
THE KATOK-SARNAK FORMULA FOR HIGHER WEIGHTS

Ö. IMAMOĞLU, A. LÄGELER, Á. TÓTH

Abstract. We prove a Katok-Sarnak type formula for Maass forms of even weight k
and odd level N ě 1 that includes and extends the results of Waldspurger, Kohnen-
Zagier, Katok-Sarnak, Baruch-Mao, and Biró.

1. Introduction

The goal of this note is to prove an extension of the Katok-Sarnak formula along the
lines given in [10] for the case of weight zero and non-square discriminant. Our main
theorem, Theorem 1.4, includes, extends and reproves theorems of Waldspurger [33, 34],
Kohnen-Zagier [20, 19], Katok-Sarnak [16], Baruch-Mao [3], and Biró [5].

These results relate the Fourier coefficients of half-integral weight modular forms and
certain cycle integrals (integrals along closed geodesics) of their Shimura lift.

To explicitly state the above mentioned results and our theorem we will first introduce
notation and normalizations for the automorphy factor, spectral parameters, Fourier
expansions and cycle integrals that will be fixed throughout the paper.

1.1. Basic notation.

Definition 1.1. A Maass cusp form of weight k P 2Z for the group Γ “ Γ0pNq with
N ě 1 is a real-analytic function ϕ : H Ñ C such that

(1) ∆kϕ “ λϕ for a λ P C, where ∆k “ ´y
2pB2

x`B
2
yq` ikypBx` iByq is the hyperbolic

Laplace-Beltrami operator,

(2) ϕ|kγ “ pcz ` dq
´kϕ

`

az`b
cz`d

˘

“ ϕpzq for all γ “
´

a b
c d

¯

P Γ,

(3)

ż

ΓzH

|ϕpzq|2
dxdy

y2
ă 8,

(4)

ż 1

0

pϕ|kσaqpx ` iyqdx “ 0 for all y ą 0, where for each cusp a of Γ the matrix

σa P SL2pRq is such that σa.a “ i8.

We will write the eigenvalue of a Maass cusp form ϕ as λ “ ps´ k{2qp1´ k{2´ sq for
an s P C and call s the spectral point of ϕ. Maass cusp forms with the same spectral
point form a finite-dimensional vector-space, which we denote by Uk,Npsq.

The Laplacian ∆k can be written either in terms of the ξ-operator

(1.1) ∆k “ ´ξ2´k ˝ ξk, where ξk “ 2iyk
B

Bz
,

or in terms of raising and lowering operators
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(1.2) ∆k “ Lk`2Rk ´ k “ Rk´2Lk,

where

(1.3) Lk “ 2iy2
Bz and Rk “

k

y
` 2iBz.

Clearly, ξkf “ 0 if and only if f is holomorphic and hence holomorphic cusp forms are
Maass cusp forms.

By Stokes’ theorem, for any ϕ1, ϕ2 P Uk,Npsq we have

(1.4) x∆kϕ1, ϕ2y “ xξkϕ1, ξkϕ2y,

where

(1.5) xϕ1, ϕ2y “

ż

ΓzH

ϕ1pzqϕ2pzqy
k´2dxdy.

Since x¨, ¨y is Hermitian, the eigenvalue of a Maass cusp form is always real. Since
xξkϕ, ξkϕy ą 0 if and only if ξkϕ is not identically zero, the space of holomorphic cusp
forms Sk,N is, in fact, equal to the space Uk,Npk{2q.

The eigenvalue λ being real means that the imaginary part of ps ´ k{2qp1 ´ k{2 ´ sq
must vanish for every spectral point s P C with Ukpsq ‰ t0u. This translates to s “ 1

2
` ir

for an r P R or to s being real. The non-zero eigenvalues of the latter form constitute
the exceptional spectrum.

Similarly, we define half integral weight modular forms with the θ-multiplier. For
κ P 1

2
Z we write

(1.6) ψ|κγ “ jpγ, zq´2κψpγzq

where jpγ, zq “ θpγ.zq
θpzq

. For γ “
´

a b
c d

¯

P Γ0p4Nq, the cocycle is given by

jpγ, zq “ ε´1
a

´ c

a

¯

pcz ` dq
1
2

with

εa “

#

1, if a ” 1 pmod 4q,

i, if a ” 3 pmod 4q,

and the square root is defined by the canonical branch of the complex logarithm.
The space Uκ,4Npsq consist of functions that satisfy (1), (3) and (4) of Definition 1.1

(with κ instead of k) and where (2) is replaced by (1.6).

1.2. The Shimura correspondence. It is easily seen that any ϕ P Uk,Npsq has a
Fourier-expansion given by

(1.7) ϕpzq “
ÿ

n‰0

aϕpnqp4π|n|yq
´ k

2Wsignpnq k
2
,s´ 1

2
p4π|n|yqepnxq, aϕpnq P C.

Here Wν,µpyq is the W -Whittaker function [4, Ch. 6.7], which is exponentially decaying
as y Ñ `8, hence the same remains true for ϕpzq.

There is a Hecke and Atkin-Lehner theory [1] on Uk,Npsq for all s P C as there is one
on Sk,N “ Uk,Npk{2q and hence there exists a basis of simultaneous eigenforms for all
Hecke operators Tkpnq with pn,Nq “ 1. If ϕ is a newform, we have ap1q ‰ 0, and we may
normalize ϕ to have ap1q “ 1; such a form will be called Hecke-normalized. The linear
map X : ϕpzq Ñ ykϕp´zq is a map Uk,Npsq Ñ U´k,Npsq. Supposing that k ą 0, we may
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first apply the lowering operators L2´k ˝Lk´4 ˝ ¨ ¨ ¨ ˝Lk and then apply X so that we get
an involution Uk,Npsq Ñ Uk,Npsq, which commutes with the Laplacian ∆k. Similarly, we
use raising operators for weight k ă 0. As the map is an involution, it has eigenvalue
˘1. We call Maass cusp forms with eigenvalue `1 even Maass forms (and forms with
eigenvalue ´1 odd forms). The Fourier coefficients of any even form ϕpzq of weight k
satisfy

(1.8) aϕp´nq “
Γps` k{2q

Γps´ k{2q
aϕpnq

with n ą 0; see [8, Sec. 4] for more details.

For convenience the Fourier coefficients of half integral weight Maass cusp form ψ P
Uκ,4Npsq will be designated by bψpnq, so that we have

(1.9) ψpzq “
ÿ

n‰0

bψpnqp4π|n|yq
´κ

2Wsignpnqκ
2
,s´ 1

2
p4π|n|yqepnxq.

The celebrated work of Shimura [31] gives a Hecke theory and a correspondence between
half integral weight forms and integral weight forms in the holomorphic case, and this
extends to Maass cusp forms; see [12], [21], [29], and [25].

For k an even integer, ψ P U k`1
2
,4Npsq a Hecke eigenform, and p´1q

k
2 d a fundamental

discriminant, we define the Shimura lift of ψ as follows. For m ą 0 let

(1.10)
ÿ

n|m,
pn,Nq“1

nk{2´1

˜

p´1q
k
2 d

n

¸

bψ

ˆ

m2d

n2

˙

“ apmqbψpdq.

and extend this to m ă 0 by (1.8). By Hecke theory the apnq are well defined and we let

(1.11) Shimdpψq “
ÿ

n‰0

apnqp4π|n|yq´
k
2Wsignpnq k

2
,s´ 1

2
p4π|n|yqepnxq.

The function Shimdpψq is a Maass cusp form of weight k [12]. This is the non-
holomorphic analogue of Shimura’s original result [31].

Generally, we will restrict Shimd to the Kohnen plus space

(1.12) U`k`1
2
,4N
psq “

!

ψpzq P U k`1
2
,4Npsq : bψpnq ‰ 0 only if p´1q

k
2n ” 0, 1 pmod 4q

)

.

when we have
Shimd : U`k`1

2
,4N
psq Ñ Uk,Np2s´ 1q.

1.3. The Katok-Sarnak formula. It was first shown by Shintani [32] that we may
view the Fourier coefficients of a half-integral weight Maass cusp form in terms of traces
of its image under the Shimura lift (this is not a precise statement, as the Shimura
correspondence is not generally known to be an isomorphism). This idea lead to formulas
for the central value of certain automorphic L-functions, a question with a long and rich
history, with many applications, see for example [6, 7, 23, 27, 28].

The Shimura-Shintani [31, 32] correspondence allows one to express the central L-value
of an even weight holomorphic modular form in terms of Fourier coefficients of its half
integral weight correspondent. Waldspurger [33, 34] was the first to establish such a
relation which was then made explicit by Kohnen and Zagier [19].

The method applied by Shintani to prove his result was based on a theta-correspondence.
In the setting of non-holomorphic modular forms, this idea was originally introduced by
Maass [25] . The methods in [25] were later explicated and further developed by Katok
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and Sarnak in [16]. The main result of [16] is the analog1 of the results of Waldspurger
and Kohnen-Zagier in the case of weight zero Maass forms for SL2pZq. To state the
Katok-Sarnak formula we will briefly define the traces alluded above (see section 3.1 for
further details.)

Let QN,D be the set of integral binary quadratic forms Qpx, yq “ rA,B,Cs “ Ax2 `

Bxy ` Cy2 of discriminant D ą 0 such that N |A, whereas for D ă 0, we restrict QN,D

to the set of positive definite binary forms Qpx, yq with N |A. The forms Q P QN,D are
acted on as usual by Γ, resulting in finitely many classes ΓzQN,D.

For Q P QN,D and D ă 0, let zQ be the root of Qpz, 1q “ 0 in H and for D ą 0, let SQ
be the associated geodesic in H and CQ “ ΓQzSQ, where ΓQ is the group of automorphs
of Q. The geodesic associated to a binary quadratic form of square discriminant is non-
compact.

Definition 1.2. Let d be a fundamental discriminant and d1 ” 0, 1 pmod 4q. For dd1 ą 0
the twisted trace of an automorphic function ϕ : H Ñ C of weight k P 2Z for Γ is defined
by

Trd,d1pϕq “
ÿ

QPΓzQN,dd1

χdpQq

ż

CQ

ϕpzqQpz, 1qk{2
?
dd1dz

Qpz, 1q
,

whenever the integral converges. The character χd is the genus character given by

χdprA,B,Csq “

#

`

d
r

˘

, if pA,B,C, dq “ 1, Q represents r, and pr, dq “ 1;

0, if pA,B,C, dq ą 1.

Note that when restricted to SQ the holomorphic differential form
?
dd1dz{Qpz, 1q sim-

ply becomes arc length measure.

Definition 1.3. Let d be a fundamental discriminant and d1 ” 0, 1 pmod 4q. For dd1 ă 0,
the twisted trace of an automorphic function f of weight k P 2Z for Γ is defined for k ě 0
by

Trd,d1pfq “ |dd
1
|
k
4

ÿ

QPΓzQN,dd1

χdpQqω
´1
Q LkkfpzQq

and for k ă 0 by

Trd,d1pfq “ |dd
1
|
k
4

ÿ

QPΓzQN,dd1

χdpQqω
´1
Q R´kk fpzQq

Here ωQ “ |ΓQ| and for n ě 1, we set L2n
k “ Lk´2nLk´2n`2 ¨ ¨ ¨Lk´2Lk and R2n

k “

Rk`2nRk`2n´2 ¨ ¨ ¨Rk`2Rk. The character χd is defined as in Definition 1.2.

Theorem (Katok-Sarnak [16]). Let ϕ be an even Maas cusp form in U “ U0,1 then

(1.13) 6
a

|d|
ÿ

ψ

bψp1qbψpdq

xψ, ψy
“ xϕ, ϕy´1

¨

#

2
?
πTrd,1pϕq, if d ă 0,

Trd,1pϕq, if d ą 0.

where ψ runs over an orthogonal basis of the preimage of ϕ under Shim1.

1For this reason these results are sometimes referred to in the literature as formulas of Waldspurger
or Kohnen-Zagier type.
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To see the relation of this result to the central L-values note that when d “ 1 the sum
in the Trpϕq on the right hand side of (1.13) has only one form xy, and the corresponding
cycle is the geodesic r0, i8s. This gives

6
a

|d|
ÿ

ψ

bψp1qbψpdq

xψ, ψy
“

1

xϕ, ϕ ą

ż 8

0

ϕpiyq
dy

y
.

Hence in this case the right hand side of (1.13) can be written in terms of the central L-
value Lpϕ, 1{2q of Lpϕ,wq “

ř8

n“1 aϕpnq{n
w´1{2. As a corollary one obtains the following

non-negativity result.

Theorem (Katok-Sarnak). If ϕ is a Hecke normalized even Maass form in U then

Lpϕ, 1{2q ě 0

1.4. The main result of the paper. The results of Katok-Sarnak are generalized to
higher levels by Baruch-Mao [3] and Biró [5], using different methods. Our main theorem
includes, extends and reproves theorems of Waldspurger [33, 34], Kohnen-Zagier [19, 20],
Katok-Sarnak [16], Baruch-Mao [3] and Biró [5].

Theorem 1.4. Let k be an even integer, N ě 1 odd and ϕ P Uk,Npsq be an even normal-

ized newform with Repsq ą 0. Let d, d1 be a pair of integers such that p´1q
k
2 d, p´1q

k
2 d1 ”

0, 1 pmod 4q and p´1q
k
2 d is a fundamental discriminant. Then we have

(1.14)

6p´1qtk{4u
a

|D|
ÿ

Shimdpψq“ϕ

bψpdqbψpd
1q

xψ, ψy
“ xϕ, ϕy´1

¨

$

’

’

&

’

’

%

2
?
π Tr

p´1q
k
2 d,p´1q

k
2 d1
pϕq, if dd1 ă 0,

2k{2Tr
p´1q

k
2 d,p´1q

k
2 d1
pϕq, if d, d1 ą 0,

21´k{2Tr
p´1q

k
2 d,p´1q

k
2 d1
pξkϕq, if d, d1 ă 0,

where
ř

Shimdpψq“ϕ
means that ψ runs over an orthogonal basis in U`k,N

`

s
2
` 1

4

˘

of the
preimage of ϕ under Shimd.

Remark 1.5. The results of [16, 3, 5] do not include the case of d, d1 ă 0. The extension to
the case of both discriminants d, d1 ă 0 was first done in [10] only in the case of weight 0
and dd1 not a square. Hence Theorem 1.4 generalizes and extends all the previous results
of this type.

Remark 1.6. Note that if ϕ is a holomorphic cusp form of weight k ą 0, then Lkkϕ “ 0
and ξkϕ “ 0. Hence if at least one of d, d1 is negative then both sides of the identity
(1.14) are zero (as the negative Fourier coefficients of ψ vanish).

Remark 1.7. The Fourier coefficients in equation (1.14) are as in (1.9) and so agree with
the usual Fourier coefficients in the holomorphic case. For holomorphic forms the case
d, d1 ą 0 was first proved by Kohnen [20, Thm. 3], where the constant differs from ours
by 6

?
D. This comes from our normalization for the inner product which leads to a factor

|Γ0pNq : Γ0p4Nq| “ 6, and that we have an additional factor of
?
D in our definition of

the trace to match the arc length integrals in [16].

The following Corollary is a generalization of a result of Baruch and Mao [3, Thm. 1.4]
to higher weights.

Corollary 1.8. Let k be an even non-negative integer, let ϕ P Uk,Npsq be an even nor-
malized newform with spectral point s ‰ k

2
, and let d be a fundamental discriminant with
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p´1q
k
2 d ą 0 and pd,Nq “ 1. Suppose that for all m}N , its eigenvalues wm under the

Atkin-Lehner involution Wm are equal to
`

d
m

˘

. Then

6
ÿ

Shimdpψq“ϕ

|bψp|d|q|
2

xψ, ψy
“

2νpNq|d|
k´1
2

p4πqk{2
?
π

Γ

ˆ

s

2
`
k

2

˙

Γ

ˆ

1´ s

2
`
k

2

˙

L pϕ, d, 1{2q

xϕ, ϕy
,

where νpNq is the number of distinct prime factors of N and where Lpϕ, d, 1{2q is defined
by (5.1).

Finally we should mention that there are other generalizations of the results of Wald-
spurger and Kohnen-Zagier. They are too numerous to list here but we mention the
papers of Khuri-Makdisi [17] and Kojima [22, 24] for generalizations to the case of num-
ber fields.

1.5. The method of proof. In this paper we use spectral methods similar to the ones
employed by Duke, Imamoğlu, and Tóth [10]. Our main result, Theorem 1.4, relates
traces of integral weight cusp forms to the products of half integral weight Fourier coeffi-
cients. The proof uses an idea that goes back to Selberg [30] (see also [13] for a spectacular
application). Roughly speaking our method involves proving identities for cycle integrals
of Poincaré series, built from some test function φs, that are dependent on the spectral
parameter s. The cycle integrals are then expressible in terms of sums of terms of the form
Kpm,n; cqFspmn{c

2q, where Kpm,n; cq are certain Kloosterman sums. These expressions
will have poles at spectral points that may be exploited to prove various identities. The
function Fs is a complicated integral transform of φs and we replace them with their first
order approximations which makes the arguments elementary. This is one of the main
technique used in our proof. The other input we need involves the choice of the Poincaré
series.

The main tool in [10] was Niebur Poincaré series. These series are eigenfunctions of the
Laplacian and appear as Fourier coefficients of the resolvent kernel of ∆k; see [11]. They
have the disadvantage of being of exponential growth at the cusp and non-integrable over
the non-compact geodesics corresponding to square discriminants.

To circumvent this problem, we work instead with Selberg Poincaré series, which do
not have these convergence problems. The use of both Niebur and Selberg Poincaré series
is based on the fact that they have poles at spectral points with residues giving cuspidal
Maass forms. The Selberg Poincaré series are not eigenfunctions of the Laplacian but
have better analytical properties.

1.6. Outline of the paper. The main steps in the proof of Theorem 1.4 and the struc-
ture of the paper is as follows.

In the next section we start reviewing some standard results from spectral theory.
We use them to get to Maass cusp forms through the residues of Selberg and Niebur
Poincaré series. The needed spectral theory results are reviewed in Propostions 2.3 and
2.6. By going one step further and looking at the Fourier coefficients of the Poincaré
series one can write the residues of Kloosterman zeta function in terms of products of
Fourier coefficients of cusp forms. This is the content of Proposition 2.5.

The next ingredient in the proof of Theorem 1.4, which is also the main technical result
of the paper, is Theorem 3.1. This theorem which relates the traces of Selberg Poincaré
series to Kloosterman zeta functions together with other results about the cycle integrals
are given in Section 3.

In Section 4 we start by proving an averaged version of our main theorem in Proposition
4.2. This proposition follows by taking residues on both sides of the identities for traces of
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Selberg Poincaré series given in Theorem 3.1 together with the Shimura relations (1.10)
and the spectral result in Proposition 2.5. The proof of Theorem 1.4 is then finished by
use of some linear algebra.

Finally in Section 5, the main theorem is applied in the case of square discriminants to
relate L-values of integral weight forms to the squares of half integral weight coefficients.

We would like to thank ETH Zurich, and the Renyi Institute Budapest for supporting
our joint research and an anonymous referee for a number of helpful suggestions.

2. Poincaré series

In this section, we collect some facts about Selberg and Niebur Poincaré series. Most of
these are well documented in the literature but this allows us to fix some normalizations.

2.1. The Niebur Poincaré series. Let κ be an integer or half an odd integer, Γ “

Γ0pNq, where

Γ0pNq “

"ˆ

a b
c d

˙

P Γ : c ” 0 pmod Nq

*

and let Γ8 denote the stabilizer of i8.
The Poincaré series of the Niebur type for m ‰ 0 is defined by

(2.1) F κ
mpz, sq “ ´

Γ
`

s´ signpmqκ
2

˘

4π|m|Γp2sq

ÿ

γPΓ8zΓ

py´
κ
2Msignpmqκ

2
,s´ 1

2
p4π|m|yqepmxq|κγq,

where Mµ,νpyq is the M -Whittaker function [4, Ch. 6.7]. Since [4, 6.1.2, 6.7.2]

(2.2) Mµ,νpyq “ yν`1{2
p1`Opyqq, y Ñ 0,

the Poincaré series F κ
mpz, sq is absolutely convergent for Repsq ą 1.

Remark 2.1. With our normalization, the Niebur Poincaré series F κ
mpz, sq is an eigenfunc-

tion of the Laplacian ∆κ with eigenvalue ps´κ{2qp1´κ{2´ sq. One should compare our
definition with the normalization given in Fay [11], which is y

κ
2F κ

mpz, sq in our notation.
More generally, an eigenfunction fpzq with eigenvalue sp1 ´ sq of the Laplacian ´Dκ in
Fay’s paper yields an eigenfunction y´

κ
2 fpzq of ∆κ with eigenvalue ps´κ{2qp1´κ{2´ sq

and vice versa.

It follows from [11, Thm. 3.4] that the Niebur Poincaré series F κ
mpz, sq has the following

Fourier expansion

Proposition 2.2. Let m be a nonzero integer and Repsq ą 1. We have

F κ
mpz, sq “ ´

Γ
`

s´ signpmqκ
2

˘

4π|m|Γ p2sq
y´

κ
2Msignpmqκ

2
,s´ 1

2
p4π|m|yqepmxq

´
ÿ

nPZ

e´πi
κ
2

2
a

|mn|

Γ
`

s´ signpmqκ
2

˘

Γ
`

s` signpnqκ
2

˘ Lκm,npsqy
´κ

2Wsignpmqκ
2
,s´ 1

2
p4π|n|yqepnxq,

where

Lκm,npsq “

$

’

’

’

’

&

’

’

’

’

%

ř

0ăc”0pNq
Kκpm,n;cq

c
J2s´1

ˆ

4π
?
|mn|

c

˙

if signpmnq ą 0,
ř

0ăc”0pNq
Kκpm,n;cq

c2s
if n “ 0,

ř

0ăc”0pNq
Kκpm,n;cq

c
I2s´1

ˆ

4π
?
|mn|

c

˙

if signpmnq ă 0,
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where

Kκpm,n; cq “

#

ř

apcq˚ e
`

ma`na
c

˘

if κ P Z,
ř

apcq˚ ε
2κ
a

`

c
a

˘2κ
e
`

ma`na
c

˘

if κ P 1
2
Z,

is the Kloosterman sum, which runs over all a modulo c for which an integer a exists
such that aa ” 1 pmod cq, and the functions Iνpxq, and Jνpxq are the Bessel-functions of
the first kind.

From the theory of the resolvent kernel one knows that F κ
mpz, sq has an analytic con-

tinuation to all of s P C as long as ps´ κ{2qp1´ κ{2´ sq does not lie in the spectrum of
the operator ∆κ and that F κ

mpz, sq has poles at spectral points of Maass cusp forms with
the residue given in terms of their Fourier coefficients [11, Cor. 3.6]. More precisely, we
have the following proposition.

Proposition 2.3. Let m ‰ 0. The Niebur Poincaré series F κ
mpz, sq has poles at the

spectral points s “ 1
2
` ir and

Ress“ 1
2
`irp2s´ 1qF κ

mpz, sq “ ´p4π|m|q
´k{2

ÿ

ϕ

aϕpmq

xϕ, ϕy
ϕpzq,

where the sum goes over a basis of Hecke eigenforms ϕ of the subspace Uκ,Npsq.

Proof. The proposition is an adaptation of Corollary 3.6 in Fay’s paper [11]. There, the
Fourier coefficients of the Niebur Poincaré series have poles at all s such that sp1 ´ sq
lies in the discrete spectrum of Fay’s normalization of the Laplacian ´Dκ. The value
of the residue then is equal to the Fourier coefficients of the reproducing kernel of the
corresponding eigenspaces. Again, as in Remark 2.1, we note that the eigenfunctions fpzq
of ´Dκ are in one-to-one correspondence with the eigenfunctions y´

κ
2 fpzq of ∆κ, i.e. the

eigenspaces are isomorphic to the spaces Uκ,Npsq. See also the proof of [10, Prop. 3] for
further clarification of the argument. �

For κ half an odd integer, we also need the projection of the Niebur Poincaré series
onto the Kohnen plus space (1.12). We fix k to be an even integer, N ě 1 odd, and

Γ “ Γ0p4Nq. For the Niebur Poincaré series F
k`1
2

m pz, sq, let F`
m, k`1

2

be its projection onto

the Kohnen plus space U`k`1
2
,4N
psq. The same argument as in the holomorphic case [20,

p. 250-257], proves the following proposition.

Proposition 2.4. Let m be a nonzero integer such that p´1q
k
2m ” 0, 1 pmod 4q and

Repsq ą 1. We have

F`
m, k`1

2

pzq “ ´
Γ
`

s´ signpmqk`1
4

˘

6π|m|Γ p2sq
y´

k`1
4 Msignpmq k`1

4
,s´ 1

2
p4π|m|yqepmxq

´
ÿ

p´1q
k
2 n”0,1p4q

2

3

˜

δm,n `
p´1qt

k
4
` 1

2u
a

2|mn|

Γ
`

s´ signpmqk`1
4

˘

Γ
`

s` signpnqk`1
4

˘ L
k`1
2
,`

m,n psq

¸

ˆ

y´
k`1
4 Wsignpnq k`1

4
,s´ 1

2
p4π|n|yqepnxq,
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where

L
k`1
2
,`

m,n psq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ř

0ăc”0p4Nq

K`k`1
2

pm,n;cq

c
J2s´1

ˆ

4π
?
|mn|

c

˙

if signpmnq ą 0;

ř

0ăc”0p4Nq

K`k`1
2

pm,n;cq

c2s
if n “ 0;

ř

0ăc”0p4Nq

K`k`1
2

pm,n;cq

c
I2s´1

ˆ

4π
?
|mn|

c

˙

if signpmnq ă 0,

where
(2.3)

K`
k`1
2

pm,n; cq “ p1´ p´1q
k
2 iq

ˆ

1`

ˆ

4

c{4

˙˙

ÿ

dpcq˚

´ c

d

¯

ˆ

´4

d

˙
k`1
2

e

ˆ

md` nd

c

˙

, 4|c.

Let p´1q
k
2m ” 0, 1 pmod 4q and r P R. Taking the projection onto the Kohnen plus

space on both sides of Proposition 2.3, we see that

(2.4) Ress“ 1
2
` ir

2
p2s´ 1qF`

m, k`1
2

pz, sq “ ´p4π|m|q´k{2
ÿ

ψ

bψpmq

xψ, ψy
ψpzq,

where the sum goes over a basis of Hecke eigenforms ψ of the subspace U`k`1
2
,4N
psq, as the

projection operator commutes with the Hecke operators.
Next we look at the Fourier coefficients on both sides of (2.4). Let

(2.5) Zκpm,n; sq “
ÿ

0ăc”0pNq

Kκpm,n; cq

c2s

be the Kloosterman Zeta function.
For κ an integer, the Kloosterman sum Kκpm,n; cq “ Kpm,n; cq does not depend on

the weight. The best bound for Kpm,n; cq is the Weil bound, which states that

(2.6) Kpm,n; cq ! c1{2`ε for any ε ą 0.

This bound, which is also valid (and, in fact, elementary) for κ half an integer, gives that
Zκpm,n; sq converges absolutely for Repsq ą 3

4
and is thus holomorphic in that domain.

The modified Kloosterman Zeta function

(2.7) Z`k`1
2

pm,n; sq “
ÿ

0ăc”0p4Nq

K`
k`1
2

pm,n; cq

c2s

gives the main term in the residue of F`
m, k`1

2

pz, sq.

Proposition 2.5. Let p´1q
k
2n ” 0, 1 pmod 4q, and r P R. Then the residue of the

modified Kloosterman zeta function Z`k`1
2

pm,n; sq at s “ 1
2
` ir

2
is equal to

3

2
?

2
p´1qt

k
4
` 1

2u2´ir´kπ´
k`1
2
´ir
|mn|1{2´

k`1
4
´ ir

2
ΓpirqΓ

`

1
2
` ir

2
` signpnqk`1

4

˘

Γ
`

1
2
` ir

2
´ signpmqk`1

4

˘

ÿ

ψ

bψpmqbψpnq,

where ψ runs over an orthonormal basis U`k`1
2

`

1
2
` ir

2

˘

of Hecke eigenforms.

Proof. Using the asymptotic expansions

J2s´1

˜

4π
a

|mn|

c

¸

, I2s´1

˜

4π
a

|mn|

c

¸

“
p2πq2s´1|mn|s´

1
2

Γp2sqc2s´1
`Opc´2s´1

q,

9



we see that

Ress“ 1
2
` ir

2
p2s´ 1qL

k`1
2
,`

m,n psq “ Ress“ 1
2
` ir

2

p2πq2s´1|mn|s´
1
2

Γp2s´ 1q
Z`k`1

2

pm,n; sq for n ‰ 0.

Comparing Fourier coefficients on both sides of (2.4) then gives the desired claim. �

2.2. The Selberg Poincaré series. For m ą 0, we define the Selberg Poincaré series
[30] by

(2.8) P κ
mpz, sq “

ÿ

γPΓ8zΓ

pys´κ{2epmzqq|κγ, Repsq ą 1.

The series in (2.8) converges absolutely for Repsq ą 1 and uniformly in z for compact
subsets of the upper half plane H. It can be analytically continued in s to the whole
complex plane.

As mentioned in the introduction, for Repsq ą 0 the poles of F κ
mpz, sq and of P κ

mpz, sq
agree and we have the following analog of Proposition 2.3; see [13].

Proposition 2.6. Let m ą 0. The Selberg Poincaré series P κ
mpz, sq has analytic contin-

uation in s to Repsq ą 0. Moreover, we have

Ress“ 1
2
`irP

κ
mpz, sq “ p4πmq

1{2´ir´κ{2 Γp2irq

Γ
`

1
2
` ir ´ k

2

˘

ÿ

ϕ

aϕpmq

xϕ, ϕy
ϕpzq,

where the sum goes over a basis of Hecke eigenforms ϕ of the subspace Uκ,Npsq.

Proof. From (2.2) the function

φspyq “ p4π|m|yq
s
´Msignpmqκ

2
,s´ 1

2
p4π|m|yq

is Opys`1q as y approaches 0, and so the Poincaré series
ÿ

γPΓ8zΓ

py´κ{2φspyqepmxqq|κγ

converges for Repsq ą 0. It is clear that this gives an holomorphic continuation of

P κ
mpz, sq `

p4π|m|q1´sΓp2sq

Γ
`

s´ signpmqκ
2

˘F κ
mpz, sq to Repsq ą 0

and hence of P κ
mpz, sq by the analytic continuation of F κ

mpz, sq. Taking residues at s “
1
2
` ir, we thus get

Ress“ 1
2
`irP

κ
mpz, sq “ ´p4πmq

1
2
´ir Γp2irq

Γ
`

1
2
` ir ´ k

2

˘Ress“ 1
2
`irp2s´ 1qF κ

mpz, sq

and the claim follows by Proposition 2.3. �

Remark 2.7. One can extend this approximation using the power series expansion of the
function y´ν´1{2Mµ,νpyq which leads to a formal expression for the Niebur Poincaré series.
Yoshida [36, Prop. 2] showed that this formal series converges.

In the case of weight 2´κ we want to write the residues of P 2´κ
m pz, sq in terms of cusp

forms in the space Uκ,Np1{2` irq. To this end, we recall that for any function f : H Ñ C,
the ξκ-operator satisfies

(2.9) ξκpf |κγq “ pξκfq|2´κγ for all γ P Γ.

A non-holomorphic Maass cusp form does not vanish under the ξκ-operator. In fact, for
non-holomorphic Maass cusp forms the ξκ-operator is an isomorphism.
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Lemma 2.8. The operator ξκ is an isomorphism Uκ,Npsq Ñ U2´κ,Npsq for s ‰ κ
2
, 1´ κ

2
.

Proof. Let ϕ P Uκ,Npsq. With (1.1) we obatin

∆2´κξκϕ “ ξκ∆κϕ “ ps´ κ{2qp1´ κ{2´ sqξκϕ.

Moreover, by (2.9) the function ξκϕ is invariant under the |2´κ-operator and we can use
L’Hoptial’s rule to show that ξκϕ vanishes at the cusps of Γ. For s ‰ κ

2
, 1´ κ

2
, the inverse

of ξκ is given by ´ 1
ps´κ{2qp1´κ{2´sq

ξ2´κ, hence ξκ is an isomorphism. �

Lemma 2.9 shows that in Proposition 2.6 the sum running over a basis of Hecke eigen-
forms of U2´κ,Np

1
2
` irq can be replaced by a sum that runs over ξκϕ for a basis of

Hecke eigenforms ϕ of Uκ,Np
1
2
` irq. Using the next lemma we can also write the Fourier

coefficient aϕpmq, in terms of the coefficients of ξκϕ.

Lemma 2.9. Let ϕ P Uκ,Npsq and denote its n-th Fourier coefficient by aϕpnq. The n-th

Fourier coefficient of ξκϕ is given by ´p4πnq1´κaϕp´nq for n ą 0 and by ps ´ κ{2qp1 ´

κ{2´ sqp4π|n|q1´kaϕp´nq for n ă 0.

Proof. Let ϕ “
ř

n‰0 aϕpnqp4π|n|yq
´κ

2Wsignpnqκ
2
,s´ 1

2
p4π|n|yqepnxq. Write

fnpx, yq “ aϕpnqp4π|n|yq
´κ

2Wsignpnqκ
2
,s´ 1

2
p4π|n|yqepnxq.

A calculation using

(2.10) W 1
ν,µp4π|n|yq “

1

y
p4π|n|y ´ νqWν,µp4π|n|yq ´

1

y
Wν`1,µp4π|n|yq

gives that for n ă 0

ξκfnpx, yq “ iyκ ¨ ´ip4π|n|q´
κ
2 aϕpnqy

´κ
2
´1W´κ

2
`1,s´ 1

2
p4π|n|yqepnxq

“ ´p4π|n|q1´κaϕpnqp4π|n|yq
κ
2
´1W 2´κ

2
,s´ 1

2
p4π|n|yqep´nxq.

For n ą 0, using (2.10) and

Wκ
2
`1,s´ 1

2
p4πnyq “ p4πny ´ κqWκ

2
,s´ 1

2
p4πnyq

`
1

4

`

4ps´ 1{2q2 ´ p1´ κq2
˘

Wκ
2
´1,s´ 1

2
p4πnyq,

we obtain

ξκpfnpx, yqq “ ps´ κ{2qp1´ κ{2´ sqp4πnq
1´κaϕpnqp4π|n|yq

κ
2
´1W´ 2´κ

2
,s´ 1

2
p4πnyqep´nxq.

Thus, the ´n-th coefficient of ξκϕ P U2´κ,Npsq is equal to ps´κ{2qp1´κ{2´sqaϕpnq. �

The following proposition now follows easily from Proposition 2.6, Lemma 2.8 and
Lemma 2.9.

Proposition 2.10. Let m ą 0. The Selberg Poincaré series P 2´κ
m pz, sq satisfies

Ress“ 1
2
`irP

2´κ
m pz, sq “ p4πmq1{2´ir´

κ
2

Γp2irq

p1{2` ir ´ κ{2qΓ
`

1
2
` ir ` κ

2

˘

ÿ

ϕ

´aϕp´mq

xϕ, ϕy
ξκϕpzq,

where the sum goes over a basis of Hecke eigenforms ϕ of the subspace Uκ,Np1{2` irq.
11



3. Traces of the Selberg Poincaré Series

In this section, we will prove the following theorem which is the core technical result
of the paper.

Theorem 3.1. Let k be an even integer, let d, d1 be such that p´1q
k
2 d is a fundamental

discriminant, p´1q
k
2 d1 ” 0, 1 pmod 4q, and suppose that Repsq ą 0. Write D “ dd1.

(1) If D ă 0, we have

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq

“
p´1q

k
2 Γpsq

Γps´ k{2q
2s´1

|D|k{4`s{2
ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

1

ns
Z`k`1

2

ˆ

m2d

n2
, d1;

s

2
`

1

4

˙

`H1psq,

where H1psq is holomorphic for Repsq ą 0.
(2) For D “ dd1 ą 0 with d ą 0, we have

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq

“
p´1q

k
2 2πDk{4`s{2Γpsq

Γ
`

s`1
2
` k

4

˘

Γ
`

s`1
2
´ k

4

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

n´sZ`k`1
2

ˆ

m2d

n2
, d1;

s

2
`

1

4

˙

`H2psq,

where H2psq is holomorphic for Repsq ą 0.
(3) For D “ dd1 ą 0 with d ă 0, we have

Tr
p´1q

k
2 d,p´1q

k
2 d1
P 2´k
m pz, sq

“ ´
p´1q

k
2 2πDk{4`s{2Γpsq

Γ
`

s
2
` 1´ k

4

˘

Γ
`

s
2
` k

4

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

n´sZ`k`1
2

ˆ

m2d

n2
, d1;

s

2
`

1

4

˙

`H3psq,

where H3psq is holomorphic for Repsq ą 0.

3.1. Binary quadratic forms and traces. We recall some facts about binary quadratic
forms. Let Γ “ Γ0pNq for N ě 1 odd and consider

QN,D “ trA,B,Cs : B2
´ 4AC “ D,N |Au.

We identify rA,B,Cs with Ax2`Bxy`Cy2, so QN,D is the set of binary quadratic forms
of discriminant D such that N |Qp1, 0q. The subset of Q P QN,D with A ą 0 will be
denoted by Q`

N,D. We use the convention QN,D “ Q`
N,D for D ă 0.

On QN,D there is a left-action of Γ, namely for γ “
´

a b
c d

¯

P Γ, we set

(3.1) pγQqpx, yq “ Qpdx´ by, ay ´ cxq.

On several occasions we will need the following lemma whose proof is obvious.

Lemma 3.2. The map

tpA,Bq : N |A ą 0, B p2Aq, B2
” D p4Aqu Ñ Γ8zQ`

N,D,

sending pA,Bq to rA,B, pB2 ´Dq{4As is a bijection.

For a quadratic form Q P QN,D let

ΓQ “ tγ P Γ : γQ “ Qu

denote the group of automorphs of Q.
12



If D ă 0, the subgroup of automorphs is trivial, except when Q is equivalent to
Apx2`y2q or Apx2`xy`y2q. For those binary quadratic forms the group of automorphs
has order 2 resp. 3. For Q “ rA,B,Cs P QN,D we let

zQ “
´B ` i

a

|D|

2A
P H,

so that QpzQ, 1q “ 0. Note that γzQ “ zγQ.

If D ą 0, the group of automorphs of rA,B,Cs is generated by

γQ “

ˆ

u`Bt
2

´Ct
At u´Bt

2

˙

,

where pu, tq is the smallest positive integer solutions of the Pell equation t2 ´ Du2 “ 4
(the matrix γQ lies in Γ0pNq as A is divisible by N). So if D ą 0 is not a square, the
group of automorphs is infinite cyclic.

For Q “ rA,B,Cs P QN,D let

(3.2) SQ “ SrA,B,Cs “ tz P H : Az2
`B Repzq ` C “ 0u,

which for A ‰ 0 is a semi-circle in the upper half plane H. It is easy to see that

γSQ “ SγQ

for any γ P Γ. We orient the SQ counterclockwise for A ą 0 and clockwise for A ă 0.
Let now CQ “ ΓQzSQ. One easily checks that the holomorphic differential form

dQz “

?
Ddz

Qpz, 1q

is ΓQ-invariant, and so for D not a square
ż

CQ

fpzqQpz, 1qk{2dQz

equals to an integral over a directed arc from z to γQz for any z P SQ.

For square D the group of automorphs is trivial since p˘2, 0q is the only solution to the
Pell equation in this case. It is also possible to give an explicit description of the classes
in this case.

For an integer m ą 1 with m|N and pm, N
m
q “ 1, we write m}N . For m}N , pick

β, δ P Z such that δm2 ´Nβ “ m and let

(3.3) Wm “
1
?
m

ˆ

m β
N δm

˙

.

The matrix Wm acting on a Maass cusp form is an Atkin-Lehner involution.

Lemma 3.3. Let d ě 1 be an integer. The set of binary quadratic forms Q in ΓzQN,d2

is represented by tWm.r0, d, µs : 0 ď µ ă d,m}Nu.

Proof. See Kohnen’s [20, p. 243] or Biró’s paper [5, p. 131]. �

For D “ d2 and Q “ rA,B,Cs P QN,D the geodesic SQ defined in (3.2) is still a
semi-circle for A ‰ 0, but for Q “ Qµ “ r0, d, µs it is the half-line

SQµ “ t´
µ

d
` it : t ą 0u.

In the case of Qµ, the line SQµ shall be directed from ´
µ
d

to i8.
13



3.2. Salie sums. In Proposition 3.9, we rewrite the trace of P k
mpz, φq in terms of an

infinite series of Salie sums, which are defined by

(3.4) Smpd, d
1; cq “

ÿ

b pcq, b2”dd1pcq

χd

ˆ„

c

4
, b,

b2 ´ dd1

c

˙

e

ˆ

´
2mb

c

˙

for c divisible by 4. The character χd in (3.4) is defined as in Definition 1.2. In particular,

(3.5) χdp´Qq “ signpdqχdpQq.

Note that for any ε ą 0 the Salie sums are bounded in c by

(3.6) Smpd, d
1; cq !ε c

ε as cÑ `8.

Kohnen [20, Prop. 5] showed that the Salie sum (3.4) is equal to a linear combination
of the Kloosterman sums K`

k`1
2

pm,n; cq defined in (2.3).

Proposition 3.4 (Kohnen). Let m, d, d1 be non-zero integers and k an even inte-

ger. Suppose further that p´1q
k
2 d is a fundamental discriminant, c ” 0 pmod 4q, and

p´1q
k
2 d1 ” 0, 1 pmod 4q. Then we have

Smpp´1q
k
2 d, p´1q

k
2 d1; cq “

ÿ

n|pm,c{4q

˜

p´1q
k
2 d

n

¸

c

n

c
K`

k`1
2

ˆ

m2d

n2
, d1;

c

n

˙

.

Remark 3.5. Together with the bound on Salie sums (3.6), this implies the Weil bound

for the modified Kloosterman sum K`
k`1
2

pd, d1; cq !ε c
1
2
`ε as cÑ `8 for all ε ą 0.

3.3. The proof of Theorem 3.1 for D ă 0.

Proposition 3.6. Assume that D “ dd1 ă 0, where p´1q
k
2 d is a fundamental discrimi-

nant and p´1q
k
2 d1 ” 0, 1 pmod 4q. Then

Tr
p´1q

k
2 d,p´1q

k
2 d1
P 0
mpz, sq “ 2s´1

|D|s{2
ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

cs
e´4πm

?
|D|

c .

Proof. This is a calculation:
ÿ

QPΓzQN,D

χ
p´1q

k
2 d
pQqω´1

Q P 0
mpzQ, sq

“
ÿ

QPΓzQN,D

ÿ

γPΓ8zΓ

χ
p´1q

k
2 d
pQqω´1

Q Impγ.zQq
sepmγ.zQq

“
ÿ

QPΓzQN,D

ÿ

γPΓ8zΓ{ΓQ

χ
p´1q

k
2 d
pQqImpzγ.Qq

sepmzγ.Qq

“
ÿ

QPΓ8zQN,D

χ
p´1q

k
2 d
pQqpImzQq

se pmzQq ,

which by Lemma 3.2 yields the result. �

We will also need the following expressions for lowering resp. raising operators applied
to P k

mpz, sq.
14



Lemma 3.7.

LkkP
k
mpz, sq “

p´1q
k
2 Γpsq

Γps´ k{2q
P 0
mpz, sq, if k ą 0, and(3.7)

Rk
kP

k
mpz, sq “ p´1q

k
2

|k{2|
ÿ

l“0

p4πmql
Γps` lq

Γps` l ´ k{2q
P 0
mpz, s` lq if k ă 0.(3.8)

Proof. We use the identities

Lk1py
s´k{2epmzqq “ ´ps´ k1{2qys`1´k{2epmzq for all k1 P Z

and

Rk1py
s´k1{2epmzqq “ ´ps´ k1{2qys`1´k1{2epmzq ´ 4πmys`1´k1{2epmzq for all k1 P Z.

By applying the identities to (2.8), we get the claim for Repsq ą 1. Uniqueness of the
analytic continuation yields the result for all complex s. �

The proof of Theorem 3.1 for D ă 0. Assume that k ą 0. After applying (3.7), we see

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq “

p´1q
k
2 |D|

k
4 Γpsq

Γps´ k{2q
Tr
p´1q

k
2 d,p´1q

k
2 d1
P 0
mpz, sq

“
p´1q

k
2 Γpsq

Γps´ k{2q
|D|k{4`s{2

ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

cs
e´4πm

?
|D|

c .

Using the first order approximation e´4πm

?
|D|

c “ 1`Op1{cq, we get
(3.9)

ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

cs
e´4πm

?
|D|

c “
ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

cs
`H1psq

with H1psq holomorphic for Repsq ą 0 by (3.6). Applying Proposition 3.4 leads to the
claim (1) of Theorem 3.1 in the case k ą 0.

For k ă 0 we arrive at (3.9) with the same argument as above, since for l ě 1 the terms
P 0
mpz, s` lq in (3.8) are holomorphic in Repsq ą 0. �

3.4. Cycle integrals of Poincaré series. We will treat a slightly more general family
of Poincaré series. Let φ : Rą0 Ñ R be a infinitely differentiable function such that
φpyq “ Opy1´k{2`εq as y Ñ 0 for any ε ą 0. Then the Poincaré series

(3.10) P k
mpz, φq “

ÿ

γPΓ8zΓ

pφpyqepmxqq |kγ

converges for any integer m. The following lemma is is a preliminary step in evaluating
cycle integrals of these Poincaré series.

Lemma 3.8. Let k be an even integer, d a fundamental discriminant and d1 ” 0, 1
pmod 4q. Let m ą 0 be an integer.

(1) If signpdq ‰ p´1qk{2 then Trd,d1P
k
mpz, φq “ 0.

(2) If signpdq “ p´1qk{2 and D “ dd1 ą 0 is not a square then

Trd,d1P
k
mpz, φq “ 2

ÿ

Γ8zQ`N,D

χ
p´1q

k
2 d
pQq

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz
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(3) If signpdq “ p´1qk{2 and d “ d1 then

Trd,d1P
k
mpz, φq “ 2

ÿ

Γ8zQ`N,D

χ
p´1q

k
2 d
pQq

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz

`
ÿ

QPΓ8zQN,D,
Qp1,0q“0

χ
p´1q

k
2 d
pQq

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz.

Proof. The argument is standard. We only point out the need for the sign condition.
The group of automorphs ΓQ acts freely on Γ8zΓ on the right, and a direct calculation

shows that
ż

CQ

P k
mpz, φqQpz, 1q

k
2 dQz

“
ÿ

γPΓ8zΓ

ż

CQ

jpγ, zq´kepmRepγzqqφpImpγzqqQpz, 1q
k
2 dQz

“
ÿ

γPΓ8zΓ{ΓQ

ÿ

γPΓQ

ż

γ.CQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz.

Therefore

Trd,d1P
k
mpz, φq “

ÿ

QPΓ8zQN,dd1

χ
p´1q

k
2 d
pQq

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz.

Note that dz´Q “ ´dQz and that SrA,B,Cs and Sr´A,´B,´Cs are the same semicircle with
opposite orientations, therefore
ż

S´Q

epmRepzqqφpImpzqqp´Qpz, 1qq
k
2 d´Qz “ p´1qk{2

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz

by (3.5). �

Because of the lemma above, we will be interested in factorizing D into factors whose
sign is p´1qk{2. As in the definition of the Kohnen plus space, we will build this into the
notation, so that the distinction between k ” 0 or 2 pmod 4q becomes automatic.

Proposition 3.9. Let k be an even integer, d ą 0 be such that p´1q
k
2 d is a fundamental

discriminant and p´1q
k
2 d1 ” 0, 1 pmod 4q such that D “ dd1 ą 0. Let m ą 0 be an

integer.

(1) If D “ dd1 is not a square then

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, φq “ Dk{4

ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cqΦk

m

˜

2
?
dd1

c

¸

with

(3.11) Φk
mptq “ pitq

k
2

ż π

0

e pmt cos θqφpt sin θqpsin θqk{2´1eiθk{2dθ.

16



(2) If d “ d1, then

Tr
p´1q

k
2 d,p´1q

k
2 d
P k
mpz, φq “d

k{2
ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d; cqΦk

m

ˆ

2d

c

˙

`2pidqk{2Gk
mpdqMpφqpk{2q

where Mpφqpsq is the Mellin transform of φ and

Gk
mpdq “

ÿ

µpdq˚

ˆ

p´1qk{2d

µ

˙

e
´

´m
µ

d

¯

is a Gauss sum.

Proof. The first claim follows easily from Lemmas 3.2 and 3.8 after parametrizing the
semicircle SQ by θ P p0, πq such that

z “ ´
b

2a
`

#?
dd1

2a
eiθ, if a ą 0,

?
dd1

2a
e´iθ, if a ă 0,

where Q “ ra, b, cs; see, e.g., [9].
To prove case (2), i.e. D “ d2, we use part (3) of Lemma 3.8. The sum

(3.12)
ÿ

QPΓ8zQN,d2 ,
Qp1,0q“0

χ
p´1q

k
2 d
pQq

ż

SQ

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz

runs over t˘Qµ : 0 ď µ ă du with Qµ “ r0, d, µs. We have χ
p´1q

k
2 d
p˘r0, d, µsq “

´

p´1qk{2d
µ

¯

for pµ, dq “ 1. Thus, the sum (3.12) is equal to

2
ÿ

pµ,dq“1

˜

p´1q
k
2 d

µ

¸

ż

t´
µ
d
`it:tą0u

epmRepzqqφpImpzqqQpz, 1q
k
2 dQz

“ 2
ÿ

pµ,dq“1

˜

p´1q
k
2 d

µ

¸

e
´

´m
µ

d

¯

ż 8

0

φptqpidq
k
2 tk{2

dt

t
“ 2Gk

mpdqpidq
k
2Mpφqpk{2q.

�

3.5. The proof of Theorem 3.1 for D ą 0. We now consider φpyq “ ys´k{2e´2πmy in
(3.10), so that P k

mpz, φq “ P k
mpz, sq. Except for the holomorphic case s “ k{2 (Proposi-

ton 3.11), the evaluation of the transform
ż π

0

e pmt cos θqφpt sin θqpsin θqk{2´1eiθk{2dθ

is bypassed by the next lemma which allows us to express the main term contributing to
the residue of each pole of P k

mpz, sq along the line Repsq “ 1
2
.

Lemma 3.10. For Repsq ą 0, we have

Φk
mptq “ ckpsqt

s
`Opts`1

q, as tÑ 0`,

where

ckpsq “ p´1qk{2
πΓpsq

2s´1Γ
`

s`1
2
` k

4

˘

Γ
`

s`1
2
´ k

4

˘ .

17



Proof. Using epmt cos θq “ 1`Opmt cos θq and e´2πmt sin θ “ 1`Opmt sin θq, we get

Φk
mptq “ i

k
2 ts

ˆ
ż π

0

psin θqs´1eikθ{2dθ `Optq

˙

.

The proof is finished with the integral formula (see [14, p. 485, 3.892(1)])
ż π

0

eiβxpsinxqν´1dx “
πeiπβ{2Γpνq

2ν´1Γ
`

ν`β`1
2

˘

Γ
`

ν´β`1
2

˘ , Repνq ą 0,

with ν “ s and β “ k
2
. �

With Lemma 3.10, we are set to prove Theorem 3.1.

Proof of Theorem 3.1 for D ą 0. To prove (2), we use Proposition 3.9 and Lemma 3.10
to write
(3.13)

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq “ ckpsqD

k{4
ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

˜

2
?
dd1

c

¸s

`H2psq,

where H2psq is a holomorphic function on Repsq ą 0.

Note that in the case of d “ d1, the Mellin transform term pidqk{2Gk
mpdqMpφqpk{2q is

holomorphic for Repsq ą 0 and is part of H2psq.

With Proposition 3.4, we may rewrite equation (3.13) as

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq “ ckpsqD

k{4
ÿ

n|m

˜

p´1q
k
2 d

n

¸˜

2
?
dd1

n

¸s
ÿ

0ăc”0p4Nq

K`
k`1
2

´

m2d
n2 , d

1; c
¯

cs`1{2
`H2psq

by substituting cÑ nc.

To prove (3) suppose that d, d1 ă 0. By Proposition 3.9 for weight 2´k and ´d,´d1 ą 0
and Lemma 3.10 we get
(3.14)

Tr
p´1q

k
2 d,p´1q

k
2 d1
P 2´k
m pz, sq “ c2´kpsq

ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

˜

2
?
dd1

c

¸s

`H3psq,

where H3psq is a holomorphic function on Repsq ą 0. Once again, Proposition 3.4 gives
the claim. �

3.6. The holomorphic case. Evaluating Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq at the spectral point

s “ k
2
ą 1 reduces to considering φpyq “ e´2πmy in (3.10) so that P k

mpz, φq “ P k
mpzq “

ř

γPΓ8zΓ
epmzq|kγ, the holomorphic Poincaré series of weight k. For completeness we give

the result in this case.

Proposition 3.11. Suppose that k ą 2 and d, d1 ą 0 with d ‰ d1 such that p´1q
k
2 d is a

fundamental discriminant and p´1q
k
2 d1 ” 0, 1 pmod 4q. We have

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpzq

“ p´1q
k
2

Γpk{2qD
k
4
` 3

4

2
k
2
´ 3

2m
k´1
2 π

k
2
´1

ÿ

0ăc”0p4Nq

Smpp´1q
k
2 d, p´1q

k
2 d1; cq

?
c

J k´1
2

ˆ

4πm
?
D

c

˙

“ p´1q
k
2

Γpk{2qD
k
4
` 3

4

2
k
2
´ 3

2m
k´1
2 π

k
2
´1

ÿ

n|m

˜

p´1q
k
2 d

n

¸

ÿ

0ăc”0p4Nq

1

c
K`

k`1
2

ˆ

m2d

n2
, d1; c

˙

J k´1
2

ˆ

4πmn
?
D

c

˙

.
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If d “ d1, we get the additional term pidq
k
2 p4πmq´

k
2 Γpk{2q on the right hand side.

Proof. Suppose that D “ dd1 is not a square. By Lemma 3.8, we get

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpzq “ 2

ÿ

QPΓ8zQ`N,D

χ
p´1q

k
2 d
pQq

ż

SQ

epmzqQpz, 1q
k
2 dQz.

After the change of variable z Ñ
?
Dz´B
2A

for Q “ rA,B,Cs, one needs to evaluate

´

ż 1

´1

e

ˆ

m

?
D

2A
z

˙

pz2
´ 1q

k
2
´1dz “

p´1q
k
2 2

k´1
2 Γpk{2q

π
k
2
´1

ˆ

?
Dm

A

˙´ k
2
` 1

2

J k´1
2

ˆ

πm
?
D

A

˙

,

which readily yields the claim for D not being a square. The case when D is a square
can be dealt with in the same fashion as in the proof of Proposition 3.9. �

Remark 3.12. Proposition 3.11 is also valid in weight k “ 2 when P 2
mpzq is defined by

Hecke’s convergence trick.

4. The Proof of the Generalized Katok-Sarnak Formula

The goal of this section is to prove Theorem 1.4. Let m ą 0 and let d, d1 be integers

such that p´1q
k
2 d is a fundamental discriminant and p´1q

k
2 d1 ” 0, 1 pmod 4q. To get to

the traces of Maass cusp forms we will use Proposition 2.6, and Theorem 3.1 but we start
by noting the shift in the spectral point to s

2
` 1

4
on the right hand side of Theorem 3.1;

see [10, p. 982].

Lemma 4.1. For integers m,n, we have

Ress“ 1
2
`irZ

`
k`1
2

ˆ

m,n;
s

2
`

1

4

˙

“ 4 Ress“ 1
2
` ir

2
Z`k`1

2

pm,n; sq.

Next, we calculate the residue of the twisted trace of the Selberg Poincaré series ex-
plicitly in terms of half integral weight coefficients. To this end, we use Theorem 3.1,
Lemma 4.1, and Proposition 2.5 for dd1 ă 0 and obtain

Res
s“ 1

2
`ir

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq

“
|D|

k`1
4
` ir

2 Γ
`

1
2
` ir

˘

2´1{2´irΓ
`

1
2
` ir ´ k

2

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

1

n1{2`ir
Res

s“ 1
2
` ir

2

Z`k`1
2

ˆ

m2

n2
d, d1; s

˙

“
6p´1qtk{4u

a

|D|p4πmq1´ir´
k`1
2 Γp2irq

2
?
πΓ

`

1
2
` ir ´ k

2

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

nk{2´1
ÿ

ψ

bψ

ˆ

m2d

n2

˙

bψ pd
1
q

(4.1)

with ψ running over an orthonormal basis of U`k`1
2
,4N

`

1
2
` ir

2

˘

.

Similarly for d, d1 ą 0, we have
19



Res
s“ 1

2
`ir

Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq

“
p´1qk{28πD

k`1
4
` ir

2 Γ
`

1
2
` ir

˘

Γ
`

ir
2
` k`3

4

˘

Γ
`

ir
2
´ k´3

4

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

1

n
1
2
`ir

Res
s“ 1

2
` ir

2

Z`k`1
2

ˆ

m2d

n2
, d1; s

˙

“
6p´1qtk{4u

?
Dp4πmq1´ir´

k`1
2 Γp2irq

2
k
2 Γ

`

1
2
` ir ´ k

2

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

nk{2´1
ÿ

ψ

bψ

ˆ

m2d

n2

˙

bψ pd
1
q .

(4.2)

Finally, for both d, d1 ă 0, since Tr
p´1q

k
2 d,p´1q

k
2 d1
P k
mpz, sq vanishes, we look at the trace

of P 2´k
m pz, sq to get some information about

ř

ψ bψ
`

m2d
n2

˘

bψ pd
1q for ψ P U`k`1

2
,4N

`

1
2
` ir

2

˘

.

We then have

Res
s“ 1

2
`ir

Tr
p´1q

2´k
2 p´dq,p´1q

2´k
2 p´d1q

P 2´k
m pz, sq

“ ´
p´1q

k
2 8πD

k`1
4
` ir

2 Γ
`

1
2
` ir

˘

Γ
`

ir
2
´ k´5

4

˘

Γ
`

ir
2
` k`1

4

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

1

n
1
2
`ir

Res
s“ 1

2
` ir

2

Z`k`1
2

ˆ

m2d

n2
, d1; s

˙

“ 6p´1qtk{4u

?
Dp4πmq1´ir´

k`1
2

`

1
2
` ir ´ k

2

˘

Γp2irq2k{2´1

Γ
`

1
2
` ir ` k

2

˘

ÿ

n|m,
pn,Nq“1

˜

p´1q
k
2 d

n

¸

nk{2´1
ÿ

ψ

bψ

ˆ

m2d

n2

˙

bψ pd
1
q ,

(4.3)

where ψ runs over an orthonormal basis of U`k`1
2
,4N

`

1
2
` ir

2

˘

.

On the other hand, we can use Proposition 2.6 in (4.1), (4.2) and Proposition 2.10 in
(4.3) to calculate the residue of the traces of the Poincaré series. When combined with
the Shimura relation (1.10), this proves the following Proposition.

Proposition 4.2. Let d, d1 be integers such that p´1q
k
2 d is a fundamental discriminant

and p´1q
k
2 d1 ” 0, 1 pmod 4q. We have

(1) for dd1 ă 0:

6p´1qtk{4u
a

|dd1|
ÿ

ψ

bψpdqbψpd
1q

xψ, ψy
Shimdpψqpzq “ 2

?
π
ÿ

ϕ

Tr
p´1q

k
2 d,p´1q

k
2 d1
pϕq

ϕpzq

xϕ, ϕy
,

(2) for d, d1 ą 0:

6p´1qtk{4u
?
dd1

ÿ

ψ

bψpdqbψpd
1q

xψ, ψy
Shimdpψqpzq “ 2k{2

ÿ

ϕ

Tr
p´1q

k
2 d,p´1q

k
2 d1
pϕq

ϕpzq

xϕ, ϕy
,

(3) for d, d1 ă 0:

6p´1qtk{4u
?
dd1

ÿ

ψ

bψpdqbψpd
1q

xψ, ψy
Shimdpψqpzq “ 21´k{2

ÿ

ϕ

Tr
p´1q

k
2 d,p´1q

k
2 d1
pξkϕq

ϕpzq

xϕ, ϕy
,
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where ψ and ϕ run over a basis of normalized Hecke eigenforms of U`k`1
2
,4N

`

1
2
` ir

2

˘

and

Uk,N
`

1
2
` ir

˘

respectively.

Note that one does not need to know in advance that Shimdpψq as defined for ψ P

U`k`1
2
,4N
psq in (1.11) is a Maass cusp form. Similarly to Biro’s work [5, p. 129] our

approach establishes this fact as a byproduct of Proposition 4.2.

Proof of Theorem 1.4. We now collect everything to prove our generalization of the Katok-
Sarnak formula in Theorem 1.4.

For any normalized newform ψ P U`k`1
2
,4N

`

s
2
` 1

4

˘

, we have Shimdpψq P Uk,Npsq.

Since the Hecke operators commute with the Shimura lift, the Maass cusp form Shimdpψq
has the same eigenvalue as an integral weight Maass form ϕ P Uk,N . If ϕ is a normalized
even newform, we must have Shimdpψqpzq “ ϕpzq by matching their first Fourier coeffi-
cient. Hence, after applying the projection onto the space Unew,`

k`1
2
,4N

`

s
2
` 1

4

˘

, we may write

the equations in Proposition 4.2 as for d, d1 ą 0 or dd1 ă 0
(4.4)

6p´1qtk{4u
a

|dd1|
ÿ

ϕ

ÿ

Shimdpψq“ϕ

bψpdqbψpd
1q

xψ, ψy
ϕ “

ÿ

ϕ

Tr
p´1q

k
2 d,p´1q

k
2 d1
pϕq

ϕ

xϕ, ϕy

#

2
?
π, dd1 ă 0,

2k{2, d, d1 ą 0,

and for d, d1 ă 0

(4.5) 6p´1qtk{4u
?
dd1

ÿ

ϕ

ÿ

Shimdpψq“ϕ

bψpdqbψpd
1q

xψ, ψy
ϕ “

ÿ

ϕ

21´k{2Tr
p´1q

k
2 d,p´1q

k
2 d1
pξkϕq

ϕ

xϕ, ϕy
,

where ψ runs over a basis of normalized newforms of Unew,`
k`1
2
,4N

`

s
2
` 1

4

˘

.

Since the ϕ’s form a basis, this proves Theorem 1.4 in the non-holomorphic case.

To show the theorem in the holomorphic case, i.e. when ϕ has spectral point s “ k
2
ą 1,

let P k
mpzq “ P k

mpz, k{2q be the holomorphic Poincaré series of weight k. Assume that
d, d1 ą 0; the other cases are trivial. We have

Tr
p´1q

k
2 d,p´1q

k
2 d1
pP k

mpzqq “
ÿ

fPSk

xP k
m, fyTr

p´1q
k
2 d,p´1q

k
2 d1
pfq

and

(4.6) P
k`1
2
,`

m pzq “
ÿ

gPS`k

xP
k`1
2

m , gygpzq.

Using Proposition 2.4 at s “ k`1
2

we may match the Fourier coefficients in (4.6) with

the expression for Tr
p´1q

k
2 d,p´1q

k
2 d1
pP k

mq in section 3.6. Finally, as the inner products of

Poincaré series are equal to Fourier coefficients of holomorphic modular forms, the same
argument as in the non-holomorphic case yields the claim. �

5. Fourier Coefficients of Maass Cusp Forms as L-Values

The coefficients of half-integral weight forms are closely related to the values of L-
functions. In this section, we investigate the central value of the twisted L-function

(5.1) Lpϕ, d, wq “
8
ÿ

n“1

ˆ

d

n

˙

aϕpnq

nw`pk´1q{2
, pd,Nq “ 1

for a normalized newform ϕ P Uk,Npsq.
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Note that for k ą 0 and ϕ P U2´k,Npsq even and normalized, we have

Lpξ2´kϕ, d, wq “ ´p4πq
k´1 Γps` k{2q

Γps´ k{2q
Lpϕ, d, wq

by Lemma 2.9 and (1.8). Hence, we may restrict to non-negative weights, as the twisted
L-functions of Maass cusp forms of negative weights reduce to that case.

We can get the L-function for an even normalized Maass form of weight k ě 0 from
Theorem 1.4 through a Mellin transform. The following integral was first solved by
Duke, Friedlander, and Iwaniec [8, Lemma 8.2] (there’s a typo in the orginial version,
see Young’s paper [35, Sec. 12] for the correct evaluation). We present an alternative
proof in our special case, which has the advantage of making the evaluation of the Mellin
transform explicit instead of relying on a recursively defined polynomial.

Lemma 5.1. Let k ě 0 be an even integer and s ‰ ˘k
2
. The Mellin-transform

(5.2) Ψkpsq “

ż 8

0

ˆ

W k
2
,s´ 1

2
pyq ` p´1qk{2

Γps` k{2q

Γps´ k{2q
W´ k

2
,s´ 1

2
pyq

˙

dy

y

takes the values

Ψkpsq “
1

2k{2
?
π

Γ

ˆ

s

2
`
k

2

˙

Γ

ˆ

1´ s

2
`
k

2

˙

.

Proof. Let us write

Ψ˘
k psq “

ż 8

0

ˆ

W k
2
,s´ 1

2
pyq ˘

Γps` k{2q

Γps´ k{2q
W´ k

2
,s´ 1

2
pyq

˙

dy

y
.

With this notation we have

Ψkpsq “

#

Ψ`
k psq, k ” 0 pmod 4q,

Ψ´
k psq, k ” 2 pmod 4q.

Consider the generating series
ř8

k“0 Ψ`
2npsq

xn

n!
. We use the identities (see [26, Sec.

7.3.4])

e
xy

2p1`xqW0,s´ 1
2

ˆ

y

1` x

˙

“

8
ÿ

n“0

Wn,s´ 1
2
pyq

xn

n!

and

e´
xy

2p1`xqW0,s´ 1
2

ˆ

y

1` x

˙

“

8
ÿ

n“0

Γps` nq

Γps´ nq
W´n,s´ 1

2
pyq

xn

n!
.

With these the generating series becomes
8
ÿ

n“0

Ψ`
2npsq

xn

n!
“

ż 8

0

8
ÿ

n“0

ˆ

Wn,s´ 1
2
pyq `

Γps` nq

Γps´ nq
W´n,s´ 1

2
pyq

˙

xn

n!

dy

y

“

ż 8

0

W0,s´ 1
2
py{p1` xqq

´

e
xy

2p1`xq ` e´
xy

2p1`xq

¯ dy

y
.

This gives
8
ÿ

n“0

Ψ`
2npsq

xn

n!
“

ż 8

0

W0,s´ 1
2
pyq

´

e
xy
2 ` e´

xy
2

¯ dy

y

“ 2
8
ÿ

n“0

x2n

p2nq! 22n

ż 8

0

y2n´1W0,s´ 1
2
pyqdy.

We also see here that Ψ`
k psq “ 0 for k ” 2 pmod 4q.
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The Whittaker function W0,s´ 1
2
pyq is a modified Bessel-function of second kind Ks´ 1

2
,

namely

W0,s´ 1
2
pyq “ 2

c

y

π
Ks´ 1

2
p2yq.

The integral of the K-Bessel function is well-known and evaluates to

ż 8

0

y2n´1W0,s´ 1
2
pyq “

2
?
π

2´2n´ 1
2

ż 8

0

y2n` 1
2
´1Ks´ 1

2
pyqdy

“
1

2
?
π

Γ
´s

2
` n

¯

Γ

ˆ

1´ s

2
` n

˙

.

Hence, for k ” 0 pmod 4q, we get the desired result. The same argument for the
generating series

ř8

n“0 Ψ´
2npsq

xn

n!
yields the result for the case k ” 2 pmod 4q. �

Remark 5.2. Our proof also shows that

ż 8

0

ˆ

W k
2
,s´ 1

2
pyq ´ p´1qk{2

Γps` k{2q

Γps´ k{2q
W´ k

2
,s´ 1

2
pyq

˙

dy

y
“ 0

for all k ě 0.

The following Corollary is a generalization of a result of Baruch and Mao [3, Thm. 1.4]
to higher weights.

Corollary 5.3. Let k be an even non-negative integer, let ϕ P Uk,Npsq be an even nor-
malized newform with spectral point s ‰ k

2
, and let d be a fundamental discriminant with

p´1q
k
2 d ą 0 and pd,Nq “ 1. Suppose that for all m}N , its eigenvalues wm under the

Atkin-Lehner involution Wm are equal to
`

d
m

˘

. Let

ψ “
ÿ

n‰0

bψpnqp4π|n|yq
´ k`1

4 Wsignpnq k`1
4
, s
2
´ 1

4
p4π|n|yqepnxq

be a Maass cusp form of weight k`1
2

such that Shimdpψq “ ϕ and bψpnq ‰ 0 only if

p´1q
k
2n ” 0, 1 pmod 4q. Then:

6
ÿ

Shimdpψq“ϕ

|bψp|d|q|
2

xψ, ψy
“

2νpNq|d|
k´1
2

p4πqk{2
?
π

Γ

ˆ

s

2
`
k

2

˙

Γ

ˆ

1´ s

2
`
k

2

˙

L pϕ, d, 1{2q

xϕ, ϕy
,

where νpNq is the number of distinct prime factors of N .

Proof. Let d “ d1 in Theorem 1.4 with p´1qk{2d ą 0. We then have

6dp´1qtk{4u
ÿ

Shimdpψq“ϕ

|bψp|d|q|
2
“ 2k{2Trd,dpϕq.

We may now evaluate the trace on the right hand side as

Trd,dpϕq “
ÿ

µpdq

ÿ

m}D

χdpWm.r0, d, µsq

ż

Wm.CQµ

ϕpzqpWm.Qµqpz, 1q
k
2 dzWm.Qµ
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by Lemma 3.3 and since χdpWm.r0, d, µsq “
´

d
µ

¯

`

d
m

˘

we have

Trd,dpϕq “
ÿ

µpdq

ÿ

m}N

ˆ

d

µ

˙ˆ

d

m

˙

wm

ż

CQµ

ϕpzqpQµqpz, 1q
k
2 dzQµ “

2νpNq
ÿ

µpdq

ˆ

d

µ

˙
ż

CQµ

ϕpzqpQµqpz, 1q
k
2 dzQµ .

Now the Fourier expansion of φ leads to

ÿ

µpdq

ˆ

d

µ

˙
ż

CQµ

ϕpzqpQµqpz, 1q
k
2 dzQµ “

d
k
2
´1
|d|i

k
2

ÿ

µpdq

ˆ

d

µ

˙
ż 8

0

ÿ

n‰0

aϕpnq

p4π|n|qk{2
Wsignpnq k

2
,s̃´ 1

2
p4π|n|tqe´2πinµ

d
dt

t
“

d
k
2
´1|d|

p4πqk{2
i
k
2

ˆ

d

´1

˙1{2
ÿ

n‰0

ˆ

d

n

˙

aϕpnq

|n|k{2

ż 8

0

Wsignpnq k
2
,s̃´ 1

2
ptq
dt

t
.

Here we used the evaluation of the Gauss sum
ÿ

µpdq

ˆ

d

µ

˙

e
´

´n
µ

d

¯

“
a

|d|

ˆ

d

´1

˙1{2 ˆ
d

n

˙

.

Finally the the condition p´1qk{2d ą 0 gives
`

d
´n

˘

“ p´1qk{2
´

d
|n|

¯

for n ą 0. Combining

this with the fact that aϕp´nq “
Γps`k{2q
Γps´k{2q

aϕpnq for n ą 0, if s̃ ‰ k{2 gives

Trd,dpϕq “ 2νpNq
|d|

k`1
2 p´1qtk{4u

p4πqk{2
Ψkpsq

ÿ

ną0

aϕpnq

nk{2

ˆ

d

n

˙

where the Mellin transform Ψkpsq is defined in (5.2). The evaluation in Lemma 5.1 then
finishes the proof except when s “ k

2
. Since in that case aϕpnq “ 0 for n ă 0, one sees

easily that Ψkpk{2q “ 2
k
2 Γpk{2q, which recovers Kohnen’s result in the holomorphic case

[20, Cor. 1]. �

Remark 5.4. The proof of Corollary 5.3 together with Remark 5.2 shows that Trd,dpϕq “ 0
for ϕ being an odd Maass cusp form (as the Fourier coefficients of an odd Maass cusp

form ϕ satisfy aϕp´nq “ ´
Γps`k{2q
Γps´k{2q

aϕpnq for n ą 0).

Finally, Corollary 5.3 can be used to prove nonnegativity of twisted L-functions of
Maass cusp forms at the central value.

Corollary 5.5. Let k be an even non-negative integer, let ϕ P Uk,Npsq be an even nor-
malized newform, and let d be a fundamental discriminant such that p´1qk{2d ą 0 and
pd,Nq “ 1. Then Lpϕ, d, 1{2q ě 0.

Proof. This follows from Corollary 1.8 and Γpx` iyqΓpx´ iyq “ |Γpx` iyq|2. �
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