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Abstract. Gross, Kohnen and Zagier proved an averaged version of
the algebraicity conjecture for special values of higher Green’s functions
on modular curves. In this work, we study an analogous problem for
special values of Green’s functions on hyperbolic 3-space. We prove that
their averages can be computed in terms of logarithms of primes and
logarithms of units in real quadratic fields. Moreover, we study twisted
averages of special values of Green’s functions, which yield algebraic
numbers instead of logarithms.
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1. Introduction

In a seminal paper, Gross and Zagier [19] related the central values of
derivatives of L-functions of elliptic curves to heights of Heegner points on
modular curves. Moreover, they found a striking factorization of the norms
of differences of singular moduli [20]. The proof uses the fact that the
function log |j(τ1)− j(τ2)| is essentially given by the constant term at s = 1
of the automorphic Green’s function

GSL2(Z)
s (τ1, τ2) =

∑
γ∈SL2(Z)

Qs−1

(
1 +

|τ1 − γτ2|2

2Im(τ1)Im(γτ2)

)
on the modular curve X(1) = SL2(Z)\H. Here Qs−1(x) denotes the Le-
gendre function of the second kind and Im(τ) denotes the imaginary part of
the point τ in the complex upper-half plane H. The Green’s function con-
verges absolutely for s ∈ C with Re(s) > 1 and has a simple pole at s = 1.
Moreover, it is an eigenfunction of the hyperbolic Laplacian in both vari-
ables, and has a logarithmic singularity along the diagonal in X(1)×X(1).

At the end of [19], Gross and Zagier made a deep conjecture about the
algebraicity properties of the values of the level N ≥ 1 Green’s function

G
Γ0(N)
s (τ1, τ2) at positive integer values s = k ≥ 2 and CM points τ1, τ2.

They predicted that (under some technical conditions) the values at CM

points τ1, τ2 of the “higher Green’s function” G
Γ0(N)
k (τ1, τ2) are essentially

given by logarithms of absolute values of algebraic numbers. There has
been a lot of interesting work on this conjecture over the last years (see
[5, 9, 24, 28, 35, 36]). A major step in this direction was taken by Li
[25] who proved the conjecture in the case of level 1 and when one of the
discriminants is fundamental. The general case has recently been solved by
Bruinier, Li, and Yang [9].

In the present work we study an analogous problem for Green’s functions
on the hyperbolic 3-space H3. A major obstacle in this case is the fact that
H3 does not have a complex structure. In particular, the theory of complex
multiplication, which played an important role in the proof of the Gross–
Zagier algebraicity conjecture over modular curves, is not available on H3.
Hence, it is not clear whether the special values of Green’s functions on H3

still have good algebraic properties. In fact, our results suggest that the
analogue of the Gross–Zagier conjecture for the individual special values of
Green’s functions on H3 might not be true; see Example 1.6 below.
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In order to obtain a convenient algebraicity result, we study an averaged
version of the problem. Gross, Kohnen and Zagier [18] proved an averaged
version of the algebraicity conjecture over modular curves by summing τ1
and τ2 over all classes of CM points of fixed discriminants d1 and d2. They
showed that these “double traces” are essentially given by logarithms of
rational numbers. Inspired by this result, we consider the double traces
of Green’s functions on hyperbolic 3-space. We show that they are given
by algebraic linear combinations of logarithms of primes and logarithms of
units in real quadratic fields. For the proof of our results we follow ideas of
Bruinier, Ehlen, and Yang [5], who proved a partially averaged version of
the algebraicity conjecture over modular curves: they fix τ1 and sum τ2 over
all classes of discriminant d2. It will become clear during our proof why we
cannot fix one of the variables in the hyperbolic 3-space case, but instead
need to take the double trace.

Let us describe our results in some more detail. We use the setup of [16].

Let Q(
√
D) be an imaginary quadratic field of discriminant D < 0, and let

OD be its ring of integers. The group

Γ = PSL2(OD)

acts on the hyperbolic 3-space

H3 = {P = z + rj : z ∈ C, r ∈ R+}

(viewed as a subset of the quaternions R[i, j, k]) by fractional linear trans-
formations, and this action preserves the hyperbolic distance d(P1, P2). For
P1, P2 ∈ H3 which are not in the same Γ-orbit, and s ∈ C with Re(s) > 1,
the automorphic Green’s function for Γ is defined by1

(1.1) Gs(P1, P2) = π
∑
γ∈Γ

φs
(
cosh(d(P1, γP2))

)
,

with the function

(1.2) φs(t) =
(
t+

√
t2 − 1

)−s
(t2 − 1)−1/2.

The Green’s function converges absolutely for Re(s) > 1, is Γ-invariant in
both variables, and symmetric in P1, P2. Moreover, it satisfies

(∆P1 − (1− s2))Gs(P1, P2) = 0,

where ∆P1 is the usual invariant Laplacian on H3, taken with respect to the
variable P1. The Green’s function has meromorphic continuation to s ∈ C
with s = 1 a simple pole, and singularities precisely at the points P2 in the
Γ-orbit of P1.

We want to investigate the algebraic properties of the Green’s function
Gs(P1, P2) at special points P1, P2 ∈ H3, and positive integer values s ≥ 2.

1We use a different normalization than [16] and [21] to obtain nicer algebraicity results.
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The special points we consider are defined as follows. For a number m in
1
|D|N (where N = {1, 2, . . .}) we let

(1.3) L+
m =

{
X =

(
a b

b c

)
: a, c ∈ N, b ∈ d−1

D , det(X) = m

}
be the set of positive definite integral binary hermitian forms of determinant
m over Q(

√
D). Here d−1

D denotes the inverse different of Q(
√
D). The group

Γ acts on L+
m by γ.X = γXγt, and Γ\L+

m has finitely many classes. To a
form X ∈ L+

m we associate the special point

PX =
b

c
+

√
m

c
j ∈ H3.

We may view it as an analogue of a CM point on H3. Moreover, we define
the m-th trace of the Green’s function by

trm(Gs( · , P )) =
∑

X∈Γ\L+
m

1

|ΓX |
Gs(PX , P ),

where ΓX denotes the stabilizer of X in Γ. Here we need to be careful not to
evaluate the Green’s function at a singularity, so P should not be in the same
Γ-orbit as one of the special points PX . We remark that, unlike the case
of binary quadratic forms, the order |ΓX | really depends on the individual
hermitian form X, not just on its determinant m. If we also take the trace
in the second variable, we obtain the double trace

(1.4) trmtrm′(Gs) =
∑

X∈Γ\L+
m

Y ∈Γ\L+
m′

1

|ΓX |
1

|ΓY |
Gs(PX , PY ).

In the following we will tacitly assume that m and m′ are chosen in such a
way that we do not evaluate the Green’s function at a singularity.

From now on we will work with prime discriminants, so either D =
−4, D = −8, or D = −ℓ for an odd prime ℓ ≡ 3 (mod 4). Moreover, for
simplicity we will assume in the introduction that a certain space of cusp
forms is trivial. Namely, for an odd positive integer k we consider the space
S+
k (Γ0(|D|), χD) of cusp forms f =

∑
n>0 af (n)q

n of weight k for Γ0(|D|)
and character χD =

(
D
·
)
satisfying the “plus space” condition af (n) = 0 if

χD(n) = −1. Assuming S+
k (Γ0(|D|), χD) = {0} we have the following alge-

braicity result. In the body of the paper we lift this restriction by taking
suitable linear combinations of double traces of the Green’s function; see
Corollary 4.17.

Theorem 1.1. Let D < 0 be a prime discriminant and let n ≥ 1 be a
natural number such that S+

1+2n(Γ0(|D|), χD) = {0}. Let m,m′ ∈ 1
|D|N such

that mm′ is not a rational square. Then the double trace

1√
|D|mm′

trmtrm′(G2n)
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of the Green’s function at positive even s = 2n is a rational linear combina-
tion of log(p) for some primes p and of log(ε∆)/

√
∆ for some fundamental

discriminants ∆ > 0, where ε∆ denotes the smallest totally positive unit > 1
in Q(

√
∆).

Remark 1.2. The numbers log(ε∆)/
√
∆ in the theorem arise as special L-

values L(χ∆, 1) via Dirichlet’s class number formula. The fundamental dis-
criminants that appear are among the discriminants of the real quadratic
fields Q(

√
(4mm′D2 − r2)|D|) with r ∈ Z satisfying |r| < 2|D|

√
mm′. The

logarithms of rational primes p can appear only if (4mm′D2 − r2)|D| is a
square for some r ∈ Z, and if p is the only prime divisor of 2m′|D| satisfying
(−m′, D)p = −1; see Remark 4.16. Note that when (4mm′D2 − r2)|D| is
a square, we have (−m,D)p = (−m′, D)p by properties of Hilbert symbols.
In this case (−m′, D)p = −1 implies that p also divides 2m|D|, which shows
that these conditions are symmetric in m and m′.

One can give an explicit evaluation of trmtrm′(G2n) using Theorem 4.12.
The following example is an illustration of such an evaluation.

Example 1.3. Let D = −4, m = 1 and m′ = 1/2. For n = 1 we have
S+
3 (Γ0(4), χ−4) = {0}, hence there exists a weight −1 weakly holomorphic

modular form f ∈ M !
−1(Γ0(4), χ−4) with principal part q−1. Using the

formula given in Theorem 4.12 we find that

1√
2
tr1tr1/2(G2) = L(χ8, 1) =

log(ε8)√
8

,

where ε8 = 3+
√
8 is the smallest totally positive unit > 1 in Q(

√
8). Modulo

Γ, there are unique special points of determinants 1 and 1/2, given by j and
1+i
2 +

√
2
2 j, with stabilizers of size 4 and 12, respectively. Hence, we find

1√
2
G2

(
j,
1 + i

2
+

√
2

2
j

)
= 48L(χ8, 1).

Similarly, we can compute

1√
2
G4

(
j,
1 + i

2
+

√
2

2
j

)
= 48 log(2)− 48L(χ8, 1).

We refer to Example 4.14 for more details. Note that the fundamental dis-
criminant ∆ = 8 equals the discriminant of Q(

√
4mm′|D|2 − r2)|D|) when

r = 0. Moreover, when r = 4 the number (4mm′|D|2 − r2)|D| is a square,
and 2 is the only prime dividing 2m′|D| satisfying (−m′, D)2 = −1, in ac-
cordance with Remark 1.2.

The proof of Theorem 1.1 uses a method of Bruinier, Ehlen, and Yang
[5], and consists of the following four major steps.
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(1) First, we show that the trace trm
(
G2n( · , P )

)
can be written as a

regularized theta lift of a harmonic Maass form Fm of weight 1−2n.
More explicitly, we have an integral representation

trm
(
G2n( · , P )

)
=

∫ reg

F

(
Rn1−2nFm

)
(τ)Θ(τ, P )dµ(τ),

where the integral over the fundamental domain F for SL2(Z) has
to be regularized as explained by Borcherds [2] or Bruinier [3], dµ(τ)
denotes the usual invariant measure on H, and Θ(τ, P ) is a real-
analytic Siegel theta function associated with a suitable lattice of
signature (1, 3). Here Rnκ = Rκ+2n−2 ◦ · · · ◦ Rκ denotes the iterated
version of the raising operator Rκ = 2i ∂∂τ + κv−1 where v = Im(τ).
See Theorem 4.3 for the details.

(2) Now we evaluate trm
(
G2n( · , P0)

)
at a special point P0. Then the

Siegel theta function Θ(τ, P0) essentially splits as a product of a
holomorphic theta function of weight 1/2 and the complex conjugate
of a holomorphic theta function of weight 3/2,

Θ(τ, P0) = Θ1/2(τ) ·Θ3/2(τ)v
3/2.

If we now take the trace trm′ over P0, an application of the Siegel–
Weil formula allows us to replace the theta function Θ3/2(τ) by an
Eisenstein series E3/2(τ), and we obtain the splitting

trm′(Θ(τ, · )) = Θ1/2(τ) · E3/2(τ)v
3/2.

We refer to Theorem 4.10 for the precise statement.
(3) If we plug the splitting of trm′(Θ(τ, · )) into the theta lift represen-

tation of trm(G2n) from step (1), we obtain

trmtrm′(G2n) =

∫ reg

F

(
Rn1−2nFm

)
(τ)Θ1/2(τ)E3/2(τ)v

3/2dµ(τ).

The right-hand side can be interpreted as the regularized Peters-
son inner product of the form

(
Rn1−2nFm

)
(τ)Θ1/2(τ) and the Eisen-

stein series E3/2(τ). By the fundamental results of Bruinier and

Funke [6], there exists a harmonic Maass form Ẽ1/2(τ) of weight
1/2 with shadow E3/2(τ), and an application of Stokes’ Theorem
shows that the above Petersson inner product can be evaluated in
terms of the coefficients of Fm(τ) and Θ1/2(τ), and the coefficients

of the holomorphic part of Ẽ1/2(τ). Here we need the assump-

tion S+
1+2n(Γ0(|D|), χD) ̸= {0}, which implies that Fm is weakly

holomorphic.
(4) Since the coefficients of Θ1/2(τ) and Fm(τ) are rational numbers

(here we again use that Fm is weakly holomorphic), the algebraic
properties of trmtrm′(G2n) are controlled by the coefficients of the

harmonic Maass form Ẽ1/2(τ). In general, the algebraic nature of
the coefficients of harmonic Maass forms is a deep open problem,
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compare [10]. However, since the shadow of Ẽ1/2(τ) is an Eisenstein

series, Ẽ1/2(τ) itself can be constructed as a Maass Eisenstein series,
and its Fourier coefficients can be computed very explicitly using a
method of Bruinier and Kuss [8]; see Theorem 3.6. It turns out that

the coefficients of the holomorphic part of Ẽ1/2(τ) are given by simple
multiples of logarithms of primes, or by the special value L(χ∆, 1) of
Dirichlet L-functions for positive fundamental discriminants ∆ > 0.
By Dirichlet’s class number formula, the latter L-values are rational
multiples of log(ε∆)/

√
∆.

Remark 1.4. Step (4) explains why we need to take the double trace trmtrm′(G2n)
to obtain a convenient algebraicity result. Steps (1) to (3) work without tak-
ing the trace trm′ , and show that, for each fixed special point P0, we can
interpret the single trace trm(G2n( · , P0)) as a regularized Petersson inner
product of

(
Rn1−2nFm

)
(τ)Θ1/2(τ) with a weight 3/2 holomorphic theta func-

tion Θ3/2(τ) associated to an even lattice of rank 3. However, it is believed
that the harmonic Maass forms corresponding to these ternary theta func-
tions in general do not have good algebraic properties. Taking the additional
trace trm′ allows us to apply the Siegel–Weil formula and replace Θ3/2(τ)
by an Eisenstein series E3/2(τ), whose corresponding harmonic Maass form

Ẽ1/2(τ) has better algebraic properties. In contrast, in the modular curve
case, the ternary theta function Θ3/2 is replaced with a binary theta func-
tion Θ1 of weight 1. Using the theory of complex multiplication, Duke and
Li [15] and Ehlen [17] proved that these binary theta functions possess cor-
responding harmonic Maass forms whose coefficients are essentially given
by logarithms of absolute values of algebraic numbers. Hence, in the mod-
ular curve case it is not necessary to take the double trace to obtain an
algebraicity result.

Next, we consider twisted double traces of the Green’s function, which are
defined as in (1.4), but with additional signs χD(X), χD(Y ) ∈ {−1, 0, 1}.
Recall that we assume that D is a prime discriminant. Let ℓ denote the
unique prime dividing D. For X =

(
a b
b c

)
∈ L+

m|D| with m ∈ N, we define

χD(X) =


(
D
a

)
, if ℓ ∤ a,(

D
c

)
, if ℓ ∤ c,

0, otherwise.

This function was previously considered in [12, 17] for D > 0 in order to
study twisted Borcherds produts on Hilbert modular surfaces. One can
check that χD(X) is well-defined and invariant under the action of Γ. In
particular, for m,m′ ∈ N the doubly-twisted double trace

trm|D|,χD
trm′|D|,χD

(Gs) =
∑

X∈Γ\L+
m|D|

Y ∈Γ\L+
m′|D|

χD(X)

|ΓX |
χD(Y )

|ΓY |
Gs(PX , PY )
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is well-defined. Similarly, we can consider the partially-twisted double trace

trm|D|,χD
trm′(Gs) =

∑
X∈Γ\L+

m|D|
Y ∈Γ\L+

m′

χD(X)

|ΓX |
1

|ΓY |
Gs(PX , PY ),

where we only twist one of the traces. Note that here m′ can be a rational
number in 1

|D|N.
There are two main reasons why we are interested in the twisted double

traces of the Green’s function. Firstly, in Theorem 1.1 we considered the
non-twisted double trace of Gs for even s = 2n, but we did not get informa-
tion for odd s. However, we will compute the twisted double traces of Gs for
odd s = 2n+ 1. Secondly, we can sometimes compute both the non-twisted
and the twisted double traces of Gs and use this to get formulas for some
individual special values of the Green’s function, even if the class numbers
of the involved binary hermitian forms are not equal to 1. For an instance
of such a case, we refer to Example 1.6 below.

We have the following algebraicity results for the twisted double traces
of the Green’s function. Once again, for simplicity, we assume that certain
spaces of cusp forms are trivial. In the general case we take suitable linear
combinations of twisted double traces; see Corollaries 5.19, 5.22 and 5.25.

As usual, for an integer k we denote by Sk(SL2(Z)) the space of cusp
forms of weight k for the full modular group.

Theorem 1.5. Let D < 0 be a prime discriminant.

(1) Let n ∈ N such that S2+2n(SL2(Z)) = 0. Let m,m′ ∈ N such that
mm′ is not a square. Then the doubly-twisted double trace

trm|D|,χD
trm′|D|,χD

(G2n+1)

is a rational linear combination of log(p) for some primes p and of

log(ε∆)/
√
∆ for some fundamental discriminants ∆ > 0, where ε∆

denotes the smallest totally positive unit > 1 in Q(
√
∆).

(2) Let n ∈ N with n ≥ 2. If n is even, assume that S+
1+n(Γ0(|D|), χD) =

{0}, and if n is odd, assume that S1+n(SL2(Z)) = 0. Letm ∈ N,m′ ∈
1
|D|N such that mm′|D| is not a square. Then the partially-twisted

double trace
trm|D|,χD

trm′(Gn)

is a rational multiple of π
(√
mm′

)1+n
.

The proofs of these results, which can be found in Section 5.6, use the
same strategy as the proof of Theorem 1.1 sketched above. However, in
step (1) of the proof sketch we use a twisted theta lift, and in step (2) we
apply a twisted version of the Siegel–Weil formula, which is due to Snitz
[34]. Roughly speaking, this twisted Siegel–Weil formula says that a certain
twisted integral of a theta function is a distinguished cusp form, namely
a weight 3/2 unary theta function, instead of an Eisenstein series. These
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unary theta functions admit harmonic Maass forms with rational Fourier
coefficients in the holomorphic part, up to a fixed square root factor (see
[11, 26]). Hence, in part (4) of the proof sketch we obtain rational numbers
instead of logarithms (up to a factor of π and possibly some square roots).
This explains the different algebraic properties of the doubly-twisted and
the partially-twisted traces in Theorem 1.5.

Example 1.6. By combining our explicit evaluations of the twisted and
non-twisted double traces of the Green’s function we can sometimes compute
the individual valuesG2n(P1, P2), even if the class numbers of the two special
points P1, P2 are not equal to 1. For example, modulo Γ = PSL2(Z[i]) there
is one form ( 1 0

0 1 ) of determinant m = 1, with corresponding special point

j, and there are two primitive forms ( 4 0
0 1 ) and

(
3 1+i

1−i 2

)
of determinant

m′ = 4, with corresponding special points 2j and 1+i
2 +j. Using the formula

for the non-twisted double trace of G2 from Theorem 4.12, we find

G2(j, 2j) +G2

(
j,
1 + i

2
+ j

)
= 32L(χ12, 1)− 8L(χ28, 1) + 56L(χ60, 1).

On the other hand, the formula for the partially-twisted double trace of G2

from Theorem 5.17 yields

G2(j, 2j)−G2

(
j,
1 + i

2
+ j

)
= −4π.

Combining these two evaluations, we obtain

G2(j, 2j) = 16L(χ12, 1)− 4L(χ28, 1) + 28L(χ60, 1)− 2π.

In particular, the algebraicity results for the double traces of G2 are in
general not true for the individual values. We refer to Section 5.6.1 for the
details.

This work is organized as follows. In Section 2 we discuss the necessary
preliminaries about vector-valued harmonic Maass forms for the Weil rep-
resentation associated with an even lattice, and some basic properties of
Siegel theta functions. In Section 3 we recall the construction of vector-
valued holomorphic and harmonic Maass Eisenstein series of half-integral
weight, and we give the Siegel–Weil formula in our setup. The results of
this section are mostly well known. However, in Theorem 3.6 we write out
an explicit formula for the Fourier coefficients of a harmonic Eisenstein series
of weight 1/2, which is not readily available in the literature and might be of
independent interest. Section 4 is the heart of the paper. Here we first show
that the trace of the Green’s function can be written as a theta lift (Theo-
rem 4.3). The next key step is to rewrite the double traces into an adelic
language in order to apply the Siegel–Weil formula and determine a precise
splitting of the Siegel theta function at special points (Theorem 4.10). Fi-
nally, we give our explicit evaluation of the double traces in terms of Fourier
coefficients of Maass Eisenstein series (Theorem 4.12). In Section 5 we con-
sider the twisted double traces of the Green’s function. The proofs of the
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results in this last section are very similar to the proofs of their non-twisted
counterparts in Section 4, so we will skip some details there.

Acknowledgments. We are grateful to Yingkun Li for pointing out the
paper of Snitz [34] to us.

2. Preliminaries

Throughout this section, we let L be an even lattice of signature (p, q)
with bilinear form (·, ·) and associated quadratic form Q(x) = 1

2(x, x). The
dual lattice of L will be denoted by L′. The abelian group L′/L is finite and
of cardinality |det(L)|, where det(L) denotes the determinant of the Gram
matrix of L.

2.1. Vector-valued modular forms for the Weil representation. Let
C[L′/L] be the group ring of L, which is generated by the standard basis
vectors eγ for γ ∈ L′/L. We let( ∑

γ∈L′/L

aγeγ

)
·
( ∑
γ∈L′/L

bγeγ

)
=

∑
γ∈L′/L

aγbγ

be the natural bilinear pairing on C[L′/L].
Let Mp2(Z) be the metaplectic double cover of SL2(Z), realized as the set

of pairs (M,ϕ) with M =
(
a b
c d

)
∈ SL2(Z) and ϕ : H → C a holomorphic

function with ϕ2(τ) = cτ +d. The Weil representation ρL of Mp2(Z) associ-
ated to L is defined on the generators T = (( 1 1

0 1 ), 1) and S =
((

0 −1
1 0

)
,
√
τ
)

by

ρL(T )eγ = e(Q(γ))eγ , ρL(S)eγ =
e((q − p)/8)√

|L′/L|

∑
β∈L′/L

e(−(β, γ))eβ,

where we put e(x) = e2πix for x ∈ C. We let ρL denote the dual Weil
representation. Note that ρL is the Weil representation ρL− associated to
the lattice L− = (L,−Q).

For k ∈ 1
2Z we let Ak,L be the set of all functions f : H → C that

transform like modular forms of weight k for ρL, which means that f is
invariant under the slash operator

f |k,L(M,ϕ) = ϕ(τ)−2kρL(M,ϕ)−1f(Mτ)(2.1)

for (M,ϕ) ∈ Mp2(Z). If K ⊆ L is a sublattice of finite index, we can
naturally view modular forms for ρL as modular forms for ρK as follows.
We have the inclusions K ⊆ L ⊆ L′ ⊆ K ′ and thus L/K ⊆ L′/K ⊆ K ′/K.
We have the natural projection L′/K → L′/L, γ 7→ γ. There are maps

resL/K : Ak,L → Ak,K , f 7→ fK ,

trL/K : Ak,K → Ak,L, g 7→ gL,
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which are defined for f ∈ Ak,L and γ ∈ K ′/K by

(fK)γ =

{
fγ , if γ ∈ L′/K,

0, if γ /∈ L′/K,

and for g ∈ Ak,K and γ ∈ L′/L by

(gL)γ =
∑

β∈L/K

gβ+γ .

They are adjoint with respect to the bilinear pairings on C[L′/L] and C[K ′/K].
We refer the reader to [12, Lemma 3.1] for more details.

2.2. Harmonic Maass forms. Recall from [6] that a harmonic Maass form
of weight k ∈ 1

2Z for ρL is a smooth function f : H → C which is annihilated
by the weight k Laplace operator

∆k = −v2
(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
, (τ = u+ iv ∈ H),

which transforms like a modular form of weight k for ρL, and which is at
most of linear exponential growth at the cusp ∞. The space of harmonic
Maass forms of weight k for ρL is denoted by Hk,L. We letM !

k,L be subspace
of weakly holomorphic modular forms, which consists of the forms that are
holomorphic on H. The antilinear differential operator

ξk = 2ivk
∂

∂τ

maps Hk,L onto M !
2−k,L− . We let Hhol

k,L and Hcusp
k,L be the subspace of Hk,L

which is mapped to the spaceM2−k,L− of holomorphic modular forms or the

space S2−k,L− of cusp forms under ξk, respectively. For k ̸= 1 every f ∈ Hhol
k,L

decomposes as a sum f = f++ f− of a holomorphic and a non-holomorphic
part, having Fourier expansions of the form

f+(τ) =
∑

γ∈L′/L

∑
n∈Q

n≫−∞

a+f (n, γ)q
neγ ,

f−(τ) =
∑

γ∈L′/L

(
a−f (0, γ)v

1−k +
∑
n∈Q
n<0

a−f (n, γ)Γ(1− k, 4π|n|v)qn
)
eγ ,

(2.2)

where a±f (n, γ) ∈ C, q = e2πiτ , and Γ(s, x) =
∫∞
x e−tts−1dt is the incomplete

Gamma function. Note that f ∈ Hcusp
k,L is equivalent to a−f (0, γ) = 0 for all

γ ∈ L′/L.
Examples of harmonic Maass forms can be constructed using Maass Poincaré

series, compare [3, Section 1.3]. For k ∈ 1
2Z, s ∈ C and v > 0 we let

(2.3) Mk,s(v) = v−k/2M−k/2,s−1/2(v),
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with the usualM -Whittaker function. For µ ∈ L′/L and m ∈ Z−Q(µ) with
m > 0, and s ∈ C with Re(s) > 1 we define the Maass Poincaré series

Fk,m,µ(τ, s) =
1

2Γ(2s)

∑
(M,ϕ)∈Γ̃∞\Mp2(Z)

Mk,s(4πmv)e(−mu)eµ|k,L(M,ϕ),

where Γ̃∞ is the subgroup of Mp2(Z) generated by T = (( 1 1
0 1 ), 1). It con-

verges absolutely for Re(s) > 1, it transforms like a modular form of weight
k for ρL, and it is an eigenform of the Laplace operator ∆k with eigenvalue
s(1− s) + (k2 − 2k)/4. Hence, for k < 0 the special value

Fk,m,µ(τ) = Fk,m,µ

(
τ, 1− k

2

)
defines a harmonic Maass form in Hcusp

k,L whose Fourier expansion starts with

Fk,m,µ(τ) = q−m(eµ + e−µ) +O(1).

In particular, for k < 0 every harmonic Maass form f ∈ Hcusp
k,L with Fourier

expansion as in (2.2) can be written as a linear combination

f(τ) =
1

2

∑
µ∈L′/L

∑
m>0

a+f (−m,µ)Fk,m,µ(τ)(2.4)

of Maass Poincaré series.
The Maass raising and lowering operators on smooth functions on H are

defined by

Rkf = 2i
∂

∂τ
+ kv−1, Lk = −2iv2

∂

∂τ
.

They raise or lower the weight of an automorphic form of weight k by 2,
respectively. Also note that we have Lk = v2−kξk. We also define the
iterated raising operator by

Rnk = Rk+2n−2 ◦ · · · ◦Rk, R0
k = id.

The action of the raising operator on Maass Poincaré series is given as
follows; see, e.g., [5, Proposition 3.4].

Lemma 2.1. We have

RkFk,m,µ(τ, s) = 4πm(s+ k/2)Fk+2,m,µ(τ, s).

2.3. Rankin–Cohen brackets. Let K and L be even lattices. For n ∈ N0

and functions f ∈ Ak,K and g ∈ Aℓ,L with k, ℓ ∈ 1
2Z we define the n-th

Rankin–Cohen bracket

[f, g]n =

n∑
s=0

(−1)s
(
k + n− 1

s

)(
ℓ+ n− 1

n− s

)
f (n−s) ⊗ g(s),

where f (s) = 1
(2πi)s

∂s

∂τs f , and the tensor product of two vector-valued func-

tions f =
∑

µ fµeµ ∈ Ak,K and g =
∑

ν gνeν ∈ Aℓ,L is defined by f ⊗ g =
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µ,ν fµgνeµ+ν ∈ Ak+ℓ,K⊕L. We can write the Rankin–Cohen bracket in

terms of the raising operator as

[f, g]n =
1

(−4π)n

n∑
s=0

(−1)s
(
k + n− 1

s

)(
ℓ+ n− 1

n− s

)
Rn−sk f ⊗Rsℓg,

(see [5, Equation (3.7)]) which implies that we have

[f, g]n ∈ Ak+ℓ+2n,K⊕L.

We will need the following formula from [5, Proposition 3.6] for the action
of the lowering operator on Rankin–Cohen brackets.

Proposition 2.2. Let f ∈ Hk,K and g ∈ Hℓ,L be harmonic Maass forms.
For n ∈ N0 we have

(−4π)nLk+ℓ+2n[f, g]n

=

(
ℓ+ n− 1

n

)
Rnkf ⊗ Lℓg + (−1)n

(
k + n− 1

n

)
Lkf ⊗Rnℓ g.

2.4. Rational relations for spaces of cusp forms. A sequence

(2.5) {λ(m,µ)}m∈Q+, µ∈L′/L ⊆ Q

is called a rational relation for Sk,L if the following conditions are satisfied:

(1) For each µ ∈ L′/L we have λ(m,−µ) = λ(m,µ),
(2) For each µ ∈ L′/L we have λ(m,µ) = 0 for all but finitely many m ∈

Q+,
(3)

∑
µ∈L′/L

∑
m>0 λ(m,µ)cf (m,µ) = 0 for all cusp forms f ∈ Sk,L with

Fourier expansion f(τ) =
∑

µ∈L′/L

∑
m>0 cf (m,µ)q

meµ.

Similarly, given a discriminantD < 0, one defines rational relations {λ(t)}t∈N
for the space of scalar-valued cusp forms S+

k (Γ0(|D|), χD) as in [19, p. 316].
We now recall the well known fact (see, e.g., [3, Theorem 1.17]) that a

sequence as in (2.5) satisfying conditions (1) and (2) above, is a rational
relation for Sk,L if and only if there is a form f ∈ M !

2−k,L− with Fourier

coefficients af (m,µ) such that λ(m,µ) = af (−m,µ) for all m > 0 and
all µ ∈ L′/L.

For a prime discriminant D < 0 and the lattice L of determinant |D|, the
assignment ∑

µ∈L′/L

fµ(τ)eµ 7→
∑

µ∈L′/L

fµ(|D|τ)

defines a linear map Sk,L → S+
k (Γ0(|D|), χD) (see [4]). This implies the

following lemma.

Lemma 2.3. Assume D < 0 is a prime discriminant and the even lat-
tice L has determinant |D|. Then, for every rational relation {λ(t)}t∈N
for S+

k (Γ0(|D|), χD) the sequence λ′(m,µ) = λ(m|D|) defines a relation
for Sk,L (that is independent of µ ∈ L′/L).



14 S. HERRERO, Ö. IMAMOḠLU, A.-M. VON PIPPICH, AND M. SCHWAGENSCHEIDT

2.5. Siegel theta functions and special points. As before, we let L
be an even lattice of signature (p, q). Let Gr(L) be the Grassmannian of
positive definite p-dimensional subspaces of V (R) = L⊗R. The Siegel theta
function associated to L is defined by

ΘL(τ, v) = Im(τ)q/2
∑

γ∈L′/L

∑
X∈L+γ

e(Q(Xv)τ +Q(Xv⊥)τ)eγ ,

where τ ∈ H and v ∈ Gr(L), and Xv denotes the orthogonal projection of X
to v. The Siegel theta function transforms like a modular form of weight p−q

2
for ρL in τ (see [2, Theorem 4.1]) and is invariant in v under the subgroup
of O(L) fixing L′/L.

We call v ∈ Gr(L) a special point if it is defined over Q, that is, if there
exists v0 ⊆ L ⊗ Q such that v = v0 ⊗ R. For a special point v ∈ Gr(L)
its orthogonal complement v⊥ in V (R) is also defined over Q and we obtain
the rational splitting L⊗Q = v⊕ v⊥ which yields the positive and negative
definite lattices

P = L ∩ v, N = L ∩ v⊥.
Note that P⊕N is a sublattice of L of finite index. The Siegel theta functions
associated to L and P ⊕N are related by

ΘL = (ΘP⊕N )
L,(2.6)

with the trace operator defined in Section 2.1. Moreover, by identifying
C[(P ⊕ N)′/(P ⊕ N)] with C[P ′/P ] ⊗ C[N ′/N ] the Siegel theta function
associated to P ⊕N splits as a tensor product

ΘP⊕N (τ, v) = ΘP (τ)⊗ΘN (τ),

where

(2.7) ΘP (τ) =
∑

γ∈P ′/P

∑
X∈P+γ

e(Q(X)τ)eγ ∈Mp/2,P

is the usual holomorphic (vector-valued) theta series associated with P , and

ΘN (τ) = Im(τ)q/2ΘN−(τ)

with the holomorphic theta series ΘN− ∈Mq/2,N− , where N− = (N,−Q).

3. Vector-valued Eisenstein series and the Siegel–Weil
formula

In this section, we construct vector-valued holomorphic and harmonic
Eisenstein series on positive definite lattices. The holomorphic Eisenstein
series appear in the Siegel–Weil formula, which we will state at the end of
this section. The Fourier coefficients of the harmonic Eisenstein series will
be needed for the explicit evaluation of the double traces of our Green’s
function.

Throughout this section, we let (L,Q) denote a positive definite even
lattice of rank r ≥ 1, and L− = (L,−Q).
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3.1. Holomorphic Eisenstein series. Following [7], for k ∈ 1
2Z with 2k+

r ≡ 2 (mod 4) and s ∈ C we consider the C[L′/L]-valued non-holomorphic
Eisenstein series

Ek,L(τ, s) =
1

4

∑
(M,ϕ)∈Γ̃∞\Mp2(Z)

(vse0)|k,L(M,ϕ),

where Γ̃∞ is the subgroup generated by T = (( 1 1
0 1 ), 1) ∈ Mp2(Z), and |k,L

denotes the vector-valued slash operator defined in (2.1). Note that we
multiplied the Eisenstein series from [7] by 1/2, and we work with the Weil
representation instead of its dual.

The Eisenstein series converges for Re(s) > 1 − k/2, transforms like a
modular form of weight k for ρL, and satisfies the Laplace equation

∆kEk,L(τ, s) = s(1− k − s)Ek,L(τ, s).

In particular, for k > 2 the special value

Ek,L(τ) = Ek,L(τ, 0)

defines a holomorphic modular form of weight k for ρL. It is normalized
such that the constant term at the e0-component is 1.

We will be particularly interested in the case that the weight k of the
Eisenstein series equals r/2, with small rank r. In this case, the analytic
continuation of the Eisenstein series Ek,L(τ, s) to s = 0 was proved by Rallis
(see [29, Proposition 4.3]) in the course of extending the Siegel–Weil for-
mula to lattices of small ranks. It also follows from the Siegel–Weil formula
of Rallis that the special value Ek,L(τ) = Ek,L(τ, 0) defines a holomorphic
modular form in τ . Note that Rallis worked in an adelic setup, and consid-
ered Eisenstein series E(φ, s) associated with certain Schwartz functions φ.
However, as explained in [23, Section 4.2] or [12, Section 2.2], the compo-
nents of our classical Eisenstein series Ek,L(τ, s) are given by the Eisenstein
series E(φ, s) for suitable choices of Schwartz functions φ. Hence, we obtain
the following result.

Theorem 3.1. If k = r/2 with r ≥ 1 then Ek,L(τ, s) has an analytic con-
tinuation to s = 0, and Ek,L(τ) = Ek,L(τ, 0) is a holomorphic modular form
of weight k for ρL.

Example 3.2. For r = 1 and k = 1/2, the Eisenstein series Ek,L(τ) is a
holomorphic modular form of weight 1/2 for ρL, and hence a linear combi-
nation of unary theta functions (see [11, Lemma 2.1]). For instance, if we
take the rank 1 lattice L = Z with Q(x) = x2, we have L′/L ∼= Z/2Z, and

E1/2,L(τ) = ΘL(τ), ΘL(τ) =
∑

r (mod 2)

∑
n∈Z

n≡r (mod 2)

qn
2/4er.

Note that vector-valued modular forms for ρL can be identified with scalar-
valued modular forms for Γ0(4) in the Kohnen plus space via

∑
r(2) fr(τ)er 7→
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f0(4τ) + f1(4τ), and under this map the function ΘL(τ) corresponds to the

usual Jacobi theta function θ(τ) =
∑

n∈Z q
n2
.

Example 3.3. For r = 3 and k = 3/2, the coefficients of E3/2,L(τ) are
essentially class numbers of imaginary quadratic fields; see Remark 3.7(4).
Moreover, by the Siegel–Weil formula (see Theorem 3.9 below), E3/2,L(τ) is
a linear combination of theta functions associated with ternary lattices in
the genus of L. For instance, if we take the ternary lattice L = Z3 with
Q(x1, x2, x3) = x21 + x22 + x23, we have L′/L ∼= (Z/2Z)3 and

E3/2,L(τ) = ΘL(τ), ΘL(τ) =
∑

r1,r2,r3 (mod 2)

∑
x1,x2,x3∈Z
xi≡ri (mod 2)

q(x
2
1+x

2
2+x

3)/4e(r1,r2,r3).

This identity also follows from the fact that there are no non-trivial cusp
forms of weight 3/2 for ρL. Note that the e0-component of ΘL(τ) is just
θ3(τ), the third power of the Jacobi theta function. As an amusing ap-
plication of these facts, one can derive Gauss’ formula for the number of
representations as sums of three squares in terms of class numbers of imag-
inary quadratic fields; compare [38, Example 5].

We remark that Williams [38] also investigated the vector-valued Eisen-
stein series Ek,L(τ, s) for small weights k ∈ {1

2 , 1,
3
2 , 2}. Moreover, the

Fourier coefficients of the holomorphic Eisenstein series Ek,L(τ) for k ≥ 3/2
can be computed numerically using Williams’ powerful WeilRep program
[40]. For instance, one can check Example 3.3 using the sageMath code

from weilrep import *

w = WeilRep(diagonal_matrix([-2,-2,-2]))

print(w.cusp_forms_basis(3/2))

print(w.eisenstein_series(3/2,prec=10))

print(w.theta_series(prec=10))

3.2. Maass Eisenstein series. Now we turn to the construction of har-
monic Maass Eisenstein series Ẽκ,L−(τ), which yield ξ-preimages of the holo-
morphic Eisenstein series Ek,L(τ) constructed above. As before, (L,Q) de-
notes a positive definite even lattice of rank r ≥ 1.

For κ ∈ 1
2Z with 2κ+ r ≡ 0 (mod 4) we put

Ẽκ,L−(τ, s) =
1

4

∑
(M,ϕ)∈Γ̃∞\Mp2(Z)

(vse0)|κ,L−(M,ϕ),

where the slash operator |κ,L− involves the dual Weil representation ρL. The
Eisenstein series converges for Re(s) > 1 − κ/2, transforms like a modular
form of weight κ for ρL, and is an eigenform of the Laplace operator with

∆κẼκ,L−(τ, s) = s(1− κ− s)Ẽκ,L−(τ, s).

Moreover, if we put κ = 2− k, a direct computation show that

ξ2−kẼ2−k,L−(τ, s) = sEk,L(1− k + s).
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Hence, for k > 2, the special value

Ẽ2−k,L−(τ) = Ẽ2−k,L−(τ, k − 1)

defines a harmonic Maass form of weight 2 − k for the dual Weil represen-
tation ρL with

ξ2−kẼ2−k,L−(τ) = (k − 1)Ek,L(τ).

Again, if k ≤ 2 the analytic continuation of Ẽ2−k,L−(τ, s) to s = k−1 in the
case k = r/2 follows from the work of Rallis [29].

Theorem 3.4. If k = r/2 with r ≥ 1 then Ẽ2−k,L−(τ, s) has an analytic

continuation to s = k−1, and Ẽ2−k,L−(τ) = Ẽ2−k,L−(τ, k−1) is a harmonic
Maass form of weight 2− k for ρL with

ξ2−kẼ2−k,L−(τ) = (k − 1)Ek,L(τ).

Example 3.5. As in Example 3.2 we take the rank 1 lattice L = Z with

Q(x) = x2 and view Ẽ3/2,L−(τ) as a scalar-valued modular form for Γ0(4)
in the Kohnen plus space. Then we obtain Zagier’s weight 3/2 Eisenstein
series

1

4π
Ẽ3/2,L−(τ) =

∞∑
n=0

H(n)qn +
1

4
√
π

∞∑
n=1

nΓ
(
−1

2 , 4πn
2v
)
q−n

2
+

1

8π
√
v
,

where H(0) = − 1
12 and H(n) for n > 0 is the usual Hurwitz class number

of discriminant −n, and Γ(s, x) =
∫∞
x e−tts−1dt is the incomplete gamma

function. This can be proved by plugging in s = −1/2 into the Fourier
expansion of the non-holomorphic Eisenstein series computed in [7, Propo-
sition 3.2] (see also the proof of Theorem 3.6 below for the Fourier expansion)
and simplifying the coefficients as in [8, Example 2].

3.3. The Fourier expansion of the Maass Eisenstein series. In this
section we recall the Fourier expansion of the non-holomorphic Eisenstein

series Ẽκ,L−(τ, s) computed in [7], and specialize it to κ = 1/2 and lattices
L of rank r = 3. Let us introduce the relevant quantities.

For γ ∈ L′/L, n ∈ Z − Q(γ) and a ∈ N we consider the representation
number

Nγ,n(a) = #{x ∈ L/aL : Q(x− γ) + n ≡ 0 (mod a)}
modulo a, and the corresponding L-series

Lγ,n(s) =

∞∑
a=1

Nγ,n(a)a
−s,

which converges for s ∈ C with Re(s) ≫ 0 and has meromorphic continua-
tion to s ∈ C. Note that Nγ,n(a) is multiplicative in a, so we have an Euler
product

Lγ,n(s) = ζ(s− r + 1)
∏
p

L(p)
γ,n(p

−s),
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with the local Euler factors

(3.1) L(p)
γ,n(X) = (1− pr−1X)

∞∑
m=0

Nγ,n(p
m)Xm.

For n ̸= 0 these local Euler factors can be simplified as follows. For γ ∈ L′/L
we let dγ ∈ N be the order of γ in L′/L. Then 2dγn is a non-zero integer,
and for a prime p we put

(3.2) wp = 1 + 2νp(2dγn) ∈ N,

where νp denotes the usual p-adic valuation on Q. Then, for ν ≥ wp we have
Nγ,n(p

ν+1) = pr−1Nγ,n(p
ν), which implies that for n ̸= 0 the Euler factor

L
(p)
γ,n(X) becomes the polynomial

L(p)
γ,n(X) = Nγ,n(p

wp)Xwp + (1− pr−1X)

wp−1∑
ν=0

Nγ,n(p
ν)Xν .(3.3)

The Fourier expansion of Ẽκ,L−(τ, s) has been computed in [7, Section 3].
Specializing their results to κ = 1/2 and s = 1/2, we obtain the following
Fourier expansion.

Theorem 3.6 ([7]). Let L be a positive definite even lattice of rank r = 3.
We have the Fourier expansion

Ẽ1/2,L−(τ) =
∑

γ∈L′/L

∑
n∈Z−Q(γ)

n≥0

c+(n, γ)qneγ

+
√
ye0 +

∑
γ∈L′/L

∑
n∈Z−Q(γ)

n<0

c−(n, γ)Γ(1/2, 4π|n|v)qneγ ,

with coefficients

c+(0, γ) = − 23/2 · 3√
|L′/L|π

lim
s→1/2

ζ(4s− 1)
∏

p|2det(L)

1

1 + p−1
L
(p)
γ,0(p

−1−2s)

,
and, for n > 0,

c+(n, γ) = − 23/2 · 3√
|L′/L|π

×


L(χ∆0 , 1)σγ,n

∏
p|2det(L)

1− χ∆0(p)p
−1

1− p−2
p−2wpNγ,n(p

wp), if ∆ is not a square,

lim
s→1/2

(
ζ(2s)

∏
p|2det(L)

1

1 + p−1
L(p)
γ,n(p

−1−2s)

)
, if ∆ is a square,
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and, for n < 0,

c−(n, γ) = − 23/2 · 3√
|L′/L|π3/2

L(χ∆0 , 1)σγ,n
∏

p|2det(L)

1− χ∆0(p)p
−1

1− p−2
p−2wpNγ,n(p

wp).

Here we wrote ∆ = 2d2γndet(L) = ∆0f
2 with ∆0 a fundamental discriminant

and f ∈ N. Moreover, wp is defined by (3.2) and we put

σγ,n =
∑
d|w

µ(d)χ∆0(d)d
−1σ−1(

w
d )

where we wrote f = ww′ with g.c.d.(w, 2det(L)) = 1 and all prime divisors
of w′ appear in 2det(L).

Proof. Let κ ∈ Z + 1
2 be a half-integer with 2κ + r ≡ 0 (mod 4). By [7,

Proposition 3.2 and equation (3.13)], the non-holomorphic Eisenstein series

Ẽκ,L−(τ, s) has the Fourier expansion

Ẽκ,L−(τ, s) =
∑

γ∈L′/L

∑
n∈Z−Q(γ)

c0(n, γ, s, v)e(nx)eγ ,

with Fourier coefficients c0(n, γ, s, v) given by

δ0,γv
s + 22−κ−2sπv1−κ−s

Γ(κ+ 2s− 1)

Γ(κ+ s)Γ(s)

(−1)(2κ+r)/4√
|L′/L|

∏
p

L
(p)
γ,0(p

1−r/2−κ−2s), if n = 0,

(−1)(2κ+r)/42κπs+κ|n|s+κ−1√
|L′/L|Γ(s+ κ)

· L(χ∆0 , 2s+ κ− 1/2)

ζ(4s+ 2κ− 1)
σγ,n(2s+ κ)Ws(4πnv), if n > 0,

(−1)(2κ+r)/42κπs+κ|n|s+κ−1√
|L′/L|Γ(s)

· L(χ∆0 , 2s+ κ− 1/2)

ζ(4s+ 2κ− 1)
σγ,n(2s+ κ)Ws(4πnv), if n < 0,

with

σγ,n(s) =
∏
p|∆

1− χ∆0(p)p
1/2−s

1− p1−2s
L(p)
γ,n(p

1−r/2−s),

and with the usual Whittaker function

Ws(y) = |y|−κ/2Wsgn(y)κ/2,(1−κ)/2−s(|y|).

Note that we multiplied the coefficients in [7] by 1/2. The relevant special
values of the Whittaker function are given by

W1−κ(y) = W0(y) =

{
e−y/2, if y > 0,

e−y/2Γ(1− κ, |y|), if y < 0.

We first rewrite the coefficients of index n = 0. For the “generic” primes

p ∤ 2det(L) the local Euler factors L
(p)
γ,0(p

−s) can be computed as explained

in [39, Remark 22] (see also [38, Section 3]), and are given by

L
(p)
γ,0(p

−s) =
1− pr−1−2s

1− pr−2s
,
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which implies that we can write∏
p

L
(p)
γ,0(p

1−r/2−κ−2s) =
ζ(4s+ 2κ− 2)

ζ(4s+ 2κ− 1)

∏
p|2det(L)

1− p2−2κ−4s

1− p1−2κ−4s
L
(p)
γ,0(p

1−r/2−κ−2s).

If we plug in r = 3, κ = 1/2, and s = 1/2, this gives the coefficients of index
n = 0 as stated above.

For n ̸= 0 we can split the product over the primes p | ∆ into the primes
with p ∤ 2det(L) and the ones with p | 2det(L). Note that by (3.3) we have

L(p)
γ,n(p

1−r) = p(1−r)wpNγ,n(p
wp).

For p ∤ 2det(L) the representation numbers Nγ,n(p
wp) were computed by

Siegel (see [8, Theorem 6(ii) with α = wp]). Now we plug in r = 3, κ = 1/2,
and s = 1/2, and obtain2 as in the proof of [8, Theorem 11] that∏
p|∆

p∤2det(L)

1− χ∆0(p)p
−1

1− p−2
L(p)
γ,n(p

−2) =
∏
p|w

(
σ−1(p

νp(w))− χ∆0(p)p
−1σ−1(p

νp(w)−1)
)

=
∑
d|w

µ(d)χ∆0(d)d
−1σ−1(

w
d ) = σγ,n.

Note that for ∆0 = 1 we have σγ,n = 1 and
1−χ∆0

(p)p−1

1−p−2 = 1
1+p−1 . This gives

the formula in the theorem. □

Remark 3.7. (1) The coefficients with non-square ∆ can be further sim-
plified using Dirichlet’s class number formula

L(χ∆0 , 1) =


log ε∆0√

∆0
h(∆0), if ∆0 > 0,

2π

ω(∆0)
√

|∆0|
h(∆0), if ∆0 < 0,

where h(∆0) denotes the class number of Q(
√
∆0), ω(∆0) ∈ {2, 4, 6}

is the number of units, and ε∆0 denotes the smallest totally positive
unit larger than 1.

(2) Since L is positive definite, there exists at least one prime p | 2det(L)
such that L ⊗ Qp is anisotropic. If ∆ = 2d2γndet(L) is a square
(including n = 0), this implies Nγ,n(p

m) = 0 for m large enough,

hence L
(p)
γ,n(p−1−2s) vanishes at s = 1/2; see (3.1). The zero of this

factor at s = 1/2 cancels out with the pole of the Riemann zeta
function and contributes with a rational multiple of log(p). More-

over, from (3.3) it follows that L
(p)
γ,n(p−2) is rational when n ̸= 0 for

all primes p. In general, it is well known that L
(p)
γ,n(p−s) (including

n = 0) can be written in terms of the local Igusa zeta function as-
sociated with a quadratic polynomial, and hence, by a fundamental

2In the notation of [8, Theorem 6(ii)] we have D = ∆0w
′2, hence for primes p ∤ 2det(L)

we get χD(p) = χ∆0(p).
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result of Igusa, it is a rational function in p−s (see, e.g., [14]). This
implies that the limits lims→1/2(. . .) appearing in the above coef-

ficients are rational multiples of log(p) if L
(p)
γ,n(p−1−2s) vanishes at

s = 1/2, and equal to 0 if there are two such primes.
(3) Summarizing, the coefficients c+(n, γ) are of the form

c+(n, γ) =

√
2√

|L′/L|π
×rational number×

{
log(ε∆0)/

√
∆0, if ∆ is not a square,

log(p), if ∆ is a square,

for some prime p | 2det(L) in the square case.

(4) Using ξ1/2Ẽ1/2,L− = 1
2E3/2,L and applying the ξ-operator term-wise

to the above Fourier expansion, we see that the coefficients of the
holomorphic Eisenstein series E3/2,L are essentially given by class
numbers of imaginary quadratic fields.

(5) Rhoades and Waldherr [30] constructed a scalar-valued weight 1/2
harmonic Maass form which maps to θ3 under the ξ-operator. By
choosing L = Z3 with Q(x1, x2, x3) = x21 + x22 + x23 and taking the

e0-component of Ẽ1/2,L−(τ), we recover the results of [30].

3.4. The Siegel–Weil formula. As before, we let (L,Q) be a positive
definite even lattice of rank r ≥ 1. Moreover, we let W = L ⊗ Q be the
surrounding rational quadratic space, and we let H = SO(W ) be its special
orthogonal group, viewed as an algebraic group over Q. Denoting by Af
the ring of finite adeles of Q, we have the C[L′/L]-valued theta function on
H×H(Af ) defined by

(3.4) ΘL(τ, h) =
∑

γ∈L′/L

∑
X∈h(L+γ)

e(Q(X)τ)eγ .

It is a holomorphic modular form of weight k = r/2 for the Weil represen-
tation ρL.

Remark 3.8. For h = 1 this is the usual holomorphic theta function ΘL(τ)
associated with L defined by (2.7). More generally, we can view ΘL(τ, h)
as a theta function corresponding to a lattice in the same genus as L: If we
write h = (hp) with hp ∈ H(Qp), and Lp = L ⊗ Zp, then H(Af ) acts on
lattices in the genus of L by hL =

⋂
p hpLp ∩W . Since (hL)′/(hL) ∼= L′/L

(non-canonically), we can view ΘhL(τ) as a modular form for ρL. Moreover,
if we denote by O(L′/L) the orthogonal group of the finite quadratic module
(L′/L,Q mod Z), then there is an isometry σ ∈ O(L′/L), depending on the
choice of the isomorphism (hL)′/(hL) ∼= L′/L, such that

ΘL(τ, h) = Θσ
hL(τ),

where O(L′/L) acts on C[L′/L]-valued functions by fσ(τ) =
∑

γ fγ(τ)eσ(γ).

This means that, up to a possible permutation of the components, ΘL(τ, h)
can be viewed as the theta function corresponding to the lattice hL.
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We state the Siegel–Weil formula in our setup. We refer the reader to [22,
Theorem 4.1] for the general formula. It can be translated into our notation
as explained in [12, Section 2.2].

Theorem 3.9 (Siegel–Weil). Let L be a positive definite even lattice of rank
r ≥ 1, and let k = r/2. Then we have∫

H(Q)\H(Af )
ΘL(τ, h)dh = 2Ek,L(τ),

where dh is the Tamagawa measure on H(Af ) normalized such that we have
vol(H(Q)\H(Af )) = 2, and Ek,L(τ) is the holomorphic Eisenstein series of
weight k for ρL defined in Section 3.1.

The following well known result (see, e.g., [31, Lemma 2.13]) allows us
to write the integral in the Siegel–Weil formula as a finite sum. We give a
proof for the convenience of the reader.

Lemma 3.10. Let K ⊂ H(Af ) be a compact open subgroup and let f(h) be
a function on H(Q)\H(Af ) which is K-invariant from the right. Then we
have ∫

H(Q)\H(Af )
f(h)dh = vol(K)

∑
α∈H(Q)\H(Af )/K

1

|Γα|
f(α)

where Γα = H(Q) ∩ (αKα−1) and

vol(K) = 2

 ∑
α∈H(Q)\H(Af )/K

1

|Γα|

−1

.

Proof. We have a finite disjoint double coset decomposition

H(Af ) =
⋃

α∈H(Q)\H(Af )/K

H(Q)αK,

so we can write the integral as∫
H(Q)\H(Af )

f(h)dh =
∑

α∈H(Q)\H(Af )/K

∫
Γα\αK

f(h)dh.

Since Γα is finite and f is invariant under K, we have∫
Γα\αK

f(h)dh =
1

|Γα|

∫
αK

f(h)dh = vol(K)
1

|Γα|
f(α).

This gives the stated formula. In order to compute vol(K), apply the lemma
to f(h) = 1. □

Example 3.11. Let us rewrite the integral in the Siegel–Weil formula as
a finite sum over lattices in the genus of L of symmetrized theta functions.
We choose as K the compact open subgroup

Ũ = {h ∈ H(Af ) : hL = L},
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the stabilizer of L in H(Af ). The map sending α ∈ H(Q)\H(Af )/Ũ to

the isometry class M of αL is a bijection between H(Q)\H(Af )/Ũ and the
set gen(L) of isometry classes of lattices in the genus of L. Moreover, we

have Γα = SO(αL) = SO(M), where SO(M) = H(Q) ∩ Ũ . However, we

cannot directly apply Lemma 3.10 since Ũ might act non-trivially on L′/L,

so ΘL(τ, h) is not generally Ũ -invariant. To circumvent this problem, we
note that the symmetrized theta function

Θsym
L (τ, h) =

1

|O(L′/L)|
∑

σ∈O(L′/L)

Θσ
L(τ, h)

is Ũ -invariant, so by Lemma 3.10 and Remark 3.8 we can write∫
H(Q)\H(Af )

Θsym
L (τ, h)dh = vol(Ũ)

∑
α∈H(Q)\H(Af )/Ũ

1

|Γα|
Θsym
L (τ, α)

=
2

mass(L)

∑
M∈gen(L)

1

|SO(M)|
Θsym
M (τ),

where mass(L) =
∑

M∈gen(L)
1

|SO(M)| is the mass of the genus of L. Now by

the Siegel–Weil formula and the symmetry of the Eisenstein series Ek,L we
obtain

1

mass(L)

∑
M∈gen(L)

Θsym
M (τ) = Ek,L(τ),(3.5)

where k = r/2. Here we had identified M ′/M ∼= L′/L for each M ∈ gen(L),
but the sum on the left-hand side is independent of the choice of such iso-
morphisms due to the symmetrization over O(L′/L).

Finally, we remark that the classical Siegel–Weil formula is usually stated
for the scalar-valued theta function θL(τ) =

∑
x∈L e(Q(x)τ), which is just

the e0-component of ΘL(τ). If we take the e0-component on both sides of
(3.5), and use that any σ ∈ O(L′/L) fixes e0, we obtain the scalar-valued
Siegel–Weil formula

1

mass(L)

∑
M∈gen(L)

1

|SO(M)|
θM (τ) = Ek,L,0(τ),

where Ek,L,0(τ) denotes the e0-component of Ek,L(τ), which is a scalar-
valued Eisenstein series for some congruence subgroup.

4. Traces of special values of the Green’s function

4.1. The trace of the Green’s function as a theta lift. In this section
we show that the traces of the Green’s function Gs(P1, P2) defined in (1.1)
can be obtained as a regularized theta lift on a lattice of signature (1, 3).
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4.1.1. The orthogonal model of hyperbolic 3-space. We fix an imaginary qua-
dratic field Q(

√
D) of fundamental discriminant D < 0. We let OD be its

ring of integers and dD =
√
DOD be its different. We consider the lattice

L =

{
X =

(
a b

b c

)
: a, c ∈ Z, b ∈ OD

}
(4.1)

with the quadratic form

Q(X) = det(X) = ac− |b|2

and corresponding bilinear form

(X1, X2) = a1c2 + a2c1 − tr(b1b2).

It is an even lattice of signature (1, 3), with dual lattice

L′ =

{
X =

(
a b

b c

)
: a, c ∈ Z, b ∈ d−1

D

}
.

In particular, we have

L′/L ∼= d−1
D /OD.

The group Γ = PSL2(OD) acts on L via γ.X = γXγt, fixing the classes of

L′/L. Note that we may identify the elements X =
(
a b
b c

)
∈ L′ with integral

binary hermitian forms

[a, b, c](x, y) = a|x|2 + tr(bxy) + c|y|2

of determinant ac− |b|2 = Q(X), and this identification is compatible with
the corresponding actions3 of Γ.

The Grassmannian Gr(L) corresponding to L is the set of all positive
definite lines in V (R) = L ⊗ R. We can identify the hyperbolic 3-space H3

with Gr(L) by mapping P = z+rj ∈ H3 to the positive line Rv(P ) ∈ Gr(L)
spanned by the vector

v(P ) =
1√
2r

(
r2 + |z|2 z

z 1

)
∈ V (R).(4.2)

Conversely, each positive line in Gr(L) is spanned by some vector X =(
a b
b c

)
∈ V (R) with Q(X) = det(X) > 0. If we put

PX =
b

c
+

√
det(X)

|c|
j ∈ H3,(4.3)

then one can check that v(PX) = sgn(c)
√

2det(X)
−1
X, so v(PX) spans

the given positive line. We call PX the point corresponding to X, and if
X ∈ V (Q) is a rational vector, we call PX a special point.

Recall that the hyperbolic distance d(P1, P2) on H3 is given by

cosh(d(P1, P2)) =
|z1 − z2|2 + r21 + r22

2r1r2
, where Pi = zi+rij for i ∈ {1, 2}.

3Γ acts on hermitian forms via (γ[a, b, c])(x, y) = [a, b, c]((x, y) · γ).
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The bilinear form on V (R) can be expressed in terms of the hyperbolic
distance as follows.

Lemma 4.1. Given X1, X2 ∈ V (R) with D1 = Q(X1) > 0 and D2 =
Q(X2) > 0, and corresponding points P1, P2 ∈ H3, we have

(X1, X2) = 2 sgn(c1c2)
√
D1D2 · cosh(d(P1, P2)).

Proof. By definition we have

(X1, X2) = a1c2 + a2c1 − tr(b1b2).

One the other hand, using the explicit formula for the points P1, P2 from
(4.3), we have

cosh(d(P1, P2)) =

∣∣∣ b1c1 − b2
c2

∣∣∣2 + D1

c21
+ D2

c22

2
√
D1

|c1|

√
D2

|c2|

= sgn(c1c2)
a1c2 + a2c1 − tr(b1b2)

2
√
D1D2

.

This gives the stated formula. □

4.1.2. Traces of Γ-invariant functions on H3. For µ ∈ L′/L and m ∈ Z +
Q(µ) we let

Lm,µ = {X ∈ L+ µ,Q(X) = m}.
If m > 0, we let L+

m,µ the subset of those X =
(
a b
b c

)
∈ Lm,µ with a > 0

(or, equivalently, c > 0). Note that the elements X ∈ L+
m,µ correspond

to positive definite binary hermitian forms [a, b, c] of determinant m with
b ∈ OD + µ. For m > 0 and a Γ-invariant function f on H3, we define its
trace of index (m,µ) by

trm,µ(f) =
∑

X∈Γ\L+
m,µ

1

|ΓX |
f(PX).

Here ΓX denotes the stabilizer of X in Γ. Clearly, we have

trm(f) =
∑

X∈Γ\L+
m

1

|ΓX |
f(PX) =

∑
µ∈L′/L

trm,µ(f),

where L+
m is defined in (1.3).

We call X ∈ L′ primitive if 1
rX /∈ L′ for every integer r > 1, and we let

L+,0
m,µ be the subset of L+

m,µ consisting of primitive vectors. Correspondingly,
we define the primitive trace of index (m,µ) by

tr0m,µ(f) =
∑

X∈Γ\L+,0
m,µ

1

|ΓX |
f(PX).

Each X ∈ L+
m,µ can be written in a unique way as X = rX0 for some

r ∈ N and a primitive X0 ∈ L′ with a > 0. Then we have PX = PX0 and
ΓX = ΓX0 . Since DQ(X) ∈ Z for any X ∈ L′, we must have r2 | Dm.
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Moreover, if X0 ∈ L + ν, then we necessarily have rν = µ in L′/L. Hence,
we can write

trm,µ(f) =
∑
r∈N
r2|Dm

∑
ν∈L′/L
rν=µ

tr0m/r2,ν(f).

Conversely, using an inclusion-exclusion argument, we see that the primitive
trace tr0m,µ(f) can be written as an integral linear combination of the traces

trm/r2,ν(f), for r ∈ N with r2 | Dm and ν ∈ L′/L with rν = µ.

4.1.3. Green’s functions and theta lifts. We let ΘL(τ, v) be the Siegel theta
function on H × Gr(L) as in Section 2.5. Using the identification H3 ∼=
Gr(L), P 7→ v = Rv(P ), given by (4.2), we can view

ΘL(τ, P ) = ΘL(τ,Rv(P ))

as a function on H × H3. It is Γ-invariant in P , and since L has signature
(1, 3), it transforms like a modular form of weight −1 for the Weil represen-
tation ρL in τ .

Let n ∈ N0. For a harmonic Maass form f ∈ Hcusp
1−2n,L− of weight 1 − 2n

for the dual Weil representation ρL, we define the regularized theta lift

Φ
(1−2n)
L (f, P ) =

∫ reg

F

(
Rn1−2nf

)
(τ) ·ΘL(τ, P )dµ(τ),

where the integral over the fundamental domain F for SL2(Z) is regularized
as explained by Borcherds [2] or Bruinier [3], the product in the integral is
the bilinear pairing on C[L′/L], and dµ(τ) is the invariant measure on H.

For n ∈ N0, µ ∈ L′/L and m ∈ Z+Q(µ) with m > 0 we let F1−n,m,µ(τ, s)
be the weight 1− n Maass Poincaré series for ρL defined in Section 2.2 (for
the lattice L−).

Theorem 4.2. For n ∈ N0, µ ∈ L′/L and µ ∈ Z + Q(µ) with m > 0 and
Re(s) > 1 we have

Φ
(1−2n)
L (F1−2n,m,µ( · , s), P ) = Cn(s)

2

πΓ(s+ 1/2)
√
m
trm,µ

(
G2s−1( · , P )

)
,

with the constant Cn(s) = (4πm)n(s+1/2−n)(s+1/2−n+1) · · · (s− 1/2)
for n > 0 and C0(s) = 1.

Proof. Using Lemma 2.1 we see that

Φ
(1−2n)
L (F1−2n,m,µ( · , s), P ) = Cn(s)Φ

(1)
L (F1,m,µ( · , s), P ),

so it suffices to show the result for n = 0. Then the theta lift can be
computed by unfolding against the Poincaré series as in [3, Theorem 2.14].
We need to apply this theorem to the lattice L− = (L,−Q), which has
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signature (3, 1), and with weight k = b+−b−
2 = 1. Then we obtain

Φ
(1)
L (F1,m,µ( · , s), P )

=
2Γ(s)

Γ(2s) · (4πm)1/2−s

∑
X∈L+µ
Q(X)=m

(4πQ(Xv))
−s

2F1

(
s, s+

1

2
, 2s;

m

Q(Xv)

)
,

where we put v = Rv(P ) for brevity. Since (v(P ), v(P )) = 1, we have

Q(Xv) = Q

(
(X, v(P ))

(v(P ), v(P ))
v(P )

)
=

1

2
(X, v(P ))2.

Hence, using Lemma 4.1, we can write Q(Xv) = m cosh(d(P, PX))
2. More-

over, the hypergeometric function simplifies to

(4.4) 2F1

(
s, s+

1

2
, 2s;x

)
= 22s−1(

√
1− x+ 1)1−2s(1− x)−1/2.

Combining these two facts, we obtain after a short computation

2F1

(
s, s+

1

2
, 2s;

m

Q(Xv)

)
= 22s−1cosh(d(P, PX))

2sφ2s−1(cosh(d(P, PX))),

(4.5)

where φs is defined by (1.2). Taking everything together, we arrive at

Φ
(1)
L (F1,m,µ( · , s), P ) =

22sΓ(s)

Γ(2s) · (4πm)1/2

∑
X∈L+µ
Q(X)=m

φ2s−1(cosh(d(PX , P ))).

By the duplication formula for the Gamma function we have 22sΓ(s)
Γ(2s) =

2
√
π

Γ(s+1/2) . Splitting the sum modulo Γ, and replacing X with −X if a < 0,

gives the stated formula. □

Next we recall that for n ≥ 1 the function F1−2n,m,µ(τ) = F1−2n,m,µ

(
τ, n+ 1

2

)
defines a harmonic Maass form of weight 1 − 2n for ρL with principal part
q−m(eµ+e−µ). As an application of Theorem 4.2 we obtain the next theorem
which is the main result of this section.

Theorem 4.3. Let µ ∈ L′/L and m ∈ Z+Q(µ) with m > 0. For n ≥ 1 we
have

Φ
(1−2n)
L (F1−2n,m,µ, P ) = (4πm)n

2

π
√
m
trm,µ

(
G2n( · , P )

)
.

Proof. One can show, as in the proof of [3, Proposition 2.11], that

Φ
(1−2n)
L (F1−2n,m,µ( · , s), P )

∣∣
s=n+ 1

2
= Φ

(1−2n)
L

(
F1−2n,m,µ

(
· , n+

1

2

)
, P

)
.

(4.6)

Here we use that n ≥ 1, so F1−2n,m,µ( · , s) converges at s = n+ 1
2 . Now the

theorem follows from (4.6) and Theorem 4.2. □
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Remark 4.4. It would be interesting to extend Theorem 4.3 to n = 0. How-
ever, one would need to show that F1,m,µ( · , s) has an analytic continuation
to s = 1/2, and that (4.6) still holds, which seem to be difficult problems.

4.2. Splitting of the Siegel theta function at special points.

4.2.1. The special orthogonal group. We let L be the lattice of integral bi-
nary hermitian forms over Q(

√
D) defined in (4.1), with the quadratic form

Q(X) = det(X). We let

V = L⊗Q =

{
X =

(
a b

b c

)
: a, c ∈ Q, b ∈ Q(

√
D)

}
be the surrounding rational quadratic space, and G = SO(V ) the corre-
sponding special orthogonal group. As usual, there is a short exact sequence

1 → Gm → GSpinV → G→ 1

of algebraic groups over Q, where GSpinV denotes the general spinor group
associated to V , and Gm is the multiplicative group.

For an integral domain R of characteristic zero we consider the commu-

tative ring OD ⊗R = R⊕RωD, where ωD = D+
√
D

2 . On OD ⊗R there is a

unique R-linear involution denoted by z 7→ z satisfying
√
D = −

√
D, which

induces an involution on the group GL2(OD ⊗R). Note that OD ⊗R is an
integral domain if and only if D is not a square in R.

A study of the Clifford algebra associated to (V,Q) (see, e.g., [32, Chap-
ter 1]) shows that, for any field extension F of Q, we have

(4.7) GSpinV (F )
∼= {g ∈ GL2(OD ⊗ F ) : det(g) ∈ F×},

with spinor norm ν corresponding to det(g). Moreover, the action of GSpinV (F )
on V ⊗ F corresponds to

g.X =
1

det(g)
gXgt.

Hence, we get

(4.8) G(F ) ∼= GSpinV (F )/F
× ∼= {g ∈ GL2(OD ⊗ F ) : det(g) ∈ F×}/F×.

We now consider the compact open subgroup

Ũ = {g ∈ G(Af ) : gL = L} ⊂ G(Af )

and its subgroup

U = {g ∈ Ũ : g fixes the classes in L′/L}.

Note that Ũ =
∏
p Ũp and U =

∏
p Up where

Ũp = {gp ∈ G(Qp) : gpLp = Lp} and

Up = {gp ∈ Ũp : gp fixes the classes in L′
p/Lp},

with Lp = L⊗ Zp and L′
p = L′ ⊗ Zp.
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For the rest of this section we assume that D < 0 is a prime discriminant,
and denote by ℓ the unique prime dividing D. We then define

zD =


1 +

√
−1, if D = −4,√

−2, if D = −8,√
−ℓ, if D = −ℓ, ℓ ≡ 3 (mod 4),

and put gD =
(
zD 0
0 zD

)
as an element of GSpinV (Q) according to (4.7). We

let TD denote the image of gD under the natural map GSpinV (Q) → G(Q).

A straightforward computation shows that TD ∈ Ũℓ and that TD induces an
automorphism of L′

ℓ/Lℓ of order two.

Lemma 4.5. For every prime p we have

Up ∼= {g ∈ GL2(OD ⊗ Zp) : det(g) ∈ Z×
p }/Z×

p .

Moreover, we have Ũp = Up if p ̸= ℓ, and Ũℓ = Uℓ ∪ TDUℓ.

Proof. It is easy to check that every element in {g ∈ GL2(OD⊗Zp) : det(g) ∈
Z×
p } acts on V (Qp) as a transformation in Up. In order to prove the converse,

let T ∈ Up. By (4.8) we have that T is induced by the action of a matrix
g ∈ GL2(OD ⊗ Qp) with det(g) ∈ Q×

p . By multiplying g by an appropriate
power of p we can assume that g ∈ M2(OD ⊗ Zp) \ pM2(OD ⊗ Zp). Then
det(g) ∈ pmZ×

p for some integer m ≥ 0. We claim that m = 0. Indeed, using
the Zp-basis {(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
0 ωD
ωD 0

)}
of Lp, we see that gLpg

−1 is generated over Zp by{(
αα αγ
γα γγ

)
,

(
ββ βδ

δβ δδ

)
,

(
αβ + βα βγ + αδ

γβ + δα δγ + γδ

)
,(

ωDαβ + ωDβα ωDβγ + ωDαδ

ωDγβ + ωDδα ωDδγ + ωDγδ

)}
.

Since gLpg
−1 = det(g)Lp, if follows that these four matrices have all their co-

efficients in pmOD⊗Zp. We distinguish three cases according to the value of(
D
p

)
. First, assume

(
D
p

)
= −1. Then OD⊗Zp = Zp[ωD] is a quadratic un-

ramified extension of Zp with maximal ideal pZp[ωD]. Since zz ∈ pmZp[ωD]
for all z ∈ {α, β, γ, δ}, we have α, β, γ, δ ∈ pmZp[ωD]. Since g ̸∈ pM2(Zp[ωD])
we get m = 0. Now, assume

(
D
p

)
= 0, i.e. p = ℓ. Then Zp[ωD] is a

quadratic ramified extension of Zp with maximal ideal zDZp[ωD]. Since
zz ∈ z2mD Zp[ωD] for all z ∈ {α, β, γ, δ}, we have α, β, γ, δ ∈ zmDZp[ωD] =
zD

mZp[ωD]. But then g = gmDh for some matrix h ∈ GL2(Zp[ωD]) with
det(h) ∈ Z×

p . Since g and h act as transformations in Uℓ and gD does

not, we must have m even. This implies α, β, γ, δ ∈ pm/2Zp[ωD]. Since
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g ̸∈ pM2(Zp[ωD]) we get m = 0, as before. Finally, assume
(
D
p

)
= 1. Using

that p ∤ D we deduce from the generators of gLpg
−1 computed above, that

zw ∈ pmOD ⊗ Zp for all z, w ∈ {α, β, γ, δ}. Since
(
D
p

)
= 1, there exists

ζ ∈ Zp such that ζ2 = D, and the map pmOD ⊗ Zp → Zp × Zp given by

(4.9) z = x+ yωD 7→ (z1, z2) =

(
x+ y

D + ζ

2
, x+ y

D − ζ

2

)
is a ring isomorphism. We then have (z1w2, z2w1) ∈ pm(Zp × Zp) for all
z, w ∈ {α, β, γ, δ}. If zi ∈ Z×

p for some index i ∈ {1, 2} and some z ∈
{α, β, γ, δ}, then we get wj ∈ pmZp for the other index j ∈ {1, 2}, j ̸= i,
for all w ∈ {α, β, γ, δ}. In particular αjδj − βjγj ∈ p2mZp. But det(g) =
αδ − βγ ∈ Zp, hence its image under (4.9) lies in the diagonal subring of
Zp × Zp. This implies det(g) ∈ p2mZ×

p , which is only possible for m = 0.
This proves that m = 0 in all possible cases, and completes the proof of the
first statement.

Regarding the second statement, for p ̸= ℓ we have L′
p = Lp and the result

follows. The case p = ℓ follows from the arguments used in the previous

paragraph since any T ∈ Ũℓ is in Uℓ, hence it acts as a matrix of the form
gmDh where m ≥ 0 is an integer and h ∈ GL2(OD ⊗ Zp) with det(h) ∈ Z×

p .
Since h defines a transformation in Uℓ and gD defines the transformation

TD with T 2
D ∈ Uℓ, we get Ũℓ = Uℓ ∪ TDUℓ as wanted. This completes the

proof. □

We now prove the following approximation result.

Lemma 4.6. We have G(Af ) = G(Q)U .

Proof. The number of double cosets in

G(Q)\G(Af )/Ũ

is equal to the number of classes in the genus of L. Since L is indefinite of
determinant D, and D is a prime discriminant, we have by [13, Chapter 15,
Theorem 21] that the genus of L consist of a single class, thus

G(Af ) = G(Q)Ũ .

From Lemma 4.5 we get Ũ = U ∪ TDU . Since TD ∈ G(Q) we conclude that

G(Af ) = G(Q)(U ∪ TDU) = G(Q)U,

as claimed. □

We let

ΓU = G(Q) ∩ U,
which is a discrete subgroup of G(Q). From Lemma 4.5 it follows that

ΓU ∼= {g ∈ GL2(OD) : det(g) = ±1}/{±1}.
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Remark 4.7. Since an element in {g ∈ GL2(OD) : det(g) = ±1} of determi-
nant −1 can be written as g = εg0 with ε =

(−1 0
0 1

)
and g0 ∈ SL2(OD), we

have

{g ∈ GL2(OD) : det(g) = ±1} = SL2(OD) ∪ SL2(OD)ε,

as a disjoint union. Also note that ε acts on V (Q) by(
a b

b c

)
7→
(
−a b

b −c

)
.

Hence, we have

ΓU\L0
m,µ = Γ\L0,+

m,µ,

where the + indicates that we only take the positive definite (i.e. a > 0)
hermitian forms in L0

m,µ (recall that Γ = PSL2(OD) and L0
m,µ denotes the

set of all X ∈ L+ µ with Q(X) = m which are primitive in L′). Moreover,
for every X ∈ V (Q) the stabilizers subgroups ΓX and ΓU,X = {α ∈ ΓU :
αX = X} satisfy |ΓX | = |ΓU,X |.

Lemma 4.8. For any fixed X0 ∈ L0
m,µ we have

L0
m,µ = V (Q) ∩ UX0.

Proof. Since U preserves L and fixes the classes of L′/L, we have V (Q) ∩
UX0 ⊆ L0

m,µ. Conversely, given b0 ∈ µ, for each prime p we will show that
any point

X =

(
a b

b c

)
∈ L0

m,µ

can be transformed into the “principal form”(
1 b0
b0 ∗

)
∈ L0

m,µ,

(where ∗ is uniquely determined from det(X0) = m) using a transformation
in G(Q)∩Up. First, since X is primitive in L′, we can act by some element
in PSL2(OD) ⊂ G(Q) ∩ Up to assume that a is coprime to p. Indeed, if a
is already coprime to p then there is nothing to prove. If c is coprime to p,
we can act by

(
0 −1
1 0

)
. If a and c are divisible by p, then acting by ( 1 z0 1 ),

with z ∈ OD, transforms the a-component of X to a+ tr(zb) + c|z|2. If this
number were divisible by p for all z ∈ OD, then we would have b/p ∈ d−1,
hence 1

pX ∈ L′. This contradicts the fact that X is primitive in L′. Now,

since p ∤ a, the matrix
(

1/a 0
0 1

)
acts as a transformation in G(Q) ∩ Up (by

Lemma 4.5) with (
1/a 0
0 1

)
.X =

(
1 b

b ac

)
.
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Finally, for β ∈ OD the matrix
(

1 0
β 1

)
also acts as a transformation in

G(Q) ∩ Up, with (
1 0

β 1

)
.

(
1 b

b ac

)
=

(
1 b+ β

b+ β ∗

)
.

Hence, by choosing β = b0−b ∈ OD, we arrive at the desired principal form.
This completes the proof of the lemma. □

From now on, we fix some primitive X0 ∈ L0
m,µ. We let

H = {g ∈ G : gX0 = X0}

be the stabilizer of X0 in G, which can be identified with SO(W ) where
W = (QX0)

⊥ is a negative definite three-dimensional rational quadratic
space. In H(Af ) we have the compact open subgroup

K = H(Af ) ∩ U.

Since G(Af ) = G(Q)U and H(Af ) ⊂ G(Af ), every element h ∈ H(Af ) ⊂
G(Af ) can be written as a product h = gu for some g ∈ G(Q) and u ∈ U .
The following bijection, that we extract from [33], allows us to translate
the set Γ\L0

m,µ into an adelic setting. Recall that ΓU = G(Q) ∩ U and
ΓU,X = {α ∈ ΓU : αX = X} is the stabilizer of a point X ∈ V (Q) in ΓU .

Theorem 4.9. We have a bijection

H(Q)\H(Af )/K → ΓU\L0
m,µ,

h = gu 7→ g−1X0.

Moreover, if we let Γh = H(Q) ∩ hKh−1 then we have |Γh| = |ΓU,g−1X0
|.

Proof. Since U ⊂ G(Af ) is open and compact, the map

H(Q)\(H(Af ) ∩G(Q)U)/(H(Af ) ∩ U) → (G(Q) ∩ U)\(V (Q) ∩ UX0)

h = gu 7→ g−1X0,

(4.10)

is a bijection by [33, Theorem 2.2(ii)]. By Lemma 4.6 we have G(Af ) =
G(Q)U and hence H(Af ) ∩ G(Q)U = H(Af ). Thus the left-hand side in
(4.10) is H(Q)\H(Af )/K. Moreover, by Lemma 4.8 we have

(G(Q) ∩ U)\(V (Q) ∩ UX0) = ΓU\L0
m,µ,

This gives the stated bijection. We leave it to the reader to verify that the
map

Γh → ΓU,g−1X0
, β 7→ g−1βg

is a bijection. □

We obtain the following splitting of the trace of the theta function.
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Theorem 4.10. Fix a point X0 ∈ L0
m,µ, and define sublattices

P = L ∩QX0, N = L ∩ (QX0)
⊥,

which are one-dimensional positive definite and three-dimensional negative
definite, respectively. Let N− = (N,−Q). Then we have

tr0m,µ(ΘL(τ, · )) = tr0m,µ(1) ·
(
ΘP (τ)⊗ E3/2,N−(τ)v3/2

)L
,

where ΘP (τ) is the weight 1/2 holomorphic theta function for P and E3/2,N−(τ)

is the weight 3/2 holomorphic Eisenstein series for N−, and the superscript
L denotes the operator defined in Section 2.1.

Proof. Using Remark 4.7 and the bijection from Theorem 4.9, we can write
the left-hand side as

tr0m,µ(ΘL(τ, · )) =
∑

X∈ΓU\L0
m,µ

1

|ΓU,X |
ΘL(τ, PX) =

∑
h∈H(Q)\H(Af )/K

1

|Γh|
ΘL(τ, P0, h),

where P0 ∈ H3 is the special point corresponding to X0, and

ΘL(τ, P0, h) = Im(τ)3/2
∑

µ∈L′/L

∑
X∈h(L+µ)

e(Q(Xv(P0))τ +Q(Xv(P0)⊥)τ)eµ.

SinceK = H(Af )∩U acts trivially on L′/L, the function f(h) = ΘL(τ, P0, h)
on H(Q)\H(Af ) is invariant under K from the right, so Lemma 3.10 leads
to ∑

h∈H(Q)\H(Af )/K

1

|Γh|
ΘL(τ, P0, h) =

1

vol(K)

∫
H(Q)\H(Af )

ΘL(τ, P0, h)dh.

By (2.6) the theta functions for L and P ⊕N are related by

ΘL(τ, P0, h) = ΘP⊕N (τ, P0, h)
L.

Note that the operator f 7→ fL commutes with the integral, so we get∫
H(Q)\H(Af )

ΘL(τ, P0, h)dh =

(∫
H(Q)\H(Af )

ΘP⊕N (τ, P0, h)dh

)L
.

Next, we use the splitting

ΘP⊕N (τ, P0, h) = ΘP (τ)⊗ v3/2ΘN−(τ, h).

Note that ΘP (τ) is independent of h since H(Af ) acts trivially on P . Thus
we get∫

H(Q)\H(Af )
ΘP⊕N (τ, P0, h)dh = ΘP (τ)⊗ v3/2

∫
H(Q)\H(Af )

ΘN−(τ, h)dh.

By the Siegel–Weil formula (Theorem 3.9) we have∫
H(Q)\H(Af )

ΘN−(τ, h)dh = 2E3/2,N−(τ).
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It remains to compute vol(K). Using the formula for vol(K) from Lemma 3.10,
and the bijection from Theorem 4.9 again, we obtain

2

vol(K)
=

∑
h∈H(Q)\H(Af )/K

1

|Γh|
=

∑
X∈ΓU\L0

m,µ

1

|ΓU,X |
= tr0m,µ(1).

Taking everything together, we obtain the stated formula. □

Remark 4.11. The unary lattice P associated to X0 ∈ L0
m,µ equals ZdµX0

and has determinant 2dµm, where dµ is the order of µ in L′/L. The ternary
lattice N− has determinant 2m|D|. Indeed, by Lemma 4.8 one can assume

that X0 is the “principal form”
(

1 b0
b0 c0

)
, where b0 ∈ µ and c0 = m + |b0|2,

and then a direct computation using the equality

N =

{(
a b

b tr(bb0)− ac0

)
: a ∈ Z, b ∈ OD

}
gives the result.

4.3. Traces of special values of Green’s functions. We fix a primitive
rational point X0 ∈ L′ of determinant m′ = Q(X0) > 0, and we let P0 ∈ H3

be the corresponding special point. We define the sublattices

P = L ∩QX0, N = L ∩ (QX0)
⊥,

which are positive definite one-dimensional and negative definite three-dimensional,
respectively. Then N− = (N,−Q) is positive definite three-dimensional. We
let E3/2,N− ∈ M3/2,N− be the holomorphic weight 3/2 Eisenstein series for

ρN defined in Section 3.1. Moreover, we let Ẽ1/2,N ∈ Hhol
1/2,N be the har-

monic Maass Eisenstein series of weight 1/2 for ρN defined in Section 3.2,

which satisfies ξ1/2Ẽ1/2,N = 1
2E3/2,N− .

We obtain the following explicit formula involving double traces of the
Green’s function.

Theorem 4.12. Let n ≥ 1 be a positive integer, and let

f =
∑

µ∈L′/L

∑
m∈Z−Q(µ)

af (m,µ)q
meµ ∈M !

1−2n,L−

be a weakly holomorphic modular form of weight 1− 2n for the Weil repre-
sentation ρL. Let µ′ ∈ L′/L and −m′ ∈ Z − Q(µ′) with m′ > 0 such that
af (−m′r2, µ′r) = 0 for all integers r ≥ 1. Then we have

1

2

∑
µ∈L′/L

∑
m>0

mn−1/2af (−m,µ)tr0m′,µ′trm,µ(G2n)(4.11)

=
4nπ(
2n
n

)tr0m′,µ′(1)CT
(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
n

)
,
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where Ẽ+
1/2,N denotes the holomorphic part of Ẽ1/2,N , [·, ·]n denotes the n-th

Rankin–Cohen bracket as defined in Section 2.3, with k = ℓ = 1/2, and
CT(·) denotes the constant term of a holomorphic q-series.

Remark 4.13. (1) The condition af (−m′r2, µ′r) = 0 for all integers r ≥
1 ensures that we never evaluate the Green’s function G2n(P1, P2)
along the diagonal.

(2) By writing trm′,µ′ in terms of primitive traces as explained in Sec-
tion 4.1.2, we can also get a closed formula for the non-primitive
double trace trm′,µ′trm,µ(G2n).

(3) The Rankin–Cohen bracket appearing in the theorem is given by

[g, h]n =

n∑
j=0

(−1)j
(
n− 1/2

j

)(
n− 1/2

n− j

)
g(n−j)h(j),

with g(j) =
(

1
2πi

∂
∂τ

)j
g. The product of binomial coefficients can be

written as(
n− 1/2

j

)(
n− 1/2

n− j

)
=

1

4n

(
2n

n

)(
2n

2j

)
.

(4) The right-hand side of (4.11) equals

πtr0m′,µ′(1)
∑

µ′∈L′/L
m>0

af (−m,µ)

×
∑

α∈P ′/P
β∈N ′/N

α+β=µ (mod L)

∑
ℓ∈Z+Q(α)

κm,n(ℓ)cΘP
(ℓ, α)c+

Ẽ1/2,N

(m− ℓ, β),

with the rational constants κm,n(ℓ) =
∑n

j=0(−1)j
(
2n
2j

)
ℓn−j(m − ℓ)j .

Suppose that S1+2n,L = {0}. Then we can choose f = F1−2n,m,µ =
q−m(eµ + e−µ) + O(1) for some fixed µ ∈ L′/L and m ∈ Z + Q(µ)
with m > 0. In this case, formula (4.11) simplifies to

mn−1/2tr0m′,µ′trm,µ(G2n)

= 2πtr0m′,µ′(1)
∑

α∈P ′/P
β∈N ′/N

α+β=µ (mod L)

∑
ℓ∈Z+Q(α)

κm,n(ℓ)cΘP
(ℓ, α)c+

Ẽ1/2,N

(m− ℓ, β).

Proof of Theorem 4.12. Since the weight 1− 2n is negative, we can write f
as a linear combination of Maass Poincaré series,

f(τ) =
1

2

∑
µ∈L′/L

∑
m>0

af (−m,µ)F1−2n,m,µ(τ),
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see (2.4) in Section 2.2. Writing the Green’s function as a theta lift using
Theorem 4.3, we have

1

2

∑
µ∈L′/L

∑
m>0

mn−1/2af (−m,µ)trm,µ
(
G2n( · , Q)

)
=

1

(4π)n
π

2
Φ
(1−2n)
L (f,Q).

Taking the trace tr0m′,µ′ in Q, and using the splitting of the trace of the

Siegel theta function from Theorem 4.10 (which involves an application of
the Siegel–Weil formula), we obtain

tr0m′,µ′

(
Φ
(1−2n)
L (f, · )

)
= tr0m′,µ′(1)

∫ reg

F

(
Rn1−2nfP⊕N

)
(τ)·ΘP (τ)⊗E3/2,N−(τ)v3/2dµ(τ).

Next, using the “self-adjointness” of the raising operator, we obtain∫ reg

F

(
Rn1−2nfP⊕N

)
(τ) ·ΘP (τ)⊗ E3/2,N−(τ)v3/2dµ(τ)

= (−1)n
∫ reg

F
fP⊕N (τ) ·Rn−1

(
ΘP (τ)⊗ E3/2,N−(τ)v3/2

)
dµ(τ)

= (−1)n
∫ reg

F
fP⊕N (τ) ·

(
Rn1/2ΘP (τ)

)
⊗ E3/2,N−(τ)v3/2dµ(τ).

In the last step we used that E3/2,N− is holomorphic (Theorem 3.1). More-
over, one has to check that certain boundary integrals vanish, which is
straightforward but tedious. Next, Proposition 2.2 implies that(

Rn1/2ΘP (τ)
)
⊗ E3/2,N−(τ)v3/2 = 2

(−4π)n(
n−1/2
n

)L1+2n

[
ΘP , Ẽ1/2,N

]
n
,

where we used that ΘP is holomorphic. Note that
(
n−1/2
n

)
= 1

4n

(
2n
n

)
. Now a

standard application of Stokes’ Theorem as in [6, Proposition 3.5] gives∫ reg

F
fP⊕N (τ) ·

(
Rn1/2ΘP (τ)

)
⊗ E3/2,N−(τ)v3/2dµ(τ)

= 2
(−4π)n

1
4n

(
2n
n

) CT(fP⊕N ·
[
ΘP , Ẽ

+
1/2,N

]
n

)
.

Here we used that f (and hence fP⊕N ) is holomorphic on H. Taking every-
thing together, we obtain the stated formula. □

Example 4.14. Here we give the details for Example 1.3 from the intro-
duction. We work over the field Q(i) with discriminant D = −4. Then

L′/L ∼= 1
2Z[i]/Z[i] ∼= Z/2Z× Z/2Z.

We will write the elements of L′/L as (b1, b2) with b1, b2 ∈ Z/2Z, and under-

stand that this tuple corresponds to the class of the matrix
(

0 (b1+ib2)/2
(b1−ib2)/2 0

)
.

Let us take n = 1. Since S3,L = {0}, the Maass Poincaré series f−1,m,µ

is weakly holomorphic for every m > 0 and µ ∈ L′/L, so we can just take
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f = f−1,m,µ. Then the formula from Theorem 4.12 simplifies to
√
mtr0m′,µ′trm,µ(G2n) = 2πtr0m′,µ′(1)CT

(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
.(4.12)

We take m = 1/2 and µ = (1, 1), such that the trace trm,µ has only

one summand for the form
(

1 (1+i)/2
(1−i)/2 1

)
with corresponding point 1+i

2 +
√
2
2 j, with stabilizer of order 12. Moreover, we choose m′ = 1 and µ′ =

(0, 0), such that tr0m′,µ′ has only one summand for the form X0 = ( 1 0
0 1 ) with

corresponding point j, with stabilizer of order 4. In particular, tr0m′,µ′(1) =
1
4 . Hence, (4.12) becomes√

1/2

48
G2

(
j,
1 + i

2
+

√
2

2
j

)
=
π

2
CT
(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
.(4.13)

Next, we compute the sublattices P and N . We have

P = L ∩QX0 =

{
n

(
1 0
0 1

)
: n ∈ Z

}
∼= (Z, n2),

N = L ∩ (QX0)
⊥ =

{(
a b

b −a

)
: a ∈ Z, b ∈ Z[i]

}
∼= (Z3,−a2 − b21 − b22).

Their dual lattices are given by

P ′ =
1

2
P =

{
n

2

(
1 0
0 1

)
: n ∈ Z

}
,

N ′ =
1

2
N =

{
1

2

(
a b

b −a

)
: a ∈ Z, b ∈ Z[i]

}
.

Note that for α ∈ P ′ and β ∈ N ′ we have α + β ∈ L′ if and only if n ≡ a
(mod 2). We have

P ′/P ∼= Z/2Z, N ′/N ∼= (Z/2Z)3.
In particular, we will write the elements of (P⊕N)′/(P⊕N) ∼= P ′/P×N ′/N
as (n, (a, b1, b2)) with n, a, b1, b2 ∈ Z/2Z. Such an element is in L′/L if
and only if n ≡ a (mod 2), and in this case it is in the class of the tuple
(b1, b2) ∈ L′/L.

The first Rankin–Cohen bracket of two forms of weight 1/2 is given by

[f, g]1 =
1

2
(f ′g − fg′),

where f ′ = 1
2πi

d
dτ f . Moreover, by construction, ΘP and Ẽ+

1/2,N do not have

any terms of negative index, which implies that [ΘP , Ẽ
+
1/2,N ]1 has vanishing

principal part. Since f−1,m,µ has principal part q−m(eµ + e−µ), we obtain

CT
(
(f−1,m,µ)P⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
= 2c[

ΘP ,Ẽ
+
1/2,N

]
1

(m, (0, (0, µ))) + 2c[
ΘP ,Ẽ

+
1/2,N

]
1

(m, (1, (1, µ))).
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Hence, it remains to compute the coefficients of the Rankin–Cohen bracket.
Recall that we take m = 1/2 and µ = (1, 1). The coefficient at q1/2 of
the component of index (0, (0, 1, 1)) is given by −1/2 times the constant
coefficient of ΘP at e0 (which equals 1) times 1/2 times the coefficient at

q1/2e(0,1,1) of Ẽ
+
1/2,N (here we use that the constant coefficient of the deriva-

tive of ΘP vanishes, and that the coefficient at q1/2 of ΘP vanishes). Using
Theorem 3.6 and the Dirichlet class number formula, this latter coefficient
can be computed as

c
Ẽ+

1/2,N
(1/2, (0, 1, 1)) = − 4

π
L(χ8, 1) = − 4

π

log(3 +
√
8)√

8
= − 2

π

log(3 +
√
8)√

2
.

Hence, we get

c[
ΘP ,Ẽ

+
1/2,N

]
1

(
1/2, (0, (0, 1, 1))

)
=

1

π
L(χ8, 1).

Similarly, we see that

c[
ΘP ,Ẽ

+
1/2,N

]
1

(
1/2, (1, (1, 1, 1))

)
= 0

due to a cancellation in the Rankin–Cohen bracket. Putting this into (4.13),
we finally obtain

1√
1/2

G2

(
j,
1 + i

2
+

√
2

2
j

)
= 96L(χ8, 1).

For n = 2 we have S5,L = {0}, so we can compute in a similar way that

1√
1/2

G4

(
j,
1 + i

2
+

√
2

2
j

)
= 96 log(2)− 96L(χ8, 1).

We summarize the algebraic properties of the double traces of the Green’s
function.

Theorem 4.15. Let f ∈ M !
1−2n,L−, µ

′ ∈ L′/L and −m′ ∈ Z − Q(µ′) be

as in Theorem 4.12. Suppose that the coefficients af (−m,µ) for m > 0 are
rational. Then the linear combination of double traces

1√
m′|D|

∑
µ∈L′/L

∑
m>0

mn−1/2af (−m,µ)tr0m′,µ′trm,µ(G2n)

is a rational linear combination of log(p) for some primes p and log(ε∆)/
√
∆

for some fundamental discriminants ∆ > 0, where ε∆ is the smallest totally
positive unit > 1 in Q(

√
∆).

Proof. We need to analyze the right-hand side of (4.11). Since n ≥ 1, and

ΘP and Ẽ+
1/2,N have Fourier expansions supported on non-negative indices,

the constant term of fP⊕N ·
[
ΘP , Ẽ

+
1/2,N

]
n
is a linear combination with co-

efficients in Q of products of negative index coefficients of fP⊕N (hence of
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f), and positive index coefficients of ΘP and Ẽ+
1/2,N . Moreover, the theta

function ΘP has integral Fourier coefficients by construction. Now, by The-

orem 3.6 and the subsequent Remark 3.7(3), the coefficients of Ẽ+
1/2,N are

of the form

c+
Ẽ1/2,N

(n, γ) =

√
2√

|N ′/N |π
×rational number×

{
log(ε∆0)/

√
∆0, if ∆ is not a square,

log(p), if ∆ is a square,

for some prime p | 2det(N) in the square case. Here we use the same notation
as in Theorem 3.6. The factor π in the denominator on the right cancels
out with the factor π in the numerator on the right-hand side of (4.11).
Moreover, by Remark 4.11 we have |N ′/N | = 2m′|D|. Taking everything
together, we obtain the stated result. □

Remark 4.16. It follows from Remarks 4.11 and 4.13(4) that the right-hand
side of (4.11) is a linear combination of coefficients c+

Ẽ1/2,N

(n, β) with n =

m−ℓ and ℓ of the form t2

4d2µm
′ (t ∈ Z), hence the relevant discriminants are of

the form ∆ = 4d2βnm
′|D| and ∆0 is the discriminant ofQ

(√
(4mm′d2µ − t2)|D|

)
.

Moreover, when ∆ is a square, the coefficient c+
Ẽ1/2,N

(n, β) is a rational

multiple of log(p) provided p is the unique prime divisor of 2m′|D| for
which N ⊗ Qp is anisotropic, and it vanishes if there are two or more such
primes by Remark 3.7(2). By using properties of Hilbert symbols it is easy
to check that N ⊗ Qp is anisotropic if and only if (−m,D)p = −1. This
explains Remark 1.2.

We note that Theorem 4.15 can be rephrased in terms of linear combi-
nations of traces with coefficients coming from rational relations for spaces
of cusp forms (see Section 2.4). More precisely, in the language of rational
relations, Theorem 4.15 says that if {λ(m,µ)}m∈ 1

|D|N, µ∈L′/L is a rational

relation for S1+2n,L, then for any µ′ ∈ L′/L and −m′ ∈ Z−Q(µ′) such that
m′ > 0 and λ(m′r2, µ′r) = 0 for all integers r ≥ 1, we have that the linear
combination of double traces

1√
m′|D|

∑
µ∈L′/L

∑
m>0

mn−1/2λ(m,µ)tr0m′,µ′trm,µ(G2n)

is a rational linear combination of log(p) for some primes p and log(ε∆)/
√
∆

for some fundamental discriminants ∆ > 0. Then, Theorem 4.15 and Lemma
2.3 imply the following corollary, of which Theorem 1.1 in the introduction
is a special case.

Corollary 4.17. Let {λ(t)}t∈N be a rational relation for S+
1+2n(Γ0(|D|), χD),

and let m′ ∈ 1
|D|N be such that λ(m′|D|r2) = 0 for all integers r ≥ 1. Then
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the linear combination of double traces

1√
m′|D|

∑
m>0

mn−1/2λ(m|D|)tr0m′trm(G2n)

is a rational linear combination of log(p) for some primes p and log(ε∆)/
√
∆

for some fundamental discriminants ∆ > 0, where ε∆ is the smallest totally
positive unit > 1 in Q(

√
∆).

5. Twisted traces of special values of Green’s functions

In this section we let (L,Q) denote the lattice of integral binary hermitian

forms over Q(
√
D) defined in Section 4.1.1, associated to a fundamental

discriminant D < 0. Recall that V = L⊗Q.

5.1. The twisting function. Let us write D =
∏
p|D p

∗ with prime dis-

criminants p∗, that is, for odd p we have p∗ = (−1
p )p and for p = 2 we have

p∗ ∈ {−4,±8}.
We set

LD = {X ∈ L′ : Q(X) ∈ DZ}.
As in [17, Lemma 3.3] one can check that LD ⊆ L. For X =

(
a b
b c

)
∈ LD we

define the function

(5.1) χD(X) =
∏
p|D

χp(X), χp(X) =


(
p∗

a

)
, if p ∤ a,(

p∗

c

)
, if p ∤ c,

0, otherwise.

For X ∈ V (Q) with X /∈ LD we put χD(X) = 0. It is easy to check that
χD is well-defined, Γ-invariant, and only depends on X modulo DL. For
prime discriminants D < 0, it coincides with the function defined in the
introduction.

So far, we have defined χD on all of V (Q). Next, we extend it to V (Af ).

Definition 5.1. For a prime p dividing D and Xp =
(
a b
b c

)
∈ L′

p with

Q(Xp) ∈ DZp we let

χD,p(Xp) =


(a,D)p, if p ∤ a,
(c,D)p, if p ∤ c,
0, otherwise,

where (c,D)p denotes the p-adic Hilbert symbol. For all other Xp ∈ V (Qp)
we put χD,p(Xp) = 0, so that χD,p is defined on all of V (Qp). For primes p
not dividing D, we define χD,p as the characteristic function of L′

p = Lp.
Once again, it is easy to check that χD,p is well-defined. For X = (Xp)p<∞ ∈
V (Af ) we put

χD(X) =
∏
p<∞

χD,p(Xp).
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It follows from the basic properties of the Hilbert symbol that χD agrees
with the previous definition on V (Q).

By a slight abuse of notation, we also define χD as a function on A×
f by

(5.2) χD(x) =
∏
p<∞

χD,p(xp) =
∏
p<∞

(xp, D)p.

Note that χD is a quadratic character on A×
f /Q

+.

Let ν denote the spinor norm on GSpinV . By (4.8) the map

χD,p ◦ ν : GSpinV (Qp) → {±1}

induces a quadratic character χD,p ◦ ν : G(Qp) → {±1} . Hence, we obtain
the quadratic character

(5.3) χD ◦ ν : G(Af ) → {±1}, χD ◦ ν =
∏
p

χD,p ◦ ν.

We have the following transformation property of χD(X) under the action
of the subgroup U =

∏
p Up defined in Section 4.2.1.

Proposition 5.2. For every prime p, every gp ∈ Up and Xp ∈ V (Qp) we
have

χD,p(gpXp) = χD,p(ν(gp))χD,p(Xp).

In particular, for all g ∈ U and X ∈ V (Af ) we have

χD(gX) = χD(ν(g))χD(X).

Proof. It is enough to prove the first statement since the second one follows
from the fact that χD is the product of χD,p over all primes p. Let gp ∈ Up
and Xp ∈ V (Qp). Recall that gp is given by the action of a matrix hp =(
α β
γ δ

)
∈ GL2(OD ⊗ Zp) with ν(gp) = det(hp) ∈ Z×

p (Lemma 4.5). If p does

not divide D then (ν(gp), D)p = 1 and χD,p on V (Qp) is the characteristic
function of L′

p = Lp. Since gp preserves Lp, we have gpXp ∈ Lp if and
only if Xp ∈ Lp, hence the desired identity follows. Now, assume p divides
D. Since the action of gp preserves L′

p and the quadratic form Q, both
χD,p(gpXp) and χD,p(Xp) are zero if Xp is not in L′

p or has Q(Xp) ̸∈ DZp.
Hence, we can assume Xp ∈ L′

p and Q(Xp) ∈ DZp. This implies Xp ∈ Lp.

If we write Xp =
(
a b
b c

)
, then(

A B
B C

)
= gpX =

1

det(hp)

(
a|α|2 + tr(αβb) + c|β|2 ∗

∗ a|γ|2 + tr(γδb) + c|δ|2
)

where the norms and traces are taken in the ring OD ⊗ Zp ⊆ Qp(
√
D).

Note that p | D implies tr(z) ∈ pZp for every z ∈ OD ⊗ Zp. In particular,

tr(αβb), tr(γδb) ∈ pZp. Hence, if a, c ∈ pZp, then χD,p(gpXp) = χD,p(Xp) =
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0. We get the same conclusion if A,C ∈ pZp. Assume a,A ∈ Z×
p . Note that

det(hp)Aa = |aα+ βb|2 + |β|2(ac− |b|2)
= |aα+ βb|2 + |β|2Q(Xp)

≡ |aα+ βb|2 mod DZp.
This implies (det(hp)Aa,D)p = 1, hence

χD,p(gpXp) = (A,D)p = (det(hp), D)p(a,D)p = χD,p(ν(gp))χD,p(Xp).

The remaining cases are treated similarly. This proves the result. □

5.2. The twisted modified Siegel theta function. In this section we
construct a scalar-valued twisted Siegel theta function, which is modified
with a polynomial. A similar twisted theta function was first constructed in
[17] for lattices of signature (2, 2) and D > 0, whereas we are in the case of
signature (1, 3) and D < 0.

Recall that G = SO(V ) where V = L⊗Q.

Definition 5.3. For h ∈ G(Af ), τ ∈ H and P ∈ H3 we define the (scalar-
valued) D-twisted modified theta function
(5.4)

Θ∗
L,χD

(τ, P, h) = Im(τ)3/2
∑
X∈hL

χD(h
−1X) 1

|D|(X, v(P ))e

(
Q(Xv)

|D|
τ +

Q(Xv⊥)

|D|
τ

)
,

where v = Rv(P ) ∈ Gr(L) is the positive line corresponding to P as in
Section 4.1.1.

Note that this is not the usual Siegel theta function, but it is modified
with a polynomial inX, which is harmonic and homogeneous of degree (1, 0).
It is straightforward to check that the twisted theta function is Γ-invariant
in P . The goal of this section is to prove its modularity in τ .

Proposition 5.4. The twisted theta function Θ∗
L,χD

(τ, P, h) transforms like

a (scalar-valued) modular form of weight 0 for the full modular group SL2(Z)
in τ .

We will deduce this result from the well known modularity of a (vector-
valued) non-twisted modified Siegel theta function, using an “intertwining
operator” ψD of certain Weil representations. This general method for con-
structing twisted theta functions was developed in [1].

We let L(D) be the rescaled lattice DL = {DX : X ∈ L} with the

quadratic form QD(X) = Q(X)
|D| . Then the dual lattice of L(D) is again L′

(as a set, but L′ is now equipped with QD(X)). We write L(D) = L′/L(D)
for the discriminant group of L(D). Note that |L(D)| = |D| · |D|4 = |D|5,
and that L(D) ⊂ LD (as sets, but they have different quadratic forms). We
let ρL(D) be the Weil representation corresponding to L(D). Recall that
χD(X) defined in (5.1) depends only on X modulo DL, hence it defines a
function on L(D). Then we have the following general result.



SPECIAL VALUES OF GREEN’S FUNCTIONS ON HYPERBOLIC 3-SPACE 43

Lemma 5.5. Put

ψD =
∑

δ∈L(D)

χD(δ)eδ =
∑

δ∈LD/L(D)

χD(δ)eδ ∈ C[L(D)].

Then ψD is invariant under the dual Weil representation ρL(D).

Proof. Put ρ = ρL(D) for brevity. Using the notation in Section 2.1, we need
to check that ρ(T )ψD = ψD and ρ(S)ψD = ψD. We have

ρ(T )ψD =
∑

δ∈LD/L(D)

χD(δ)e

(
−Q(δ)

|D|

)
eδ =

∑
δ∈LD/L(D)

χD(δ)eδ = ψD,

where we used that Q(δ)
|D| ∈ Z for δ ∈ LD. Moreover, we have

ρ(S)ψD =
∑

δ∈LD/L(D)

χD(δ)ρ(S)eδ

=
∑

δ∈LD/L(D)

χD(δ)
e((1− 3)/8)√

|L(D)|

∑
µ∈L′/L(D)

e

(
1

|D|
(δ, µ)

)
eµ

= − i

|D|5/2
∑

µ∈L′/DL

 ∑
δ∈LD/L(D)

χD(δ)e

(
1

|D|
(δ, µ)

)eµ.

Hence it remains to show the evaluation of the Gauss sum∑
δ∈LD/L(D)

χD(δ)e

(
1

|D|
(δ, µ)

)
= i|D|5/2χD(µ).

This can be proved by the same arguments as in [17, Section 4.2]. □

Corollary 5.6. Let k ∈ Z, let Ak,ρL(D)
be the space of functions transform-

ing like vector-valued modular forms of weight k for ρL(D), and let Ak,SL2(Z)
be the space of functions transforming like scalar-valued modular forms of
weight k for SL2(Z). Then we have a map

Ak,ρL(D)
→ Ak,SL2(Z), f =

∑
δ∈L′/L(D)

fδeδ 7→ f · ψD =
∑

δ∈LD/L(D)

χD(δ)fδ.

Here f · ψD denotes the bilinear pairing on C[L(D)].

Proof. We again put ρ = ρL(D). It is well known that the Weil representation
satisfies

(ρ(M,ϕ)a) · b = a · (ρ(M,ϕ)−1b)

for any (M,ϕ) ∈ Mp2(Z) and a, b ∈ C[L(D)]. Since ψD is invariant under
ρ, we obtain

f(Mτ)·ψD = ϕ(τ)2kρ(M,ϕ)f(τ)·ψD = ϕ(τ)2kf(τ)·ρ(M,ϕ)−1ψD = ϕ(τ)2k(f ·ψD),
so f · ψD transforms like a modular form of weight k for SL2(Z). □

We now complete the proof of Proposition 5.4.
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Proof of Proposition 5.4. Consider the (vector-valued and non-twisted) mod-
ified theta function for L(D),

Θ∗
L(D)(τ, P, h) = Im(τ)3/2

∑
δ∈L′/L(D)

∑
X∈h(δ+L(D))

1
|D|(X, v(P ))e

(
Q(Xv)

|D|
τ +

Q(Xv⊥)

|D|
τ

)
eδ.

As a function of τ it transforms like a modular form of weight 0 for ρL(D) by
[2, Theorem 4.1]. Moreover, it is related to the scalar-valued twisted theta
function by

Θ∗
L,χD

(τ, P, h) = Θ∗
L(D)(τ, P, h) · ψD,

which can be checked by a short computation. In particular, by Corollary 5.6
the twisted theta function Θ∗

L,χD
(τ, P, h) transforms like a modular form of

weight 0 for SL2(Z) in τ . This proves the result. □

5.3. The twisted traces of the Green’s function as a theta lift. Let
n ∈ N0. For a smooth modular form f of weight −2n for SL2(Z) we define
the twisted regularized theta lift

Φ
∗,(−2n)
L,χD

(f, P ) =

∫ reg

F
Rn−2nf(τ)Θ

∗
L,χD

(τ, P )dµ(τ).

Here we put Θ∗
L,χD

(τ, P ) = Θ∗
L,χD

(τ, P, 1) in the twisted theta function (5.4).
For m ∈ N we let

F−2n,m(τ, s) =
1

Γ(2s)

∑
M∈Γ∞\SL2(Z)

M−2n,s(4πmv)e(−mu)|kM

be the m-th Maass Poincaré series of weight −2n for SL2(Z), where Γ∞ is
the subgroup of SL2(Z) generated by ( 1 1

0 1 ) and Mk,s is defined in (2.3).
By unfolding against the Poincaré series as in the proof of Theorem 4.2, we
obtain the twisted trace of the Green’s function as a theta lift.

Theorem 5.7. Let n ∈ N0 and m ∈ N. For Re(s) > 1 we have

Φ
∗,(−2n)
L,χD

(F−2n,m( · , s), P ) = Cn(s)
2
√
2

πΓ(s)
√
|D|

trm|D|,χD

(
G2s−1( · , P )

)
,

with the constant Cn(s) = (4πm)n(s− n)(s− n+ 1) · · · (s− 1).

Proof. By Lemma 2.1 we have

Φ
∗,(−2n)
L,χD

(F−2n,m( · , s), P ) = Cn(s)Φ
∗,(0)
L,χD

(F0,m( · , s), P ).

Unfolding against F0,m(τ, s) and computing the integral over u = Re(τ) as
in the proof of [3, Theorem 2.14], we obtain

Φ
∗,(0)
L,χD

(F0,m( · , s), P ) =
2

Γ(2s)|D|
∑
X∈L

Q(X)=m|D|

χD(X)(X, v(P ))

×
∫ ∞

v=0
M0,s−1/2(4πmv) exp

(
−4π

Q(Xv)

|D|
v + 2πmv

)
v1/2

dv

v
.
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The integral is a Laplace transform and equals

(4πm)−1/2Γ(s+ 1/2)

(
Q(Xv)

m|D|

)−s−1/2

2F1

(
s, s+

1

2
, 2s,

m|D|
Q(Xv)

)
.

By Lemma 4.1, we have

(X, v(P )) = sgn(cX)
√

2m|D|cosh(d(P, PX)),
m|D|
Q(Xv)

=
1

cosh(d(P, PX))2
,

where cX is the bottom left entry of X. Moreover, the hypergeometric
function simplifies as in (4.4). As in (4.5) we obtain

2F1

(
s, s+

1

2
, 2s;

m|D|
Q(Xv)

)
= 22s−1cosh(d(P, PX))

2sφ2s−1(cosh(d(P, PX))).

Taking everything together, we arrive at

Φ
∗,(0)
L,χD

(F0,m( · , s), P ) =
22s−1Γ(s+ 1/2)

√
2

Γ(2s)
√
π|D|

×
∑
X∈L

Q(X)=m|D|

χD(X)sgn(cX)φ2s−1

(
cosh(d(P, PX))

)
.

Note that D < 0 implies χD(−X) = −χD(X). Hence, by replacing X with
−X if sgn(cX) < 0 we can restrict the sum to X ∈ L+

m|D| and get a factor of

2. Moreover, using the Legendre duplication formula 22s−1Γ(s+1/2)
Γ(2s) =

√
π

Γ(s) ,

we obtain

Φ
∗,(0)
L,χD

(F0,m( · , s), P ) =
2
√
2

Γ(s)
√
|D|

∑
X∈L+

m|D|

χD(X)φ2s−1

(
cosh(d(P, PX))

)
.

Splitting the sum modulo Γ gives the stated formula. □

At s = n+1 the function F−2n,m(τ) = F−2n,m(τ, n+1) defines a harmonic
Maass form of weight −2n for SL2(Z). We obtain the following result.

Theorem 5.8. Let m ∈ N. For n ≥ 1 we have

Φ
∗,(−2n)
L,χD

(F−2n,m, P ) = (4πm)n
2
√
2

π
√

|D|
trm,χD

(
G2n+1( · , P )

)
.

Remark 5.9. The theorem also holds for n = 0. In this case, F0,m(τ, s) is
a Niebur Poincaré series which can be analytically continued to s = 1 via
its Fourier expansion. Arguing as in the proof of [3, Proposition 2.11] one

can check that the twisted theta lift Φ
∗,(0)
L,χD

(F0,m( · , s), P ) is holomorphic at

s = 1, and agrees with Φ
∗,(0)
L,χD

(F0,m, P ). This is remarkable since it implies

that the twisted trace trm|D|,χD

(
Gs( · , P )

)
is holomorphic at s = 1, although

the Green’s function Gs(P1, P2) has a pole at s = 1. Since the residue of the
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Green’s function at s = 1 does not depend on P1, P2, the holomorphicity of
trm|D|,χD

(
Gs( · , P )

)
at s = 1 is equivalent to

trm|D|,χD
(1) = 0.

Indeed, this vanishing can also be proved directly. Using Theorem 4.9 and
Lemma 3.10 we see that trm|D|,χD

(1) is a multiple of∫
H(Q)\H(Af )

χD(ν(h))dh,

where χD ◦ ν is defined in (5.3), and this integral vanishes since χD ◦ ν is a
non-trivial character on the compact group H(Q)\H(Af ).

5.4. A twisted Siegel–Weil formula. In this section we let M be a pos-
itive definite even lattice of rank 3. Moreover, we let W = M ⊗ Q the
surrounding rational quadratic space, and H = SO(W ). The classical
Siegel–Weil formula describes the integral of the theta function ΘM (τ, h)
over h ∈ H(Q)\H(Af ) as an explicit Eisenstein series; see Theorem 3.9.
Let ν denote the spinor norm on GSpinW (Af ), and associated to the field

discriminant D < 0 consider the quadratic character χD of A×
f defined in

(5.2). Then the function χD ◦ ν defines a non-trivial quadratic character
of H(Af ) that is trivial on H(Q), so it makes sense to consider the twisted
Siegel–Weil integral

(5.5) ϑM,χD
(τ) =

1

2

∫
H(Q)\H(Af )

ΘM (τ, h)χD(ν(h))dh,

where dh denotes the Tamagawa measure on H(Af ) normalized such that
vol(H(Q)\H(Af )) = 2 (as in Theorem 3.9). This function was studied in
detail by Snitz [34] in his thesis. It follows from Snitz’s work that ϑM,χD

(τ)
is a holomorphic cusp form of weight 3/2 with rational Fourier coefficients
whose Fourier expansion is supported on a single rational square class. More
precisely, his main result implies that ϑM,χD

(τ) lies in the distinguished
subspace generated by unary theta functions of weight 3/2. To state his
result in a convenient form, recall that Ak,ρM denotes the space of functions
transforming like vector-valued modular forms of weight k under the Weil
representation ρM . For a lattice P in a one-dimensional positive definite

quadratic space (Q, Q̃) we let

θ∗P (τ) =
∑

r∈P ′/P

∑
x∈(r+P )

xe2πiQ̃(x)τ er

be the holomorphic unary theta function of weight 3/2 associated with P .
In the following theorem, we assume that the character χD is compatible

with the quadratic space W in the sense that at every prime p such that
the local character χD,p is trivial, we have that W ⊗ Qp is isotropic. If
this compatibility condition is not satisfied, then ϑM,χD

(τ) = 0 (see [34,
Corollary 15]) and the following theorem holds trivially.
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Theorem 5.10 (Twisted Siegel–Weil formula [34]). Let M be a positive
definite even lattice of rank 3 and let D < 0 be a field discriminant such that
χD is compatible with the quadratic space M ⊗Q as explained above. Then
there exists a positive definite unary lattice P and a linear map Φ : Ak,ρP →
Ak,ρM of the form

Φ(f) =
∑

µ∈M ′/M

( ∑
r∈P ′/P

fr(τ) · cr,µ
)
eµ

with rational coefficients cr,µ, such that

ϑM,χD
= Φ(θ∗P ).

Remark 5.11. (1) Snitz’s results are stated for the ternary quadratic
spaces (B0,nr) coming from the reduced norm on trace zero elements
of a quaternion algebra B. For a general quadratic space (W,Q) we
have that (W, 2 det(W )Q) is isometric to (B0, nr) for some B (see,
e.g., [37, Theorem 5.1.1]), hence one can apply the results of Snitz
in our setting by keeping track of the effect of this re-scaling.

(2) It follows from [34, Theorem 2] that the coefficients cr,µ can be
expressed as products of p-adic orbital integrals of compactly sup-
ported and locally constant functions with rational values. However,
we will not need their precise values.

(3) Since the coefficients cr,µ are rational, Φ also defines a linear map
between spaces of modular forms for the dual Weil representations
ρP and ρM .

(4) The lattice P is a lattice in the rational quadratic space (Q, 2 det(M)|D|x2).

Proof of Theorem 5.10. Since the results of [34] are stated in terms of Schwartz
functions on adelic spaces, we give some details on the translation into our
setting. Given a lattice L we define L̂ = L ⊗ Ẑ where Ẑ =

∏
p<∞ Zp.

We let S(W (A)) be the space of Schwartz functions φ = φ∞ ⊗ φf , that
is, φ∞ ∈ S(W (R)) is smooth and rapidly decreasing and φf ∈ S(W (Af ))
is compactly supported and locally constant. Associated to the quadratic
space (W,Q) and the standard non-trivial additive character ψ0 of A/Q
there is the adelic Weil representation ωW,ψ0 = ωW of Mp2(A) on S(W (A)).
Note that, for ϵ = 2det(W ), the representation ωW is equivalent to the
adelic Weil representation associated to the quadratic space (W, ϵQ) and
the additive character ψ(x) = ψ0(x/ϵ), hence we can apply the results in
[34] as explained in Remark 5.11(1). Now, to each φ ∈ S(W (A)) one can
associate a theta function ΘW (g, h, φ) as in [34, Equation (1.1)], which is

a function of g ∈ Mp2(A) and h ∈ H(Af ). Choosing φ∞ = e−2πQ(x) as
the Gaussian, the finite part φf as the characteristic function 1µ of a coset

µ ∈ M̂ ′/M̂ ∼=M ′/M , and

(5.6) g = gτ =

((
1 u
0 1

)(
v1/2 1

0 v−1/2

)
, 1

)
∈ Mp2(R)
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the usual matrix that sends i to τ = u + iv ∈ H, we obtain v3/4 times the
µ-th component of our holomorphic ternary theta function ΘM (τ, h) defined
in (3.4).

Next, consider the one-dimensional quadratic space U = (Q, ϵ|D|x2), the
corresponding space of Schwartz functions S(U(A)), and the adelic Weil rep-
resentation ωU,ψ0 = ωU of Mp2(A) on S(W (A)). In a similar way as before,
to each φ0 ∈ S(U(A)) one can associate a theta function ΘU (g, h

0, φ0), which
is a function of g ∈ Mp2(A) and h0 ∈ O(U)(Af ) =

∏
p<∞{±1}. If we let S

denote the set of primes p such that W ⊗ Qp is anisotropic, and define the
character ηS : O(U)(Af ) → {±1} as ηS =

⊗
p<∞ ηp with ηp(xp) = sgn(xp) if

p ∈ S, and ηp(xp) = 1 otherwise, then the results of [34] can be summarized
by saying that there exists an explicit equivariant (with respect to ωW and
ωU ) linear map

S(W (A)) → S(U(A)), φ→ φ0 = φ0
∞ ⊗ φ0

f

such that the equality of twisted integrals∫
H(Q)\H(Af )

ΘW (g, h, φ)χD(ν(h))dh =

∫
O(U)(Q)\O(U)(Af )

ΘU (g, h
0, φ0)ηS(h

0)dh0

holds. For factorizable functions φf =
⊗

p<∞ φp the image φ0
f is also fac-

torizable φ0
f =

⊗
p<∞ φ0

p. Moreover, our compatibility hypothesis implies

the parity property φ0
p(−r) = ηp(−1)φ0

p(r) valid for every prime p (see [34,
Corollary 38]). Then, as done in [34, Section 3.2] one can rewrite the above
equality as

(5.7)

∫
H(Q)\H(Af )

ΘW (g, h, φ)χD(ν(h))dh = ΘU (g, 1, φ0).

In our setting, we choose g as in (5.6), φ∞ = e−2πQ(x) as the Gaussian and

φf = 1µ as the characteristic function of µ ∈ M̂ ′/M̂ . Then, a direct compu-
tation using [34, Theorem 2 with x0 ∈W (Q) satisfying ϵQ(x0) = |D|] shows
that φ0

∞(r) = c∞ re−2π|D|r2/ϵ with c∞ the volume of Tx0(R)\H(R) where
Tx0 is the stabilizer of x0 in H. Moreover, we have that φf is factorizable.
As a consequence of (5.7), multiplying both sides by eµ and summing over

µ ∈ M̂ ′/M̂ we get
(5.8)
1

2

∫
H(Q)\H(Af )

ΘM (τ, h)χD(ν(h))dh = c∞
∑

µ∈M ′/M

∑
r∈U(Q)

re−2πϵ|D|r2τ
1
0
µ(ϵr)eµ.

Since for every µ ∈ M ′/M we have 10µ ∈ S(U(Af )), there exists a lattice P

in U(Q) such that 10µ(ϵr) is supported on P̂ ′ and constant on each class in

P̂ ′/P̂ ∼= P ′/P . Hence, the map φ → φ0(ϵr) restricts to a map SM → SP ,
where SM and SP are the subspaces of S(W (Af )) and S(U(Af )) spanned by
characteristic functions {1µ : µ ∈M ′/M} and {1r : r ∈ P ′/P}, respectively.
Notice that SM and SP can be identified with the group rings C[M ′/M ]
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and C[P ′/P ] via 1µ 7→ eµ and 1r 7→ er, respectively. Since the dual Weil
representations ρM and ρP acting on SM and SP are induced by the adelic
Weil representations ωW and ωP , respectively (see, e.g., [12, Section 2]), the
map SM → SP is equivariant with respect to ρM and ρP . Using this, it is
easy to check that the map∑

r∈P ′/P

fr(τ)er 7→
∑

µ∈M ′/M

( ∑
r∈P ′/P

fr(τ) · 10µ(ϵr)
)
eµ

sends Ak,ρP to Ak,ρM . Now, the explicit integral formula given in [34, The-
orem 2] shows that 10µ(ϵr) = cfcµ,r with cµ,r a positive rational number and
cf the volume of Tx0(Af )\H(Af ). Finally, noting that c∞cf = 1 due to the
normalization of measures used by Snitz (see [34, p. 440]), we get that the
right-hand side of (5.8) equals Φ(θ∗P ). This finishes the proof. □

Example 5.12. Let us choose D = −4, and consider the lattice M = Z3

with Q(x, y, z) = 4x2 + y2 + z2. We have M ′/M ∼= (Z/8Z) × (Z/2Z)2, so
we write its elements in the form (x8 ,

y
2 ,

z
2). Note that the quadratic space

W ⊗Qp is anisotropic only when p = 2, hence χD is compatible withM⊗Q.
The twisted Siegel–Weil formula asserts that ϑM,χD

is a cusp form whose
Fourier expansion is supported on rational squares. Indeed, using Williams’
weilrep package for sage math [40] one can check that the space S3/2,M is
one-dimensional and spanned by the form

f = θ∗4,1

(
e( 1

8
,0,0) + e( 7

8
,0,0) − e( 5

8
, 1
2
, 1
2
) − e( 7

8
, 1
2
, 1
2
)

)
+θ∗4,2

(
e(0, 1

2
,0) + e(0,0, 1

2
) − e( 1

2
, 1
2
,0) − e( 1

2
,0, 1

2
)

)
+θ∗4,3

(
e( 1

8
, 1
2
, 1
2
) + e( 7

8
, 1
2
, 1
2
) − e( 3

8
,0,0) − e( 5

8
,0,0)

)
,

where θ∗N,r =
∑

n≡r(2N) nq
n2/4N is a unary theta function of weight 3/2, and

a multiple of a component of θ∗P for a suitable unary lattice P . In our case,
P = (Z, 4x2). The sageMath code

from weilrep import *

w = WeilRep(diagonal_matrix([-8,-2,-2]))

w.cusp_forms_basis(3/2,prec=10)

will print the components of f up to q10. The cusp form ϑM,χD
is a rational

multiple of f .

Theorem 5.13. Let the notation be as in Theorem 5.10. There exists a
harmonic Maass form ϑ̃M,χD

of weight 1/2 for ρM− with

ξ1/2ϑ̃M,χD
=

1

2
ϑM,χD

,

such that the holomorphic part of
√
2det(M)|D| ϑ̃M,χD

has rational Fourier
coefficients.
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Proof. Since P is a lattice in (Q, 2 det(M)|D|x2), by [26, Theorem 1.1] there

exists a harmonic Maass form θ̃∗P of weight 1/2 for the dual Weil represen-
tation ρP with

ξ1/2θ̃
∗
P =

1

2
√
2det(M)|D|

θ∗P ,

such that the holomorphic part of θ̃∗P has rational coefficients. Now we

choose ϑ̃M,χD
=
√

2det(M)|D|Φ(θ̃∗P ). □

5.5. Splitting of the Siegel theta function, twisted versions. In this
section we compute the twisted traces of the Siegel theta functions ΘL(τ, P )
and Θ∗

L,χD
(τ, P ), similarly as in Theorem 4.10. Throughout, we fix µ ∈ L′/L

and m ∈ Z+Q(µ) with m > 0. Recall that L+,0
m,µ denotes the set of primitive

positive definite binary hermitian formsX ∈ L+µ with determinantQ(X) =
m. Throughout we consider a fixed primitive positive definite vector X0 ∈
L+,0
m,µ. As before, we define sublattices

P = L ∩ (QX0), N = L ∩ (QX0)
⊥,(5.9)

which are one-dimensional positive definite and three-dimensional negative
definite. Let N− = (N,−Q). As in Section 5.2 we let P (D) = (DP,QD) and
N(D) = (DN,QD) with QD(X) = 1

|D|Q(X) be the corresponding rescaled

lattices. Note that we have

P (D) = L(D) ∩ (QX0), N(D) = L(D) ∩ (QX0)
⊥.

As in Section 4.2.1 we let H = {g ∈ G : gX0 = X0} be the stabilizer of X0

in G, which we now identify with SO(W ) where W = (QX0)
⊥ is a positive

definite three-dimensional quadratic space with quadratic form −Q.
We start with the twisted traces of the (non-twisted) Siegel theta function

ΘL(τ, P ), which was defined in Section 2.5.

Theorem 5.14. Fix a primitive vector X0 ∈ L+,0
m|D|,0. Then we have

tr0m|D|,χD
(ΘL(τ, · )) = χD(X0)tr

0
m|D|,0(1) ·

(
ΘP (τ)⊗ ϑN−,χD

(τ)v3/2
)L
,

where ΘP (τ) is the weight 1/2 holomorphic theta function for P and ϑN−,χD
(τ)

is the weight 3/2 cusp form described in Section 5.4, and the superscript L
denotes the operator defined in Section 2.1.

Proof. The arguments are very similar to the proof of Theorem 4.10, where
the non-twisted trace of ΘL(τ, P ) was computed. Using Theorem 4.9, we
have

tr0m|D|,χD
(ΘL(τ, · )) =

∑
X∈Γ\L+,0

m|D|,0

χD(Q)

|ΓX |
ΘL(τ, PX)

=
∑

h∈H(Q)\H(Af )/K

χD(g
−1X0)

|Γh|
ΘL(τ, P0, h),
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where P0 ∈ H3 is the special point corresponding to X0, and we wrote
h = gu with g ∈ G(Q) and u ∈ U . By Proposition 5.2 we have

χD(g
−1X0) = χD(uX0) = χD(ν(u))χD(X0) = χD(ν(h))χD(X0).

Here we wrote g−1 = uh−1, used that h−1X0 = X0 since H is the stabilizer
of X0, and χD(ν(g

−1)) = 1 since g ∈ G(Q) and χD is trivial on Q+. Using
Lemma 3.10 we obtain as in the proof of Theorem 4.10 that

tr0m|D|,χD
(ΘL(τ, · ))

= χD(X0)
∑

h∈H(Q)\H(Af )/K

χD(ν(h))

|Γh|
ΘL(τ, P0, h)

=
χD(X0)

vol(K)

∫
H(Q)\H(Af )

χD(ν(h))ΘL(τ, P0, h)dh

=
χD(X0)

vol(K)

(
ΘP (τ)⊗ v3/2

∫
H(Q)\H(Af )

χD(ν(h))ΘN−(τ, P0, h)dh

)L
.

Notice that χD ◦ ν is precisely the non-trivial quadratic character on the
twisted Siegel–Weil integral (5.5). Hence, the integral is the function 2ϑN−,χD

.

Finally, we plug in 2
vol(K) = tr0m|D|(1) to finish the proof. □

The crucial difference between Theorem 4.10 and its twisted version The-
orem 5.14 is the fact that the Eisenstein series E3/2,N− is replaced by the
cusp form ϑN−,χD

.
Next, we consider the twisted and non-twisted traces of the twisted mod-

ified theta function Θ∗
L,χD

(τ, P ). We will use the same notation as in Sec-
tion 5.2.

Theorem 5.15. Fix a primitive vector X0 ∈ L+,0
m,µ. Then we have

tr0m,µ
(
Θ∗
L,χD

(τ, · )
)
= χD(X0)tr

0
m,µ(1)

(
Θ∗
P (D)(τ)⊗ ϑN(D)−,χD

(τ)v3/2
)L(D)

·ψD.

Similarly, if X0 ∈ L+,0
m|D|,0, then we have

tr0m|D|,χD

(
Θ∗
L,χD

(τ, · )
)
= χD(X0)tr

0
m|D|,0(1)

(
Θ∗
P (D)(τ)⊗ E3/2,N(D)−(τ)v

3/2
)L(D)

·ψD,

Here,

Θ∗
P (D)(τ) =

1√
2Q(X0)

∑
X∈P (D)′

1
|D|(X,X0)e

(
Q(X)

|D|
τ

)
eX+P (D)(5.10)

is the weight 3/2 holomorphic theta function for P (D), and ψD is the in-
variant vector defined in Lemma 5.5.

Proof. Let P0 ∈ H3 be the point corresponding to X0. Using Proposition 5.2
one can check that the twisted modified Siegel theta function satisfies

Θ∗
L,χD

(τ, g−1P0) = χD(ν(h))Θ
∗
L,χD

(τ, P0, h)
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for h = gu ∈ H(Af ) with g ∈ G(Q) and u ∈ U . Moreover, we can write
Θ∗
L,χD

(τ, P, h) = Θ∗
L(D)(τ, P, h) · ψD. Using these facts, the proof of the

theorem is analogous to the proof of Theorem 5.14. We leave the details to
the reader. □

Remark 5.16. If P (D) is spanned by rX0 for some r ∈ Q, and we put N0 =
1
|D|Q(rX0), then we have P (D) ∼= (Z, N0x

2) and P (D)′/P (D) ∼= Z/2N0Z.
Hence, we can write more explicitly

Θ∗
P (D)(τ) =

√
2N0√
|D|

∑
ρ (mod 2N0)

∑
n∈Z

n≡ρ (mod 2N0)

nqn
2/4N0eρ.

5.6. Twisted traces of Green’s functions. We are now ready to give
an explicit evaluation of the twisted double traces of the Green’s function,
similar to Theorem 4.12. We can either twist both traces, or only one of
them. Moreover, we can consider the Green’s function Gs at even or odd
integer values for s. Throughout this section, X0 denotes a fixed primitive
positive definite vector in L+,0

m′,µ′ or L
+,0
m′|D|,0, which defines sublattices P and

N as in (5.9).
We start with the partially-twisted double trace of Gs at even integral

s = 2n for n ≥ 1, where one of the traces is twisted, and the other trace is
non-twisted.

Theorem 5.17. Let n ∈ N and let

f =
∑

µ∈L′/L

∑
m∈Z−Q(µ)

af (m,µ)q
meµ ∈M !

1−2n,L−

be a weakly holomorphic modular form of weight 1−2n for the Weil represen-
tation ρL. Let m′ ∈ N such that af (−m′|D|r2, 0) = 0 for all integers r ≥ 1.
Then we have

1

2

∑
µ∈L′/L

∑
m>0

mn−1/2af (−m,µ)tr0m′|D|,χD
trm,µ(G2n)

=
4nπ(
2n
n

)χD(X0)tr
0
m′|D|,0(1)CT

(
fP⊕N ·

[
ΘP , ϑ̃

+
N−,χD

]
n

)
,

where ϑ̃+
N−,χD

denotes the holomorphic part of ϑ̃N−,χD
, and [·, ·]n denotes

the n-th Rankin–Cohen bracket as defined in Section 2.3, with k = ℓ = 1/2.

Proof. Note that the character χD is compatible with the quadratic space
W = N− ⊗ Q because of Remark 4.16. Using Theorem 5.14 and Theo-
rem 5.13 the proof is analogous to the proof of Theorem 4.12. □
Theorem 5.18. Let f ∈ M !

1−2n,L− and m′ ∈ N be as in Theorem 5.17,

and suppose that the coefficients af (−m,µ) for m > 0 are rational. Then
the linear combination of partially twisted double traces∑

µ∈L′/L

∑
m>0

mn−1/2af (−m,µ)tr0m′|D|,χD
trm,µ(G2n)
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is a rational multiple of π
√
m′.

Proof. Since the space M !
1−2n,L− has a basis of forms with rational coef-

ficients by a result of McGraw [27], a weakly holomorphic modular form
with rational principal part of negative weight has only rational coefficients.
Therefore, f (hence fP⊕N ) has rational Fourier coefficients. Now, by Theo-

rem 5.13, we can assume that the coefficients of ϑ̃+
N−,χD

are rational multiples

of
√
2det(N−)|D|. We have seen in Remark 4.11 that det(N−) = 2|D|m′.

Since ΘP has rational coefficients, the right-hand side of the formula in
Theorem 5.17 is a rational multiple of π

√
m′. □

As in the case of non-twisted double traces, one can rephrase Theo-
rem 5.18 in terms of linear combinations of partially-twisted traces with
coefficients coming from rational relations for spaces of cusp forms. As a
consequence, we obtain the following corollary.

Corollary 5.19. Let {λ(t)}t∈N be a rational relation for S+
1+2n(Γ0(|D|), χD),

and let m′ ∈ N be such that λ(m′|D|2r2) = 0 for all integers r ≥ 1. Then
the linear combination of partially-twisted double traces∑

m>0

mn−1/2λ(m|D|)tr0m′|D|,χD
trm(G2n)

is a rational multiple of π
√
m′.

Next, we compute the partially-twisted double trace of Gs at odd integral
s = 2n+ 1.

Theorem 5.20. Let n ∈ N and let

f =
∑
m∈Z

af (m)qm ∈M !
−2n(SL2(Z))

be a weakly holomorphic modular form of weight −2n for SL2(Z). Let µ′ ∈
L′/L and −m′ ∈ Z − Q(µ′) with m′ > 0 such that af (−m′r2/|D|) = 0 for
all integers r ≥ 1 if µ′ = 0. Then we have

1

2

∑
m>0

mnaf (−m)tr0m′,µ′trm|D|,χD
(G2n+1)

=
4nπ(
2n
n

)tr0m′,µ′(1)χD(X0)

√
|D|
2

CT

(
f ·
[
Θ∗
P (D), ϑ̃N(D)−,χD

]L(D)

n
· ψD

)
,

where Θ∗
P (D) is the weight 3/2 unary theta function defined in (5.10), ϑ̃+

N(D)−,χD

denotes the holomorphic part of ϑ̃N(D)−,χD
, and [·, ·]n denotes the n-th Rankin–

Cohen bracket as defined in Section 2.3, with k = 3/2 and ℓ = 1/2. More-
over, the superscript L(D) denotes the map defined in Section 2.1, and ψD
is the invariant vector defined in Lemma 5.5.
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Proof. The proof is again very similar to the proof of Theorem 4.12. How-
ever, this time we first write the m|D|-th twisted trace of G2n+1 as a twisted
theta lift using Theorem 5.8, and then compute the non-twisted trace in the
second variable using Theorem 5.15. For brevity, we omit the details of the
computation. □

Theorem 5.21. Let the notation be as in Theorem 5.20, and suppose that
the coefficients af (−m) for m > 0 are rational. Then the linear combination
of partially-twisted double traces∑

m>0

mnaf (−m)tr0m′,µ′trm|D|,χD
(G2n+1)

is a rational multiple π.

Proof. The coefficients of the unary theta function Θ∗
P (D) are rational mul-

tiples of
√
2m′ since Q(X0) = m′. Moreover, by Theorem 5.13 we can choose

ϑ̃+
N(D)−,χD

such that its coefficients are rational multiples of
√

2det(N(D)−)|D|.
Now det(N(D)−) = 2m′|D|4 by Remark 4.11. This implies the stated re-
sult. □

We obtain the following corollary.

Corollary 5.22. Let {λ(t)}t∈N be a rational relation for S2+2n(SL2(Z)),
and let m′ ∈ N be such that λ(m′r2/|D|) = 0 for all integers r ≥ 1. Then
the linear combination of partially-twisted double traces∑

m>0

mnλ(m)tr0m′trm|D|,χD
(G2n+1)

is a rational multiple π.

Note that part (2) of Theorem 1.5 is a direct consequence of Corollar-
ies 5.19 and 5.22.

Finally, we evaluate the doubly-twisted double trace of Gs at odd integral
s = 2n+ 1.

Theorem 5.23. Let n ∈ N and let

f =
∑
m∈Z

af (m)qm ∈M !
−2n(SL2(Z))

be a weakly holomorphic modular form of weight −2n for SL2(Z). Letm′ ∈ N
such that af (−m′r2) = 0 for all integers r ≥ 1. Then we have

1

2

∑
m>0

mnaf (−m)tr0m′|D|,χD
trm|D|,χD

(G2n+1)

=
4nπ(
2n
n

)tr0m′,µ′(1)χD(X0)

√
|D|
2

CT

(
f ·
[
Θ∗
P (D), Ẽ1/2,N(D)

]L(D)

n
· ψD

)
,
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where Θ∗
P (D) is the weight 3/2 unary theta function defined in (5.10), Ẽ+

1/2,N

denotes the holomorphic part of Ẽ1/2,N , and [·, ·]n denotes the n-th Rankin–
Cohen bracket as defined in Section 2.3, with k = 3/2 and ℓ = 1/2. More-
over, the superscript L(D) denotes the map defined in Section 2.1, and ψD
is the invariant vector defined in Lemma 5.5.

Proof. Write the twisted trace of G2n+1 as a twisted theta lift using The-
orem 5.8 and evaluate the second twisted trace using Theorem 5.15. The
computation is analogous to the proof of Theorem 4.12. □

Theorem 5.24. Let the notation be as in Theorem 5.23, and suppose that
the coefficients af (−m) for m > 0 are rational. Then the linear combination
of twisted double traces∑

m>0

mnaf (−m)tr0m′|D|,χD
trm|D|,χD

(G2n+1)

is a rational linear combination of log(p) for some primes p and log(ε∆)/
√
∆

for some fundamental discriminants ∆ > 0.

Proof. The coefficients of Θ∗
P (D) are rational multiples of

√
2|D|m′ since

Q(X0) = m′|D|. Note that |N(D)′/N(D)| = 2m′|D|4. Hence, the coeffi-

cients of Ẽ+
1/2,N(D) are of the form

√
m′

π times a rational number times log(p)

or log(ε∆)/
√
∆. This implies the claimed statement. □

The following corollary implies part (1) of Theorem 1.5.

Corollary 5.25. Let {λ(t)}t∈N be a rational relation for S2+2n(SL2(Z)),
and let m′ ∈ N be such that λ(m′r2) = 0 for all integers r ≥ 1. Then the
linear combination of partially-twisted double traces∑

m>0

mnλ(m)tr0m′|D|,χD
trm|D|,χD

(G2n+1)

is a rational linear combination of log(p) for some primes p and log(ε∆)/
√
∆

for some fundamental discriminants ∆ > 0.

5.6.1. Example: The value of the Green’s function at an individual special
point. In some special cases it is possible to combine our formulas for twisted
and non-twisted double traces to obtain values of Green’s functions at indi-
vidual points. We demonstrate this in the following example. We consider
the field Q(i), and take n = 1, that is, we evaluate the Green’s function over
Q(i) at s = 2. We have S3,L = {0}, so we can take f = F−1,m,µ as a Maass
Poincaré series in Theorem 4.12. Recall that L′/L ∼= Z/2Z× Z/2Z.

We take the determinants m = 1 and m′ = 4, and µ = µ′ = (0, 0) in both
cases. We first compute the non-twisted double trace, using Theorem 4.12.
The computation is similar to Example 4.14. We need to simplify (4.12).
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Now tr0m′,µ′ has two summands, corresponding to

X0 =

(
4 0
0 1

)
, X1 =

(
3 1 + i

1− i 2

)
,

with stabilizers of size 2 each, and corresponding points P0 = 2j and P1 =
1+i
2 + j. Hence we have tr0m′,µ′(1) = 1, and (4.12) becomes

1

8
G2(j, 2j) +

1

8
G2

(
j,
1 + i

2
+ j

)
= 2πCT

(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
.

Note that the factor 8 = 4 · 2 in the denominator on the left is the product
of the orders of the stabilizers of j and 2j, respectively.

The lattices P and N are given by

P = L ∩ (QX0) =

{
n

(
4 0
0 1

)
: n ∈ Z

}
,

N = L ∩ (QX0)
⊥ =

{(
4a b

b −a

)
: a ∈ Z, b ∈ Z[i]

}
,

with dual lattices

P ′ =

{
n

8

(
4 0
0 1

)
: n ∈ Z

}
,

N ′ =

{
1

8

(
4a 4b

4b −a

)
: a ∈ Z, b ∈ Z[i]

}
.

For α ∈ P ′ and β ∈ N ′ in the form above, we have α + β ∈ L′ if and only
if a ≡ n (mod 8). We have P ′/P ∼= Z/8Z and N ′/N ∼= Z/8Z × (Z/2Z)2,
so we will write the elements of (P ⊕ N)′/(P ⊕ N) as (n, (a, b1, b2)) with
n, a ∈ Z/8Z and b1, b2 ∈ Z/2Z.

Since we take f = F−1,1,(0,0) = 2q−1e0 + . . . , we have

CT
(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
= 2

∑
a (mod 8)

c[
ΘP ,Ẽ

+
1/2,N

]
1

(
1, (a, (a, 0, 0))

)
.

We have

ΘP (τ) =
∑

a (mod 8)

∑
n∈Z

n≡a (mod 8)

qn
2/16ea.
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Note that the coefficient c[
ΘP ,Ẽ

+
1/2,N

]
1

(
1, (a, (a, 0, 0))

)
is invariant under a 7→

−a (mod 8), so we get

CT
(
fP⊕N ·

[
ΘP , Ẽ

+
1/2,N

]
1

)
= 2

(
c[

ΘP ,Ẽ
+
1/2,N

]
1

(
1, (0, (0, 0, 0))

)
+ 2

3∑
a=1

c[
ΘP ,Ẽ

+
1/2,N

]
1

(
1, (a, (a, 0, 0))

)
+c[

ΘP ,Ẽ
+
1/2,N

]
1

(
1, (4, (4, 0, 0))

)
= 2

(
− 1

2
c
Ẽ+

1/2,N

(
1, (0, 0, 0)

)
+ 2

(
− 14

32
c
Ẽ+

1/2,N

(
15

16
, (1, 0, 0)

)
−1

4
c
Ẽ+

1/2,N

(
3

4
, (2, 0, 0)

)
+

1

16
c
Ẽ+

1/2,N

(
7

16
, (3, 0, 0)

))
+ c

Ẽ+
1/2,N

(0, (4, 0, 0))

)
.

The relevant coefficients of the Eisenstein series Ẽ+
1/2,N can be computed

using Theorem 3.6, and are given by

c
Ẽ+

1/2,N

(
1, (0, 0, 0)

)
= −2 log(2)

π
,

c
Ẽ+

1/2,N

(
15

16
, (1, 0, 0)

)
= −2L(χ60, 1)

π
= −8 log(4 +

√
15)√

60π
,

c
Ẽ+

1/2,N

(
3

4
, (2, 0, 0)

)
= −2L(χ12, 1)

π
= −2 log(7 + 2

√
12)√

12π
,

c
Ẽ+

1/2,N

(
7

16
, (3, 0, 0)

)
= −2L(χ28, 1)

π
= −2 log(127 + 24

√
28)√

28π
,

c
Ẽ+

1/2,N
(0, (4, 0, 0)) = − log(2)

π
.

Taking everything together, we find that

G2(j, 2j) +G2

(
j,
1 + i

2
+ j

)
= 32L(χ12, 1)− 8L(χ28, 1) + 56L(χ60, 1).

Note that the real quadratic discriminants that appear, namely ∆ =
60, 12, 28, are exactly the discriminants of the quadratic fieldsQ(

√
(4mm′ − r2)|D|)

for r = 1, 2, 3, respectively.
Next, we compute the partially-twisted double trace using Theorem 5.17.

From the theorem we get, similarly as in the non-twisted case discussed
above, that

1

8
G2(j, 2j)−

1

8
G2

(
j,
1 + i

2
+ j

)
= 2πCT

(
fP⊕N ·

[
ΘP , ϑ̃

+
N−,χD

]
1

)
,(5.11)

where f = F−1,1,(0,0) as before, and the lattice P and N are as above. Here

ϑ̃N−,χD
is a harmonic Maass form of weight 1/2 which maps to the cusp form

1
2ϑN−,χD

(see Theorem 5.13). In this case, ϑN−,χD
is precisely the cusp form
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given in Example 5.12. An explicit ξ-preimage can be constructed using [26,
Proposition 6.1]. It is given by

ϑ̃N−,χD
= θ̃∗4,1

(
e( 1

8
,0,0) + e( 7

8
,0,0) − e( 5

8
, 1
2
, 1
2
) − e( 7

8
, 1
2
, 1
2
)

)
+θ̃∗4,2

(
e(0, 1

2
,0) + e(0,0, 1

2
) − e( 1

2
, 1
2
,0) − e( 1

2
,0, 1

2
)

)
+θ̃∗4,3

(
e( 1

8
, 1
2
, 1
2
) + e( 7

8
, 1
2
, 1
2
) − e( 3

8
,0,0) − e( 5

8
,0,0)

)
,

where the weight 1/2 scalar-valued harmonic Maass forms θ̃∗4,ρ have holo-
morphic parts

θ̃∗,+4,1 =
1

4
q−

1
16 − 7

4
q

15
16 − 21

4
q

31
16 − 43

4
q

47
16 − 47

2
q

63
16 − 42q

79
16 − 77q

95
16 + . . . ,

θ̃∗,+4,2 = −2q
3
4 − 6q

7
4 − 14q

11
4 − 28q

15
4 − 54q

19
4 − 98q

23
4 + . . . ,

θ̃∗,+4,3 = −3

4
q

7
16 − 7

2
q

23
16 − 7q

39
16 − 69

4
q

55
16 − 119

4
q

71
16 − 239

4
q

87
16 + . . . .

We computed these expansions numerically in sage, using [26, Proposi-
tion 6.1(2)], with N = 4 and ε4 = 6

√
8 + 17.

The constant term CT(·) appearing on the right-hand side of (5.11) can

be computed similarly as in the non-twisted case above, replacing Ẽ+
1/2,N

by ϑ̃N−,χD
, so we do not repeat this computation here. Putting in the

coefficients of θ̃∗,+4,ρ above, we obtain from (5.11) that

G2(j, 2j)−G2

(
j,
1 + i

2
+ j

)
= −4π.

Combining the evaluation of the non-twisted and partially-twisted double
trace yields

G2(j, 2j) = 16L(χ12, 1)− 4L(χ28, 1) + 28L(χ60, 1)− 2π.

In particular, the “individual” value G2(j, 2j) is not just a rational linear
combination of L-values.

For n = 2 we have S5,L = {0}, so we can compute in a similar way that

G4(j, 2j)+G4

(
j,
1 + i

2
+ j

)
= −64 log(2)+32L(χ12, 1)+62L(χ28, 1)−34L(χ60, 1),

and

G4(j, 2j)−G4

(
j,
1 + i

2
+ j

)
= −π.

This yields

G4(j, 2j) = −32 log(2) + 16L(χ12, 1) + 31L(χ28, 1)− 17L(χ60, 1)−
π

2
.
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