash operator defined in (2.1). Note that we
multiplied the Eisenstein series from [7] by 1/2, and we work with the Weil
representation instead of its dual.

The Eisenstein series converges for Re(s) > 1 — k/2, transforms like a
modular form of weight k for pr, and satisfies the Laplace equation

ApErr(1,5) =s(1 =k — s)Eg (T, ).
In particular, for k£ > 2 the special value
Ek,L(T) = Ek,L(Ta 0)

defines a holomorphic modular form of weight k for py. It is normalized
such that the constant term at the eg-component is 1.

We will be particularly interested in the case that the weight k of the
Eisenstein series equals r/2, with small rank r. In this case, the analytic
continuation of the Eisenstein series Ej, 1,(T, s) to s = 0 was proved by Rallis
(see [29, Proposition 4.3]) in the course of extending the Siegel-Weil for-
mula to lattices of small ranks. It also follows from the Siegel-Weil formula
of Rallis that the special value Ej (1) = Ej 1(7,0) defines a holomorphic
modular form in 7. Note that Rallis worked in an adelic setup, and consid-
ered Eisenstein series (¢, s) associated with certain Schwartz functions ¢.
However, as explained in [23, Section 4.2] or [12, Section 2.2|, the compo-
nents of our classical Eisenstein series Ej, 1.(, s) are given by the Eisenstein
series F(¢, s) for suitable choices of Schwartz functions ¢. Hence, we obtain
the following result.

Theorem 3.1. If k = r/2 with r > 1 then Ej 1(7,s) has an analytic con-
tinuation to s = 0, and Ey, 1,(7) = Ej, 1(7,0) is a holomorphic modular form
of weight k for pr.

Example 3.2. For r = 1 and k£ = 1/2, the Eisenstein series Ej, 1.(7) is a
holomorphic modular form of weight 1/2 for pr, and hence a linear combi-
nation of unary theta functions (see [11, Lemma 2.1]). For instance, if we
take the rank 1 lattice L = Z with Q(x) = 22, we have L'/L = 7/27, and

Eyj,(1) = OL(7), Or(r) = Z Z g e,

r (mod 2) nez
n=r (mod 2)

Note that vector-valued modular forms for p;, can be identified with scalar-
valued modular forms for I'¢g(4) in the Kohnen plus space via } -, o) fr(7)er —
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fo(41) + f1(47), and under this map the function O (7) corresponds to the
usual Jacobi theta function 0(7) =3, qv.

Example 3.3. For 7 = 3 and k = 3/2, the coefficients of Ej/, (1) are
essentially class numbers of imaginary quadratic fields; see Remark 3.7(4).
Moreover, by the Siegel-Weil formula (see Theorem 3.9 below), E3 /5 1(7) is
a linear combination of theta functions associated with ternary lattices in
the genus of L. For instance, if we take the ternary lattice L = Z3 with
Q(z1,72,23) = 23 + 23 + 23, we have L'/L = (Z/2Z)3 and

E3/2,L(T) = 0Or(7), OL(1) = Z Z q(z§+x5+md)/4e(r1,r2,r3)‘
ri,r2,r3 (mod 2) x1,r2,23€Z
z;=r; (mod 2)
This identity also follows from the fact that there are no non-trivial cusp
forms of weight 3/2 for pr. Note that the ep-component of O (7) is just
63(7), the third power of the Jacobi theta function. As an amusing ap-
plication of these facts, one can derive Gauss’ formula for the number of
representations as sums of three squares in terms of class numbers of imag-
inary quadratic fields; compare [38, Example 5.

We remark that Williams [38] also investigated the vector-valued Eisen-
stein series Fj 1(7,s) for small weights k € {%, 1, %, 2}. Moreover, the
Fourier coefficients of the holomorphic Eisenstein series Ey, (1) for k > 3/2
can be computed numerically using Williams’ powerful WeilRep program
[40]. For instance, one can check Example 3.3 using the sageMath code

from weilrep import *

w = WeilRep(diagonal_matrix([-2,-2,-2]))
print(w.cusp_forms_basis(3/2))
print(w.eisenstein_series(3/2,prec=10))
print (w.theta_series(prec=10))

3.2. Maass Eisenstein series. Now we turn to the construction of har-
monic Maass Eisenstein series E; ;- (7), which yield {-preimages of the holo-
morphic Eisenstein series Ej 1,(7) constructed above. As before, (L, Q) de-
notes a positive definite even lattice of rank r > 1.

For k € $Z with 2k +7 =0 (mod 4) we put

By (rs) =~ (v%¢0)| .- (M, 9),
4
(M,$)€T o \Mpy(Z)

where the slash operator |, - involves the dual Weil representation p;,. The
Eisenstein series converges for Re(s) > 1 — /2, transforms like a modular
form of weight x for p;, and is an eigenform of the Laplace operator with

A,{EmL_ (1,8) =s(1l — Kk — S)EK,L_ (1,8).
Moreover, if we put kK = 2 — k, a direct computation show that

52—kE2—k,L—(T, 5) =3B, (1 —k+3).
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Hence, for £ > 2, the special value

By 1-(7) = Ey_p (1, k — 1)
defines a harmonic Maass form of weight 2 — k for the dual Weil represen-
tation p; with

§2ka2—k,L*(T) = (k—1)Eg, (7).
Again, if k < 2 the analytic continuation of E’Q_kr (1,8) to s =k—1in the
case k = r/2 follows from the work of Rallis [29].

Theorem 3.4. If k = r/2 with r > 1 then E'Q,,ﬁL— (1,8) has an analytic
continuation to s = k—1, and Ey_j, - (T7) = Ey_y, - (7,k—1) is a harmonic
Maass form of weight 2 — k for p; with

o By pp- (1) = (k — 1)Ej,1.(7).

Example 3.5. As in Example 3.2 we take the rank 1 lattice L = Z with
Q(z) = 2? and view Ej), ;- (7) as a scalar-valued modular form for I'g(4)
in the Kohnen plus space. Then we obtain Zagier’s weight 3/2 Eisenstein
series

1 ~ 1
7E3/2L ZH an 3. 4mn U) n2+87r\/17’

where H(0) = —5 and H(n) for n > 0 is the usual Hurwitz class number
of discriminant —n, and I'(s,z) = fxoo e~t5~1dt is the incomplete gamma
function. This can be proved by plugging in s = —1/2 into the Fourier
expansion of the non-holomorphic Eisenstein series computed in [7, Propo-
sition 3.2] (see also the proof of Theorem 3.6 below for the Fourier expansion)

and simplifying the coefficients as in [8, Example 2].

3.3. The Fourier expansion of the Maass Eisenstein series. In this
section we recall the Fourier expansion of the non-holomorphic Eisenstein
series F, - (7,s) computed in [7], and specialize it to x = 1/2 and lattices
L of rank r = 3. Let us introduce the relevant quantities.

For v € L'/L, n € Z — Q(v) and a € N we consider the representation
number

Nyn(a)=#{x e L/aL : Q(x—v)+n=0 (mod a)}

modulo a, and the corresponding L-series

s) = ZN n(a)a™®
a=1

which converges for s € C with Re(s) > 0 and has meromorphic continua-
tion to s € C. Note that N, ,(a) is multiplicative in a, so we have an Euler
product

Lyn(s) = ¢(s —r+ 1) JT LA ™),

P
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with the local Euler factors
(3.1) LOX)=(1-p'X) Y Nyu(p™)X™
m=0

For n # 0 these local Euler factors can be simplified as follows. For v € L'/L
we let dy € N be the order of v in L'/L. Then 2dn is a non-zero integer,
and for a prime p we put

(3.2) wp =14 2vy(2dyn) € N,

where v, denotes the usual p-adic valuation on Q. Then, for v > w, we have
Nyn(*t) = p""IN, . (p¥), which implies that for n # 0 the Euler factor
Lgf ,)1(X ) becomes the polynomial

wp—1

(33)  LUL(X) = Nyu(p") X" + (1—p' 7' X) ZN,

/Y7n

The Fourier expansion of EH, - (7, s) has been computed in [7, Section 3].
Specializing their results to kK = 1/2 and s = 1/2, we obtain the following
Fourier expansion.

Theorem 3.6 ([7]). Let L be a positive definite even lattice of rank r = 3.
We have the Fourier expansion

E1/2L Z Z (n,7)q" ey

~yeL'/L neZ—Q(y)
n>0

Vi > Y A/ dninf)g e,
yEL' /L neZ—Q(v)
n<0
with coefficients
23/2 1
+(07IY) Ealiaay—————— l <(4S — 1) — L(p())(p—l—Qs) ’
|L'/L|m s—1/2 p|2g(L) l+p 17

and, forn >0,
) 23/2.3
n,y) = —————
R

1— —1
L(xag, 1)oyn H %p_szN%n(pwP), if A is not a square,
—p
p|2det(L)

lim <C(28) H 1 L@L(p_l_?s)), if A is a square,

—1 77
s—1/2 pl2det(L) 14+p

C

ct(
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and, forn <0,

2%/2. 1—xa,®pt o
c (n,7) = ————=—=-L(xa,, 1)0yn — = —p PN, (pYP).
|L'/Llw 3/2 ’ p2g(L) L-p

Here we wrote A = Qd%ndet(L) = Ao f? with Ag a fundamental discriminant
and f € N. Moreover, wy, is defined by (3.2) and we put

Oyn = Z:U'(d)XAo (d)d_la—l(%)
djw
where we wrote f = ww' with g.c.d.(w,2det(L)) =1 and all prime divisors

of w' appear in 2det(L).

Proof. Let k € Z + % be a half-integer with 2k + 7 = 0 (mod 4). By [7,
Proposition 3.2 and equation (3.13)], the non-holomorphic Eisenstein series

Em - (7, s) has the Fourier expansion
Z Z (n,7,s,v)e(nx)e,,
yEL' /L neZ—Q(y
with Fourier coefficients cy(n, 7, s,v) given by
(50 s+ 227n72s7_rvlfnfsr(’{’ 125 — 1) ( (Q’H_T )/ H 1 7’/2714723)
7 Dk +s)(s) /|L//L 7’
(—1) 40/t fnfte L Ly 25+ 1/2)
/L5 + ) (s T2 —1)
(_1)(2n+r)/42n,ﬂ.s+ﬁ|n|s+n—1 . L(XAoa 25 + K — 1/2)
\ VIL'JLIT(s) ((4s+2r —1)

with

if n =20,

Oy n(25 + K)Ws(dmnw), if n >0,

Oy n(25 + K)Ws(dmnw), if n <O,

1—xa,(p)pt/?~* r/2—s
O'%n(S) = H 1 _0(1)_25 L/(%) (pl /2— )
p
plA
and with the usual Whittaker function

Ws(y) = [yl™" “ Wegn(y)r/2,(1—r) 2—s (Y1)

Note that we multiplied the coefficients in [7] by 1/2. The relevant special
values of the Whittaker function are given by

e /2, if y >0,

Wi_w(y) =W =
1=y o) {ey/2f(1 — K, |y]), ify<O.

We first rewrite the coefficients of index n = 0. For the “generic” primes
p 1t 2det(L) the local Euler factors Lff()) (p~*) can be computed as explained
in [39, Remark 22] (see also [38, Section 3]), and are given by
o r—1-2s

(®) -5y _ L =P
L%o(p °) = W’
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which implies that we can write

1— p272/{74s

() [ 1—rj2—n—2s\ _ G(4s+2K —2) (p) (, 1—1/2—k—2s
25 @ y=2——— | L ).

7,0 _ — o 1—2k—4s 7,0
p C(4s+ 2k —1) pl2det(L) 1-p

If we plug in 7 = 3, k = 1/2, and s = 1/2, this gives the coefficients of index
n = 0 as stated above.

For n # 0 we can split the product over the primes p | A into the primes
with p { 2det(L) and the ones with p | 2det(L). Note that by (3.3) we have
L) (p'7) = p N, (7).

For p { 2det(L) the representation numbers N, ,(p"?) were computed by
Siegel (see [8, Theorem 6(ii) with oo = wy]). Now we plug in r =3, K = 1/2,
and s = 1/2, and obtain? as in the proof of [8, Theorem 11] that

1—xa,(p)p~? _ o ) .
11 1—(}5—24%(?9 ) :H(”fl(l’ P() = X (P)p o1 (p7 ) 1))
p‘A p|w

pf2det(L)

=" uld)xay(d)d o1 (%) = o0

dlw
_ —1
Note that for Ag = 1 we have 0, =1 and ! ﬁf‘}fﬂp = 1+;),1. This gives
the formula in the theorem. O
Remark 3.7. (1) The coefficients with non-square A can be further sim-
plified using Dirichlet’s class number formula
9820 p(Ay), if Ag >0,

L(xa, 1) =1{ VA,
w(Ao0)4/[Ao]

where h(Ag) denotes the class number of Q(v/Ag), w(Ag) € {2,4,6}
is the number of units, and ea, denotes the smallest totally positive
unit larger than 1.

(2) Since L is positive definite, there exists at least one prime p | 2det(L)
such that L ® Q, is anisotropic. If A = 2d3ndet(L) is a square
(including n = 0), this implies N, ,(p") = 0 for m large enough,
hence L({?L(p_l_%) vanishes at s = 1/2; see (3.1). The zero of this
factor at s = 1/2 cancels out with the pole of the Riemann zeta
function and contributes with a rational multiple of log(p). More-

over, from (3.3) it follows that ngf %(p,z) is rational when n # 0 for
(»)

all primes p. In general, it is well known that L7 (p~*) (including
n = 0) can be written in terms of the local Igusa zeta function as-
sociated with a quadratic polynomial, and hence, by a fundamental

h(A), if Ag <0,

2In the notation of [8, Theorem 6(ii)] we have D = Aqw'?, hence for primes p  2det(L)
we get X (p) = xa0(p)-
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result of Igusa, it is a rational function in p~° (see, e.g., [14]). This
implies that the limits lim,_,;/o(...) appearing in the above coef-

ficients are rational multiples of log(p) if Lgff %(p_l_%) vanishes at
s =1/2, and equal to 0 if there are two such primes.
(3) Summarizing, the coefficients ¢t (n,~) are of the form

(n,y) = V2 0g(ea,)/vV Ao, if A is not a square,
= VIL'/L|m log(p), if A is a square,

for some prime p | 2det( ) in the square case.

c xrational number x {

(4) Using 51/2E1/2 - = E3/2 1, and applying the £-operator term-wise
to the above Fourier expansion, we see that the coefficients of the
holomorphic Eisenstein series F3/; ;1 are essentially given by class
numbers of imaginary quadratic fields.

(5) Rhoades and Waldherr [30] constructed a scalar-valued weight 1/2
harmonic Maass form which maps to 3 under the é-operator. By
choosing L = 73 with Q(x1,z9,23) = 2% + 23 + 2% and taking the
¢o-component of E; /2,1 (T), we recover the results of [30].

3.4. The Siegel-Weil formula. As before, we let (L,Q) be a positive
definite even lattice of rank » > 1. Moreover, we let W = L ® Q be the
surrounding rational quadratic space, and we let H = SO(W) be its special
orthogonal group, viewed as an algebraic group over Q. Denoting by A,
the ring of finite adeles of Q, we have the C[L’/L]-valued theta function on
H x H(Ay) defined by

(3.4) OL(mh) = > > e@QX))e,

yeL' /L Xeh(L++)

It is a holomorphic modular form of weight k = r/2 for the Weil represen-
tation pr.

Remark 3.8. For h = 1 this is the usual holomorphic theta function ©f (1)
associated with L defined by (2.7). More generally, we can view O (7, h)
as a theta function corresponding to a lattice in the same genus as L: If we
write h = (h,) with h, € H(Q,), and L, = L ® Z,, then H(Ay) acts on
lattices in the genus of L by hL =, hyL, N W. Since (hL)'/(hL) = L'/L
(non-canonically), we can view Oy (7) as a modular form for pr. Moreover,
if we denote by O(L’/L) the orthogonal group of the finite quadratic module
(L'/L,Q mod Z), then there is an isometry o € O(L'/L), depending on the
choice of the isomorphism (hL)'/(hL) = L'/L, such that

®L(Ta h) = ZL(T)a

where O(L’/L) acts on C[L’/L]-valued functions by f7(7) = >__ f1(7)es(y)-

This means that, up to a possible permutation of the components, O (7, h)
can be viewed as the theta function corresponding to the lattice hL.
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We state the Siegel-Weil formula in our setup. We refer the reader to [22,
Theorem 4.1] for the general formula. It can be translated into our notation
as explained in [12, Section 2.2].

Theorem 3.9 (Siegel-Weil). Let L be a positive definite even lattice of rank
r > 1, and let k =r/2. Then we have

/ O©r (7, h)dh = 2Ey, 1(1),
(@Q\H(Af)

where dh is the Tamagawa measure on H(A¢) normalized such that we have
vol(H(Q)\H(A¢)) =2, and Ey 1,(T) is the holomorphic Eisenstein series of
weight k for pr defined in Section 3.1.

The following well known result (see, e.g., [31, Lemma 2.13]) allows us
to write the integral in the Siegel-Weil formula as a finite sum. We give a
proof for the convenience of the reader.

Lemma 3.10. Let K C H(Ay¢) be a compact open subgroup and let f(h) be
a function on H(Q)\H(A¢) which is K-invariant from the right. Then we

have 1
/ fdh=vol(K) 3 f(a)
H(Q)\H(Aj) a€H(Q\H(A)/K @

where Ty = H(Q) N (aKa™t) and

vol(K) =2 Z 1

acH(Q\H(Ay)/K ITal

-1

Proof. We have a finite disjoint double coset decomposition
H(As) = U H(Q)aK,
a€H(Q\H(Ap)/K
so we can write the integral as

h)dh =
/H(Q)\H(Af)f( ) Z /a\aK

H(Q\H (A

Since I'y, is finite and f is invariant under K we have

1
F(h)dh = / F(h)dh = vol(K)—— f(a).
/Q\QK ‘F | ‘F |
This gives the stated formula. In order to compute vol(K), apply the lemma
to f(h) = 1. O

Example 3.11. Let us rewrite the integral in the Siegel-Weil formula as
a finite sum over lattices in the genus of L of symmetrized theta functions.
We choose as K the compact open subgroup

U={heHAf):hL =L},
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the stabilizer of L in H(Ay). The map sending o € H(Q)\H(Af)/f] to
the isometry class M of aL is a bijection between H(Q)\H(Af)/fj and the
set gen(L) of isometry classes of lattices in the genus of L. Moreover, we
have I'y, = SO(aL) = SO(M), where SO(M) = H(Q) N U. However, we
cannot directly apply Lemma~3.10 since U might act non-trivially on L'/L,

so ©p (7, h) is not generally U-invariant. To circumvent this problem, we
note that the symmetrized theta function

1
Y™ (1,h) = ——— ©F (1, h)
PO = owrm, 25,

is ﬁ—invariant, so by Lemma 3.10 and Remark 3.8 we can write

~ 1

/ %™ (r, h)dh = vol(U) > ﬁ@SY““(T ,a)
(@R Q€ HQ\H ()T
2 1 sym
~ mass(L) Z ISO(M)] O (7).
Megen(L)

where mass(L) = 3~ y/cpen(r) m is the mass of the genus of L. Now by
the Siegel-Weil formula and the symmetry of the Eisenstein series Ej 1, we
obtain

(3.5) ——— > Oy"(1) = Ep(7),

ma.SS
MGgen(L)

where k = r/2. Here we had identified M'/M = L' /L for each M € gen(L),
but the sum on the left-hand side is independent of the choice of such iso-
morphisms due to the symmetrization over O(L'/L).

Finally, we remark that the classical Siegel-Weil formula is usually stated
for the scalar-valued theta function 0r,(7) = > ., e(Q(x)7), which is just
the ep-component of O (7). If we take the eg-component on both sides of
(3.5), and use that any o € O(L'/L) fixes ¢p, we obtain the scalar-valued
Siegel-Weil formula

1 1
mass(L) Me%(m WGM(T) = E,1,0(7),

where Ej 1 (7) denotes the eg-component of Ej r(7), which is a scalar-
valued Eisenstein series for some congruence subgroup.

4. TRACES OF SPECIAL VALUES OF THE GREEN’S FUNCTION

4.1. The trace of the Green’s function as a theta lift. In this section
we show that the traces of the Green’s function G5(P;, P») defined in (1.1)
can be obtained as a regularized theta lift on a lattice of signature (1, 3).
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4.1.1. The orthogonal model of hyperbolic 3-space. We fix an imaginary qua-
dratic field Q(v/D) of fundamental discriminant D < 0. We let Op be its
ring of integers and 9p = v/ DOp be its different. We consider the lattice

(4.1) L:{X:(Z i’) :a,cez,beoD}
with the quadratic form
Q(X) = det(X) = ac — |b|?
and corresponding bilinear form
(X1, X2) = ajco + agey — tr(blgg).

It is an even lattice of signature (1,3), with dual lattice

;. o a b . -1
L —{X—<b c> ca,c€Z,bedy }

In particular, we have

L'/L=0d,'/0Op.
The group I' = PSLy(Op) acts on L via v.X = yX7!, fixing the classes of
L'/ L. Note that we may identify the elements X = (% f;) € L’ with integral
binary hermitian forms

[a,b,c)(z,y) = alz|* + tr(bay) + cly|?

of determinant ac — |b|?> = Q(X), and this identification is compatible with
the corresponding actions® of T'.

The Grassmannian Gr(L) corresponding to L is the set of all positive
definite lines in V(R) = L ® R. We can identify the hyperbolic 3-space H?
with Gr(L) by mapping P = z+rj € H? to the positive line Rv(P) € Gr(L)
spanned by the vector

(4.2) o(P) = —— (’"2 et 2

o - 1> € V(R).

Conversely, each positive line in Gr(L) is spanned by some vector X =
(4%) € V(R) with Q(X) = det(X) > 0. If we put

Vet (X
(4.3) py = Uy YUX) S

= T
then one can check that v(Px) = sgn(c)\/2det(X)_1X, so v(Px) spans
the given positive line. We call Px the point corresponding to X, and if
X € V(Q) is a rational vector, we call Py a special point.

Recall that the hyperbolic distance d(P;, Py) on H? is given by

_ |21 — 2|2 + 1% + 12

, where P; = z;+r;j for i € {1,2}.
2T1T2

cosh(d(Py, P))

3T acts on hermitian forms via (y[a, b, d)(z,y) = [a, b, c]((z,y) - 7).
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The bilinear form on V(R) can be expressed in terms of the hyperbolic
distance as follows.

Lemma 4.1. Given X1,Xy € V(R) with D1 = Q(X1) > 0 and Dy =
Q(X2) > 0, and corresponding points Pi, Py € H3, we have

(Xl, Xg) =2 sgn(clcg)\/ D1D2 . COSh(d(Pl, PQ))
Proof. By definition we have
(Xl,XQ) = aicy + a2c1 — tr(blgz).

One the other hand, using the explicit formula for the points P, P, from
(4.3), we have

2

a-al e+ + aser — tr(biBo)
a1c2 4 azcy — tr(b162
cosh(d(Py, Pp)) = 12— 2 L% — sgn(eren) .
’ VD1 VD N/
el feal 2D
This gives the stated formula. ([

4.1.2. Traces of T-invariant functions on H?. For yu € L'/L and m € Z +
Q(p) we let
Lpy={X€L+pQX)=m}.

If m > 0, we let L}, , the subset of those X = (¢ Ic’) € L, with a > 0
(or, equivalently, ¢ > 0). Note that the elements X € L;,“W correspond
to positive definite binary hermitian forms [a, b, ¢] of determinant m with
be Op+ p. For m > 0 and a I-invariant function f on H?3, we define its

trace of index (m, u) by

trap(f) = 3 f(Px).

r
Xel\Li . x|

Here I'y denotes the stabilizer of X in I". Clearly, we have

)= Y Ef (P = 3 ()

Xel\L, pel’'/L

where L is defined in (1.3).

We call X € L' primitive if %X ¢ L' for every integer r > 1, and we let
Lj{l’v(,l be the subset of L;,Eb’ , consisting of primitive vectors. Correspondingly,
we define the primitive trace of index (m, ) by

1
()= Y o/ (Px).
Tx|
Xer\L5S,
Each X € L;F,W can be written in a unique way as X = rXg for some
r € N and a primitive Xy € L’ with @ > 0. Then we have Px = Px, and
I'x = I'x,. Since DQ(X) € Z for any X € L', we must have 72 | Dm.
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Moreover, if Xy € L + v, then we necessarily have rv = p in L'/L. Hence,

we can write
trm;/—L(f) = Z Z try(')n/rz,y(f)'

reN veLl’/L
r2|Dm Tv=p
Conversely, using an inclusion-exclusion argument, we see that the primitive
trace tr?m ,(f) can be written as an integral linear combination of the traces
tr, /2, (f), for r € N with r? | Dm and v € L'/ L with rv = p.

4.1.3. Green’s functions and theta lifts. We let O (7,v) be the Siegel theta
function on H x Gr(L) as in Section 2.5. Using the identification H? =
Gr(L), P — v = Ru(P), given by (4.2), we can view

Or(r, P) = Or(r,Rv(P))

as a function on H x H?. It is [-invariant in P, and since L has signature
(1,3), it transforms like a modular form of weight —1 for the Weil represen-
tation py, in 7.

Let n € Ny. For a harmonic Maass form f € H;"™) ,_ of weight 1 — 2n
for the dual Weil representation p;, we define the reguiarized theta lift

B P) = [ (R (7)1 P)dn(r)

where the integral over the fundamental domain F for SLy(Z) is regularized
as explained by Borcherds [2] or Bruinier [3], the product in the integral is
the bilinear pairing on C[L’/L], and du(7) is the invariant measure on H.

Forn € Ng, p € L'/L and m € Z+ Q(p) with m > 0 we let Fi_y, , u(7, 5)
be the weight 1 — n Maass Poincaré series for p; defined in Section 2.2 (for
the lattice L™).

Theorem 4.2. Forn € Ny, p € L'/L and p € Z + Q(p) with m > 0 and
Re(s) > 1 we have

(1—2n) _ _ 2 ‘
(PL (F1_2n7m7/1/( 78)7 P) - Cn(s) ﬂ_l—!(s + 1/2)\/mtrm7ll (G2S_1( 7P))7

with the constant Cp(s) = (4mm)"(s+1/2—n)(s+1/2—n+1)---(s—1/2)
forn >0 and Cy(s) = 1.

Proof. Using Lemma 2.1 we see that
O (B g (-5 5), P) = Cu(s)B) (Fumu( - 5), P),

so it suffices to show the result for n = 0. Then the theta lift can be
computed by unfolding against the Poincaré series as in [3, Theorem 2.14].
We need to apply this theorem to the lattice L~ = (L,—Q), which has
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signature (3, 1), and with weight k = lﬁ% = 1. Then we obtain

<Dg)(F1,m,u( T S)’ P)

O gjcmmxmﬂzﬂGﬁ+§2“m)

. 1/2—s
[(2s) - (dmm)t/2=s < T Q(Xy,)
Q(X)=m
where we put v = Ru(P) for brevity. Since (v(P),v(P)) =1, we have

Q%) = Q[ e ) = (X o(P)

Hence, using Lemma 4.1, we can write Q(X,) = m cosh(d(P, Px))?. More-
over, the hypergeometric function simplifies to

1
(4.4) 2F1 <S, s+ 2 2s; :L‘> =22 "N /T -z +1)2501 - :L,)—l/2‘

Combining these two facts, we obtain after a short computation
(4.5)

oF1 <s, s+ 1, 2s; Q(mXU)> = 227 Lcosh(d(P, Px))*pas_1(cosh(d(P, Px))),

2
where ¢ is defined by (1.2). Taking everything together, we arrive at
2251 (s)
SN (Fy (-, 5),P) = _1(cosh(d(Px, P))).
L ( 1,m,,u< 78)’ ) F(QS) . (47Tm)1/2 XEEL:J’_M ©2s I(COS ( ( X )))
QX)=m
By the duplication formula for the Gamma function we have % =
F(§+7\/177/2)' Splitting the sum modulo I', and replacing X with —X if a < 0,
gives the stated formula. ([

Next we recall that for n > 1 the function Fi_2ym. . (7) = Fi—2nmu (7’, n -+ %)
defines a harmonic Maass form of weight 1 — 2n for p; with principal part
q¢ "™ (ey+e_,). Asan application of Theorem 4.2 we obtain the next theorem
which is the main result of this section.

Theorem 4.3. Let p € L'/L and m € Z + Q(p) with m > 0. Forn > 1 we
have

L Er s ) = 7m0 2 (G )

m/m

Proof. One can show, as in the proof of [3, Proposition 2.11], that
(4.6)

- _ 1
(bg 2n)(F172n7m7N( i) S)’ P) ’s=n+% - (pg 2n) <F12n7m7u < o + 2> ’ P> '

Here we use that n > 1, so F1_opmu( -, ) converges at s =n + % Now the
theorem follows from (4.6) and Theorem 4.2. O
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Remark 4.4. It would be interesting to extend Theorem 4.3 to n = 0. How-
ever, one would need to show that F ,, ,(-,s) has an analytic continuation
to s = 1/2, and that (4.6) still holds, which seem to be difficult problems.

4.2. Splitting of the Siegel theta function at special points.

4.2.1. The special orthogonal group. We let L be the lattice of integral bi-
nary hermitian forms over Q(v/D) defined in (4.1), with the quadratic form
Q(X) = det(X). We let

vorea={x=(: ") :accarcown)

be the surrounding rational quadratic space, and G = SO(V') the corre-
sponding special orthogonal group. As usual, there is a short exact sequence

1— G, — GSpinyy - G — 1

of algebraic groups over Q, where GSpin;, denotes the general spinor group
associated to V', and G, is the multiplicative group.
For an integral domain R of characteristic zero we consider the commu-

tative ring Op ® R = R ® Rwp, where wp = w. On Op ® R there is a
unique R-linear involution denoted by z — Z satisfying v/ D = —v/D, which
induces an involution on the group GL2(Op ® R). Note that Op ® R is an
integral domain if and only if D is not a square in R.

A study of the Clifford algebra associated to (V, Q) (see, e.g., [32, Chap-
ter 1]) shows that, for any field extension F' of QQ, we have

(4.7) GSpiny (F) = {g € GL2(Op ® F) : det(g) € F*},

with spinor norm v corresponding to det(g). Moreover, the action of GSpiny, (F')
on V ® F' corresponds to

Hence, we get
(4.8) G(F) = GSpiny (F)/F* =2 {g € GL2(Op ® F) : det(g) € F*}/F*.
We now consider the compact open subgroup
U={geG(Ay) : gL=L} C G(Ay)
and its subgroup
U={geU : gfixes the classes in L'/L}.

Note that U = I, [7,, and U =[], U, where

Up = {9p € G(Qp) : gpLp = Lp} and

Uy = {gp€Up : gp fixes the classes in L, /L,},
with L, = L ®Zy and L, = L' ® Zj.
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For the rest of this section we assume that D < 0 is a prime discriminant,
and denote by £ the unique prime dividing D. We then define

1++—1, if D=—4,

ip =4 V=2, if D= —8,
V=L, if D=—¢,¢=3 (mod 4),

z

and put gp = (Z(’)J %) as an element of GSpiny, (Q) according to (4.7). We

let Tp denote the image of gp under the natural map GSpiny (Q) — G(Q).
A straightforward computation shows that Tp € U, and that Tp induces an
automorphism of L}/Ly of order two.

Lemma 4.5. For every prime p we have
Up = {g € GL2(Op ® Zp) : det(g) € Z, }/Z,, .
Moreover, we have ﬁp =U, ifp#4L, and fjg =U,UTpU,.

Proof. It is easy to check that every element in {g € GL2(Op®Z,) : det(g) €
Zy } acts on V(Qy) as a transformation in Uy. In order to prove the converse,
let T € Up. By (4.8) we have that T is induced by the action of a matrix
g € GL2(Op ® Qp) with det(g) € Q. By multiplying g by an appropriate
power of p we can assume that g € Ma(Op ® Zp) \ pM2(Op ® Zy). Then
det(g) € p™Z, for some integer m > 0. We claim that m = 0. Indeed, using

the Z,-basis
1 0\ (0 0) (0 1 0 wp
0 0)°\0 1)°’\1 0)’\wp O

of L, we see that gL,g~!

{(aa a'y> <66 55) <a6+ﬂa 57+a6>

v vY) ' \ép 60) \yB+da oy+~0)’
(wDaﬁ-i-wDBoz ujpﬁ’y+wDa5>}
wpYf +wpda Wpoy+wpyd ) |

is generated over Z, by

Since gL,g~! = det(g) Ly, if follows that these four matrices have all their co-
efficients in p""Op ®Z,. We distinguish three cases according to the value of

(%). First, assume (%) = —1. Then Op ® Z), = Z,[wp] is a quadratic un-

ramified extension of Z, with maximal ideal pZ,|wp]. Since 2z € p"Zy|wp]
for all z € {a, 8,7,0}, we have o, 8,7,0 € p™Zplwp]. Since g & pM(Zy|wp))

%) = 0, i.e. p = £. Then Zplwp] is a

we get m = 0. Now, assume
quadratic ramified extension of Z, with maximal ideal zpZ,wp]. Since
2Z € 28 Zy|wp) for all z € {a,B,7,5}, we have a, B,7,8 € 20 Z,ywp] =
ZD"Zplwp]. But then g = g}}h for some matrix h € GLa(Z,[wp]) with
det(h) € Z,;. Since g and h act as transformations in U, and gp does

not, we must have m even. This implies o, 8,7,6 € p"/ Zplwp]. Since
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g & pMs(Zy[wp]) we get m = 0, as before. Finally, assume (%) = 1. Using

I computed above, that

2w € p"Op ® Z, for all z,w € {«a,B,7,0}. Since (%) = 1, there exists

¢ € Z, such that ¢? = D, and the map p"Op ® Z, — Z, x Z, given by

D_
;rc’ﬂy . <>

that pt D we deduce from the generators of gL,g~

D
(4.9) z=x+ywp +— (21,22) = <:U+y

is a ring isomorphism. We then have (zjwse, zow1) € p"™(Z, x Z,) for all
z,w € {a, B,7,6}. If z; € Z, for some index i € {1,2} and some z €
{a, B,7,0}, then we get w; € p™Z, for the other index j € {1,2},j # 1,
for all w € {«,f,7,d}. In particular o;d; — Bjv; € p*"Z,. But det(g) =
ad — By € Zy, hence its image under (4.9) lies in the diagonal subring of
Zyp %X Z,. This implies det(g) € meZ;, which is only possible for m = 0.
This proves that m = 0 in all possible cases, and completes the proof of the

first statement.

Regarding the second statement, for p # £ we have L;, = L, and the result
follows. The case p = ¢ follows from the arguments used in the previous
paragraph since any T € Uy is in Uy, hence it acts as a matrix of the form
gph where m > 0 is an integer and h € GL2(Op ® Z,) with det(h) € Z.
Since h defines a transformation in Uy and gp defines the transformation
Tp with T,% € Uy, we get Uy = Uy UTpU, as wanted. This completes the
proof. O

We now prove the following approximation result.
Lemma 4.6. We have G(Ay) = G(Q)U.

Proof. The number of double cosets in

G(Q\G(Ay)/U

is equal to the number of classes in the genus of L. Since L is indefinite of
determinant D, and D is a prime discriminant, we have by [13, Chapter 15,
Theorem 21] that the genus of L consist of a single class, thus

G(Af) = G(QU.
From Lemma 4.5 we get U = U UTpU. Since Tp € G(Q) we conclude that
G(Af) = GQUUTPU) = GQ)U,
as claimed. O

We let
FU = G(Q) N Uv
which is a discrete subgroup of G(Q). From Lemma 4.5 it follows that

I'y = {g € GL2(Op) : det(g) = £1}/{=1}.
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Remark 4.7. Since an element in {g € GLa(Op) : det(g) = £1} of determi-
nant —1 can be written as g = egp with e = (' ?) and go € SL2(Op), we
have

{g € GLQ(OD) : det(g) = :tl} = SLQ(OD) U SLQ(OD)E,
as a disjoint union. Also note that € acts on V(Q) by

(95 1)

Lo \Lp,, = T\Ly:

m,u

Hence, we have

where the + indicates that we only take the positive definite (i.e. a > 0)
hermitian forms in L%W (recall that I' = PSL2(Op) and L?nw denotes the
set of all X € L + u with Q(X) = m which are primitive in L"). Moreover,

for every X € V(Q) the stabilizers subgroups I'y and I'y x = {a € I'yy :
aX = X} satisfy ‘Fxl = ‘FU,X‘-

Lemma 4.8. For any fized Xy € Lgn# we have
Ly, . =V(Q) NUX,.

Proof. Since U preserves L and fixes the classes of L'/L, we have V(Q) N
UXy C Lg% .- Conversely, given by € p, for each prime p we will show that

any point
a b 0
X = <b c> €Ly,

can be transformed into the “principal form”

1 bo 0
(& %)<t
(where # is uniquely determined from det(Xy) = m) using a transformation
in G(Q) NU,. First, since X is primitive in L', we can act by some element
in PSLy(Op) C G(Q) NU, to assume that a is coprime to p. Indeed, if a
is already coprime to p then there is nothing to prove. If ¢ is coprime to p,
we can act by ((1) _01). If a and c are divisible by p, then acting by (%),
with z € Op, transforms the a-component of X to a + tr(zb) + c|z|?. If this
number were divisible by p for all z € Op, then we would have b/p € 071,
hence %X € L'. This contradicts the fact that X is primitive in L'. Now,

since p 1 a, the matrix (16“ (1)) acts as a transformation in G(Q) N U, (by
Lemma 4.5) with

(e -G 2)
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Finally, for § € Op the matrix (%?) also acts as a transformation in

G(Q) N Uy, with
1 0\ /1 b (1 b+§8
(ﬂ 1)'(() ac>_<b—|—ﬁ * )

Hence, by choosing 8 = by —b € Op, we arrive at the desired principal form.
This completes the proof of the lemma. O

From now on, we fix some primitive Xy € L?n#. We let
H={9€G:9Xy=Xo}

be the stabilizer of Xy in G, which can be identified with SO(W) where
W = (QXp)* is a negative definite three-dimensional rational quadratic
space. In H(A¢) we have the compact open subgroup

K:H(Af)ﬂU.

Since G(Af) = G(Q)U and H(Af) C G(Ay), every element h € H(Ay) C
G(Ay) can be written as a product h = gu for some g € G(Q) and u € U.
The following bijection, that we extract from [33], allows us to translate
the set I\ L), , into an adelic setting. Recall that I'y = G(Q) N U and
I'vx ={a €Ty :aX = X} is the stabilizer of a point X € V(Q) in I'y.

Theorem 4.9. We have a bijection

H(Q\H(As)/K — Ty\L)

m7l"‘7

h=gu +— g 'X.
Moreover, if we let T, = H(Q) N hKh™! then we have |Ty| = [Ty 4-1x,|.
Proof. Since U C G(Ay) is open and compact, the map

(4.10)
HQ\(H(A) NGQU)/(H(Ap) NU) = (GQ) NUNV(Q) NTUXo)

h=gu+— g_lXo7

is a bijection by [33, Theorem 2.2(ii)]. By Lemma 4.6 we have G(Af) =

G(Q)U and hence H(Ay) N G(Q)U = H(Ay). Thus the left-hand side in

(4.10) is H(Q)\H(A¢)/K. Moreover, by Lemma 4.8 we have
(G@QNUNV(Q) NUXo) = Tu\Li,y,

This gives the stated bijection. We leave it to the reader to verify that the
map

I = Tygix, B g 'Bg
is a bijection. O

We obtain the following splitting of the trace of the theta function.
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Theorem 4.10. Fiz a point Xo € LY, ,, and define sublattices

m,p?
P=LNQXy, N=Ln(QX,)",

which are one-dimensional positive definite and three-dimensional negative
definite, respectively. Let N~ = (N, —Q). Then we have

trtr)n,p(@L(Ta ’ )) = trtr)n,,u(l) : (GP(T) ® E3/2,N* (T)U3/2>

where © p(7) is the weight 1/2 holomorphic theta function for P and Es3 /9 n—(T)
is the weight 3/2 holomorphic Eisenstein series for N~ , and the superscript
L denotes the operator defined in Section 2.1.

L
’

Proof. Using Remark 4.7 and the bijection from Theorem 4.9, we can write
the left-hand side as

1 1
trgn,,u(G)L(Tv )) = Z ﬁ@L(ﬂ PX) = Z WGL(Tv P(),h),
xerp\rg,,, "~ 0% heH@\H(A)/K ™"
where Py € H? is the special point corresponding to Xg, and
Or(1, Py, h) = Im(1)*/? Z Z e(Q(Xy(p))T + Q(Xy(py) L )T)ep-
peL! /L X €h(L+p)

Since K = H(Af)NU acts trivially on L'/ L, the function f(h) = ©(7, Py, h)
on H(Q)\H(Ay) is invariant under K from the right, so Lemma 3.10 leads
to

1 1
Z 1-17@[/(7-7 POa h) - W @L(T7 PO) h)dh

ner@haei
By (2.6) the theta functions for L and P & N are related by
O (, Po,h) = Opgn (7, Po, )"

Note that the operator f — fL commutes with the integral, so we get

L
/ Or(r, Py, h)dh = (/ Open (T, Po,h)dh> .
HQ\H(Ay) H(Q)\H(Ay)

Next, we use the splitting
Opan (T, Po,h) = Op(r) @ v¥/2O 5 (1, h).

Note that ©p(7) is independent of h since H(Ay) acts trivially on P. Thus
we get

/H (Q\H(Af)

OpgnN (T, Py, h)dh = Op(T) ® v3/2/ On- (7, h)dh.
H(Q)\H(Ay)

By the Siegel-Weil formula (Theorem 3.9) we have

/H (Q\H(Af)

/ G)N* (T, h)dh = 2E3/2,N* (T)
HQ\H(Ay)
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It remains to compute vol(K'). Using the formula for vol(K) from Lemma 3.10,
and the bijection from Theorem 4.9 again, we obtain

2 1 1
vol(K) 2 [T 2 =t (1)

heH(Q)\H (47)/K xerguzg . TUX]

m,p

Taking everything together, we obtain the stated formula. O

Remark 4.11. The unary lattice P associated to Xg € L?rw equals Zd, Xo
and has determinant 2d,m, where d,, is the order of y in L'/L. The ternary
lattice N~ has determinant 2m|D|. Indeed, by Lemma 4.8 one can assume

that X is the “principal form” <% ﬁg), where by € p and cg = m + |bg|?,

and then a direct computation using the equality

a b

gives the result.

4.3. Traces of special values of Green’s functions. We fix a primitive
rational point Xo € L' of determinant m’ = Q(Xo) > 0, and we let Py € H3
be the corresponding special point. We define the sublattices

P=LNQX, N=Ln(QXy)",

which are positive definite one-dimensional and negative definite three-dimensional,
respectively. Then N~ = (N, —(Q) is positive definite three-dimensional. We
let E3/9 n— € M3/ y— be the holomorphic weight 3/2 Eisenstein series for
pn defined in Section 3.1. Moreover, we let El/Q,N € Hil;)QlN be the har-
monic Maass Eisenstein series of weight 1/2 for py defined in Section 3.2,
which satisfies 61/2.@1/2,]\[ = %E?)/Q,Nf.

We obtain the following explicit formula involving double traces of the
Green’s function.

Theorem 4.12. Let n > 1 be a positive integer, and let

f= Z Z ag(m, p)q"e, € Ml!—zn,L*

pEL'/L meZ—-Q(w)

be a weakly holomorphic modular form of weight 1 — 2n for the Weil repre-
sentation py. Let ' € L'/L and —m' € Z — Q(p') with m' > 0 such that
af(—m/r?, y'r) = 0 for all integers r > 1. Then we have

1 _
(411) 5 Z Z m" 1/26Lf(—m, N)trgn’,;ﬂtrmyu(Gbn)
neL’' /L m>0
4" o o+
= Wtrm/’#/(l)CT(fP@N . |:@p, El/2,N:| n),

()
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where ET/ZN denotes the holomorphic part of El/Q’N, [-,]n denotes the n-th

Rankin—Cohen bracket as defined in Section 2.3, with k = ¢ = 1/2, and
CT(-) denotes the constant term of a holomorphic q-series.

Remark 4.13. (1) The condition af(—m'r?, 'r) = 0 for all integers r >
1 ensures that we never evaluate the Green’s function Gy, (P1, P»)
along the diagonal.

(2) By writing try, s in terms of primitive traces as explained in Sec-
tion 4.1.2, we can also get a closed formula for the non-primitive
double trace try, ,/trm, . (Gaon)-

(3) The Rankin—Cohen bracket appearing in the theorem is given by

9, h]n = jzn;)(_l)j <” —jl/ 2> ("n—1§ 2> SR

with ¢\) = (ﬁ{«%)] g. The product of binomial coefficients can be
written as

n—1/2\ (mn—1/2\ 1 (2n) (2n
j n—j ) 4"\n)\2j)
(4) The right-hand side of (4.11) equals

ﬂtrgn,’w(l) Z ap(—m, p)
weL'/L
m>0
X Z Z Emn(€)cop (£, oz)chEvl/2 N(m —1,8),
a€P'/P LeZ+Q(r) ’
BeN'/N
a+p=p (mod L)

with the rational constants kp,,(¢) = Z?ZO(—l)j (%?)E”‘j(m — 1),
Suppose that Si42,, = {0}. Then we can choose f = Fi_opm =

g (e, +e_p) + O(1) for some fixed p € L'/L and m € Z + Q(u)
with m > 0. In this case, formula (4.11) simplifies to

mn_l/QtI‘g@/7M/trm7u(G2n)

=2ortrl, (1) ) > mm,n(@cep(e,mcﬁmw(m—m).
a€EP'/P LeZ+Q(cv)
BEN'/N
a+pf=u (mod L)

Proof of Theorem 4.12. Since the weight 1 — 2n is negative, we can write f
as a linear combination of Maass Poincaré series,

=5 3 Y apm m) P (7).

ueL'/Lm>0
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see (2.4) in Section 2.2. Writing the Green’s function as a theta lift using
Theorem 4.3, we have

> m  Pap(—m, p)ten(Gan(-, Q) = 4i)n§<1>%‘2")<f,@-

peL' /L m>0

Taking the trace trg%,,#, in @, and using the splitting of the trace of the
Siegel theta function from Theorem 4.10 (which involves an application of
the Siegel-Weil formula), we obtain

reg _
6 (7)) = 08 (1) /f (Ri_anfren) ()-Op (1)@ By n- ()0* 2du(7).

Next, using the “self-adjointness” of the raising operator, we obtain
reg -
/ (RP_snfPen)(7) - Op(7) @ Egpo v (T)0*?du(7)
0 [ fran(r) - 124 (00(r) 0 Bypa (7672 ()
reg

= (- [ fren(r)- (Rl/gep< )) @ Baypn-(r)e*/ 2dp(r).

In the last step we used that Es/y y- is holomorphic (Theorem 3.1). More-
over, one has to check that certain boundary integrals vanish, which is
straightforward but tedious. Next, Proposition 2.2 implies that

_ 4
( 120p(7 )) ® B3 - (T)0¥? = 2((n 17;)2) Liyon [@P,Euz N] ;

where we used that © p is holomorphic. Note that ("71/ 2) =L (2:) Now a

n 4n
standard application of Stokes’ Theorem as in [6, Proposition 3.5] gives

[ trente) - (Ry00()) © Boan- (T 2dutr

:2( 4722 CT(fPEBN [@P’ I/QN} )
()

Here we used that f (and hence fpgy) is holomorphic on H. Taking every-
thing together, we obtain the stated formula. O

Example 4.14. Here we give the details for Example 1.3 from the intro-
duction. We work over the field Q(¢) with discriminant D = —4. Then

L'JL =~ 17[i|/)Z]i) = Z/2Z x Z /2.

We will write the elements of L'/ L as (b1, be) with by, by € Z/2Z, and under-

0 (b1+ibz)/2 )
(b1—ib2)/2 0 )

Let us take n = 1. Since S3 1 = {0}, the Maass Poincaré series f_im ,
is weakly holomorphic for every m > 0 and p € L'/L, so we can just take

stand that this tuple corresponds to the class of the matrix



SPECIAL VALUES OF GREEN’S FUNCTIONS ON HYPERBOLIC 3-SPACE 37

f = f-1,mu- Then the formula from Theorem 4.12 simplifies to

(412) \/TTLtl"Sn/’#/trm,#(ng) = QWtrgn/’#/(l)CT (fP@N . [(_)P’E;—/Q,N] 1).

We take m = 1/2 and p = (1,1), such that the trace tr,, , has only
one summand for the form ( (1_11.) /2 (1+1i)/ 2) with corresponding point % +

V2

Y24, with stabilizer of order 12. Moreover, we choose m' = 1 and p/ =
(0,0), such that tr}), , has only one summand for the form Xo = (§9) with
corresponding point j, with stabilizer of order 4. In particular, trgl,’ #,(1) =
1. Hence, (4.12) becomes

\/1/72 141 ﬂ T =
(413) VG| 5+ 5 | = 5T (fran - 00 By )

Next, we compute the sublattices P and N. We have

P—Lﬂ@X@—{TL((l) ?) :neZ}%(Z,nQ),

N:Lm(QXO)L:{(Z b):aez,beZ[i]}g(z3,a2b%bg).

Their dual lattices are given by

/_1 _fn (1 0Y) .
Pl=sP=.35g 1)inely

1 1
N,:2N:{2<Z _ba>;an,b€Z[i]}-

Note that for « € P’ and 8 € N’ we have a + 3 € L’ if and only if n = a
(mod 2). We have
P'/P=17/27, N'|N == (Z/2Z)3.
In particular, we will write the elements of (P& N)'/(P®N) = P'/PxN'/N
as (n,(a,by,b2)) with n,a,by,be € Z/2Z. Such an element is in L'/L if
and only if n = a (mod 2), and in this case it is in the class of the tuple
(bl,bQ) S L//L.
The first Rankin—Cohen bracket of two forms of weight 1/2 is given by

[figh = %(f’g - f9),

where [’ = ﬁ% f. Moreover, by construction, ©p and E

+
1/2,N

any terms of negative index, which implies that [©p, ET/Q )1 has vanishing

do not have

principal part. Since f_1, , has principal part ¢~ (e, + e_,), we obtain

CT((f—l,m,u)PeeN : [@Pv Ef-/zN} 1)
= QC[QP,E+ ] (m7 (07 (07 :U'))) + QC[GP,E+ ] (m7 (17 (17 ,LL)))

1/2,N |4 1/2,N |4
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Hence, it remains to compute the coefficients of the Rankin—Cohen bracket.
Recall that we take m = 1/2 and p = (1,1). The coefficient at ¢'/? of
the component of index (0, (0,1,1)) is given by —1/2 times the constant
coefficient of Op at ey (which equals 1) times 1/2 times the coefficient at
(here we use that the constant coefficient of the deriva-
1/2

q'? ¢(0,1,1) OfEl/2N

tive of ©p vanishes, and that the coefficient at ¢*/“ of © p vanishes). Using
Theorem 3.6 and the Dirichlet class number formula, this latter coefficient
can be computed as

Hence, we get

[GP, 12, N] (1/27 (07 (07 L, 1))) = %L(X& 1).

Similarly, we see that
1/2,(1,(1,1,1))) =0
[@P’ ta ] (1/2, (1, ( ))

due to a cancellation in the Rankin—Cohen bracket. Putting this into (4.13),

we finally obtain
1 14+i 2
—G —j | =96L .
1/2 2 (]a 2 + 2 ) (X87 )

For n = 2 we have S5 1, = {0}, so we can compute in a similar way that
1 1+i V2

——=Gy| j,——+ 7 | =96log(2) —96L 1).

1/2 4(]7 2 —+ 2 .7) Og( ) (X87 )

We summarize the algebraic properties of the double traces of the Green’s
function.
Theorem 4.15. Let f € M| , .,/ € L'/L and —m/ € Z — Q') be

as in Theorem 4.12. Suppose that the coefficients ay(—m, p) for m >0 are
rational. Then the linear combination of double traces

D] Z Zm” 1/2af( m, p)tr2, 8 (Gan)
\ ‘ HEL’ /L m>0

is a rational linear combination of log(p) for some primes p and log(ea)/VA
for some fundamental discriminants A > 0, where ea is the smallest totally

positive unit > 1 in Q(v/A).

Proof. We need to analyze the right-hand side of (4.11). Since n > 1, and
Op and E1 o.N have Fourier expansions supported on non-negative indices,

the constant term of fpgn - [@p, 1/2, N] is a linear combination with co-

efficients in Q of products of negative 1ndex coefficients of fpgn (hence of
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f), and positive index coefficients of ©p and Et Moreover, the theta

1/2,N"
function ©p has integral Fourier coefficients by construction. Now, by The-
orem 3.6 and the subsequent Remark 3.7(3), the coefficients of E1 o, ATe

of the form

n ):i
I N

for some prime p | 2det(N) in the square case. Here we use the same notation
as in Theorem 3.6. The factor 7w in the denominator on the right cancels
out with the factor 7 in the numerator on the right-hand side of (4.11).
Moreover, by Remark 4.11 we have |[N'/N| = 2m/|D|. Taking everything
together, we obtain the stated result. ([

log(ea,)/V/Ao, if A is not a square,

+
( log(p), if A is a square,

ct xrational number x
E1/o.n

Remark 4.16. It follows from Remarks 4.11 and 4.13(4) that the right-hand

side of (4.11) is a linear combination of coefficients cJEC (n,B) with n =
1/2,N

m—{ and £ of the form ;o— (t € Z), hence the relevant discriminants are of

the form A = 4dﬂnm'\D] and Ay is the discriminant of Q <\/(4mm’dz —t?) ]D\)

Moreover, when A is a square, the coefficient cg (n,3) is a rational
1/2,N

multiple of log(p) provided p is the unique prime divisor of 2m/|D| for
which N ® Q, is anisotropic, and it vanishes if there are two or more such
primes by Remark 3.7(2). By using properties of Hilbert symbols it is easy
to check that N ® Q, is anisotropic if and only if (-m, D), = —1. This
explains Remark 1.2.

We note that Theorem 4.15 can be rephrased in terms of linear combi-
nations of traces with coefficients coming from rational relations for spaces
of cusp forms (see Section 2.4). More precisely, in the language of rational
relations, Theorem 4.15 says that if {)‘(mﬂﬂ)}meﬁl\l, uels/1 1S a rational

relation for Syi9y 1, then for any y/ € L'/L and —m’ € Z — Q(p) such that

m/ > 0 and A\(m/r?, /'r) = 0 for all integers » > 1, we have that the linear
combination of double traces

— Z Z m" 2\ (m, p)trd, 8 (Gan)
V1 |D pneL' /L m>0

is a rational linear combination of log(p) for some primes p and log(sa)/VA
for some fundamental discriminants A > 0. Then, Theorem 4.15 and Lemma
2.3 imply the following corollary, of which Theorem 1.1 in the introduction
is a special case.

Corollary 4.17. Let {\(t) }+en be a rational relation for St 5, (To(|D]), xp),
and let m' € ﬁN be such that \(m'|D|r?) = 0 for all integers r > 1. Then
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the linear combination of double traces

Z m" Y2\ (m|D|)tr0 tr,, (Gan)

1
\% TTL/|D| m>0

is a rational linear combination of log(p) for some primes p andlog(ea)/vVA
for some fundamental discriminants A > 0, where ea is the smallest totally

positive unit > 1 in Q(v/A).

5. TWISTED TRACES OF SPECIAL VALUES OF GREEN’S FUNCTIONS

In this section we let (L, Q) denote the lattice of integral binary hermitian
forms over Q(v/D) defined in Section 4.1.1, associated to a fundamental
discriminant D < 0. Recall that V = L ® Q.

5.1. The twisting function. Let us write D = Hp| pP* with prime dis-
criminants p*, that is, for odd p we have p* = (%)p and for p = 2 we have
p* e {—4,+8}.
We set
Lp={Xel :Q(X)e DZ}.
As in [17, Lemma 3.3] one can check that Lp C L. For X = (% l;) € Lp we
define the function

*

P-), ifpfa,
61 X)) =), WX =S (Z), ipie
pID 0, otherwise.

For X € V(Q) with X ¢ Lp we put xp(X) = 0. It is easy to check that
xp is well-defined, I'-invariant, and only depends on X modulo DL. For
prime discriminants D < 0, it coincides with the function defined in the
introduction.

So far, we have defined xp on all of V(Q). Next, we extend it to V(Ay).

Definition 5.1. For a prime p dividing D and X, = (%z) € L;) with
Q(X,) € DZ, we let

(a,D)p, ifpfa,
XD:IJ(XP) = (C> D)P? lf p * c,
0, otherwise,
where (¢, D), denotes the p-adic Hilbert symbol. For all other X, € V(Q,)
we put Xpp(Xp) =0, so that xp,, is defined on all of V(Q,). For primes p
not dividing D, we define xp, as the characteristic function of L;J = Lp.

Once again, it is easy to check that xp , is well-defined. For X = (X,)p<o0 €
V(Ayf) we put

xo(X) = [ x0s(Xp)-

p<oo
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It follows from the basic properties of the Hilbert symbol that xp agrees
with the previous definition on V(Q).
By a slight abuse of notation, we also define xp as a function on A? by

(5.2) xp(z) = H XD,p(Tp) = H (zp, D)p-

p<oo p<oo

Note that xp is a quadratic character on A]f /QT.
Let v denote the spinor norm on GSpiny,. By (4.8) the map

XD,pov: GSpiny, (Q,) — {£1}

induces a quadratic character xp,ov : G(Qp) — {£1} . Hence, we obtain
the quadratic character

(5.3) xpov:G(Ap) = {+1},  xpov=]][xppor
p

We have the following transformation property of x p(X) under the action
of the subgroup U = [], U, defined in Section 4.2.1.

Proposition 5.2. For every prime p, every g, € U, and X, € V(Q,) we
have

XD p(9pXp) = XD.p(¥(9p)) X D.p(Xp)-
In particular, for all g € U and X € V(Ay) we have

xp(9X) = xp(v(9))xD(X).

Proof. Tt is enough to prove the first statement since the second one follows
from the fact that xp is the product of xp , over all primes p. Let g, € U,
and X, € V(Qp). Recall that g, is given by the action of a matrix h, =
(24) € GLy(Op @ 2,) with v(g,) = det(hy) € Z; (Lemma 4.5). If p does
not divide D then (v(gp), D), = 1 and xp, on V(Q,) is the characteristic
function of L;, = L,. Since g, preserves L,, we have g,X, € L, if and
only if X, € L,, hence the desired identity follows. Now, assume p divides
D. Since the action of g, preserves L; and the quadratic form @, both
XDp(9pXp) and xpp(Xp) are zero if X, is not in L;, or has Q(X,) € DZ,.
Hence, we can assume X, € Lj, and Q(X,) € DZ,. This implies X, € L.
If we write X, = (% i), then

A B\ _ ¥ = 1 alal? + tr(aBb) + c| B> *
B C) P77 det(hy) * aly|? + tr(v6b) + c|d]?

where the norms and traces are taken in the ring Op ® Z, C Q,(VD).
Note that p | D implies tr(z) € pZ, for every z € Op ® Zp. In particular,
tr(afb), tr(vdb) € pZ,. Hence, if a,c € pZ,, then xp ,(9pXp) = XD p(Xp) =
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0. We get the same conclusion if A,C' € pZ,. Assume a, A € Z;;. Note that
det(hy)Aa = |aa + Bb]* + |B*(ac — |b?)

= |aa + Bb|* + |B]*Q(X))

= |aa + Bb|* mod DZ,.
This implies (det(hy)Aa, D), = 1, hence

XD,p(9pXp) = (A, D)p = (det(hy), D)p(a, D)p = XDp(v(9p)) X Dp(Xp)-

The remaining cases are treated similarly. This proves the result. (]
5.2. The twisted modified Siegel theta function. In this section we
construct a scalar-valued twisted Siegel theta function, which is modified
with a polynomial. A similar twisted theta function was first constructed in
[17] for lattices of signature (2,2) and D > 0, whereas we are in the case of

signature (1,3) and D < 0.
Recall that G = SO(V) where V = L ® Q.

Definition 5.3. For h € G(Af),7 € H and P € H3 we define the (scalar-
valued) D-twisted modified theta function
(5.4)

QXy) | QXyr)_

b (7. Po1) = ()2 3 o X) gy (e G5 + 2
XehL
where v = Ru(P) € Gr(L) is the positive line corresponding to P as in
Section 4.1.1.

Note that this is not the usual Siegel theta function, but it is modified
with a polynomial in X, which is harmonic and homogeneous of degree (1, 0).
It is straightforward to check that the twisted theta function is I'-invariant
in P. The goal of this section is to prove its modularity in 7.

Proposition 5.4. The twisted theta function ©7 , (1, P, h) transforms like
a (scalar-valued) modular form of weight O for the full modular group SLa(Z)

mT.

We will deduce this result from the well known modularity of a (vector-
valued) non-twisted modified Siegel theta function, using an “intertwining
operator” i p of certain Weil representations. This general method for con-
structing twisted theta functions was developed in [1].

We let L(D) be the rescaled lattice DL = {DX : X € L} with the

quadratic form Qp(X) = %. Then the dual lattice of L(D) is again L'
(as a set, but L’ is now equipped with Qp(X)). We write £(D) = L'/L(D)
for the discriminant group of L(D). Note that |£(D)| = |D| - |D|* = |D/?,
and that L(D) C Lp (as sets, but they have different quadratic forms). We
let pz(py be the Weil representation corresponding to £(D). Recall that
xp(X) defined in (5.1) depends only on X modulo DL, hence it defines a

function on £(D). Then we have the following general result.
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Lemma 5.5. Put
Yo=Y, xp@es= > xp(des € CIL(D)].
seL(D) deLp/L(D)

Then ¢p is invariant under the dual Weil representation py(py.

Proof. Put p = pg(p) for brevity. Using the notation in Section 2.1, we need
to check that p(T)yp = ¢¥p and p(S)Yp = ¥p. We have

_ 1)
p(Typ = Y XD(5)€(C|21()|)>85 = > xp()es =,
deLp/L(D) deLp/L(D)
where we used that % € Z for 6 € Lp. Moreover, we have
p(S)p = Z xp(6)p(S)es
§€Lp/L(D)
e((1—-3)/8 1
= > XD(5)((£12/) > €(|m(5a M)) ey
deLp/L(D) ’ ( )| weL’/L(D)

i 1
:—W Z Z XD(‘S)e(w(‘SvM)) Cp

peLl! /DL \seLp/L(D)
Hence it remains to show the evaluation of the Gauss sum
1 .
> (i 6)) = ADF x(e)
seLp/L(D)
This can be proved by the same arguments as in [17, Section 4.2]. (]
Corollary 5.6. Let k € Z, let A;WE(D) be the space of functions transform-
ing like vector-valued modular forms of weight k for pg(py, and let Ay s1,,(7)

be the space of functions transforming like scalar-valued modular forms of
weight k for SLa(Z). Then we have a map

Akprpy = AkSLa2) f= > fes=>f-vp= Y. xpd)fs
sel//L(D) s€Lp/L(D)
Here f -p denotes the bilinear pairing on C[L(D)].

Proof. We again put p = pr(p). It is well known that the Weil representation
satisfies

(p(M, ¢)a) - b =a- (p(M,¢)"'b)
for any (M, ¢) € Mpy(Z) and a,b € C[L(D)]. Since ¥p is invariant under
P, we obtain

FMr)pp = ¢(1)*Fp(M, ¢) f()hp = ¢(7)** f(7)-p(M,$) " op = ¢(7)* (f-¥p),

so f-p transforms like a modular form of weight k for SLy(Z). O

We now complete the proof of Proposition 5.4.
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Proof of Proposition 5.4. Consider the (vector-valued and non-twisted) mod-
ified theta function for L(D),

1)

OLp)(T: P h) = Im(r)*/? Z Z H(X,U(p))e<Q(Xv)T n Q(X,

d6eL’/L(D) Xeh(6+L(D)) ‘D| ‘D|

As a function of 7 it transforms like a modular form of weight 0 for p.(py by
[2, Theorem 4.1]. Moreover, it is related to the scalar-valued twisted theta
function by

Lo (T P h) = @*L(D)(T, P h)-¢p,
which can be checked by a short computation. In particular, by Corollary 5.6
the twisted theta function ©7 , (7, P, h) transforms like a modular form of
weight 0 for SLa(Z) in 7. This proves the result. O

5.3. The twisted traces of the Green’s function as a theta lift. Let
n € Ny. For a smooth modular form f of weight —2n for SLa(Z) we define
the twisted regularized theta lift

o302 (1, p) = /f R, F()05, (7, P)du(r).

Here we put ©7 , (7, P) =07 (7, P, 1) in the twisted theta function (5.4).
For m € N we let

Flopm(T,8) = L Z Mgy s(drmu)e(—mu)|, M

I'(2s) MET oo \SL2(Z)

be the m-th Maass Poincaré series of Weight —2n for SLy(Z), where I'

the subgroup of SLy(Z) generated by ({1) and My s is defined in (2. )
By unfolding against the Poincaré series as in the proof of Theorem 4.2, we
obtain the twisted trace of the Green’s function as a theta lift.

Theorem 5.7. Let n € Ny and m € N. For Re(s) > 1 we have
2v2
7w (s)/|D]

with the constant Cy(s) = (4dmm)"(s —n)(s —n+1)--- (s —1).

O (F g (-1 8), P) = Chl(s)

Lxp WDl xp (G23*1("P))7

Proof. By Lemma 2.1 we have

(I)Z(;jn) (Fon,m( -, 8),P) = Cn(s)q)z()?,):, (FO,m( -, 8), P).
Unfolding against Fp ., (7, s) and computing the integral over u = Re(7) as

in the proof of [3, Theorem 2.14], we obtain

B0 (P19 P) = oy 30 o(X)(XKv(P))
Q) SmiD|

QX))

d
/ My s— 1/2(47rmv)exp< D] v+27rmv)v1/2v

0 .
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The integral is a Laplace transform and equals

—s—1/2
(47m) " /?T(s +1/2) (Q(XU)) oF <s, s+ %, 2s, m|D| )

m|D| Q(Xy)
By Lemma 4.1, we have
m|D| 1

X,v(P)) = 2m|D|cosh(d(P, P =
(X, 0(P)) = sgnlex)VImDleosh(d(P. Px)), o = p s
where cx is the bottom left entry of X. Moreover, the hypergeometric
function simplifies as in (4.4). As in (4.5) we obtain
1 m|D]|
F =, 2s;
2 1<S,S+ 27 S; Q(Xy)
Taking everything together, we arrive at
22511 (s + 1/2)V/2
I'(2s)y/7|D|
X Z xp(X)sgn(cx)p2s—1(cosh(d(P, Px))).

XeL
Q(X)=m|D|

) = 2% 1cosh(d(P, Px))**as_1(cosh(d(P, Px))).

®; ) (Fom(-,5),P) =

Note that D < 0 implies xp(—X) = —xp(X). Hence, by replacing X with
—X if sgn(cx) < 0 we can restrict the sum to X € L miD| and get a factor of

22511 (s41/2) /7

2. Moreover, using the Legendre duplication formula T(2s) = )

we obtain

;) (Fom(-,5),P) = S XD(X)pas-1(cosh(d(P, Px))).

V ’D XeL+

Splitting the sum modulo I' gives the stated formula. O

At s = n+1 the function F_g,, 1, (7) = F_gy, m (7, n+1) defines a harmonic
Maass form of weight —2n for SLa(Z). We obtain the following result.

Theorem 5.8. Let m € N. For n > 1 we have

© 2 (Fyp g, P) = (4mm)"

- Ftrm,m (Gans1(+, P)).

Remark 5.9. The theorem also holds for n = 0. In this case, Fy (7, s) is
a Niebur Poincaré series which can be analytically continued to s = 1 via
its Fourier expansion. Arguing as in the proof of [3, Proposition 2.11] one

can check that the twisted theta lift @2”()?1)3 (Fo,m(-,s),P) is holomorphic at

s = 1, and agrees with @2’(;2) (Fo,m, P). This is remarkable since it implies
that the twisted trace tr,, p| v, (Gs( - P)) is holomorphic at s = 1, although
the Green’s function G4(P;, P») has a pole at s = 1. Since the residue of the



46 S. HERRERO, O. IMAMOGLU, A.-M. VON PIPPICH, AND M. SCHWAGENSCHEIDT

Green’s function at s = 1 does not depend on P, P», the holomorphicity of
8T D) v p (Gs( -, P)) at s = 1 is equivalent to

trmlD"XD(l) =0.

Indeed, this vanishing can also be proved directly. Using Theorem 4.9 and
Lemma 3.10 we see that tr,, p| (1) is a multiple of

/ Xp(v(h)dh,

H(Q)\H (Ay)

where xp o v is defined in (5.3), and this integral vanishes since ypov is a
non-trivial character on the compact group H(Q)\H(Ay).

5.4. A twisted Siegel-Weil formula. In this section we let M be a pos-
itive definite even lattice of rank 3. Moreover, we let W = M ® Q the
surrounding rational quadratic space, and H = SO(W). The classical
Siegel-Weil formula describes the integral of the theta function ©,,(7,h)
over h € H(Q)\H(Ay) as an explicit Eisenstein series; see Theorem 3.9.
Let v denote the spinor norm on GSpiny, (Af), and associated to the field
discriminant D < 0 consider the quadratic character xp of A; defined in
(5.2). Then the function xp o v defines a non-trivial quadratic character
of H(Ay) that is trivial on H(Q), so it makes sense to consider the twisted
Siegel-Weil integral

65 =3 [

H(Q)\H (Af)
where dh denotes the Tamagawa measure on H(Af) normalized such that
vol(H(Q)\H(Af)) = 2 (as in Theorem 3.9). This function was studied in
detail by Snitz [34] in his thesis. It follows from Snitz’s work that ¥z, (7)
is a holomorphic cusp form of weight 3/2 with rational Fourier coefficients
whose Fourier expansion is supported on a single rational square class. More
precisely, his main result implies that ¥y, (7) lies in the distinguished
subspace generated by unary theta functions of weight 3/2. To state his
result in a convenient form, recall that Ay ,,, denotes the space of functions
transforming like vector-valued modular forms of weight k£ under the Weil
representation py. For a lattice P in a one-dimensional positive definite
quadratic space (Q, Q) we let

0p(T) = Z Z xezmé(m)%r

reP’/P xze(r+P)

O (7, h)xp(v(h))dh,

be the holomorphic unary theta function of weight 3/2 associated with P.

In the following theorem, we assume that the character yp is compatible
with the quadratic space W in the sense that at every prime p such that
the local character xp, is trivial, we have that W ® Q, is isotropic. If
this compatibility condition is not satisfied, then ¥psy, (1) = 0 (see [34,
Corollary 15]) and the following theorem holds trivially.
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Theorem 5.10 (Twisted Siegel-Weil formula [34]). Let M be a positive
definite even lattice of rank 3 and let D < 0 be a field discriminant such that
XD 1s compatible with the quadratic space M ® Q as explained above. Then
there exists a positive definite unary lattice P and a linear map ® : Ay, ,, —
Ak py of the form

TN ( S fT<T>-cr,u)eﬂ

wEM’/M NreP!/P

with rational coefficients ¢, ,, such that
Ivyp = P(0p).

Remark 5.11. (1) Snitz’s results are stated for the ternary quadratic
spaces (BY, nr) coming from the reduced norm on trace zero elements
of a quaternion algebra B. For a general quadratic space (W, Q) we
have that (W, 2det(W)Q) is isometric to (B% nr) for some B (see,
e.g., [37, Theorem 5.1.1]), hence one can apply the results of Snitz
in our setting by keeping track of the effect of this re-scaling.

(2) It follows from [34, Theorem 2] that the coefficients ¢, , can be
expressed as products of p-adic orbital integrals of compactly sup-
ported and locally constant functions with rational values. However,
we will not need their precise values.

(3) Since the coefficients ¢, are rational, ® also defines a linear map
between spaces of modular forms for the dual Weil representations
pp and py;.

(4) The lattice P is a lattice in the rational quadratic space (Q, 2 det(M)|D|z?).

Proof of Theorem 5.10. Since the results of [34] are stated in terms of Schwartz
functions on adelic spaces, we give some details on the translation into our
setting. Given a lattice L we define [ = L ® Z where Z = [1)coo Zp-
We let S(W(A)) be the space of Schwartz functions ¢ = ¢ ® ¢y, that
is, Yoo € S(W(R)) is smooth and rapidly decreasing and ¢ € S(W(Ay))
is compactly supported and locally constant. Associated to the quadratic
space (W,Q) and the standard non-trivial additive character iy of A/Q
there is the adelic Weil representation wyy,y, = ww of Mpy(A) on S(W(A)).
Note that, for € = 2det(WW), the representation wyy is equivalent to the
adelic Weil representation associated to the quadratic space (W, e@) and
the additive character ¢ (z) = 1o(x/€), hence we can apply the results in
[34] as explained in Remark 5.11(1). Now, to each ¢ € S(W(A)) one can
associate a theta function O (g, h, ) as in [34, Equation (1.1)], which is
a function of g € Mpy(A) and h € H(Ay). Choosing o = e 29 as
the Gaussian, the finite part s as the characteristic function 1, of a coset
pe M'/M = M'/M, and

(5.6) 9=9r= <<(1) 7;) (U;ﬂ v11/2) , 1> € Mp,(R)
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the usual matrix that sends i to 7 = u 4 iv € H, we obtain v3/* times the
p-th component of our holomorphic ternary theta function © (7, h) defined
n (3.4).

Next, consider the one-dimensional quadratic space U = (Q, ¢|D|x?), the
corresponding space of Schwartz functions S(U(A)), and the adelic Weil rep-
resentation wyy, = wy of Mpy(A) on S(W(A)). In a similar way as before,
to each ¢ € S(U(A)) one can associate a theta function O (g, h°, ¢"), which
is a function of g € Mpy(A) and h° € O(U)(Ay) = [lpcoo{£1}. If we let S
denote the set of primes p such that W ® Q,, is anisotropic, and define the
character ng : O(U)(Af) — {£1} as ns = @< Mp With np(zp) = sgn(xy) if
p € S, and n,(x,) = 1 otherwise, then the results of [34] can be summarized
by saying that there exists an explicit equivariant (with respect to wyy and
wy) linear map

SW(A) = SUA), ©—¢" =9l @}
such that the equality of twisted integrals

/ Ow (g, b 9)xp(v(h))dh = / Ou (g, 1%, o) (hO)dh
(Q\H(Ay) O(U)(Q\O(U)(Ay)

holds. For factorizable functions ¢y = ®p <00 Pp the image gp?c is also fac-
torizable ap?c = Qoo @Y.
the parity property ¢3(—r) = n,(—1)¢)(r) valid for every prime p (see [34,
Corollary 38]). Then, as done in [34, Section 3.2] one can rewrite the above
equality as

(5.7) / Ow (g, h, &) xp(v(h)dh = Oy (g, 1, po).
(Q\H(Ay)

Moreover, our compatibility hypothesis implies

In our setting, we choose g as in (5.6), Yoo = €~ 279(®) as the Gaussian and
@y = 1, as the characteristic function of y € M’ / M. Then, a direct compu-
tation using [34, Theorem 2 with zo € W(Q) satisfying eQ(zo) = |D|] shows
that @O (r) = coo re2mIPI™/¢ with ¢y the volume of Ty, (R)\H(R) where
Ty, is the stabilizer of x¢ in H. Moreover, we have that ¢ is factorizable.
As a consequence of (5.7), multiplying both sides by ¢, and summing over
p € M' /M we get
(5.8)

1

O (1, h)xp(v(h))dh = ¢ re~2melDlr? Tﬂo(er) .
2 /H«@)\H(Af) 2 2 ”

peM' /M reU(Q)
Since for every p € M'/M we have 19 € S(U(Ay)), there exists a lattice P
in U(Q) such that 12(67“) is supported on P’ and constant on each class in

P'/P = P'/P. Hence, the map ¢ — @q(er) restricts to a map Sy — Sp,
where Sy and Sp are the subspaces of S(W(Ay)) and S(U(Ay)) spanned by
characteristic functions {1, : p € M’'/M} and {1, : r € P’/ P}, respectively.
Notice that Sy and Sp can be identified with the group rings C[M'/M]
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and C[P'/P] via 1, ~ ¢, and 1, > e,, respectively. Since the dual Weil
representations p,; and pp acting on Sp; and Sp are induced by the adelic
Weil representations wyy and wp, respectively (see, e.g., [12, Section 2]), the
map Sy — Sp is equivariant with respect to p;; and pp. Using this, it is
easy to check that the map

PGS (Z Fr(1) - 19 er))e#

repP'/P peEM’'/M NreP'/P

sends Ay ,, to Ay ,,,. Now, the explicit integral formula given in [34, The-
orem 2] shows that 17, (er) = ¢y, with ¢, a positive rational number and
cy the volume of Ty, (Af)\H(Ay). Finally, noting that coocy = 1 due to the
normalization of measures used by Snitz (see [34, p. 440]), we get that the
right-hand side of (5.8) equals ®(6%). This finishes the proof. O

Example 5.12. Let us Choose D = —4, and consider the lattice M = Z3
with Q(z,vy,2) = 422 + y* + 2%2. We have M'/M = (Z/8Z) x (Z/2Z)?, so
we write its elements in the form (%:%,5). Note that the quadratic space
W ®Q), is anisotropic only when p = 2, hence x p is compatible with M ® Q.
The twisted Siegel-Weil formula asserts that 97, is a cusp form whose
Fourier expansion is supported on rational squares. Indeed, using Williams’
weilrep package for sage math [40] one can check that the space S35 3/ is

one-dimensional and spanned by the form

D
Ny
no

/N
—~
o
-
(=)
=
~
—~
=
o
—
~
—
SIS
SIS
=
=
~
—
(S
=
=
—
N——

where 0}, = anr@ nyng” */AN is a unary theta function of weight 3 /2, and

a multiple of a component of 6% for a suitable unary lattice P. In our case,
P = (Z,42?%). The sageMath code
from weilrep import *
= WeilRep(diagonal_matrix([-8,-2,-2]))
w.cusp_forms_basis(3/2,prec=10)
will print the components of f up to ¢'°. The cusp form 9 M,xp is a rational
multiple of f.

Theorem 5.13. Let the notation be as in Theorem 5.10. There exists a
harmonic Maass form Uy, of weight 1/2 for pp— with

§120Mxp = §19M,XD,

such that the holomorphic part of \/2det(M)|D| 5M,XD has rational Fourier

coefficients.
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Proof. Since P is a lattice in (Q, 2det(M)|D|z?), by [26, Theorem 1.1] there
exists a harmonic Maass form 6} of weight 1/2 for the dual Weil represen-

tation pp with
1 *

0% = 0%,
S0 = ganDl

such that the holomorphic part of 5}3 has rational coefficients. Now we
choose Vs, = /2det(M)|D| ®(65). O

5.5. Splitting of the Siegel theta function, twisted versions. In this
section we compute the twisted traces of the Siegel theta functions O (7, P)
and ©7 (7, P), similarly as in Theorem 4.10. Throughout, we fix u € L'/L

and m € Z+Q(p) with m > 0. Recall that L;,Qﬁ denotes the set of primitive
positive definite binary hermitian forms X € L+p with determinant Q(X) =
m. Throughout we consider a fixed primitive positive definite vector Xy €
LTZ’SL. As before, we define sublattices

(5.9) P=LN(QXy), N=Ln(QXo)",

which are one-dimensional positive definite and three-dimensional negative
definite. Let N~ = (N, —Q). Asin Section 5.2 we let P(D) = (DP,Qp) and
N(D) = (DN,Qp) with Qp(X) = ﬁQ(X) be the corresponding rescaled
lattices. Note that we have

P(D) = L(D) N (QXo),  N(D) = L(D) N (QXo)*.

As in Section 4.2.1 we let H = {g € G : gXo = Xo} be the stabilizer of X
in G, which we now identify with SO(W) where W = (QX()" is a positive
definite three-dimensional quadratic space with quadratic form —@).

We start with the twisted traces of the (non-twisted) Siegel theta function
O (7, P), which was defined in Section 2.5.

+,0

m|D|,0" Then we have

Theorem 5.14. Fix a primitive vector Xg € L

tr9n|D‘7XD (@L(T, . )) = XD(XO)tr?MDl,O(l) . <@P(T) ®mv3/2>L’

where © p(7) is the weight 1/2 holomorphic theta function for P and V-, (T)
is the weight 3/2 cusp form described in Section 5.4, and the superscript L
denotes the operator defined in Section 2.1.

Proof. The arguments are very similar to the proof of Theorem 4.10, where
the non-twisted trace of O (7, P) was computed. Using Theorem 4.9, we
have

xp(Q
@) = 3 ey
XEF\L:L"%‘YO
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where Py € H? is the special point corresponding to Xy, and we wrote
h = gu with g € G(Q) and v € U. By Proposition 5.2 we have

xp(97" Xo) = xp(uXo) = xp(¥(u))xp(X0) = xp(¥(h))xD(X0)-

Here we wrote g~ = uh™!, used that h™' Xy = X since H is the stabilizer
of Xg, and xp(v(g~!)) = 1 since g € G(Q) and yp is trivial on Q*. Using
Lemma 3.10 we obtain as in the proof of Theorem 4.10 that

tr) (GL(Tﬂ ) ))

mID‘7XD
vih
=xo(Xo) ) W&(a%ﬂ)
heHQ\H(A;)/K "
_ xp(Xo)

vol(K) /H(@\Hmf)

L
= XD(Xo) T 03/ v (7
~ vol(K) (613( )® /H(Q)\H(Af) xp(¥(h))On-( ,Po,h)dh) .

Notice that xp o v is precisely the non-trivial quadratic character on the
twisted Siegel-Weil integral (5.5). Hence, the integral is the function 29y .

Finally, we plug in % = tr9n|D|(1) to finish the proof. O

The crucial difference between Theorem 4.10 and its twisted version The-
orem 5.14 is the fact that the Eisenstein series E3/9 y- is replaced by the
cusp form Jpn- .

Next, we consider the twisted and non-twisted traces of the twisted mod-
ified theta function ©7 , (7, P). We will use the same notation as in Sec-
tion 5.2.

Theorem 5.15. Fiz a primitive vector Xo € L;,E’%. Then we have

% X _— L(D)
tr?,w (@L:XD (T7 . )) = XD(XO)tr?n“u,(]') (@P(D) (7') & ﬁN(D)*,XD (T)U3/2) Q,DD

Similarly, if Xo € L::L’le o» then we have

x N " L(D)
051w (OLn (T3 ) = X0 (Xo)tr), 5y o(1) (®P(D) (1) ® E3/2,N(D)—(7')U3/2) “Up,
Here,

1 Q(X)
Opin)(T) = —F—= Z ﬁ(X, X0)€< T> eX 4 P(D)
V 2Q(X0) XeP(D) |D‘

is the weight 3/2 holomorphic theta function for P(D), and ¥p is the in-
variant vector defined in Lemma 5.5.

(5.10)

Proof. Let Py € H? be the point corresponding to Xy. Using Proposition 5.2
one can check that the twisted modified Siegel theta function satisfies

ez»XD (T’ gilpo) = XD(V(h))@z,XD (7-7 Fo, h)
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for h = gu € H(Ay) with ¢ € G(Q) and v € U. Moreover, we can write
O% v (r,P,h) = QE(D) (1,P,h) - vp. Using these facts, the proof of the
theorem is analogous to the proof of Theorem 5.14. We leave the details to

the reader. O

Remark 5.16. If P(D) is spanned by r X for some r € Q, and we put Ny =
ﬁ@(rxo), then we have P(D) = (Z, Nygz?) and P(D)'/P(D) = Z/2NyZ.

Hence, we can write more explicitly

Op)(T) = /—|D(|) ( Z Z ng 2/4N°ep.
P

mod 2Np) nez
n=p (mod 2Np)

5.6. Twisted traces of Green’s functions. We are now ready to give
an explicit evaluation of the twisted double traces of the Green’s function,
similar to Theorem 4.12. We can either twist both traces, or only one of
them. Moreover, we can consider the Green’s function G at even or odd
integer values for s. Throughout this section, Xy denotes a fixed primitive
positive definite vector in L:J?M' or L:{/{\)Dm’ which defines sublattices P and
N asin (5.9).

We start with the partially-twisted double trace of G4 at even integral
s = 2n for n > 1, where one of the traces is twisted, and the other trace is
non-twisted.

Theorem 5.17. Let n € N and let
F=Y Y apmpqTe €My,
peEL' /L meZ—Q(n)

be a weakly holomorphic modular form of weight 1—2n for the Weil represen-
tation pr. Let m' € N such that ag(—m'|D|r?,0) = 0 for all integers r > 1.
Then we have

1
5 O > m" ap(=mo )t oyt (Gan)
neL’ /L m>0
4™ 3
= 7(271) XD(XO)trgn/|D|,0(1)CT(fPEBN ° |:@P719;77XD:|7L>7

where 5}’\}_%[} denotes the holomorphic part of 1A9/N7’XD, and [-,]n denotes
the n-th Rankin—Cohen bracket as defined in Section 2.3, with k = ¢ =1/2.
Proof. Note that the character yp is compatible with the quadratic space
W = N~ ® Q because of Remark 4.16. Using Theorem 5.14 and Theo-

rem 5.13 the proof is analogous to the proof of Theorem 4.12. O
Theorem 5.18. Let f € Mi—2n - and m’ € N be as in Theorem 5.17,

and suppose that the coefficients ag(—m, ) for m > 0 are rational. Then
the linear combination of partially twisted double traces

2 D " ag(m. )t py s m n(Gn)
weL'/Lm>0
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s a rational multiple of mv/m/.

Proof. Since the space M{ has a basis of forms with rational coef-

—2n,L—
ficients by a result of McGraw [27], a weakly holomorphic modular form
with rational principal part of negative weight has only rational coefficients.
Therefore, f (hence fpgn) has rational Fourier coefficients. Now, by Theo-

rem 5.13, we can assume that the coeflicients of 5;_ p Are rational multiples

of y/2det(N—)|D|. We have seen in Remark 4.11 that det(N—) = 2|D|m’.
Since ©p has rational coefficients, the right-hand side of the formula in
Theorem 5.17 is a rational multiple of wv/m/. U

As in the case of non-twisted double traces, one can rephrase Theo-
rem 5.18 in terms of linear combinations of partially-twisted traces with
coefficients coming from rational relations for spaces of cusp forms. As a
consequence, we obtain the following corollary.

Corollary 5.19. Let {\(t)}en be a rational relation for ST, (To(|D|), xp),
and let m' € N be such that A\(m'|D|?r?) = 0 for all integers r > 1. Then
the linear combination of partially-twisted double traces

> m A D) )y p tEm(Gan)

m>0
is a rational multiple of mv/m/.

Next, we compute the partially-twisted double trace of G5 at odd integral
s=2n+1.

Theorem 5.20. Letn € N and let
fF=>ag(m)q™ € M',,(SLa(Z))

meZ

be a weakly holomorphic modular form of weight —2n for SLa(Z). Let u' €
L'/L and —m' € Z — Q(i') with m’ > 0 such that af(—m/r*/|D|) = 0 for
all integers r > 1 if ' = 0. Then we have

1 n
2 Z m af(_m)trgn/#/trm|D|7XD (G2n+l)
m>0
4" D . » L(D)
= ) e (DX0 (X0) |20T<f - |©50) Inw) o '¢D>7

(%) "

where @*P(D) is the weight 3/2 unary theta function defined in (5.10), NE(D)TXD

denotes the holomorphic part Ong(D)iXD’ and [+, ], denotes the n-th Rankin—
Cohen bracket as defined in Section 2.3, with k = 3/2 and £ = 1/2. More-
over, the superscript L(D) denotes the map defined in Section 2.1, and 1p
is the invariant vector defined in Lemma 5.5.
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Proof. The proof is again very similar to the proof of Theorem 4.12. How-
ever, this time we first write the m|D|-th twisted trace of Ga,11 as a twisted
theta lift using Theorem 5.8, and then compute the non-twisted trace in the
second variable using Theorem 5.15. For brevity, we omit the details of the
computation. [l

Theorem 5.21. Let the notation be as in Theorem 5.20, and suppose that
the coefficients ay(—m) for m > 0 are rational. Then the linear combination
of partially-twisted double traces

Z m" le trm u’trm\D| XD (G2n+1)
m>0
18 a rational multiple .

Proof. The coefficients of the unary theta function @*P( p) are rational mul-
tiples of v/2m/ since Q(Xo) = m’. Moreover, by Theorem 5.13 we can choose

19]+\,(D)_ pp Such that its coefficients are rational multiples of \/2det(N(D)™)|D].

Now det(N(D)~) = 2m/|D|* by Remark 4.11. This implies the stated re-
sult. g

We obtain the following corollary.

Corollary 5.22. Let {\(t)}ien be a rational relation for Saye,(SLa(Z)),
and let m' € N be such that A\(m'r?/|D|) = 0 for all integers r > 1. Then
the linear combination of partially-twisted double traces

Z M A(m) et ) (G2ns1)
m>0
18 a rational multiple .
Note that part (2) of Theorem 1.5 is a direct consequence of Corollar-
ies 5.19 and 5.22.

Finally, we evaluate the doubly-twisted double trace of G5 at odd integral
s=2n+1.

Theorem 5.23. Letn € N and let
f=> ap(m)g™ e M., (SLy(Z))

meZ

be a weakly holomorphic modular form of weight —2n for SLy(Z). Letm’ € N
such that ag(—m/r?) = 0 for all integers r > 1. Then we have

— Z m" af trm,|D| XDtrm|D| XD (G2n+1)
m>0

4" D L(D)

n
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where @’I‘J(D) is the weight 3/2 unary theta function defined in (5.10), Ejﬂ,N

denotes the holomorphic part of E1/27N, and [-, -], denotes the n-th Rankin—
Cohen bracket as defined in Section 2.3, with k = 3/2 and £ = 1/2. More-
over, the superscript L(D) denotes the map defined in Section 2.1, and 1p
is the invariant vector defined in Lemma 5.5.

Proof. Write the twisted trace of Gany1 as a twisted theta lift using The-
orem 5.8 and evaluate the second twisted trace using Theorem 5.15. The
computation is analogous to the proof of Theorem 4.12. ([

Theorem 5.24. Let the notation be as in Theorem 5.28, and suppose that
the coefficients ay(—m) for m > 0 are rational. Then the linear combination
of twisted double traces

Z mnaf(_m)trgl’lDl,thrmlD\,XD(G2n+1)
m>0

is a rational linear combination of log(p) for some primes p and log(ea)/VA
for some fundamental discriminants A > 0.

Proof. The coefficients of ©7p, [ are rational multiples of V2|D|m’ since
Q(Xo) = m'|D|. Note that |[N(D)'/N(D)| = 2m/|D|*. Hence, the coeffi-
cients of ET/Q,N(D)
or log(ea)/v/A. This implies the claimed statement. O

are of the form @ times a rational number times log(p)

The following corollary implies part (1) of Theorem 1.5.

Corollary 5.25. Let {\(t)}ien be a rational relation for Sayo,(SLa(Z)),
and let m' € N be such that \(m'r?) = 0 for all integers v > 1. Then the
linear combination of partially-twisted double traces

3 WA gDl (o)
m>0

is a rational linear combination of log(p) for some primes p andlog(ea)/vVA
for some fundamental discriminants A > 0.

5.6.1. Example: The value of the Green’s function at an individual special
point. In some special cases it is possible to combine our formulas for twisted
and non-twisted double traces to obtain values of Green’s functions at indi-
vidual points. We demonstrate this in the following example. We consider
the field Q(7), and take n = 1, that is, we evaluate the Green’s function over
Q(7) at s = 2. We have S3 1 = {0}, so we can take f = F_q,,, as a Maass
Poincaré series in Theorem 4.12. Recall that L'/L = Z /27 x 7./2Z.

We take the determinants m = 1 and m’ =4, and u = ¢/ = (0,0) in both
cases. We first compute the non-twisted double trace, using Theorem 4.12.
The computation is similar to Example 4.14. We need to simplify (4.12).
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Now tr9n, #, has two summands, corresponding to

40 3 1+4i
XO_(O 1)’ Xl_(li 2)’

with stabilizers of size 2 each, and corresponding points Py = 2j and P, =

14 4 j. Hence we have tr?n/’“/(l) =1, and (4.12) becomes

1 o 1 1+ o~
§G2(972j) + §G2 (,772 +]> = 27TCT<fP@N' [@P’El/Q,NL)

Note that the factor 8 = 4 - 2 in the denominator on the left is the product
of the orders of the stabilizers of j and 2j, respectively.
The lattices P and N are given by

P:Lm(@xo)z{n(‘é ?) :nEZ},

N =Ln(QXy)" = {<4b“ _ba) a€Zbe Z[z’]},

with dual lattices

P’:{;L(é (D :nEZ},

1
N {S(iz fi) Lac Z,beZ[i]}.

For a € P! and 8 € N’ in the form above, we have a + 8 € L’ if and only
if a = n (mod 8). We have P'/P = Z/8Z and N'/N = 7/8Z x (Z/27)?,
so we will write the elements of (P @& N)'/(P @& N) as (n, (a, b1, b)) with
n,a € Z/87 and by, by € Z/27.

Since we take f = F_y 1 90) = 2¢ 'eg + ..., we have

CT(fren - [0, By ] ) = 2a(mzw lorEin, (L, (a, (a,0,0))).

We have

Op(r) = Y ST g,
(

a (mod 8) nez
n=a (mod 8)
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Note that the coefficient c[ o Bt
P,

(1,(a, (a,0,0))) is invariant under a —
1/2,N] 1

—a (mod 8), so we get

(v [or. ]

1/2,N 1/2,N

3
- 2<C Op.ET (17 (Oa (07 07 0))) + QZC Op.ET (17 (CL, (aa 07 0)))
[ P ]1 a=1 [ P ]1

+fop B0 (1, (4, (4,0,0)))

1/2,N

1 14 15
= 2 — =cx 1 2 — —c= —. (1
( 20E1+/2,N( 7(0’070)) * < 32CET/2,N<167( ’0’0)>

_icﬁ* <i,(2,o,o))+11605+ <176,(3,0,0)>>+cé+ (07(4,0,0)))

1/2,N 1/2,N 1/2,N

The relevant coefficients of the Eisenstein series E N can be computed

1/2,
using Theorem 3.6, and are given by
21og(2)
CET/Q,N(L(O’O’O)) =-—
15 2L 1 8log(4 15
CE+ 77(17070) = = (X6O’ ) = - Og( +\/>)7
1/2,8 \ 16 ™ \/@W
2L 1 21 24/12
CE+ <37 (27 07 0)) = - (X127 ) = = Og(7 - \/>) )
1/2,8v \ 4 T \/ﬁﬂ
7 2L(xo28,1) 21og(127 + 24+/28)
Cp+ Py (37 0, 0) = - = - ;
1/2,8 \ 16 ™ \/%71’
_ log(2)
CET/Q,N (0,(4,0,0)) = -

Taking everything together, we find that

o A A
G2(5,25) + G (,77 5 +]) = 32L(x12,1) — 8L(x28,1) + 56 L(x60,1).

Note that the real quadratic discriminants that appear, namely A =
60, 12, 28, are exactly the discriminants of the quadratic fields Q(y/(4mm’ — r2)|D|)
for r = 1,2, 3, respectively.

Next, we compute the partially-twisted double trace using Theorem 5.17.
From the theorem we get, similarly as in the non-twisted case discussed
above, that

1+

1 ) . 1 . 9+
(5.11) §G2(3,2j) — gGQ <], 5 +]> = QWCT(fP@N . |:@P719N_,XD} 1>,

where f = F_; 1 o) as before, and the lattice P and IV are as above. Here

J N-xp i a harmonic Maass form of weight 1/2 which maps to the cusp form

%19 N- ., (see Theorem 5.13). In this case, ¥ -, is precisely the cusp form

»XD »XD
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given in Example 5.12. An explicit {-preimage can be constructed using [26,
Proposition 6.1]. It is given by

where the weight 1/2 scalar-valued harmonic Maass forms HNZ , have holo-
morphic parts

TR R | 7 15 21 31 43 ar 47 63
1

QZ = Zq 16 — que — quﬁ — qu — ?qlﬁ —42q16 — 77q16 +.
05 = —2¢1 —6q7 — 1dqT —28¢'* —5dg't — 98¢ +.
e e U S SR @q% "

3 4 2 4 4 4

We computed these expansions numerically in sage, using [26, Proposi-
tion 6.1(2)], with N =4 and g4 = 6v/8 + 17.

The constant term CT(-) appearing on the right-hand side of (5.11) can
be computed similarly as in the non-twisted case above, replacing E1 2N
by 19N77XD, so we do not repeat this computation here. Putting in the

coefficients of 5:; above, we obtain from (5.11) that

L. ) )
G2(5,25) — G (J, TZ +]> = —4.

Combining the evaluation of the non-twisted and partially-twisted double
trace yields

G2(j,25) = 16 L(x12,1) — 4L(x28, 1) + 28 L(x60, 1) — 2.

In particular, the “individual” value G3(j,2j) is not just a rational linear
combination of L-values.
For n = 2 we have S5 1, = {0}, so we can compute in a similar way that

A 1+
G4(j,25)+Gy <j, 5 —|—]> = —6410g(2)4+32L(x12,1)+62L(x28,1)—34L(x60,1),

and

This yields

. . T
Ga(j,2]) = —3210g(2) + 16L(x12, 1) + 31L(x2s, 1) — 17L(x60, 1) — 5-
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