THE KATOK-SARNAK FORMULA FOR HIGHER WEIGHTS

O. IMAMOGLU, A. LAGELER, A. TOTH

ABSTRACT. We prove a Katok-Sarnak type formula for Maass forms of even weight k
and odd level N > 1 that includes and extends the results of Waldspurger, Kohnen-
Zagier, Katok-Sarnak, Baruch-Mao, and Biré.

1. INTRODUCTION

The goal of this note is to prove an extension of the Katok-Sarnak formula along the
lines given in [10] for the case of weight zero and non-square discriminant. Our main
theorem, Theorem 1.4, includes, extends and reproves theorems of Waldspurger [33, 34],
Kohnen-Zagier [20, 19], Katok-Sarnak [16], Baruch-Mao [3], and Biré [5].

These results relate the Fourier coefficients of half-integral weight modular forms and
certain cycle integrals (integrals along closed geodesics) of their Shimura lift.

To explicitly state the above mentioned results and our theorem we will first introduce
notation and normalizations for the automorphy factor, spectral parameters, Fourier
expansions and cycle integrals that will be fixed throughout the paper.

1.1. Basic notation.

Definition 1.1. A Maass cusp form of weight k € 2Z for the group I' = I'g(N) with
N > 1 is a real-analytic function ¢ : H — C such that
(1) Agp = Ap for a XA e C, where Ay, = —y*(03 + 7)) + iky (0, + 10,) is the hyperbolic
Laplace-Beltrami operator,
(2) pley = (cz +d)Fp (%j:db) = p(z) for all v = (i 2) el
dxdy

3) j e <o

1
(4) f (plroq)(z + iy)dz = 0 for all y > 0, where for each cusp a of I' the matrix

0
04 € SLy(R) is such that o4.a = ic0.

We will write the eigenvalue of a Maass cusp form ¢ as A = (s — k/2)(1 — k/2 — s) for
an s € C and call s the spectral point of . Maass cusp forms with the same spectral
point form a finite-dimensional vector-space, which we denote by Uy n(s).

The Laplacian A, can be written either in terms of the &-operator

(1.1) Ay, = —&o_p, 0 &, where &, = 2iy*

)

R

or in terms of raising and lowering operators
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(1.2) Ap = LyyoRy — k = Ryp_oLy,

where

k
(1.3) Ly = 2iy*0z and Ry, = ) + 2i0,.

Clearly, & f = 0 if and only if f is holomorphic and hence holomorphic cusp forms are
Maass cusp forms.
By Stokes’ theorem, for any o1, ps € U n(s) we have

(14) <Ak9017 S02> = <€]€9017 €k902>a
where
(1.5) {p1, p2) = 01(2)2(2)y"* dady.
N\H

Since (-, -) is Hermitian, the eigenvalue of a Maass cusp form is always real. Since
&, &py > 0 if and only if £y is not identically zero, the space of holomorphic cusp
forms S v is, in fact, equal to the space Uy n(k/2).

The eigenvalue A being real means that the imaginary part of (s — k/2)(1 — k/2 — s)
must vanish for every spectral point s € C with Uy(s) # {0}. This translates to s = § +ir
for an r € R or to s being real. The non-zero eigenvalues of the latter form constitute
the exceptional spectrum.

Similarly, we define half integral weight modular forms with the #-multiplier. For
K € 3Z we write

(1.6) D]y = 507, 2) " (72)
where j(v,2) = 0002) For y = (Z Z) € ['\(4N), the cocycle is given by

0(z)
(r.2) = e (© :
i(n2) =gt (2) (ez +d)

with

i, ifa=3 (mod4),

and the square root is defined by the canonical branch of the complex logarithm.
The space Uy 4n(s) consist of functions that satisfy (1), (3) and (4) of Definition 1.1
(with  instead of k) and where (2) is replaced by (1.6).

. _{1, ifa=1 (mod 4),

1.2. The Shimura correspondence. It is easily seen that any ¢ € Ugn(s) has a
Fourier-expansion given by

(1.7) o(z) = Z aw(n)(47T\n|y)_§Wsign(n)§,S_%(47r|n|y)e(nx), ay(n) e C.

n#0
Here W, ,,(y) is the W-Whittaker function [4, Ch. 6.7], which is exponentially decaying
as y — +0, hence the same remains true for ¢(z).

There is a Hecke and Atkin-Lehner theory [1] on Uy y(s) for all s € C as there is one
on Sy n = Ukn(k/2) and hence there exists a basis of simultaneous eigenforms for all
Hecke operators Ty (n) with (n, N) = 1. If ¢ is a newform, we have a(1) # 0, and we may
normalize ¢ to have a(1) = 1; such a form will be called Hecke-normalized. The linear
map X : ¢(z) — y*p(—%) is a map Uy n(s) — U_gn(s). Supposing that k& > 0, we may
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first apply the lowering operators Ly_j o Ly_40---0 L; and then apply X so that we get
an involution Uy y(s) — U n(s), which commutes with the Laplacian Ay. Similarly, we
use raising operators for weight £ < 0. As the map is an involution, it has eigenvalue
+1. We call Maass cusp forms with eigenvalue +1 even Maass forms (and forms with
eigenvalue —1 odd forms). The Fourier coefficients of any even form ¢(z) of weight k

satisfy
(s +k/2)
(1.8) ay(—n) = T(s — k/2)"

with n > 0; see [8, Sec. 4] for more details.

ap(n)

For convenience the Fourier coefficients of half integral weight Maass cusp form v €
Uk.an(s) will be designated by by(n), so that we have

(L9) = 3" bum) At lnly)E Wiy s o1 (4 nly)e(na).
n#0

The celebrated work of Shimura [31] gives a Hecke theory and a correspondence between
half integral weight forms and integral weight forms in the holomorphic case, and this
extends to Maass cusp forms; see [12], [21], [29], and [25].

For k an even integer, ¢ € U b1 an(s) a Hecke eigenform, and (=1)2d a fundamental
discriminant, we define the Shimura lift of 1 as follows. For m > 0 let

(1.10) 2 nk/2-1 (%) by ( 2d) = a(m)by(d).

and extend this to m < 0 by (1.8). By Hecke theory the a(n) are well defined and we let
, W
(111) Shlmd(w) = Z ( )(47'("%’:[/) 2 mgn(n)g,s %(47T]n\y)e(n:1:)
n#0

The function Shimgy(v) is a Maass cusp form of weight & [12]. This is the non-
holomorphic analogue of Shimura’s original result [31].
Generally, we will restrict Shimy to the Kohnen plus space

(1L12) U, (5) = {W) € Usss y(8) : by(n) # O only if (~1)5n = 0,1 (mod 4)} .

when we have

Shimg : Uy, (s) = Ug n(25 — 1).
=

1.3. The Katok-Sarnak formula. It was first shown by Shintani [32] that we may
view the Fourier coefficients of a half-integral weight Maass cusp form in terms of traces
of its image under the Shimura lift (this is not a precise statement, as the Shimura
correspondence is not generally known to be an isomorphism). This idea lead to formulas
for the central value of certain automorphic L-functions, a question with a long and rich
history, with many applications, see for example [6, 7, 23, 27, 28|.

The Shimura-Shintani [31, 32] correspondence allows one to express the central L-value
of an even weight holomorphic modular form in terms of Fourier coefficients of its half
integral weight correspondent. Waldspurger [33, 34] was the first to establish such a
relation which was then made explicit by Kohnen and Zagier [19].

The method applied by Shintani to prove his result was based on a theta-correspondence.
In the setting of non-holomorphic modular forms, this idea was originally introduced by

Maass [25] . The methods in [25] were later explicated and further developed by Katok
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and Sarnak in [16]. The main result of [16] is the analog' of the results of Waldspurger
and Kohnen-Zagier in the case of weight zero Maass forms for SLy(Z). To state the
Katok-Sarnak formula we will briefly define the traces alluded above (see section 3.1 for
further details.)

Let Qn.p be the set of integral binary quadratic forms Q(z,y) = [A, B,C] = Az? +
Bzy + Cy? of discriminant D > 0 such that N|A, whereas for D < 0, we restrict Oy p
to the set of positive definite binary forms Q(x,y) with N|A. The forms Q) € Qn p are
acted on as usual by I', resulting in finitely many classes I'\On p.

For Q € Qn p and D < 0, let zg be the root of Q(z,1) = 0 in H and for D > 0, let Sg
be the associated geodesic in H and Cg = I'g\Sp, where I'g is the group of automorphs
of Q). The geodesic associated to a binary quadratic form of square discriminant is non-
compact.

Definition 1.2. Let d be a fundamental discriminant and d' = 0,1 (mod 4). For dd’ > 0
the twisted trace of an automorphic function ¢ : H — C of weight k£ € 27Z for I' is defined
by

b2 Vdd dz
Q(z,1)

whenever the integral converges. The character y, is the genus character given by

Tualp) = 3 @[ e:Qe

QEMQy qa Co

(4), if (A,B,C,d) =1, Q represents r, and (r,d) = 1;

r

xa([4, B, C]) = { 0, if(A,B,C,d)>1.

Note that when restricted to S¢g the holomorphic differential form vdd'dz/Q(z,1) sim-
ply becomes arc length measure.

Definition 1.3. Let d be a fundamental discriminant and d’ = 0,1 (mod 4). For dd’ < 0,
the twisted trace of an automorphic function f of weight k € 2Z for I is defined for k£ > 0
by

Trga(f) = ldd|T > xa(@Qwg'LEf(2)

QeEMQy qa
and for £ < 0 by

Trga(f) = ldd|T > xa(@Qwg'Ri* f(zq)
QEM@Qy aa

Here wg = || and for n > 1, we set L{® = Ly 9,Lk on42- - Lr_oLy and RI" =
RyionRyion_o- - RpioRy. The character x, is defined as in Definition 1.2.

Theorem (Katok-Sarnak [16]). Let ¢ be an even Maas cusp form in U = Uy, then

wa(d): ~1 . 2¢/mTran(p), if d <0,
I {Trd,1<¢>, pien

where ¥ runs over an orthogonal basis of the preimage of ¢ under Shim;.

IFor this reason these results are sometimes referred to in the literature as formulas of Waldspurger
or Kohnen-Zagier type.
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To see the relation of this result to the central L-values note that when d = 1 the sum
in the Tr(p) on the right hand side of (1.13) has only one form zy, and the corresponding
cycle is the geodesic [0, i0]. This gives

Wzbw L Mo
@, ¢> ROTER y

Hence in this case the right hand side of (1.13) can be written in terms of the central L-

value L(yp,1/2) of L(p,w) = 37 a,(n)/n®~Y2. As a corollary one obtains the following

non-negativity result.

Theorem (Katok-Sarnak). If ¢ is a Hecke normalized even Maass form in U then

L(p,1/2) =0

1.4. The main result of the paper. The results of Katok-Sarnak are generalized to
higher levels by Baruch-Mao [3] and Biré [5], using different methods. Our main theorem
includes, extends and reproves theorems of Waldspurger [33, 34], Kohnen-Zagier [19, 20],
Katok-Sarnak [16], Baruch-Mao [3] and Biré [5].

Theorem 1.4. Let k be an even integer, N =1 odd and ¢ € Uy n(s) be an even normal-
ized newform with Re(s) > 0. Let d, d' be a pair of integers such that (—1)2d, (—1)2d’ =
0,1 (mod 4) and (=1)2d is a fundamental discriminant. Then we have

(1.14)
; /
2[’1‘1" 1§d( 1)% ,(90), if dd' < 0,

by (d)by (') . a .
6(—1)*/4,/|D] | Z W = {p, )t 2k/2T( Da(—nb kd/(@), if d,d >0,
Shim, (y)=¢ 21*’“/2Tr( D a (o) gd,(fk@ ifd,d <0,
where ZShimd(w):go means that 1 runs over an orthogonal basis in U,:N (% + %1) of the

preimage of ¢ under Shimg.

Remark 1.5. The results of [16, 3, 5] do not include the case of d,d" < 0. The extension to
the case of both discriminants d, d’ < 0 was first done in [10] only in the case of weight 0
and dd’ not a square. Hence Theorem 1.4 generalizes and extends all the previous results
of this type.

Remark 1.6. Note that if ¢ is a holomorphic cusp form of weight k& > 0, then Ly = 0
and &, = 0. Hence if at least one of d,d’ is negative then both sides of the identity
(1.14) are zero (as the negative Fourier coefficients of ¢ vanish).

Remark 1.7. The Fourier coefficients in equation (1.14) are as in (1.9) and so agree with
the usual Fourier coefficients in the holomorphic case. For holomorphic forms the case
d,d > 0 was first proved by Kohnen [20, Thm. 3|, where the constant differs from ours
by 6+/D. This comes from our normalization for the inner product which leads to a factor
ITo(N) : To(4N)| = 6, and that we have an additional factor of v/D in our definition of
the trace to match the arc length integrals in [16].

The following Corollary is a generalization of a result of Baruch and Mao [3, Thm. 1.4]
to higher weights.

Corollary 1.8. Let k be an even non- negative integer, let v € Ug n(s) be an even nor-

malized newform with spectral point s # £ 5, and let d be a fundamental discriminant with
5



(—1)§d > 0 and (d,N) = 1. Suppose that for all m|N, its eigenvalues w,, under the

Atkin-Lehner involution W,, are equal to (%) Then

bu(ldD]? 22Md|*T (s k& 1—s k\ L(p,d,1/2)
S @ T r(3+5)r () “E

Shimd(w):w <¢a¢> (47T>k/2ﬁ

where v(N) is the number of distinct prime factors of N and where L(p,d,1/2) is defined
by (5.1).

Finally we should mention that there are other generalizations of the results of Wald-
spurger and Kohnen-Zagier. They are too numerous to list here but we mention the
papers of Khuri-Makdisi [17] and Kojima [22, 24] for generalizations to the case of num-
ber fields.
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1.5. The method of proof. In this paper we use spectral methods similar to the ones
employed by Duke, Imamoglu, and Téth [10]. Our main result, Theorem 1.4, relates
traces of integral weight cusp forms to the products of half integral weight Fourier coeffi-
cients. The proof uses an idea that goes back to Selberg [30] (see also [13] for a spectacular
application). Roughly speaking our method involves proving identities for cycle integrals
of Poincaré series, built from some test function ¢, that are dependent on the spectral
parameter s. The cycle integrals are then expressible in terms of sums of terms of the form
K(m,n;c)Fs(mn/c*), where K (m,n;c) are certain Kloosterman sums. These expressions
will have poles at spectral points that may be exploited to prove various identities. The
function Fj is a complicated integral transform of ¢, and we replace them with their first
order approximations which makes the arguments elementary. This is one of the main
technique used in our proof. The other input we need involves the choice of the Poincaré
series.

The main tool in [10] was Niebur Poincaré series. These series are eigenfunctions of the
Laplacian and appear as Fourier coefficients of the resolvent kernel of A; see [11]. They
have the disadvantage of being of exponential growth at the cusp and non-integrable over
the non-compact geodesics corresponding to square discriminants.

To circumvent this problem, we work instead with Selberg Poincaré series, which do
not have these convergence problems. The use of both Niebur and Selberg Poincaré series
is based on the fact that they have poles at spectral points with residues giving cuspidal
Maass forms. The Selberg Poincaré series are not eigenfunctions of the Laplacian but
have better analytical properties.

1.6. Outline of the paper. The main steps in the proof of Theorem 1.4 and the struc-
ture of the paper is as follows.

In the next section we start reviewing some standard results from spectral theory.
We use them to get to Maass cusp forms through the residues of Selberg and Niebur
Poincaré series. The needed spectral theory results are reviewed in Propostions 2.3 and
2.6. By going one step further and looking at the Fourier coefficients of the Poincaré
series one can write the residues of Kloosterman zeta function in terms of products of
Fourier coefficients of cusp forms. This is the content of Proposition 2.5.

The next ingredient in the proof of Theorem 1.4, which is also the main technical result
of the paper, is Theorem 3.1. This theorem which relates the traces of Selberg Poincaré
series to Kloosterman zeta functions together with other results about the cycle integrals
are given in Section 3.

In Section 4 we start by proving an averaged version of our main theorem in Proposition

4.2. This proposition follows by taking residues on both sides of the identities for traces of
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Selberg Poincaré series given in Theorem 3.1 together with the Shimura relations (1.10)
and the spectral result in Proposition 2.5. The proof of Theorem 1.4 is then finished by
use of some linear algebra.
Finally in Section 5, the main theorem is applied in the case of square discriminants to
relate L-values of integral weight forms to the squares of half integral weight coefficients.
We would like to thank ETH Zurich, and the Renyi Institute Budapest for supporting
our joint research and an anonymous referee for a number of helpful suggestions.

2. POINCARE SERIES

In this section, we collect some facts about Selberg and Niebur Poincaré series. Most of
these are well documented in the literature but this allows us to fix some normalizations.

2.1. The Niebur Poincaré series. Let x be an integer or half an odd integer, [' =

T'o(NV), where
To(N) = {(Z 2) el:c=0 (mod N)}

and let I'y, denote the stabilizer of 0.
The Poincaré series of the Niebur type for m # 0 is defined by

K

(2.1) F;(z,s):—F(S_Sign(m)i) > (Y2 Mgz s (47 [mly)e(ma) 7).

4 |m|T'(2s) AT s
where M, ,(y) is the M-Whittaker function [4, Ch. 6.7]. Since [4, 6.1.2, 6.7.2]
(2.2) Myuw(y) =y (14 0(y)), y = 0,

the Poincaré series F)(z, s) is absolutely convergent for Re(s) > 1.

Remark 2.1. With our normalization, the Niebur Poincaré series Ff(z, s) is an eigenfunc-
tion of the Laplacian A, with eigenvalue (s — £/2)(1 — k/2 —s). One should compare our
definition with the normalization given in Fay [11], which is y2 F*(z, s) in our notation.
More generally, an eigenfunction f(z) with eigenvalue s(1 — s) of the Laplacian —D, in
Fay’s paper yields an eigenfunction y~2 f(2) of A, with eigenvalue (s — #/2)(1 — £/2 — s)
and vice versa.

It follows from [11, Thm. 3.4] that the Niebur Poincaré series F) (2, s) has the following
Fourier expansion

Proposition 2.2. Let m be a nonzero integer and Re(s) > 1. We have

I' (s — si 5 5
Fr(ss) = — (s &gn(m)z)yng

dxfm|T (2s) sign(m) 55— (47|mly)e(mz)

e~mis T (3 — sign(m)g) .
_ L (s 2 W 51 Ar|nly)e(nz),
7; |mn| T’ (s+sign(n)g) mn( )y sign(m) %, 2( Inly)e(nz)

where

m,n;c 44/ |mn .
2l<c=0(N) b - ) Jas—1 ( C‘ l) if sign(mn) > 0,
K K (m,n;c .
Lm,n(‘S) = ZO<CEO(N) (C2S ) an - O,

m,n;c 44/ |mn .
2lo<c=0(N) Kol < c' ) if sign(mn) < 0,
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where

Za(c)* e (—m“:m) if k€4,
c\2k ma+na :
Za(c)* €L21’€ (E) € ( c+ ) Zf/i € %Z’
is the Kloosterman sum, which runs over all a modulo ¢ for which an integer @ exists

such that aa =1 (mod c¢), and the functions I,(x), and J,(x) are the Bessel-functions of
the first kind.

Ky(m,n;c) = {

From the theory of the resolvent kernel one knows that F(z,s) has an analytic con-
tinuation to all of s € C as long as (s — /2)(1 — k/2 — s) does not lie in the spectrum of
the operator A, and that F(z, s) has poles at spectral points of Maass cusp forms with
the residue given in terms of their Fourier coefficients [11, Cor. 3.6]. More precisely, we
have the following proposition.

Proposition 2.3. Let m # 0. The Niebur Poincaré series F(z,s) has poles at the
spectral points s = % +ir and

Res,_1.,.(2s —1)F"(z,5) = —(47|m]|) k/zz
e " <90 90>

where the sum goes over a basis of Hecke eigenforms ¢ of the subspace Uy n(s).

Proof. The proposition is an adaptation of Corollary 3.6 in Fay’s paper [11]. There, the
Fourier coefficients of the Niebur Poincaré series have poles at all s such that s(1 — s)
lies in the discrete spectrum of Fay’s normalization of the Laplacian —D,. The value
of the residue then is equal to the Fourier coefficients of the reproducing kernel of the
corresponding eigenspaces. Again, as in Remark 2.1, we note that the eigenfunctions f(z)
of —D,, are in one-to-one correspondence with the eigenfunctions y~2 f(z) of A, i.e. the
eigenspaces are isomorphic to the spaces U, n(s). See also the proof of [10, Prop. 3] for
further clarification of the argument. O

For k half an odd integer, we also need the projection of the Niebur Poincaré series
onto the Kohnen plus space (1.12). We fix k: to be an even integer, N > 1 odd, and

[' =T4(4N). For the Niebur Poincaré series Fi, = (2,8), let F* ., be its projection onto
m,T

the Kohnen plus space U, %) 4N( s). The same argument as in the holomorphic case [20,

p. 250-257], proves the followmg proposition.

k
2

Proposition 2.4. Let m be a nonzero integer such that (—1)zm = 0,1 (mod 4) and

Re(s) > 1. We have

I (s —sign(m)&L)  wn
+ _ 1), kL
Fmv%(z) 6rlmT (25) T Mgyt 5t (47[my)e(ma)
2 -1 [4+2J I'(s—s E+1)
- Z e ).
s + sign(n)<t
(1) 5 n=0,1(4) [ & 4
_kt1
y 4 WSlgn(n)k+1 37%(47T|n|y)e(na:),
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where

- Kﬂ(m,n;c) oS Torm o
Do<e=oan) e J2s-1 < C' ) if sign(mn) > 0;

ktL + K+ (m7n;c)
2 _ k+1 )
Linin’ () = 4 ZO<CEO(4N) = if n = 0;

A7/ |mn)| e
2l0<c=0(4N) %1231( - > if sign(mn) < 0,

\

where
(2.3)
k41

KL (mmie) = (1- (-1)%i) <1+ <C;i4>) > (6) (%) ) e(deM) dle.

d(c)*

Let (—=1)2m = 0,1 (mod 4) and r € R. Taking the projection onto the Kohnen plus
space on both sides of Proposition 2.3, we see that

S§=

(2.4) Res,_y,i (25 = D) 1 (2,5) = —(4mlm sz ¢>

where the sum goes over a basis of Hecke eigenforms ¢ of the subspace U, A N(s), as the
2 bl

projection operator commutes with the Hecke operators.
Next we look at the Fourier coefficients on both sides of (2.4). Let

K, (m,n;c)
(2.5) Zi(m,n;s) = Z &
0<c=0(N)
be the Kloosterman Zeta function.
For k an integer, the Kloosterman sum K,(m,n;c) = K(m,n;c) does not depend on
the weight. The best bound for K(m,n;c) is the Weil bound, which states that
(2.6) K(m,n;c) « ¢/* for any € > 0.

This bound, which is also valid (and, in fact, elementary) for x half an integer, gives that
Z(m,n; s) converges absolutely for Re(s) > 2 and is thus holomorphic in that domain.
The modified Kloosterman Zeta function

K (m,n;c)

27) Zhalmmis) = Y, ——

2 0<c=0(4N)

gives the main term in the residue of /', (2, ).
2

Proposition 2.5. Let (—1)2n = 0,1 (mod 4), and r € R. Then the residue of the
modified Kloosterman zeta functzon Z,c+1 (m,n;s) at s = % + 5 s equal to

3 k

22

r
where Y runs over an orthonormal basis U,c+1 (5

. . o L(ir)T (5 + ~ + sign(n) )
-1 l%-ﬁ-%JZ—zr—k —%—ZT mn 1/2—%—7 b
( ) T ‘ ‘ ( Iy 2 — Slgn( k+1 Z ¢

1
2
+ %) of Hecke ezgenforms.

Proof. Using the asymptotic expansions

4 4 2 2s—1 s—%
Joe1 (@) Do ( W\/W) _ @m)*mn| 4 O,

c [(2s)c?s—1
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we see that

ﬁ,-‘r (27.{.)2571|mn|s—§
Res,_1 ir(25 = 1)Lnin" (s) = Res,_1 o T 1) Z%(m,n; s) for n # 0.
Comparing Fourier coefficients on both sides of (2.4) then gives the desired claim. U

2.2. The Selberg Poincaré series. For m > 0, we define the Selberg Poincaré series
[30] by

(2.8) Py(z,s) = Y, (y""e(mz))|y, Re(s) > 1.
el \I'

The series in (2.8) converges absolutely for Re(s) > 1 and uniformly in z for compact
subsets of the upper half plane H. It can be analytically continued in s to the whole
complex plane.

As mentioned in the introduction, for Re(s) > 0 the poles of Ff(z,s) and of P%(z,s)
agree and we have the following analog of Proposition 2.3; see [13].

Proposition 2.6. Let m > 0. The Selberg Poincaré series Pl (z,s) has analytic contin-
uation in s to Re(s) > 0. Moreover, we have

i [(2ir)
Ress—f+zrpm(z 8) (47Tm)1/2 . F —|— =5 Z <<P SO>

where the sum goes over a basis of Hecke eigenforms ¢ of the subspace Uen(s).
Proof. From (2.2) the function
¢S<y) = (47T’m|y)s - Msign(m)%,57%(4ﬂ-|m‘y)
is O(y**1) as y approaches 0, and so the Poincaré series
Z (yin/2¢8<y>e<mx))|ﬁ7
YL p\I'
converges for Re(s) > 0. It is clear that this gives an holomorphic continuation of
(4 |m|)' =T (2s)
I (s —sign(m)%)
and hence of Pf(z,s) by the analytic continuation of F(z,s). Taking residues at s =
% + 2r, we thus get

Pr(z,s) + Fl(z,s) to Re(s) >0

1_ F(Qi?”)
Res,_1.,,.P, =—(4 o Res,_ 2s — 1)E~
eSs 7+z7‘ m(Z S) ( ﬂ-m) T (% + ir — g) €8 s= 7+zr( S ) (Z S)
and the claim follows by Proposition 2.3. U

Remark 2.7. One can extend this approximation using the power series expansion of the
function y=~2M,, ,(y) which leads to a formal expression for the Niebur Poincaré series.
Yoshida [36, Prop. 2] showed that this formal series converges.

In the case of weight 2 — k we want to write the residues of P32 *(z, s) in terms of cusp
forms in the space U, n(1/2+ir). To this end, we recall that for any function f : H — C,
the &.-operator satisfies

(2.9) e fle) = (§ef)l2—xy for all y € T

A non-holomorphic Maass cusp form does not vanish under the £.-operator. In fact, for

non-holomorphic Maass cusp forms the &,-operator is an isomorphism.
10



Lemma 2.8. The operator &, is an isomorphism Uy n(s) — Us—x n(8) for s # 5,1 — 5
Proof. Let ¢ € U, y(s). With (1.1) we obatin
A27P»§n§0 = fHA,@QO = (5 - ’1/2)<1 - ’1/2 - 5)5}-@90‘

Moreover, by (2.9) the function ¢ is invariant under the |,_.-operator and we can use
L’ Hoptlal’s rule to show that §.¢ vanishes at the cusps of I'. For s # £,1— %, the inverse
of & is given by Wﬁg_m hence &, is an isomorphism. U

Lemma 2.9 shows that in Proposition 2.6 the sum running over a basis of Hecke eigen-
forms of Uy_ HN( + ir) can be replaced by a sum that runs over . for a basis of
Hecke eigenforms ¢ of Uy, N(2 + ir). Using the next lemma we can also write the Fourier

coefficient a,(m), in terms of the coefficients of &, .

Lemma 2.9. Let ¢ € U, n(s) and denote its n-th Fourier coefficient by a,(n). The n-th
Fourier coefficient of & is given by —(4mn)'""a,(—n) for n > 0 and by (s — r/2)(1 —
Kk/2 — s)(4r|n|)*"Fa,(—n) for n <O.

PTOOf. Let Y= Zn;é(] a@(”) (47T|7’L|y)_% sign(n)%,s—%

Fal@,y) = ap(n)(Arlnly) "2 Wy s o1 (47 |nly)e(nz).

A calculation using

(4m|nly)e(nzx). Write

1 1
(2.10) W, u(4xnly) = , rinly =v) W (drlnly) = = Wosru(4rlnly)
gives that for n < 0

Eululey) = iy" _Z-<47T|n|>—%%<n> S g iy (dnlnly)e(na)
) S ) W s (drlnly)e( ).

78—5

For n > 0, using (2.10) and
W i1e1 (4mny) = (4mny — k) We o1 (4mny)
+ i (4(s —1/2)* — (1 — )?) Wy o1(dmny),
we obtain
En(fulz,y) = (5 = #/2)(1 = £/2 = 5)(47n)' " a,(n) (47 |nly) 2~ W_oox 1 (47ny)e(—na).
Thus, the —n-th coefficient of & € Uy, n(s) is equal to (s — £/2)(1 —r/2 = s)ay(n). O

The following proposition now follows easily from Proposition 2.6, Lemma 2.8 and
Lemma 2.9.

Proposition 2.10. Let m > 0. The Selberg Poincaré series P27"(z, s) satisfies

- F(22r —a,(—m)
Res. P2 “ 4 1/2—ir—3 SO )
€S,_ 7+zr m (Z 8) ( ﬂ-m) (1/2 +r — I{/Z) + i + Z <(ID SO> <Z>

where the sum goes over a basis of Hecke eigenforms ¢ of the subspace U, n(1/2 + ir).
11



3. TRACES OF THE SELBERG POINCARE SERIES

In this section, we will prove the following theorem which is the core technical result
of the paper.

Theorem 3.1. Let k be an even integer, let d,d" be such that (—1)§d s a fundamental
discriminant, (—1)2d’ = 0,1 (mod 4), and suppose that Re(s) > 0. Write D = dd'.
(1) If D <0, we have

Tr v PF(zs)

(-)Ed(-nFa ™

d,(—
DT ey 08\ 1, (md s 1
AT sty py /a2 ) e (P L) 4 H
( k/2) ’ ‘ an n ns k+ n2 7d7 2 + 4 + ]_(S),
(n,N)=1
where Hy(s) is holomorphic for Re(s) > 0.
(2) For D =dd > 0 with d > 0, we have

b
(—1)22w D*/4+5/21(s) (—Dz2d\ _ m?2d 1

SZ+1 _d/ +H 7
e og 2 e ) MEVAR

where Hy(s) is holomorphic for Re(s) > 0.
(3) For D =dd > 0 with d <0, we have

2—k
Tr(_l)%d( 1)w/Pm (z,5)

(—1)3 2w DR/A+s/21(s) (—1)
ey = (5

[SIE

ol

k
2

d\ _, m*d , s 1
)n Z% (F,d/,§+z> +H3(8),

where H3(s) is holomorphic for Re(s) > 0.

3.1. Binary quadratic forms and traces. We recall some facts about binary quadratic
forms. Let I' = TI'g(N) for N > 1 odd and consider

Onp = {[A,B,C] : B> —4AC = D,N|A}.

We identify [A, B, C] with Az? + Bry+ Cy?, so Q. p is the set of binary quadratic forms
of discriminant D such that N|Q(1,0). The subset of Q € Qnp with A > 0 will be
denoted by Qy . We use the convention Qn p = Qy p, for D < 0.

On Qn p there is a left-action of I', namely for v = (‘; Z) eI, we set
(3.1) (vQ)(z,y) = Q(dx — by, ay — cx).
On several occasions we will need the following lemma whose proof is obvious.
Lemma 3.2. The map
{(A,B) : NJA>0,B (2A), B> =D (44)} - T:.\Q} p,
sending (A, B) to [A, B, (B? — D)/4A] is a bijection.
For a quadratic form @) € Qn p let

Fo={yel : yQ=0Q}

denote the group of automorphs of Q.
12



If D < 0, the subgroup of automorphs is trivial, except when () is equivalent to
A(z? +y?) or A(z*+ 2y +1?). For those binary quadratic forms the group of automorphs
has order 2 resp. 3. For Q = [A, B,C] € Qnp we let

B4
2A
so that Q(zg, 1) = 0. Note that vzg = z,q.

ZQZ

If D > 0, the group of automorphs of [A, B, C] is generated by
<u+2Bt —C’t)
YQ = u— )
At

where (u,t) is the smallest positive integer solutions of the Pell equation t* — Du? = 4
(the matrix g lies in I'g(NN) as A is divisible by N). So if D > 0 is not a square, the
group of automorphs is infinite cyclic.

For Q = [A,B,C] € Qnp let
(3.2) So = Supc) ={zeH: Az* + BRe(z) + C = 0},
which for A # 0 is a semi-circle in the upper half plane H. It is easy to see that

79q = Syq
for any vy € I'. We orient the Sg counterclockwise for A > 0 and clockwise for A < 0.
Let now Cg = I'g\Sg. One easily checks that the holomorphic differential form

_ VDdz

AoTENY

is I'p-invariant, and so for D not a square
(2)Q(z,1)"?dgz
Cq
equals to an integral over a directed arc from z to ygz for any z € Sg.

For square D the group of automorphs is trivial since (£2,0) is the only solution to the
Pell equation in this case. It is also possible to give an explicit description of the classes
in this case.

For an integer m > 1 with m|N and (m,Z) = 1, we write m|N. For m|N, pick

8,8 € Z such that dm? — N3 = m and let

1 m [
(3.3) W,, = \/_ﬁ (N (5m) .
The matrix W, acting on a Maass cusp form is an Atkin-Lehner involution.

Lemma 3.3. Let d > 1 be an integer. The set of binary quadratic forms Q) in I'\Qy 4
is represented by {W,.[0,d, ] : 0 < p < d, m||N}.

Proof. See Kohnen’s [20, p. 243] or Biré’s paper [5, p. 131]. O

For D = d* and Q = [A, B,C] € Qnp the geodesic Sg defined in (3.2) is still a
semi-circle for A # 0, but for Q@ = @, = [0, d, i] it is the half-line

SQuz{—%+it:t>O}.

In the case of @, the line Sg, shall be directed from —£ to ioo.
13



3.2. Salie sums. In Proposition 3.9, we rewrite the trace of P¥(z,¢) in terms of an
infinite series of Salie sums, which are defined by

R e ey

b (c), b2=dd’

for ¢ divisible by 4. The character x4 in (3.4) is defined as in Definition 1.2. In particular,

(3.5) Xa(—Q) = sign(d)xa(Q)-
Note that for any € > 0 the Salie sums are bounded in ¢ by
(3.6) Sm(d,d’;c) <. ¢ as ¢ — +oo.

Kohnen [20, Prop. 5] showed that the Salie sum (3.4) is equal to a linear combination
of the Kloosterman sums K}, (m,n;c) defined in (2.3).
2

Proposition 3.4 (Kohnen). Let m, d, d' be non-zero integers and k an even inte-
ger. Suppose further that (—l)gd is a fundamental discriminant, ¢ = 0 (mod 4), and
(—1)2d’ = 0,1 (mod 4). Then we have

E E (-1)2d n m2d , ¢
Sm((=1)2d, (=1)2d’;¢c) = Z < o > \/EK:;I <F7d;ﬁ> .
n|(m,c/4)

Remark 3.5. Together with the bound on Salie sums (3.6), this implies the Weil bound
for the modified Kloosterman sum K}, (d,d’;¢) <. c27 as ¢ — +oo for all € > 0.
2

3.3. The proof of Theorem 3.1 for D < 0.

Proposition 3.6. Assume that D = dd' < 0, where (—1)2d is a fundamental discrimi-
nant and (—1)2d’ = 0,1 (mod 4). Then

k

k k
Tr k p P? (Z S) = 2571|D’5/2 Z Sm((_1>2d7<_1>2d/;0)€74ﬂm@
(=D 2Zd(-1)zd T cs :
0<c=0(4N)
Proof. This is a calculation:
QelMQn,p
- Z Z X(_l)gd(Q)wéllm(y.zQ)se(mV.zQ)
QeM\@n,p ¥l \I'
= Z 2 X(_l)gd(Q)Im(Z"y~Q>se<mZ%Q)
QEF\QN,D ’YEFOO\F/FQ
= . X (_pyha(@Q)(Imzg)%e (mzq)
Qel'x\QnN, D
which by Lemma 3.2 yields the result. U

We will also need the following expressions for lowering resp. raising operators applied
to P¥(z,s).
14



Lemma 3.7.

(3.7) LYPE(z2,5) = %P&(Z, s), if k>0, and
|k/2|
(3.8) REPE (2, 5) = (—1)2 Z (47rm)lr(sr+<sl+_2/2)zﬂg(z, s+1)ifk <0.

1=0
Proof. We use the identities
L (y*"2e(mz)) = —(s — k'/2)y" ' 2e(mz2) forall k' eZ
and
R ("% 2e(mz)) = —(s — k' /2)y* ¥ Pe(mz) — drmy* ¥ 2e(mz) for all kK € Z.

By applying the identities to (2.8), we get the claim for Re(s) > 1. Uniqueness of the
analytic continuation yields the result for all complex s. U

The proof of Theorem 3.1 for D < 0. Assume that k£ > 0. After applying (3.7), we see
(=1)%|D|T(s) 0
) P
To—k2)  inbacnialm()
CDETE) puasen 51 Snl(CDF (C1)3d'0) g 12
= -— e c .
(s —k/2) s

k —
Tr(_l)%d7(_1)%dlpm(z,5) N

0<c=0(4N)

|D|
Using the first order approximation 6_47””@ =1+ 0(1/c), we get

(3.9)
5 Su((=1)2d, (-1)3d'30) _yr, 10 5 S ((—1)5d, (~1)5d'; ¢)

c? C T c?
0<c=0(4N) 0<c=0(4N)

with H;(s) holomorphic for Re(s) > 0 by (3.6). Applying Proposition 3.4 leads to the
claim (1) of Theorem 3.1 in the case k > 0.

+ Hl(S)

For k < 0 we arrive at (3.9) with the same argument as above, since for [ > 1 the terms
P%(z,s+1) in (3.8) are holomorphic in Re(s) > 0. O

3.4. Cycle integrals of Poincaré series. We will treat a slightly more general family
of Poincaré series. Let ¢ : R.g — R be a infinitely differentiable function such that
#(y) = O(y*=#/2+¢) as y — 0 for any ¢ > 0. Then the Poincaré series

(3.10) Pi(z,0) = ), ((y)e(mz)) vy
YL\
converges for any integer m. The following lemma is is a preliminary step in evaluating

cycle integrals of these Poincaré series.

Lemma 3.8. Let k be an even integer, d a fundamental discriminant and d" = 0,1
(mod 4). Let m > 0 be an integer.

(1) If sign(d) # (=1)*2 then Trqa P*(z,¢) = 0.
(2) Ifsign(d) = (—=1)¥2 and D = dd’' > 0 is not a square then

TraaPp(z,¢) = 2 Z X(—1)§d<Q)J e(mRe(z))¢(Im(z))Q(z,1)%(1@2«

To\Q% b 5Q

15



(3) Ifsign(d) = (—=1)¥2 and d = d’ then

Traa Pl (z,¢) = 2 Z X(_l)gd(Q)J e(mRe(z))gb(Im(z))Q(z,1)§sz

Too\Q% b 5Q

* Z X(_1)%d(Q> L e(mRe(2))p(Im(2))Q(z,1) 2 dg>.
Y0 ¢

Proof. The argument is standard. We only point out the need for the sign condition.
The group of automorphs I'g acts freely on I',;\I' on the right, and a direct calculation
shows that

f P (2, 6)Q(z 1) doz

_ f te(mRe(2))é(Im(12))Q(#, 1) dg>

YL \I'

= Y Y| e(mRe(2)o(Im(2))Q(z, 1) 2 dg-.

YeT\I'/Tg 7€l ¥7-Ca

Therefore

TuaPhao) = 3 Xy, (@ | elmRe()o(im(=) (1) 5oz

QL' \Qp g

Note that dz_q = —dgz and that Sp4 g ) and S[_4 _p,_c7 are the same semicircle with
opposite orientations, therefore

f e(mRe(2))p(Im(2))(-Q(z, 1)) 2d_gz = (=1)" J e(mRe(2))p(Im(2))Q(2, 1)2 dg>

0 5
by (3.5). O

Because of the lemma above, we will be interested in factorizing D into factors whose
sign is (—1)¥2. As in the deﬁnltlon of the Kohnen plus space, we will build this into the
notation, so that the distinction between k& = 0 or 2 (mod 4) becomes automatic.

Proposition 3.9. Let k be an even integer, d > 0 be such that (—1)§d 15 a fundamental
discriminant and (—1)2d’ = 0,1 (mod 4) such that D = dd' > 0. Let m > 0 be an
nteger.

(1) If D =dd’ is not a square then

k — Dk/A e 1\ E k 2v/dd'
Tr(f1)§d,( 1)'“d/Pm< ,¢) =D Z Sm((=1)2d, (=1)2d’;c)® <

0<c=0(4N)
with
3.11 O (1) = (it)2 | e (mtcosd H(tsin 0) (sin 0)*/>~ 12 4p.
(3.11) m

0
16



(2) If d =d', then

Ek k 2d
Tr(_l)%d,(_l)%dpfﬁ(z’@ — k2 Z Spn((— )2d,(—1)2d;c)<1>fn(_)

0<c=0(4N) ¢
+2(id)* G, (d)M(9) (k/2)
where M(9)(s) is the Mellin transform of ¢ and

i) = 3 (S e ()

() H
1s a Gauss sum.

Proof. The first claim follows easily from Lemmas 3.2 and 3.8 after parametrizing the
semicircle Sg by 6 € (0, 7) such that

b vdd' it if g > (),
i I/
TG_Z s ifa< O,

where Q = [a, b, c]; see, e.g., [9].
To prove case (2), i.e. D = d?, we use part (3) of Lemma 3.8. The sum

(3.12) 3 X @ | elmRel2)o(m(=)Q( Do
QET\Qy 42, SQ
Q(1,0)=0
_1)\k/2
runs over {£Q, : 0 < p < d} with @, = [0, d, ]. We have X(—1)§d(i[0’ d, p]) = ((UTd)
for (p,d) = 1. Thus, the sum (3.12) is equal to

) ( M) o RS DQ ) bl

- ((‘3”) fas )2 = 2 (d) i) M (0) (k/2)
(m,d)=1

g

3.5. The proof of Theorem 3.1 for D > 0. We now consider ¢(y) = y*~%/2e=2™ in
(3.10), so that Pk(z,¢) = P¥(z,s). Except for the holomorphic case s = k/2 (Proposi-
ton 3.11), the evaluation of the transform

J e (mt cos 0) ¢(t sin 0) (sin §)/>~1e%/2 4
0

is bypassed by the next lemma which allows us to express the main term contributing to

the residue of each pole of Pk (z, s) along the line Re(s) = 1.

Lemma 3.10. For Re(s) > 0, we have
OF (1) = ()t + O(t"™), ast — 0T,
where
7[(s)
cr(s) = (=12 I s T (s %
T (D




Proof. Using e(mtcos®) = 1+ O(mtcos®) and e~ 2"™sin0 = 1 + O(mtsinf), we get

dF (1) = it <J (sin 6)*~te*?/2dp + O(t)) :

0
The proof is finished with the integral formula (see [14, p. 485, 3.892(1)])

T ifrﬁ/2r(y)
B (sin )" = ik Re(v) > 0
e (sinx x STy ——, Re(v :
Jo 20T (M) T (5
Withuzsandﬂzg. O

With Lemma 3.10, we are set to prove Theorem 3.1.

Proof of Theorem 3.1 for D > 0. To prove (2), we use Proposition 3.9 and Lemma 3.10
to write

(3.13) S
T b nbaba(es) = al)D Y Sa((-1d (<1 >5d’;0><wc@) + Hals),

(-DEd(-nia” ™
0<c=0(4N)

where Hy(s) is a holomorphic function on Re(s) > 0.

Note that in the case of d = d’, the Mellin transform term (id)*2G* (d)M($)(k/2) is
holomorphic for Re(s) > 0 and is part of Hs(s).

With Proposition 3.4, we may rewrite equation (3.13) as

k s K+ m2d d/ )
k /4 (—1)2d 2+ dd M(”Q’
Tr( n5a,(— 1)2d’Pm(Z’S) = cx(s) DY Z( n ) ( n Z ) o512 +Hy(s)

nlm 0<c=0(4N)

by substituting ¢ — nc.

To prove (3) suppose that d,d’ < 0. By Proposition 3.9 for weight 2—k and —d, —d’ > 0
and Lemma 3.10 we get
(3.14)

T P —an® Y Sal-Did (-Die) <2m) L Hy(s),

c
0<c=0(4N)

where Hj(s) is a holomorphic function on Re(s) > 0. Once again, Proposition 3.4 gives
the claim. U

3.6. The holomorphic case. Evaluating Tr(—l)gd(—l)gd/PTI;(Z’ s) at the spectral point

s = £ > 1 reduces to considering ¢(y) = e=>™ in (3.10) so that P¥(z,¢) = Pk(z) =
2er, v €(m2) iy, the holomorphic Poincaré series of weight k. For completeness we give
the result in this case.

Proposition 3.11. Suppose that k > 2 and d,d > 0 with d # d' such that (—1)§d is a
fundamental discriminant and (—1)2d' = 0,1 (mod 4). We have

k
T sagnsalm()
v T(k/2)Diti Sp((=1)2d, (—1)2d'; c) Arm/D
= ()= E_q Z NG J% e
2272mir mRT o Shy
_ I(k/2)Diti 3 (—1)2d 3 lK;j (de d,_c) e (47rmm/b)
—1 +1 9 9 k=2 .
25 3m'z w2} nm n 0<e=0(an) € % n? ’ ¢
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If d = d', we get the additional term (id)§(47rm)’§f‘(k/2) on the right hand side.

Proof. Suppose that D = dd’ is not a square. By Lemma 3.8, we get

k —
Tr( D8 a— 1)2d’Pm( z) =2 Z X<y
QeT'x\QF b

[SES

(@ L e(m2)Q(z,1)2dgz.

After the change of variable z — % for Q = [A, B, C], one needs to evaluate

k l

I (0 g_§> 1y <_1>57T§1 (k/2) (f ") " <mf) |

t\)\?s‘

which readily yields the claim for D not being a square. The case when D is a square
can be dealt with in the same fashion as in the proof of Proposition 3.9. U

Remark 3.12. Proposition 3.11 is also valid in weight & = 2 when P2Z(z) is defined by
Hecke’s convergence trick.

4. THE PROOF OF THE GENERALIZED KATOK-SARNAK FORMULA

The goal of this section is to prove Theorem 1.4. Let m > 0 and let d,d" be integers
such that (—1)2d is a fundamental discriminant and (—=1)2d’ = 0,1 (mod 4). To get to
the traces of Maass cusp forms we will use Proposition 2.6, and Theorem 3.1 but we start
by noting the shift in the spectral point to 5 + i on the right hand side of Theorem 3.1;
see [10, p. 982].

Lemma 4.1. For integers m,n, we have

ir
2 2

s 1
Ress:%HTZ% (m,n; 5t 4) =4 Res,_1_: Z%(m,n; s).

Next, we calculate the residue of the twisted trace of the Selberg Poincaré series ex-
plicitly in terms of half integral weight coefficients. To this end, we use Theorem 3.1,
Lemma 4.1, and Proposition 2.5 for dd’ < 0 and obtain

(4.1)
k
Sie—&-sirTr(*l)%d( )’Sdrpm(z 5)
k+1 . .
|D| ( —l-m“) (—1)5d 1 2
B — Res 77 L d-
9-1/2—ir] (5 —l—ir—g) mzm n nl/2+ir :éis’; k+1 TR ;S
(nN)7—1

~ 6(=D)WAL/[D[(4mm) =T (2ir) (=Dzd\ 4oy m*d :
B 2[1“(5—%27’—%) qum ( ) / Zb( )bw(d)

(TL,N):].
with v running over an orthonormal basis of U} kg (% + %) .

Similarly for d,d > 0, we have
19



:( 1)'f/287er“ 30 (4 +4r) 3 (D) 1 . (m_2d d,.s)
N I RN FEis T
(n,N)=1

_ SEDM I Dl i) 5 <( 5 ) b ( e @)

2%1—‘ (% +ar — g) nlm,

(n,N)=1

Finally, for both d,d < 0, since Tr( Dia (- 1)QUZ,PffL(z s) vanishes, we look at the trace
of P27%(2,5) to get some information about 2o by (de)b¢ (d') for ¢ € U,c+1 AN (2+19).

2
We then have

(4.3)
Res Tr 2 2k P2F(z)5)
s=itir  (F1)7Z (=d) (=) (=d) ™

1

(08
N
S
.
s
’1%
—~
N
+
-~
=
[
Y
=
SES

nlm,
(n,N)=1

d 1 2d
) - Res ZZ_H (m_27d/;3)
n n2+ s_,_,_w n

=6(—1)lk/4j\/ﬁ(<4ﬂml_i:k; rom y, <( v ) ot b ("5 oo @0,

%—i—zr—g) F(%—i—zr—i—%)

n|m,
(n,N)=1

where 9 runs over an orthonormal basis of U, kg (l + %)

On the other hand, we can use Proposition 2.6 in (4.1), (4.2) and Proposition 2.10 in
(4.3) to calculate the residue of the traces of the Poincaré series. When combined with
the Shimura relation (1.10), this proves the following Proposition.

Proposition 4.2. Let d,d' be integers such that (—1)§d is a fundamental discriminant
and (=1)2d' = 0,1 (mod 4). We have
(1) for dd < 0:

k/4 \/WZ b¢<¢ > Shimg(¥)(z) = QIZTI D l)gd,(@ o2) )

(2) ford,d > 0:

( k/4 NZ b¢<w Y,ZJ> )Sh = Qk/QZTr k k ,((p) SO(Z) s

(3) ford,d <0:

6(— 1)l NZ by (d)

belDbuld) ) (2) = 2 G .

20
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%—I—i—r) and

where Y and @ run over a basis of normalized Hecke eigenforms of U}, , AN (
2

Uk, N (% + ir) respectively.

Note that one does not need to know in advance that Shimg(¢) as defined for i) €

U:H 4N( s) in (1.11) is a Maass cusp form. Similarly to Biro’s work [5, p. 129] our

approach establishes this fact as a byproduct of Proposition 4.2.

Proof of Theorem 1.4. We now collect everything to prove our generalization of the Katok-
Sarnak formula in Theorem 1.4.
For any normalized newform ¢ € U} k1

(8 + l), we have Shim,(v) € U n(5).

AN 4

Since the Hecke operators commute Wlth the Shimura lift, the Maass cusp form Shimg(v))
has the same eigenvalue as an integral weight Maass form ¢ € Uy n. If ¢ is a normalized
even newform, we must have Shimy(1)(z) = ¢(z) by matching their first Fourier coeffi-

cient. Hence, after applying the projection onto the space U Eivlv ZN (S + l) , We may write

1
the equations in Proposition 4.2 as for d,d’ > 0 or dd' < 0

(4.4)
by (d)by(d o [2ym, dd <o,
|k/4] ’ AN A ANA _r
R YD Yy e 5 0= LT hacnte D7 o {2% 40,
and for d,d <0
y , by(d)by(d) Y
(5) 6CDWIVAE), D, FoEE—e =227 s ) s

® Shimy(y)=¢ 4

where 1) runs over a basis of normalized newforms of U ﬂ’ZN (% + }L) .
2 b

Since the ¢’s form a basis, this proves Theorem 1.4 in the non-holomorphic case.

To show the theorem in the holomorphic case, i.e. when ¢ has spectral point s = g > 1,
let Pk(2) = Pk(2,k/2) be the holomorphic Poincaré series of weight k. Assume that
d,d > 0; the other cases are trivial. We have

k . k
Tr( D84 nsa (P (2)) _fzS: (P, ,f>Tr 1)5d,(— 1)%d’(f)
SoY

and
k+1

(4.6) Py = S (P 9hg(2).
geS+

k+1

- we may match the Fourier coefficients in (4.6) with

(_1)%“_1)%({,(3’;) in section 3.6. Finally, as the inner products of
Poincaré series are equal to Fourier coefficients of holomorphic modular forms, the same
argument as in the non-holomorphic case yields the claim. U

Using Proposition 2.4 at s =
the expression for Tr

5. FOURIER COEFFICIENTS OF MAASS CusP FORMS AS L-VALUES

The coefficients of half-integral weight forms are closely related to the values of L-
functions. In this section, we investigate the central value of the twisted L-function

(5.1) Lip, d,w) = (ﬂ) Jfwa/Q (d, N) =

n

n=1
for a normalized newform ¢ € Uy y(5).
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Note that for £ > 0 and ¢ € Us_ y(s) even and normalized, we have

L(fQ—kQO7d7 w) - _(4W)k_1%

by Lemma 2.9 and (1.8). Hence, we may restrict to non-negative weights, as the twisted
L-functions of Maass cusp forms of negative weights reduce to that case.

We can get the L-function for an even normalized Maass form of weight &£ > 0 from
Theorem 1.4 through a Mellin transform. The following integral was first solved by
Duke, Friedlander, and Iwaniec [8, Lemma 8.2] (there’s a typo in the orginial version,
see Young’s paper [35, Sec. 12] for the correct evaluation). We present an alternative
proof in our special case, which has the advantage of making the evaluation of the Mellin
transform explicit instead of relying on a recursively defined polynomial.

Ly, d, )

Lemma 5.1. Let k = 0 be an even integer and s # i%. The Mellin-transform

52w - [ (W CoR R, w) Y

0

1 s k 1—-s &k

N I'(s+k/2)
Ui (s) = L (W{;,S—;(y) * WW_%S_

With this notation we have
\I/Jr
\I/k(8> — li(s)a k
\I]k (S)a k

Consider the generating series »),” (U3, (s)%. We use the identities (see [26, Sec.
7.3.4])

E

takes the values

[NIES

0 (mod 4),
2 (mod 4).

n

o
zy Y x
e2(+z) WO,s—% (1 n x) = Z Wn,s_%(y)ﬁ
n=0 ’

and
n

0
__ay Yy I'(s+n) x
20+ W, 1 = —W 1 —.
c 0:5=3 (1 + x) nz_;) ['(s—n) _"’8_§<y) n!

With these the generating series becomes

0

2 \P;”(S)Z_T - LOO g (Wn,s;(y) + %Wm;(y)) Z—T%y

= J WO s—%(y/(l + ZE)) <em + 6_m> i
’ | Yy

This gives

0 0

n zy zy dy
N s (s) :JW s (* W)—
2 2n(8) ) 051 (€7 +e »

© :L,Qn 0
2y =y, dy.
T;) (271)' 92n L Y O,s—%(y) Y

We also see here that ¥} (s) = 0 for k =2 (mod 4).
22



The Whittaker function Wo,sfé(y) is a modified Bessel-function of second kind K 1

namely
)
0 =2y /LK )

The integral of the K-Bessel function is well-known and evaluates to

F YW,y (y) = —=2%h F K (y)dy
0 573 VT 0 2

2\; <S+n>F<1;S+n).

Hence, for £k = 0 (mod 4), we get the desired result. The same argument for the
generating series ¥, W3 (s)Z; yields the result for the case k = 2 (mod 4). O

Remark 5.2. Our proof also shows that

© L e k/zw 1 @=
J (W S—§(y) ( ].) F(S_k/Q)W_Z,s—Q(y>> y 0

0

for all kK = 0.

The following Corollary is a generalization of a result of Baruch and Mao [3, Thm. 1.4]
to higher weights.

Corollary 5.3. Let k be an even non- negatz've integer, let v € Ug n(s) be an even nor-
malized newform with spectral point s # £ 5, and let d be a fundamental discriminant with

(=1)2d > 0 and (d,N) = 1. Suppose that for all m|N, its eigenvalues w,, under the
Atkin-Lehner involution W, are equal to (%) Let

Z bT/J 47T’n‘y TI/Vsign(n)u,
n#0

be akMaass cusp form of weight % such that Shimg,(v) = ¢ and by(n) # 0 only if
(=1)2n=0,1 (mod 4). Then:

|b¢(!d!)|2:2y(m’d!k21r(§ §>F<g ﬁ)L(%d,l/?)
b area )T TE) T

9

where v(N) is the number of distinct prime factors of N.

Proof. Let d = d’ in Theorem 1.4 with (—1)*2d > 0. We then have
6a(—1) > by ()P = 272 Traa(e).
Shimg()=¢
We may now evaluate the trace on the right hand side as
k
Traae) = 3 2 xalWalondosl) | o) (W@)(z Do, o,
Win.Cq,,

w(d) m| D
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by Lemma 3.3 and since xq4(W,,,.[0,d, u]) = (Z) (£) we have

) = 3 2( ) () LQ (@) (2 1) dzq, —

d) m|N u
2 Y <§> LQ P(2)(Qu)(2,1)2dzq,

pn(d) a

Now the Fourier expansion of ¢ leads to

d k
(9] eer@ie i, -
wa) N/ I,
k_q —2ming
d> ‘d‘/L? ( ) J ;) 47_‘,‘”’ k/g mgn(n)% 37%(47T|n’t)6 d? =

dz1d| 12 d\ ay(n) [* dt
(471')’“/2 v (—_1) Z (;) |n|k/2J Wsign(n)%,'s‘—%(t)7'

Here we used the evaluation of the Gauss sum
SOEERITNT
u@) N d -1 "
Finally the the condition (—1)¥2d > 0 gives (-+) = (—1)*/? <| ‘> for n > 0. Combining
this with the fact that a,(—n) = 24 (n) for n > 0, if § # k/2 gives

(s—H/2) %
k+1 I_k/4J d
_ e ldl 2 (=1) ap(n) (d
Trd,d(sp) =2 (47T)k/2 \I[k(s) nZ>0 nk/g n

where the Mellin transform Wy (s) is defined in (5.2). The evaluation in Lemma 5.1 then
finishes the proof except when s = % Since in that case a,(n) = 0 for n < 0, one sees

casily that W, (k/2) = 25T(k/2), which recovers Kohnen’s result in the holomorphic case
20, Cor. 1]. O

Remark 5.4. The proof of Corollary 5.3 together with Remark 5.2 shows that Try 4(¢) = 0
for ¢ being an odd Maass cusp form (as the Fourier coefficients of an odd Maass cusp

form ¢ satisfy a,(—n) = —?Ei:gg ay(n) for n > 0).

Finally, Corollary 5.3 can be used to prove nonnegativity of twisted L-functions of
Maass cusp forms at the central value.

Corollary 5.5. Let k be an even non-negative integer, let o € Uy n(s) be an even nor-

malized newform, and let d be a fundamental discriminant such that (—1)k/2d > 0 and
(d,N) =1. Then L(p,d,1/2) =0

Proof. This follows from Corollary 1.8 and T'(x + iy)['(z — iy) = |T'(z + iy)|*. O
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