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Abstract
We consider the problem of predicting a response vari-
able from a set of covariates on a data set that differs in 
distribution from the training data. Causal parameters are 
optimal in terms of predictive accuracy if in the new distri-
bution either many variables are affected by interventions 
or only some variables are affected, but the perturbations 
are strong. If the training and test distributions differ by 
a shift, causal parameters might be too conservative to 
perform well on the above task. This motivates anchor re-
gression, a method that makes use of exogenous variables 
to solve a relaxation of the ‘causal’ minimax problem by 
considering a modification of the least-squares loss. The 
procedure naturally provides an interpolation between the 
solutions of ordinary least squares (OLS) and two-stage 
least squares. We prove that the estimator satisfies predic-
tive guarantees in terms of distributional robustness against 
shifts in a linear class; these guarantees are valid even if 
the instrumental variable assumptions are violated. If an-
chor regression and least squares provide the same answer 
(‘anchor stability’), we establish that OLS parameters are 
invariant under certain distributional changes. Anchor re-
gression is shown empirically to improve replicability and 
protect against distributional shifts.
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1  |   INTRODUCTION

A substantial part of contemporaneous data sets is not collected under carefully designed experiments. 
Furthermore, data collected from different sources are often heterogeneous due to, for example chang-
ing circumstances, batch effects, unobserved confounders or time-shifts in the distribution. These het-
erogeneities or ‘perturbations’ make it difficult to gain actionable knowledge that generalizes well to 
new data sets. Approaches to deal with inhomogeneities include robust methods (Huber, 1964, 1973), 
mixed-effects models (Pinheiro & Bates, 2006), time-varying coefficient models (Fan & Zhang, 1999; 
Hastie & Tibshirani, 1993) and maximin effects (Meinshausen & Bühlmann, 2015).

In contrast, there is a growing literature on causal inference under various types of assumptions and 
different frameworks, with applications ranging from public health to biology and economics (Bollen, 
1989; Dawid, 2000; Greenland et al., 1999; Lauritzen & Spiegelhalter, 1988; Pearl, 2009; Peters et al., 
2017; Robins et al., 2000; Rubin, 2005; Spirtes et al., 2000). Often the goal is to find the causes of 
some response variable Y among a given set of covariates X or to quantify the causal relationships 
between a set of variables. There are two main reasons why one is interested in the identification and 
quantification of causal effects. On the one hand, it answers questions of the type ‘what happens to 
variable Y if we intervene on variable X’, perhaps being the classical viewpoint of causality. On the 
other hand, predictions based on a causal model, that is using the conditional mean of Y given all its 
causal predictors, will in general work equally well under arbitrary perturbations (interventions) on 
the covariates, and thus, this provides an answer to the problem of generalization to new data sets 
mentioned above. The invariance property for prediction across interventions or perturbations has re-
cently been exploited for causal inference (Peters et al., 2016) and a form of invariance plays a crucial 
role here as well.

In causal inference, one often considers so-called hard interventions that set some covariates to a 
certain value. In this paper, we instead consider interventions that shift the distribution of a target vari-
able, which corresponds to an intervention on a variable that enters the target equation linearly. Using 
causal concepts for prediction under heterogeneous data seems attractive due to invariance guarantees 
under arbitrary shifts. In practice, however, exact invariance guarantees may be too conservative and 
can come with a price of subpar predictive performance on observational and moderately shifted data. 
We propose a balanced approach for trading off predictive performance on observational data and 
predictive performance on perturbed (shifted) new data, with rigorous optimality guarantees under 
specific sets of perturbations or interventions. This can be cast as a form of distributional robustness, 
as discussed next. We consider being robust to interventional shifts in a particular class of models 
where identifying functionals yield a particularly elegant modification of ordinary least squares (OLS) 
loss, with future work possibly allowing more general types of robustness to be developed. In addition 
to distributionally robust prediction, we will also consider the problem of distributionally robust es-
timation. In this context, distributionally robust estimation refers to the question whether a statistical 
parameter is invariant under certain distribution changes. Distributionally robust prediction and esti-
mation are closely related, as we will see below.

1.1  |  Distributionally robust prediction and estimation

In a linear setting, the goal of distributionally robust prediction can be expressed as the optimization 
problem

(1)
min
b∈ℝd

max
F∈

𝔼F [ (Y − X⊺b)2 ] ,
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where X is a d-dimensional vector of covariates, Y is the target variable of interest,  is a class of distribu-
tions and �F takes the expectation with respect to F ∈ . Choosing different classes  results in estimators 
with different properties, see, for example Sinha et al. (2018), Gao et al. (2017), Meinshausen (2018). We 
first discuss two well-known choices of  and the corresponding estimators.

1.1.1  |  No perturbations and ordinary least squares

If  contains only the training (or observational) distribution, we write �train and the optimization 
problem (1) becomes OLS,

This does not take into account any distributional robustness. The sample version substitutes �train by the 
sample mean over the observed data resulting in OLS estimation. We discuss in Section 1.3 that ℓ2- and 
ℓ1-norm regularized regression can also be derived from a sample version of Equation (1) for a suitable 
class .

1.1.2  |  Intervention perturbations and causality

Assume now that the distribution (X, Y) is induced by an (unknown) linear causal model, for example 
a linear structural causal model, an example of which we will see in Section 2.1. If the class  contains 
all interventions on subsets of variables not including Y, then the optimizer of Equation (1) is the vec-
tor of causal coefficients (e.g. Rojas-Carulla et al., 2018, Theorem 1). That is,

for  containing all interventions on (components) of X. Similarly, the causal parameters are optimal if 
in all distributions F ∈  there are hard interventions on all parents and children of X (here, the inter-
ventions do not need to be arbitrarily strong). Both these results are direct implications of well-known 
invariance properties of causal models (Aldrich, 1989; Haavelmo, 1944; Pearl, 2009).

In this spirit, a causal model can be seen as a prediction mechanism that works best under inter-
ventions on subsets of X that are arbitrarily strong or affect many variables. Under the training distri-
bution, however, this solution is usually not as good as bOLS,

with a potentially large difference. Hence, in many cases, estimating the causal parameter leads to conser-
vative predictive performance compared to standard prediction methods. The OLS solution, in contrast, 
can have arbitrarily high predictive error when the test distribution is obtained under an intervention.

This paper suggests a trade-off between these two estimation principles. Several relaxations of the 
problem in Equation (2) are possible. Instead of protecting against arbitrarily strong interventions one 
can protect against interventions up to a certain size (norm). Also, perturbations in some directions may 
be more important than in other directions. Alternatively, instead of protecting against interventions 

bOLS = argmin
b

�train [ (Y − X⊺b )2 ] .

(2)bcausal = argmin
b

max
F∈

�F [ (Y − X⊺b)2 ] ,

(3)�train [ (Y − X⊺bcausal )
2 ] ≥ min

b
�train [ (Y − X⊺b )2 ] = �train [ (Y − X⊺bOLS )2 ] ,
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on all subsets of variables X1, …, Xd, one can attempt to find out which variables S ⊆ {X1, …, Xd} are 
likely to be perturbed in the future. Then one can protect against interventions on the variables in S. 
For example, we might know (e.g. through background knowledge) that shifts in the distribution of 
X1 are more likely than shifts in the distribution of X2 on future data sets, which may be included in 
the class .

In this paper, we propose a new estimation principle, called anchor regression, see (4). We will see 
that under a linearity assumption, the proposed estimator can be written as a solution to (1), where the 
class  consists of certain shift interventions, that is interventions that shift numerical variables by a 
certain amount, which then propagate through the system.

1.1.3  |  Distributional replicability

Distributional replicability aims to understand whether a statistical parameter is stable under certain 
distributional changes. Replicability in this sense is distinctly different from statistical uncertainties 
due to finite samples, but closely related to the concepts of invariance and distributionally robust pre-
diction. In the case of OLS, it can be formalized as follows. The goal is to investigate whether

for all F, F � ∈ , where  is some set of distributions. For example, two researchers may collect data 
about the same research question in different locations. Due to different circumstances, the data may come 
from two distributions F ≠ F ′. Even if the researchers use the same OLS model, they might get different 
estimates if the estimator is sensitive to small distributional changes.

We will see that anchor regression can be used to assess distributional replicability of OLS param-
eters across a certain set of distributions .

1.2  |  Our contribution

We propose an estimator that regularizes OLS with a penalty encouraging some form of invariance 
as mentioned above. The setting relies on the presence of exogenous variables which generate het-
erogeneity. We denote by A ∈ ℝ

q such exogenous variables and call them ‘anchors’. If A is discrete, 
dummy encoding can be used in a preprocessing step to obtain A ∈ ℝ

q. Let X and Y be predictors 
and target variable, and assume that all variables are centred and have finite variance. Let further PA 
denote the L2-projection on the linear span from the components of A and write Id(Z) := Z. We then 
define, for γ > 0, the solution bγ to the population version of anchor regression as

where �train denotes the expectation over the observational or training distribution.
Turning to the finite-sample case, let X ∈ ℝ

n×d be a matrix containing observations of X. 
Analogously, the matrix containing observations of A is denoted by A ∈ ℝ

n×q, and the vector con-
taining the observations of Y is denoted by Y ∈ ℝ

n. We recommend a simple plug-in estimator for the 
anchor regression coefficient bγ:

argmin
b∈ℝd

𝔼F [ (Y − X⊺b)2 ] ≈ argmin
b∈ℝd

𝔼F� [ (Y − X⊺b)2 ] ,

(4)b� : = argmin
b

�train [ ( ( Id − PA ) (Y − X⊺b ) )2 ] + ��train [ (PA (Y − X⊺b) )2 ] ,
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where Π
A
∈ ℝ

n×n is the matrix that projects on the column space of A that is if A⊺
A is invertible, then 

Π
A

: = A(A
⊺
A) −1

A
⊺. Martin Emil Jakobsen realized that the family of finite-sample estimators of an-

chor regression coincides with what is known as k-class estimators. These estimators have been suggested 
to improve instrumental variable (IV)-type estimation of structural parameters (Nagar, 1959; Theil, 1958). 
In the high-dimensional case where d>n, an ℓ1-penalty can be added to encourage sparsity. Computation of 
b̂
�
 is simple as it can be obtained by running a least-squares regression of Ỹ : = (Id + (

√
� − 1)Π

A
)Y 

on X̃ : = (Id + (
√
� − 1)Π

A
)X. More details on finite-sample anchor regression can be found in 

Section 4.
For γ = 1 we obtain the least-squares solution, while for γ > 1 the anchor regression concept 

enforces that the projection of the residuals onto the linear space spanned by A is small (‘near orthog-
onality’); the latter is related to the framework of IV regression. We will prove that the penalty term 
corresponds to the maximal change in expected loss under certain shift interventions. In particular, we 
show that the solutions on the regularization path are optimizing a worst-case risk under shift inter-
ventions up to a given strength. In addition, we show that if anchor regression and OLS provide the 
same answer, the coefficients have a causal interpretation and are stable under certain distributional 
changes. More specifically, in this case the anchor regression coefficients are equal to OLS coeffi-
cients under certain perturbed distributions.

Under IV assumptions (Didelez et al., 2010), lim�→∞b� = bcausal, that is one endpoint of anchor 
regression corresponds to the solution of Equation (2). Our framework substantially relaxes the as-
sumptions from the IV setting: in particular, we allow that the exogenous anchor variables A are 
invalid instruments, as they are allowed now to directly influence (i.e. being direct causes of) Y or 
some hidden confounders H. The price to be paid for such cases is that the causal parameters are not 
identifiable any more. However, one can still exploit some invariance properties and obtain robust pre-
dictions in the sense of distributional robustness over a class  as introduced before. In addition, under 
the assumptions of IVs, one can identify the causal parameters as the procedure naturally interpolates 
between the solution to OLS and two-stage least squares. One can also abandon causal and structural 
equation models and prove that the proposed anchor regression procedure minimizes quantiles of a 
conditional mean squared error.

The main benefits of the proposed anchor regression concept are robust predictions and replicabil-
ity of variable selection on test data sets when the training data set can be grouped according to some 
exogenous categorical variable (the ‘anchor’) such as different circumstances, time spans, experi-
ments or experimental batches or when certain numerical exogenous variables are only available on 
the training, but not on the test data set. The anchor variable can either be used to encode heterogeneity 
‘within’ a data set or heterogeneity ‘between’ data sets. More specifically, within one data set, each 
level of the anchor variable encodes a homogeneous group of observations of (X, Y). Alternatively, 
the anchor variable can be an indicator of data sets, where each data set is an homogeneous set of 
observations of (X, Y). In principle, it is possible to develop the theory for the case where the anchor 
is deterministic. However, for simplicity of exposition in this paper, we will model the anchor variable 
as random.

Our anchor regression framework allows us to quantitatively relate causality, invariance, robust-
ness and replicability, under weaker assumptions than what is necessarily required to infer causal 
effects. Our work seems to be the first attempt to achieve this, with a practical procedure which is easy 
to compute and use in practice.

(5)b̂
�
= argmin

b

‖ (Id −Π
A

) (Y − Xb ) ‖2
2
+ � ‖Π

A
(Y − Xb ) ‖2

2
,



220  |      Rothenhäusler et al.

1.3  |  Related work

The considered perturbations from the class  are modelled by interventions in an underlying struc-
tural equation model (Pearl, 2009). Furthermore, as the proposed procedure interpolates between the 
solution to OLS and the IV (two-stage least squares) approach, there are obvious connections to the 
IV literature (see, e.g. Bowden & Turkington, 1990; Didelez et al., 2010; Wright, 1928). K-class esti-
mators have the same algebraic form as anchor regression. The former are used to estimate structural 
parameters and often possess improved statistical properties compared to two-stage least squares (e.g. 
Nagar, 1959; Theil, 1958). In Leamer (1978) and Klepper and Leamer (1984), the authors show how 
backwards regressions can be used to bound the regression coefficients for errors-in-variables models. 
It is similar to our work in the sense that the considered model class forms a convex set, a structure 
which can be explored by modified linear regressions.

As mentioned above, predictive invariance in causal models has been exploited in Peters et  al. 
(2016) for the purpose of learning direct causal effects. However in this work, the main goal is not to 
learn causal parameters, but to obtain predictive stability under perturbations. The goals of achieving 
robustness and learning causal parameters can be different, as shown by the example discussed in 
Section 2.2. In a different line of work, Pearl and Bareinboim (2014) have developed a formal lan-
guage to treat the problem of generalizability of causal effects across environments or populations, 
assuming that the causal structure is known.

There exists a plethora of work on transfer learning in the machine learning literature, which focuses 
on knowledge transfer across different domains of the data (Pan & Yang, 2010). Furthermore, there is 
work on distributional robustness, which explores bounded distributional perturbations, for example 
in a Wasserstein ball (Sinha et al., 2018) or under noise scaling (Heinze-Deml & Meinshausen, 2018). 
In Rojas-Carulla et al. (2018) and Magliacane et al. (2018), the authors propose to use the best predic-
tive model under all invariant models. In general, these methods do not allow for interventions on the 
target variable Y and concentrate on strong perturbations. Unlike prespecifying the class , we aim to 
learn it from the training data: it has then the interpretation of an estimated class  which is generated 
from a structural equation model. Pfister et al. (2019) show for ordinary differential equation-based 
models that by trading off predictability and invariance under different experimental conditions in a 
similar way as anchor regression, one may still learn models that generalize better to unseen exper-
iments. Yu and Kumbier (2020) expand traditional statistical uncertainty considerations by adding 
new notions of stability to improve reliability and reproducibility of knowledge extraction from data.

In Entner et  al. (2013), the authors derive two rules that are sound and complete for inferring 
whether a given variable has a causal effect or not. The first rule uses (conditional) instruments to 
deduce the presence of a causal effect. While the goal of their work is different from the main intention 
of anchor regression, the first rule is similar to the condition that two versions of anchor regression 
agree, as explained further below. Sani et  al. (2020) study identification and estimation of causal 
effects defined by shift interventions. The authors give sound and complete identification algorithms 
for the estimation of such causal effects based on graph models with and without hidden variables.

Furthermore, from a rather different viewpoint, it is known that many techniques for penalized 
regression can be formulated as a solution to Equation (1), too. To see this, consider some measure-
ment error ξ in X, that is that (X + ξ,Y) under ℙtrain has the same distribution as (X, Y) under ℙtest. If we 
assume further that the measurement errors ξk are centred, jointly independent and independent of X 
and Y under ℙtrain, we can write

�test [ (Y − X⊺b)2 ] = �train [ (Y − (X + � ) ⊺b)2 ] = �train [ (Y − X⊺b)2 ] +

d∑
k= 1

�train [�2
k
]b2

k
.
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If  contains all such test distributions with measurement errors up to strength �[�2
k
] ≤ �, the optimiza-

tion (1) becomes

In words, under certain types of measurement errors, a (weighted) ridge penalty is optimal for prediction 
under perturbations. This is well known in the measurement errors literature, see, for example Fuller 
(2009). A similar result holds for the Lasso (Xu et al., 2009).

2  |   POPULATION ANCHOR REGRESSION

We now discuss properties of the population version of the proposed estimator (4). The overall goal 
is to predict the target variable Y ∈ ℝ with the observed covariate vector X ∈ ℝ

d. The covariates X 
are potentially endogenous, A ∈ ℝ

q is a so-called anchor variable which is exogenous and H ∈ ℝ
r 

is a vector of unobserved, or ‘hidden’, random variables. In the case of categorical anchors, dummy 
encoding can be used to encode the categorical values with A ∈ ℝ

q.
To understand anchor regression and its properties, it is instructive to recognize the difference to 

the following well-known estimation concepts:

Here, PA stands for ‘partialling out’, also sometimes called ‘adjusting for’, and refers to linearly regressing 
out A from X and Y and considering residuals. The abbreviation IV refers to the two-stage least-squares 
estimation principle in IV settings.

Due to the decomposition �train [ (Y − X⊺b )2 ] = �train [ (PA (Y − X⊺b ) )2 ] + �train [ ( ( Id − PA ) (Y − X⊺b ) )2 ], 
anchor regression coincides with OLS for γ = 1. For γ = 0, anchor regression coincides with bPA and 
for γ → ∞ it converges to bIV, that is:

The latter equation holds if bIV is uniquely defined. Hence, anchor regression interpolates between bPA 
and bOLS for 0 ≤ γ ≤ 1 and between bOLS and bIV for 1 ≤ γ ≤ ∞.

Generally speaking, with anchor regression, we aim to learn a prediction mechanism that is reli-
able across A such as specific time periods, circumstances, locations or experimental batches observed 
in the training data set, and has some robustness guarantees regarding distributional shifts of observed 
and potentially also hidden variables. The structure of A crucially determines the robustness which 
we aim to achieve. For example, if we desire to achieve robustness across locations, then A should 
be chosen as a variable that encodes location in the training data set. If the desired robustness is with 

min
b

max
F∈

�F [ (Y − X⊺b )2 ] = min
b
�train [ (Y − X⊺b)2 ] + �

∑
k

b2
k
.

(6)

bPA:= argmin
b

�train[((Id−PA)(Y−X⊺b))2]= argmin
b

�train[((Y−PAY)− (X−PAX)⊺b)2]

bOLS:= argmin
b

�train[(Y−X⊺b)2]

bIV:= argmin
b

�train[(PA(Y−X⊺b))2]

b� := argmin
b

�train[((Id−PA)(Y−X⊺b))2]+��train[(PA(Y−X⊺b))2].

(7)
b

0=b
PA

b
1=b

OLS

b
→∞

:= lim
�→∞

b
�=b

IV
.
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respect to experimental batches, then A should be chosen as a variable that describes different batches 
in the training data set.

While our estimator is defined under general conditions, most of our theoretical results focus on a 
model class that we introduce next.

2.1  |  A linear structural causal model

We assume that the data are generated from a linear structural equation model (SEM), also called a 
structural causal model (SCM), (Bollen, 1989; Pearl, 2009). Let the distribution of (X, Y, H, A) under 
ℙtrain be a solution of the SEM

where M ∈ ℝ
( d+1+ r ) ×q and B ∈ ℝ

( d+1+ r ) × ( d + 1 + r ) are unknown constant matrices and the an-
chors A ∈ ℝ

q, the hidden variables H ∈ ℝ
r and the noise � ∈ ℝ

d+1+ r are random vectors. We will call 
M the shift matrix. The random vectors A and ɛ are assumed to be independent. Furthermore, we assume 
that under ℙtrain, X and Y are centred to mean zero, that ɛ and A have finite second moments and that the 
components of ɛ are independent of each other. Equation (8) is potentially cyclic and a priori there may 
exist several or no distributions that satisfy this equation. In the following, we assume that Id − B is in-
vertible. This guarantees that the distribution of (X, Y, H, A) under ℙtrain is well-defined in terms of B, ɛ, 
M and A as Equation (8) has only one solution (equilibrium) satisfying

More details on the interpretation in the cyclic case can be found in the supplementary material, Section 
8.1. The model induces a directed graph G, with the edges given by the following construction: For every 
Mk,l ≠ 0, a directed edge is drawn from Al to the k-th variable in the (d + 1 + r)-dimensional vector (X, Y, H). 
Analogously, for every Bk,l ≠ 0, a directed edge is drawn from the l-th variable in (X, Y, H) to the k-th vari-
able in (X, Y, H). The (vector-valued) variable A is called anchor since it corresponds to a source node in the 
directed graph that is there are no incoming edges into A. We allow the graph G to be cyclic. Note that the ma-
trix Id−B is always invertible if the graph G is acyclic. An exemplary graph G that lies in our model class is 
given below. We also allow for self-cycles (e.g. an arrow from Y to Y), which are not depicted in the example.

Note that we do not assume A to be an instrument (Didelez et al., 2010); we explicitly allow that A di-
rectly affects H and/or Y. This has important consequences: predictive guarantees of anchor regression do 

(8)
⎛
⎜⎜⎜⎝

X

Y

H

⎞
⎟⎟⎟⎠
= B ⋅

⎛
⎜⎜⎜⎝

X

Y

H

⎞
⎟⎟⎟⎠
+ � + MA,

⎛⎜⎜⎜⎝

X

Y

H

⎞⎟⎟⎟⎠
= (Id − B ) −1 (� + MA) .
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not exclusively apply to interventions on X but potentially also cover interventions on Y and H, depending 
on the data-generating mechanism. More exemplary graphs and a potential motivation can be found in the 
following example.

Example 1  (Three examples of graphs G which are in our model class). Consider a setting with 
one-dimensional variables A, X and H. For example, X could be the activity of a certain gene, 
Y the activity of another gene and H the activity of a third, unobserved gene that regulates the 
activity of both X and Y. A  ∈  {−1, 1} could be an indicator variable of data collected from 
several experimental batches. The distribution of (X, Y, H) may change between the different 
batches A  ∈  {−1, 1}. The change in distribution can be ‘caused’ through a change in the activ-
ity of gene X (graph (i)), through a change in the activity of gene Y (graph (ii)) or a change in the 
activity of gene H (graph (iii)). Our model class contains many more graphs G than these three. 
Between the variables (X, Y, H), there are up to 3 · 2 = 6 directed arrows that may be in the graph 
(or not) and there are up to three arrows from A to (X, Y, H) that may be in the graph (or not), 
leading to a total of 23 · 26 = 512 directed graphs that lie in our model class for one-dimensional 
A, X and H. The graph does not need to be known in our setting.

We aim to investigate the distribution of (X, Y, H) under perturbations. In the literature, so-called 
point, hard or do-interventions are often employed for causal modelling (Pearl, 2009).

Here, we aim to model the perturbed distributions as small, medium and potentially large pertur-
bations of the training distribution. Interventions that act on the system in a linear fashion are often 
natural as well as simple to study. Thus, we will consider so-called shift interventions on (X, Y, H), 
which simply shift a variable by a value, see Equation (9) below. This change subsequently propagates 
through the system. Shift interventions can be seen as a special case of a ‘parametric’, ‘imperfect’ or 
‘dependent’ intervention or a ‘mechanism change’ (Eberhardt & Scheines, 2007; Korb et al., 2004; 
Tian & Pearl, 2001). In particular, when A represents a ‘dummy encoding’ of different batches, for 
example we regard this as a flexible class of interventions.

The new interventional (perturbed) distribution is denoted by ℙv. The distribution of the variables 
(X,Y,H) under ℙv is defined as the solution of

where v ∈ ℝ
d+1+q is a random or deterministic vector independent of ɛ, but not necessarily independent 

of A. The distribution of ɛ is assumed to be the same under ℙtrain and under ℙv. We call v a shift. We po-
tentially allow for interventions on X, Y and H, that is we allow vk ≢ 0 for all k  ∈  {0, …, d + q + 1}. The 
main intuition behind shift interventions is that an external force shifts a certain variable by some amount. 
This shift propagates through the SEM, changing the distribution of some of the other variables.

(9)
⎛⎜⎜⎜⎝

X

Y

H

⎞⎟⎟⎟⎠
= B ⋅

⎛⎜⎜⎜⎝

X

Y

H

⎞⎟⎟⎟⎠
+ � + v,
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2.2  |  Anchor regression: an example

First, we give an example of a linear SEM and the effect of a shift intervention. Then we will discuss 
the performance of OLS, the IV approach and partialling out A (PA); and motivate anchor regression. 
We compare the estimators by training them on the training distribution ℙtrain and evaluating their 
performance on a perturbed distribution ℙv.

Consider a classical setting for the IV approach, where A is an instrument, X is endogenous and H 
is a hidden confounder. The structural equations of the unshifted distribution are defined on the left-
hand side of Example 2. The equations under a shift v = (1.8, 0, 0) ⊺ are depicted on the right-hand 
side. The structural equations are assumed to be the same, but the variable X is shifted by +1.8 and the 
change propagates through the SEM.

Example 2  The structural equations for ℙtrain can be found on the left. On the right, structural equa-
tions for ℙv with v = (1.8, 0, 0).

There are two extreme cases for dealing with the variable A. The variation explained by A can be 
removed by partialling out A, sometimes also called residualizing with respect to A or adjusting for the 
effect from A. If we think about A as a subpopulation indicator variable, doing so creates a more ho-
mogeneous population and thus can correct for population stratification. The other extreme case is to 
remove all variation except for the variation explained by A. Under IV assumptions, doing so removes 
possible confounding variables and allows estimation of causal effects. For comparison, we thus con-
sider PA, OLS and the IV approach in the form of two-stage least squares. All three are computed on 
ℙtrain, while their performance will be compared on the perturbed distribution ℙv.

If we regress Y on X, we obtain regression coefficient bOLS ≈ 1.66. The IV approach yields bIV = 1 
and partialling out A leads to bPA = 2. For each coefficient b� , � ∈ [0, ∞ ), we compute the MSE 
on the shifted distribution �v [ (Y − X⊺b� )2 ]. The results are depicted in Figure 1. None of the three 
methods, IV, PA and OLS, yield the lowest MSE. In fact, large sections of the path of b� , � ∈ (1, ∞ ),   
outperform IV, PA and OLS. In that sense, even if IV regression identifies the true causal param-
eter, anchor regression can exhibit better prediction properties. This is not specific to the choice 
v = (1.8, 0, 0) ⊺ but holds for other perturbations v as well. This will be discussed further in Section 
2.4; it turns out that we can give optimality guarantees under certain interventions v, which depend on 
the underlying structural equation model. Furthermore, anchor regression will turn out to be useful 
even for cases where IV regression cannot identify the causal parameter, that is, when the exogenous 
variable A is a direct cause of Y or the hidden confounder H. In the next section, we discuss why all 
three approaches OLS, PA and IV have suboptimal performance in this example on the test data.

2.3  |  Trading off performance on perturbed and unperturbed data

Why did the three approaches OLS, IV and PA deliver suboptimal performance in the preceding ex-
ample? Recall that the overall goal is to find b such that predictive performance is not only good on 
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the training distribution but also under perturbed distributions. In this sense, we want to avoid ‘over-
fitting’ to the particular distribution of the training data set. This can be investigated by considering 
the minimax loss

The crucial point here is to choose a ‘reasonable’ set of perturbations C. If C is small, then the solution of 
Equation (10) will usually not deliver good predictive performance under perturbations. If C is too large, 
then the solution may be unnecessarily conservative. Now let us return to the example of Section 2.2. It 
can be shown that bPA solves the minimax problem for CPA = {0}, that is,

Hence it is not surprising that bPA showed suboptimal performance under the intervention v = (1.8, 0, 0) ⊺.   
OLS solves the minimax problem for COLS = {v ∈ ℝ

3: v2 = v3 = 0 and v2
1
≤ 𝔼train [A2 ] }, that is,

Loosely speaking, OLS optimizes the predictive performance under shifts in X up to strength 
v2

1
≤ �train [A2 ]. In contrast, it can be shown that in the given example IV regression solves the minimax 

problem for CIV = {v ∈ ℝ
3: v2 = v3 = 0}:

In words, the causal parameter (IV) solves the minimax problem if the supremum is taken over arbi-
trarily strong shifts in X. Such shifts are not always realistic; hence, from a prediction perspective, the 
causal parameter can be unnecessarily conservative. The vector bPA is optimized for prediction under zero 

(10)argmin
b

sup
v∈C

𝔼v[(Y−X⊺b)2] for a suitable set C⊆ℝ
d+q+1.

bPA = argmin
b

sup
v∈CPA

�
v
[(Y−X

⊺
b)2].

bOLS = argmin
b

sup
v∈COLS

�
v
[(Y−X

⊺
b)2].

b
IV
= argmin

b

sup
v∈C

IV

�
v
[(Y−X

⊺
b)

2
].

F I G U R E  1   IV, OLS, PA and anchor regression coefficients are computed on unshifted data. The plot shows the 
MSE �

v
[ (Y − X

⊺
b ) 2 ] on shifted variables for varying coefficients b = bγ, γ  ∈  (0, ∞). The SEM for both shifted and 

unshifted data is given in Example 2. The optimal coefficient lies between IV and OLS
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perturbations CPA = {0} and does not exhibit stable predictive performance under shifts in X. As discussed 
earlier, OLS is somewhat in between. The trade-off is depicted in Figure 2: predictive performance of 
the four methods (PA, IV, OLS and anchor regression with γ = 5) is shown under varying intervention 
strength. While the causal parameter (IV) is the most stable, for small- and medium-sized shifts, other 
methods are preferable. In contrast, OLS and PA show good performance only under small perturbations, 
with rapidly growing MSE for larger perturbations. Let C5 = {v ∈ ℝ

3: v2 = v3 = 0 and v2
1
≤ 5}. For 

example, it can be shown (cf. Theorem 1) that anchor regression for γ = 5 solves the minimax problem

This gives us a convenient interpretation of bγ for γ = 5: it minimizes the risk under shift interventions 
on X up to strength � v1 � ≤

√
5. The next section discusses the optimality of anchor regression under 

perturbations up to a given strength beyond the specific SEM of Example 2.

2.4  |  Optimal predictive performance under perturbations

In this section, we will discuss a first main result, namely a fundamental connection between the 
population version of anchor regression and the worst-case risk over a class of shift interventions. 
In Section 2.2, we saw that neither PA, OLS nor IV are optimal for prediction under the given in-
tervention strength. The following theorem gives guarantees for the prediction error of anchor re-
gression under shift interventions up to a given perturbation strength. Recall that PA denote the 

argmin
b

sup
v∈C

5

�
v
[(Y−X

⊺
b)2].

F I G U R E  2   Predictive performance of the direct causal effect (IV), PA, OLS and anchor regression with γ = 5 
under varying interventions on X. The SEM is taken from Example 2. The MSE �

v
[ (Y − X

⊺
b ) 2 ] is depicted under 

perturbation strength v = ( t, 0, 0 ) ⊺. The causal parameter (IV) exhibits constant predictive performance under 
arbitrary perturbation strength |t|, but predictive performance under small perturbations is subpar. PA and OLS 
have very good performance under small interventions but performance suffers under larger interventions. Anchor 
regression with γ = 5 trades performance on unperturbed data (t = 0) for more stability that is better performance on 
medium-sized interventions. In particular, it is minimax optimal under shifts C5 = { ( t, 0, 0 ) ⊺ : � t � ≤

√
5 ≈ 2.24},  

cf. Theorem 1. For large shifts |t|, the IV method eventually outperforms anchor regression. Note that all shown 
solutions are anchor solutions, under respective penalties γ = 0 (PA), γ = 1 (OLS), γ = 5 and γ = ∞ (IV)
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L2-projection on the linear span from the components of A. Under the assumptions of Section 2.1, we 
have PA (X ) = �train [X |A] and PA (Y) = �train [Y |A]. Let X and Y have mean zero.

Theorem 1  Let the assumptions of Section 2.1 hold. For any b ∈ ℝ
d, we have

where

and M is the shift matrix, cf. Equation (8). A formulation of the result where v is allowed to be random can 
be found in the supplementary material, Section 8.5.

Here, for two positive semidefinite matrices A and B, we write A ⪯ B if and only if B − A is positive 
semidefinite. In particular, we have C𝛾 ⊆ span(M ). Readers familiar with the concept of interven-
tions may thus think about ℙv as the distribution under a point intervention on A, where the condition 
v ∈ C� restricts the set of interventions to a certain strength.

There are two important takeaways from this theorem: First, the squared L2-risk under certain 
worst-case shift interventions is equal to adding a penalty to the squared L2-risk.

Second, as population anchor regression optimizes the penalized criterion (on the left-hand side 
of Equation (11)), anchor regression minimizes the worst-case MSE under shift interventions up to a 
given strength in certain directions, cf. Equation (6). We have discussed in Section 2.3 why it can be 
desirable to consider interventions only up to a given strength.

For simplicity, in the following, we make the assumption that �train [AA⊺ ] is positive definite. Note 
that in this case

We explicitly allow A to have a direct effect on X, Y or H. In other words, in the shift matrix M, we allow 
Mk∙ ∕≡ 0 for some (or all) k  ∈  {1, …, d + r + 1}. Hence Cγ potentially contains interventions that affect 
not only X but also Y or H. We discuss this in more detail in Section 8.2 in the supplementary material.

Generally speaking, we have introduced a penalty that encourages good predictive perfor-
mance under distributional shifts. Penalties of the form � ‖b‖2

2
 or γ‖b‖1 are widely employed for 

finite-sample regression to prevent overfitting the data with estimated parameters. Here, we deal 
with a different type of ‘overfitting’ that may even affect the population version. For γ = 0, the pop-
ulation estimator will ‘overfit’ to the particular distribution ℙtrain, in the sense that it is not guaran-
teed to work well under shifted distributions ℙv. For γ > 0 we obtain predictive guarantees for both, 
shifted and unshifted data. As γ → ∞, population anchor regression works increasingly well under 
strong interventions, at the price of deteriorating MSE on unshifted or moderately shifted data. In 
the finite-sample case, additional regularization in form of an ℓ1-penalty can be advisable. This is 
discussed in Section 4.2.

2.5  |  Limitations of using direct causal effects for prediction

In Section 2.2, we saw that using causal effects for prediction is in general not recommended if the 
perturbation strength is relatively small. In this section, we show that a similar caveat holds for the 

(11)�train[((Id−P
A
)(Y−X

⊺
b))2]+��train[(P

A
(Y−X

⊺
b))2]= sup

v∈C
�
�

v
[(Y−X

⊺
b)2],

C� : = {v ∈ ℝ
d+q+1 such that vv⊺ ⪯ �M𝔼train [AA⊺ ]M

⊺ } .

span(M)= lim
�→∞

C
� .
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directions of the perturbations. Using direct (or total) causal effects in settings with perturbations on 
Y and H can be ill-advised, even if the perturbation strength is arbitrarily strong. Using direct causal 
effects for prediction does not protect against arbitrary perturbations.

As an example, consider the following structural equation model and a shift in the distribution of 
the hidden confounder H. On the left, the structural equation for the unperturbed distribution ℙtrain is 
defined. On the right, the data-generating mechanism for the perturbed distribution ℙv is given under 
a shift v = (0, 0, t ) ⊺, t ∈ ℝ.

Assume that through some oracle (or previous experiments), we know that the direct causal effect from X 
to Y (Pearl, 2009, page 127) is 1 that is it equals the coefficient for X in the structural equation for Y. an-
chor regression is trained on data from the SEM on the left; the predictive performance of anchor regres-
sion and the direct causal effect are compared on the shifted distribution �v [ (Y − X⊺b )2 ]. The results are 
shown in Figure 3. The direct causal effect is uniformly outperformed by PA, OLS and anchor regression 
with γ = 5. Roughly speaking, this is due to the fact that the direct causal effect is geared towards predic-
tion under interventions on X, as discussed in Section 2.3. Interventions on H induce a very different dis-
tributional shift. Comparing PA and anchor regression leads to a similar conclusion as in Figure 2. Under 
small perturbations, PA and OLS are slightly better than anchor regression. However, anchor regression 
exhibits a stable performance across a large range of perturbation strengths and outperforms the other 
methods for medium or strong perturbations.
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F I G U R E  3   Predictive performance of the direct causal effect, PA, OLS and anchor regression under varying 
interventions on H. The MSE �

v
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⊺
b ) 2 ] is depicted under varying perturbations v = (0, 0, t ) ⊺. The 

corresponding structural equation models are given in Equation (12). For small perturbations, PA and OLS perform 
better than anchor regression. The direct causal effect exhibits large MSE for all values of t. While the direct causal 
effect shows stable predictive performance under interventions on X (as discussed in Section 2.3), this is at the 
expense of predictive stability under interventions on H or Y. The MSE of anchor regression with γ = 5 slowly grows 
in |t|
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2.6  |  Interpretation of anchor regression via quantiles

We now provide an interpretation of anchor regression without using structural equation 
models. For reasons of simplicity, we present the result for continuous anchors. A similar 
result for discrete anchors can be found in the supplementary material, Section 8.8. For the 
result of this section, the assumptions mentioned in Section 2.1 are not necessary, but in-
stead we assume multivariate Gaussianity of (X, Y, A), see Lemma 1. Define Q(α) as the α-th 
quantile of � [ (Y − X⊺b )2 |A]. Recall that with the notation defined in Section 1.2 if (X, Y, A) 
is multivariate Gaussian we have (Id − PA ) (Y − X⊺b) = Y − X⊺b − � [Y − X⊺b |A] and 
PA (Y − X⊺b) = � [Y − X⊺b |A].

Lemma 1  Assume that the variables (X, Y, A) follow a centred multivariate normal distribution 
under ℙ. Then, for 0 ≤ α ≤ 1,

where γ equals the α-th quantile of a χ2-distributed random variable with one degree of freedom.
Note that the right-hand side of the equation in Lemma 1 is the objective function of anchor regres-

sion. Thus, this shows that anchor regression can be used to optimize quantiles of � [ (Y − X⊺b )2 |A],  
for example minimization of the 95%-quantile of � [ (Y − X⊺b )2 |A] is achieved by bγ with 
� = �2

1
(0.95). In spirit, this result is similar to Theorem 1. The perturbed distributions ℙv in Theorem 

1 play a similar role as the conditional distributions ℙ [ ∙ |A = a ] in Lemma 1. For increasing γ, the 
predictions are increasingly reliable across distributions ℙ [ ∙ |A = a], a ∈ ℝ

q.

3  |   REPLICABILITY AND ANCHOR STABILITY

We consider here the question of replicability when estimation is done a second time on a new per-
turbed data set which has different data-generating distributions than the original unperturbed but 
typically heterogeneous data. Replicability in this context is about potential differences in the regres-
sion parameters or prediction losses under different distributions: it is a ‘first-order’ problem instead 
of inferential statements about statistical uncertainties due to finite samples.

For the following two sections, we sometimes need a condition that the loss of anchor regression 
remains finite for γ → ∞. We say the projectability condition is fulfilled if

where Covtrain (A, X ) |Covtrain (A, Y ) is a q × (d + 1) matrix, consisting of the q × d covariance matrix 
Covtrain(A, X), extended by the q × 1 vector Covtrain(A, Y). The reason why we call this the ‘projectability 
condition’ becomes clear in Lemma 2 below.

The projectability condition (13) is fulfilled, for example if Covtrain(A, X) is of full rank and q ≤ d 
(sometimes called the under- or just-identified case as the dimension of A is less or equal to the 
dimension of X). The condition can also be fulfilled for q > d under additional constraints on the 
nature of the link A → Y. In general, the projectability condition allows that the anchor variables A 
directly influence also Y or H, and the example above for q ≤ d requires only a full-rank condition 
on Covtrain(A, X).

Q(� ) = � [ ( (Id − PA ) (Y − X⊺b) )2 ] + �� [ (PA (Y − X⊺b) )2 ] ,

(13)rank(Covtrain (A, X) ) = rank(Covtrain (A, X ) |Covtrain (A, Y ) ) ,
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Lemma 2  Assume that �train [AA⊺ ] is invertible.

The projectability condition (13) is fulfilled if and only if

The projectability assumption is testable in practice. The following results cover predictive stabil-
ity and replicability under perturbations.

3.1  |  Replicability of the parameter b→∞

Our first goal is to investigate the replicability of the parameter b→∞. As stated in Theorem 1, this 
parameter vector is protecting against certain worst-case shift perturbations of arbitrary strength and 
as such, it has an interesting interpretation; in analogy to causality which corresponds to worst-case 
risk optimization for a different class of perturbations of arbitrary strength, see (2).

We consider two different data-generating distributions, and for notational coherence with before 
we denote them by ‘train’ and ‘test’. The training data is generated according to

where ξ is a random vector with mean zero and independent of ɛ and A and κ ≠ 0. Note that with κ = 1 and 
ξ = 0 we have the model in Equation (8).

The test data is from the following model:

where ξ′ is a random vector with mean zero and independent of ɛ′ and A′ and κ′ ≠ 0. We note that v′ and 
A′ can have arbitrarily different distributions than v and A but we assume that the dimensionalities are the 
same. The parameters B and M are the same in both models (15) and (16) and we assume that

Roughly speaking, the models in the training and test data set differ by arbitrary shifts in span(M) and a 
scalar factor in the noise distribution.

Consider the parameter b→∞ as defined in Equation (17),

which is a functional of the distribution in model (15). For its analogue on a new test data set with ob-
served variables A′,X′,Y′, we define

(14)min
b

�train[(P
A
(Y−X

⊺
b))2]=0.

(15)
⎛⎜⎜⎜⎝

X

Y

H

⎞⎟⎟⎟⎠
= B ⋅

⎛⎜⎜⎜⎝

X

Y

H

⎞⎟⎟⎟⎠
+ � + v, v = M�, � = �A + �,

(16)

⎛⎜⎜⎜⎝

X�

Y�

H�

⎞⎟⎟⎟⎠
= B ⋅

⎛⎜⎜⎜⎝

X�

Y�

H�

⎞⎟⎟⎟⎠
+ � � + v � , v � = M� � , � � = � �A � + � � ,

(17)Covtest (𝜀
� ) = LCovtrain (𝜀 ) for some L > 0, �test [𝜀

� ] = �train [𝜀 ] = 0.

b→∞= argmin
b∈I

�train[(Y−X⊺b)2],

I={b;�train[Y−X⊺b|A]≡0},
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Theorem 2  (Replicability of b→∞). Consider the models in (15) and (16) for the training and test 
data, respectively. Assume (17) and �train [AA⊺ ] and �test [A ′ (A ′ ) ⊺ ] are invertible and as-
sume that the projectability condition (13) holds. Then,

Replicability of statistical estimands is arguably a desirable property, but it is a separate question whether 
b→∞ is a meaningful quantity. As discussed at the beginning of this section, b→∞ has an interpretation as 
a coefficient vector that optimizes a certain worst-case risk. Beyond this interpretation, we believe that the 
role of A matters to determine whether the components of b→∞ are scientifically relevant. Loosely speak-
ing, in IV settings, A induces associations between X and Y that are due to the causal pathway between X 
and Y. Hence, b→∞ has a scientific interpretation as the causal effect from X to Y. However, if A plays the 
role of a confounder (a variable that induces spurious associations between X and Y), then it is common 
practice to adjust for A, leading to b0. Under slightly weaker assumptions than in the result above, we also 
get replicability of b0. In practice, there may be some uncertainty about whether A is an instrument or a 
confounder, or whether both sets of assumptions are violated. In the next section, we will show that anchor 
regression can be used in such settings to screen for replicable coefficients that have a causal interpretation.

3.2  |  Anchor stability

If all solutions of anchor regression agree (i.e. if b0 = bγ for all γ  ∈  [0, ∞)), we call the coefficient 
vector anchor stable.

We will show that under anchor stability we have predictive stability and robust estimation under 
certain perturbations. These findings will be empirically validated in Section 5.2. Additionally, we 
will show that anchor stability allows a causal interpretation of the coefficient vector under otherwise 
comparatively weak assumptions. As in the previous section, in the following, we assume that the 
limit b→∞ : = lim�→∞b� exists.

One of the anchor stability results (Theorem 4) can be generalized to cases where the anchor is 
endogenous. This relaxation is relevant for our application in Section 5.2. A rigorous treatment of 
endogenous anchors warrants the introduction of a class of models that subsumes acyclic models in 
Section 2.1. Thus, for reasons of readability, we defer the most general version of the theorem to the 
supplementary material, Section 8.13.

Our first result shows that we have anchor stability if the two endpoints of anchor regression agree.

Proposition 1  If b0 = b→∞, then
The proposition is valid without necessarily assuming the projectability condition, which is, 
however, needed for the following result on anchor stability in the case that the solutions match for γ  ∈  {0, ∞}.

Theorem 3  (Anchor stability, predictive stability and replicability). Let the assumptions of Section 
2.1 hold, and in addition assume the projectability condition (13) and that the Gram matrix 
�train [AA⊺ ] is invertible. If b0 = b→∞, then, for all random or constant vectors v that are un-
correlated of ɛ and take values in span(M),

b�→∞= argmin
b∈I�

�test[(Y
� − (X�)⊺b)2],

I� ={b; �test[Y
� − (X�)⊺b|A�]≡0}.

b � →∞ = b→∞.

b0 = b� for all � ∈ (0,∞) .
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1.	�train [ (Y − X⊺b0 )2 ] = �v [ (Y − X⊺b0 )2 ], and
2.	 b0 = argminb�v [ (Y − X⊺b)2 ].

Part (a) of the theorem implies that the risk is constant as long as the perturbations v lie in the 
span of the shift matrix M, that is in span(M). This can be seen as a form of predictive stability 
across a range of distributions. Part (b) together with Proposition 1 imply that running a regression on 
perturbed data sets in the population case returns the same coefficients as the ones computed on the 
training data as long as the perturbations v lie in span(M). In this sense, we have replicability across 
certain distributions.

Now let us turn to the interpretation of the individual coefficients in this case. The individual 
coefficients can be interpreted using the concepts of d-separation, causal directed acyclic graphs and 
do-interventions. For reasons of readability and as the concepts are otherwise not needed in this paper, 
we will not define them here but rather refer the reader to, for example Pearl (2009), Chapter 1. An in-
terpretation of the result in the one-dimensional case is given in Section 3.3. The faithfulness assump-
tion (Pearl, 2009; Spirtes et al., 2000) connects d-separation statements to statements of conditional 
independences. As anchor regression only deals with covariances, we have to make an assumption 
that connects d-separation statements to partial correlations. We assume that G is acyclic and that 
for every disjoint sets of variables V1, V2, V3 ⊂ (X, Y, H, A), V1 is d-separated of V2 in G given V3 if 
and only if the partial correlation part.cor(V1, V2 |V3 ) = 0. This can be seen as a linear version of 
faithfulness.

Theorem 4  (Anchor stability implies causality). Let the assumptions of Section 2.1 hold with an 
acyclic graph G, and assume the projectability condition (13).

Furthermore, assume that for every disjoint sets of variables V1, V2, V3 ⊂ (X, Y, H, A), V1 is d-sepa-
rated of V2 in G given V3 if and only if the partial correlation part.cor(V1, V2 |V3 ) = 0. Furthermore, 
assume that for each Xk there exists k ′ such that Ak′ → Xk. If b

→∞ = b0, then

where the do-operator � [ ∙ |do (X = x) ] is defined as in Pearl (2009), Chapter 1. In addition, there is no 
hidden confounder between X and Y, that is, there is no Hk that is both an ancestor of some Xk′ and Y in G.

A more general version of this result that allows for endogenous anchors can be found in Section 
8.13. Roughly speaking, the theorem says that under anchor stability, the coefficients b→∞ = b0 have 
a causal interpretation and there is no hidden confounder between X and Y. If hidden confounders were 
present between X and Y, intervening (or conditioning) on them could potentially change the anchor 
regression coefficient b0. In this sense, the absence of hidden confounding between X and Y may be 
seen as a positive indication for distributional replicability.

Anchor stability is testable on data and if it holds, under relatively weak assumptions, the coeffi-
cients allow for a causal interpretation. In empirical studies using IVs, one often compares IV estimates 
with OLS estimates. The above result formalizes the implications when these estimates are equal.

3.3  |  Anchor stability in the one-dimensional case

In the special case where X, Y, H and A are all one-dimensional random variables, the theorem can be 
interpreted in the following way: Suppose we know that A is exogenous and A → X but we do not know 
whether it is a valid instrument, that is, potentially we have A → Y or A → H → Y. We may not know 

(18)b→∞ = b0 = �x� [Y |do (X = x) ] ,
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either whether we could obtain the causal coefficients by simply regressing Y on X or Y on (X, A), that 
is, we are unsure whether there exists a hidden confounder H with X ← H → Y. Under the assumptions 
of Theorem 4 and if b0 ≠ 0, the models agree if and only if A → X → Y and if no other arrows (or hidden 
confounders) are present. Using the theorem, if the two anchor solutions agree, then both the IV and 
regression adjustment are correct for estimating the causal effect. This approach is restrictive, but can 
potentially be useful in cases where we have little knowledge about the underlying structure and not 
much reason to prefer one of these models over the other. An application of this approach is shown in 
the data section. We anticipate that the concept of anchor stability is most useful for screening causal 
effects in large-scale settings. An analogous statement holds for the multivariate case.

4  |   PROPERTIES OF ANCHOR REGRESSION ESTIMATORS

In this section, we discuss the properties of finite-sample anchor regression. Section 4.1 treats the 
low-dimensional case; the high-dimensional case is discussed in Section 4.2. In the following, we 
consider n i.i.d. observations of (X, Y, A). Concatenating the observations of X row-wise forms an 
n × d-dimensional matrix that we denote by X. Analogously, the matrix containing the observations of 
A is denoted by A ∈ ℝ

n×q and the vector containing the observations of Y is denoted by Y ∈ ℝ
n. In 

the following, we tacitly assume that the population parameter bγ as defined in Equation (6) is unique.

4.1  |  Estimator in the low-dimensional setting

As discussed before, in the low-dimensional case where d<n, we recommend using a simple plug-in 
estimator for the anchor-regression coefficient bγ:

where Π
A
∈ ℝ

n×n is the matrix that projects on the column space of A, that is if A⊺
A is invertible, then 

Π
A

: = A(A
⊺
A) −1

A
⊺. In Section 2.1, we made the assumption that X and Y have mean zero. Hence, in 

practice, we recommend to centre X and Y in a preprocessing step.
Computation of the anchor regression estimator in Equation (19) is simple, as it can be cast as an 

OLS problem on a transformed data set. To this end, define

The estimator in (19) can then be represented as follows:

The transformed data set ( X̃, Ỹ) can be interpreted as artificially generated interventional (‘perturbed’) 
data. In this sense, anchor regression can be seen as a two-step procedure. First, generate perturbed data 
( X̃, Ỹ) for a given perturbation strength γ. Then, run OLS on the artificial data set.

By the law of large numbers for n → ∞ the empirical covariance matrix of (X, Y, A) converges to 
the population covariance matrix of (X, Y, A). By continuity, b̂

�
= ( X̃

⊺
X̃ ) −1

X̃
⊺

Ỹ converges to the 
population parameter bγ. Hence, b̂

�
 is a consistent estimator of bγ.

The transformation (20) is for computational reasons only.

(19)b̂
�
= argmin

b

‖ (Id −Π
A

) (Y − Xb ) ‖2
2
+ � ‖Π

A
(Y − Xb ) ‖2

2
,

(20)X̃: = (Id −Π
A

)X +
√
�Π

A
X and Ỹ: = (Id −Π

A
)Y +

√
�Π

A
Y.

b̂
�
= argmin

b

‖ Ỹ − X̃b‖2
2
.
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Even if (X, Y, A) follows a multivariate Gaussian distribution, in general, it might not be true that 
b̂
�
∼  (b� , V ) for some covariance matrix V since possible confounding complicates the matter. 

Hence p-values or confidence intervals from OLS regression of the transformed data ( Ỹ, X̃) cannot 
be used.

Since a main goal in this paper is to establish good predictive performance on future data sets, it 
is less important to provide distributional results for b̂

�
− b�, than to quantify the excess predictive 

risk on new data sets. A finite-sample bound for the excess risk, even covering the high-dimensional 
setting, can be found in Section 4.3.

4.2  |  Estimator in the high-dimensional setting

If the number of predictors d exceeds the number of observations n, then the sample estimate defined 
in Equation (20) is not well-defined. In high-dimensional settings, one typically employs ℓ1- or ℓ2-
norm penalties for regularization and shrinkage. The ℓ1-penalized estimators are usually consistent 
under appropriate sparsity and distributional assumptions, see, for example Bühlmann and van de 
Geer (2011).

While high dimensionality is allowed in terms of d ≫ n, we will assume here that the number of 
anchor variables q is of smaller order than n. High dimensionality in terms of q ≫ n would be another 
issue, as ΠA is ill-posed, and should be addressed with an �∞ regularization scheme, replacing the 
ℓ2-norm term � ‖ΠA (Y − X⊺b ) ‖2

2
. We propose high-dimensional estimation of anchor regression as 

a solution of

Compared to unregularized anchor regression, the penalty term 2λ‖b‖1 favours coefficient vectors b that 
are sparse. For γ = 1, the estimator coincides with the Lasso (Tibshirani, 1996), whereas for λ = 0, the 
estimator coincides with unregularized anchor regression.

As in the low-dimensional case with the linear transformation in Equation (20), computation of 
regularized anchor regression is easy. We can rewrite regularized anchor regression as

where Ỹ and X̃ are defined as in Equation (20). Hence, solving a high-dimensional anchor regression 
for fixed γ is reduced to solving a Lasso problem. This is typically done by coordinate-wise descent 
(Friedman et al., 2007) to approximately compute the solution path. In the next section, we will investigate 
finite-sample performance of ℓ1-norm regularized anchor regression.

4.3  |  Finite-sample bound for discrete anchors

We will derive a finite-sample bound for discrete anchors. There are no fundamental issues that pre-
vent the derivation of similar results for continuous anchors. We write  for the set of levels of the 
random variable A. Unbalanced settings can impose difficulties in the finite-sample case as it becomes 

(21)b̂
� ,�

= argmin
b

‖ (Id −Π
A

) (Y − Xb ) ‖2
2
+ � ‖Π

A
(Y − Xb ) ‖2

2
+ 2�‖b‖1.

argmin
b

‖(Id−Π
A

)(Y−Xb)‖2
2
+�‖Π

A
(Y−Xb)‖2

2
+2�‖b‖1

= argmin
b

‖Ỹ− X̃b‖2
2
+2�‖b‖1,
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more challenging to estimate the penalty term. We analyse the behaviour of anchor regression in the 
case where all anchor levels A = a, a ∈ , are explicitly given equal weight in the optimization pro-
cedure, that is the objective function for population anchor regression is

Such a re-weighting is usually advisable in unbalanced settings. Otherwise, very few levels of A can domi-
nate the penalty term and limit its usefulness. Note that, by Theorem 1, R(b) corresponds to the maximum 
ℓ2-risk under a uniform distribution on the levels of A:

For data with unbalanced discrete anchor levels, the shape of Cγ changes as anchor levels that occur with 
small probability are given less weight. For discrete anchors, interpreting anchor regression via quantiles 
is only justified under re-weighting, see Lemma 3 in the supplementary material.

To formulate the assumptions in a convenient form, we introduce additional notation for the special 
case of discrete anchors. We write na for the number of observations for level A = a and nmin for the 
minimum number of observations, that is nmin: = mina∈na. We write X ( a ) ∈ ℝ

na ×d for the observa-
tions for which A = a. In other words, the rows of X ( a ) consist of observations Xi,∙ for which Ai = a. 
Furthermore, we write X ( a ) for the mean within the group, that is X ( a )

=
1

na

∑ na

i=1
X

( a )

i, ∙
. Analogously, 

we define Y ( a ) ∈ ℝ
na and Y ( a ). Using this notation, the high-dimensional anchor regression estima-

tor in Equation (21) but with equal weight regularization, analogous to the definition of R(b) above, 
equals

Here and in the following, we suppress the dependence of b̂ on γ and λ. For any S ⊆ {1, …, d} and stretch 
factor L > 0 define the anchor compatibility constant

To proceed, we need a lower bound on the compatibility constant ̂�
2
(L, S∗ ) for S∗ : = {k: b

�

k
≠ 0}, the 

active set of bγ. Note that for all S

For | | = 1, the quantity on the right corresponds to the ordinary compatibility constant in 
high-dimensional linear regression (van de Geer, 2016). The anchor compatibility constant can be 
bounded analogously as the ordinary compatibility constant, see, for example van de Geer (2016).

When presenting asymptotic results as both d = dn > n → ∞, we allow that the set , the shift 
matrix M, the target quantity bγ and the structural equation model change for varying n.

R(b) : = �train [ (Y − X⊺b − �train [Y − X⊺b |A] )2 ] +
�

| |
∑
a∈

(�train [Y − X⊺b |A = a] )2.

R(b)= sup
v∈C

�
�

v
[(Y−X

⊺
b)2].

b̂: = argmin
b

1

� �
�
a∈

1

na

na�
i= 1

�
Y

( a )

i
− Y

( a )
− (X

( a )

i, ∙
− X

( a )
)b
�2

+
�

� �
�
a∈

�
Y

( a )
− X

( a )
b
�2

+ 2�‖b‖1.

�̂
2
(L, S):=

min‖b
S
‖1=1,‖b−S

‖1≤L

�S�
�

1

��
�
a∈

1

n
a

n
a�

i= 1

�
(X

(a)

i,∙
−X

(a)
)b
�2

+
�

��
�
a∈

(X
(a)

b)2

�
.

�̂
2
(L, S)≥min(� , 1) min‖b

S
‖1=1,‖b−S

‖1≤L

�S�
��

�
a∈

1

n
a

n
a�

i= 1

�
X

(a)

i,∙
b

�2

.
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Theorem 5  Consider the model in (8) and assume that ɛ is multivariate Gaussian. Moreover, as-
sume that (X

( a )

i, ∙
, Y

( a )

i
), i = 1, …, na, are i.i.d. random variables that follow the distribution of 

(X,Y)|A = a under ℙtrain. Fix γ > 0 and assume that �̂
2
(8, S∗ ) ≥ c for some constant c > 0 with 

probability 1 − δ, and that S* ≠ ∅. Choose t ≥ 0 such that

for some constant c′>0. Then, for � ≥ C
√

( t + log(d) + log( � � ) ) ∕nmin, with probability exceeding 
1 − 10 exp (−t) − δ,

where the constants C, C � < ∞ depend on maxkVar(Xk), Var(Y − X⊺b� ), max
a∈‖�train[X�A=a]‖∞,  

max
a∈|�train[Y−X

⊺
b
� |A=a]|, γ, c and c′. The variances are meant with respect to the measure ℙtrain.

There are no fundamental issues that prevent the derivation of similar results for continuous an-
chors. The constant 8 in the anchor compatibility constant ̂�

2
(8, S∗ ) does not represent a theoretically 

meaningful critical value, it was chosen in an ad-hoc fashion to simplify the result.
Under the assumptions mentioned above, if we choose � ≍ �C

√
( t + log(d) + log( � � ) ) ∕nmin 

for 𝜅 >
√

2, t =    log  (d) and assume that δ → 0, we obtain the following asymptotic result. For 
d, n → ∞, with probability going to one,

As b̂ coincides with the Lasso for γ = 1 and | | = 1, it is worthwhile to compare this bound to risk 
bounds of the Lasso. The excess predictive risk of the Lasso in a comparable setting with appropriate 
choice of λ is of the order 

(|S∗ |log(d)∕n
)
, see, for example Bühlmann and van de Geer (2011) Chapter 

6). Hence the risk bounds will be of comparable order as long as n/nmin is bounded.

5  |   NUMERICAL EXAMPLES

We provide two numerical examples. In the first example, we discuss a prediction problem under 
distributional shifts. The second example shows how anchor regression can be used to improve repli-
cability across perturbed data. The code is available on github.com/rothenhaeusler.

5.1  |  Bike-sharing data set

The data set is taken from the UCI machine learning repository (Dheeru & Karra Taniskidou, 2017; 
Fanaee-T & Gama, 2013). It contains n = 17,379 hourly counts of bike rentals from 2011 to 2012 
of the Capital bike share in Washington D.C. The goal is to predict bike rentals (variable cnt) using 
weather data reliably across days. As the variable cnt is a count, a square-root transformation was 
carried out. The effect of categorical variables, for which shift interventions are not meaningful (this 
includes the variables working day, weekday, holiday), was removed in a preprocessing step. While 
we generally recommend removing the effect of variables that cannot be shifted, in this particular 
example the preprocessing step makes no discernible difference in the resulting plot, see Figure 12 in 

|S∗ |2 ( t + log(d) + log( | | ) ) ∕nmin ≤ c � ,

R(b̂)≤min
b

R(b)+C
��2|S∗|,

R(b̂)−min
b

R(b)=

(|S∗|(log(d)+ log(||))
nmin

)
.
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the supplementary material. The data set contains the numerical covariates temperature, feeling tem-
perature, humidity and windspeed. The variable hour is nested within the variable ‘date’. We will first 
conduct the analysis ignoring the variable ‘hour’ as this application is closest to Theorem 1, Lemma 
1 and Lemma 3. In practice, one would also want to include ‘hour’ as a predictor in the model. We 
discuss this case further below.

There are large fluctuations in the usage of bikes that cannot be explained by weather data alone 
(Fanaee-T & Gama, 2013). Instead of using the discrete variable ’date’ for prediction, we use it as an 
anchor A. More detailed, the anchor variable is discrete with one level per day.

This choice of anchor variable allows us to investigate the performance of anchor regression in a 
setting with strong heterogeneities. The goal is to predict the count of bike rentals in a reliable fashion 
using the covariates temperature, feeling temperature, humidity and windspeed.

As evaluation metric, we consider quantiles of the conditional mean squared error given the an-
chor variable. Intuitively speaking, we want to train a prediction rule that works reliably across days. 
Practically, this means that for each fixed day, we average over the prediction loss and then compute 
quantiles across days. The quantiles of the conditional squared error � [ (Y − X⊺b )2 |A] are a proxy 
for the right-hand side of Equation (11) being the worst-case risk across perturbations of a certain 
level, cf. Lemma 3 in the supplementary material. The data were split into 5 consecutive blocks. 
The estimator was trained on 4 of the 5 blocks and tested on the left-out block. Results are averaged 
over the five possible train-test split. Quantiles of the daily averaged squared error on the test data set 
�̂test [ (Y − X⊺ b̂

�
)2 |A], are depicted in Figure 4.

The optimal choice of γ as evaluated on the test data set as a function of the quantile and the corre-
sponding predictive performance can be found in Figure 5. This motivates choosing γ by minimizing 
quantiles of the loss on held-out data. We describe this procedure in more detail below. Figure 4 shows 
that for small quantiles, small values of γ are slightly preferred, while for quantiles close to one, large 
values of γ clearly outperform smaller values. This is in line with the theory presented in Section 2.4.

However, as the direction and strength of the perturbations usually also changes to some extent 
between training and test data set we do not recommend simply using lim�→∞b̂

�
. In practice, we do 

not advise to choose γ based on Lemma 1 or Lemma 3 as the interplay of the penalization parameter 
and quantiles of � [ (Y − X⊺b� )2 |A] is more involved for non-Gaussian distributions. Instead, we 
recommend choosing an optimal γ based on cross-validation.

The cross-validation approach (as used in Figure 5) proceeds as follows. First, choose a quantile α 
(e.g. α = 90%). In each of the folds, the data are split into a training data set and a test data set, such 
that each level of the anchor variable only appears in one of the data sets. Then, for varying γ, compute 
b̂
�
 on the training data set and estimate the α-quantile of � [ (Y − X⊺b� )2 |A] on the test data set. After 

averaging the estimated quantiles over the folds, choose γ such that the chosen quantile is minimized. 
For this approach to work, we have to make an assumption that heterogeneities of the future data-gen-
erating process are in some sense similar to the heterogeneities observed in the training data set. This 
assumption is made precise in Lemma 3 in the supplementary material for discrete anchors.

As discussed above, the application above is close to the theory presented in Section 2, but in prac-
tice one would also want to include the predictor ‘hour’. As an alternative experiment to the one shown 
above, we run a regression of the target variable on the predictor ‘hour’ and run anchor regression on 
the residuals. For the final prediction, we then add the predictions from both models. The variable 
hour differs from the other variables in the sense that it is nested within the anchor date. Thus, building 
the overall model in such a hierarchical fashion is not supported by our current theory. The results 
can be found in the supplementary material: Figure 13 in Section 8.18 is equivalent to Figure 4, but 
anchor regression is run on the residuals after regressing out the effect of ‘hour’. For large quantiles 
of the conditional loss, γ ≫ 1 outperforms γ < 1, but the relationship is not monotonous. Figure 14 in 
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Section 8.18 of the supplementary material is similar to Figure 4 but with the modified anchor regres-
sion procedure described above. The anchor regression procedure performs better than OLS (γ = 1) 
for all considered quantiles.

5.2  |  Genotype-tissue expression

The data were obtained from the Genotype-Tissue Expression (GTEx) portal (Carithers et al., 2015). 
This is a complex data set and requires methodological adjustments, which pose a challenge to the 
theory presented above. In particular, we now focus on feature selection, consider a setting, where the 
exogeneity assumption of the anchor may be challenged and consider a weak form of anchor stability. 
One of the GTEx data sets contains gene expression data from 53 tissues of 714 human donors, in total 
comprising n = 11,688 observations of d = 12,948 genes. These tissue samples were collected post-
mortem. Gene expressions are subject to various types of heterogeneity. They vary not only between 
humans but also between different tissues and individual cells. 13 out of the 53 tissues contain more 
than 300 observations. We conducted our analysis on these 13 tissues.

We will compare features that are relevant for prediction on one tissue with the features that are 
relevant for prediction on another tissue. Our goal is to find relevant features that are not particular to 
the specific tissue at hand, but can also be found (replicated) on the other tissues. Due to the hetero-
geneity between the tissues, this is a challenging task. The response variable Y is the expression of a 
target gene and the covariates X are the expressions of all other genes. Mathematically, we associate 
with y  ∈  {1, …, d} the gene index of the target variable and x = {1, …, d} / y the gene indices of the 
expression covariates.

F I G U R E  4   Daily average squared residuals �̂test [ (Y − X
⊺

b̂
�

) 2 |A ] as a function of γ. Each line corresponds to a 
quantile of �̂test [ (Y − X

⊺
b̂
�

) 2 |A ]. The quantiles are chosen in the set {0.05, 0.01, …, 0.995}, with the median marked 
in red. For growing γ, the upper percentiles of �̂test [ (Y − X

⊺
b̂
�

) 2 |A ] are decreasing while the lower percentiles are 
slightly increasing. This is in line with the theory presented in Section 2.4. The distribution of bike rentals is expected 
to change from day to day. For growing γ, the upper percentiles of the loss are reduced, that is, predictions are 
increasingly reliable across days. A comparison to OLS with γ = 1 is given in the right panel of Figure 5
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For each tissue, the gene expressions and additional covariates are available. These covariates 
contain genotyping principal components, PEER factors, sex and genotyping platform. The genotyp-
ing principal components and PEER factors (which are constructed from covariates and gene expres-
sions) account for some (but not all) of the confounding sources of expression variation, such as batch 
effects, environmental influences and sample history (Stegle et  al., 2012). Originally, it has been 
suggested to include the PEER factors when regressing gene expression on genotype. Here, we use 
them in an analysis of co-expression, in spirit similarly to Furlotte et al. (2011) or Stegle et al. (2011). 
We will use these additional covariates as the anchor variables1. We consider combinations of biolog-
ical entities, and the PEER factors are partially computed from the gene expressions. Therefore, 
strictly speaking, the assumptions in Section 3.2 are not satisfied. Assuming, however, that these 
PEER factors and genotyping principal components are correlated with confounding sources of vari-
ation, using anchor stability with these proxy variables as anchor may still increase replicability of 
feature selections across data sets. Note that using anchor stability is justified even in cases where 
anchors are endogenous, see the discussion in Section 3.2 and the corresponding theorem in the sup-
plementary material, Section 8.13.

 †From a theoretical standpoint, using the tissues as anchor is a reasonable choice as well. However, the empirical conditional 
expectations of each gene expression given the tissues are zero. The gene expressions have been normalized within each 
tissue and hence using the tissues as the anchor variable is not meaningful for this data set.

F I G U R E  5   Optimal choice of γ and predictive performance of anchor regression for varying quantiles of the 
squared error on the bike-sharing data set. On the left-hand side, the optimal choice of γ is depicted as a function of 
quantiles of the daily averaged error, �̂test [ (Y − X

⊺
b̂
�

) 2 |A ]. The blue line shows the theoretically optimal choice 
of γ using Lemma 1. The black dots show the optimal choice of γ as evaluated on the test data set. For growing 
quantiles, the optimal choice γ = γopt increases. For example, γ ≈ 0.35 is optimal for minimizing the 5%-Quantile of 
�̂test [ (Y − X

⊺
b̂
�

) 2 |A ]. Similarly, γ ≈ 2 is optimal for minimizing the 90%-Quantile of �̂test [ (Y − X
⊺

b̂
�

) 2 |A ]. On the 
right-hand side, the performance with the optimal estimated γ is shown in terms of quantiles of �̂test [ (Y − X

⊺
b̂
�

) 2 |A ],  
relative to ordinary least squares (OLS). For example, for the 90%-quantile, the optimal choice of γ leads to a 
10%-improvement of anchor regression compared to OLS. The biggest improvements compared to OLS are obtained 
for both very small and very large quantiles. The quantiles of �̂test [ (Y − X

⊺
b̂
�

) 2 |A ] were estimated using fivefold 
cross-validation
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5.2.1  |  Improved replicability with stable anchor regression

The goal is to investigate whether features that are relevant for prediction on one tissue are also rele-
vant for prediction on other tissues. More specifically, we compute and rank variables using the Lasso 
and penalized anchor regression on one specific tissue t. Then, we check whether the discoveries can 
also be replicated on the other tissues t′ ≠ t.

How should we rank the covariates in an anchor regression framework? By the discussion 
below Theorem 4, anchor stability is potentially a positive indicator for distributional replica-
bility. This suggests that ranking by anchor stability should improve replicability across hetero-
geneous domains of the data set. In cases where the anchor is only weakly correlated with the 
covariates, estimation of bγ will be unstable for γ → ∞. Thus, in the following, we do not test 
whether the coefficients are invariant across γ  ∈  [0, ∞) but check whether the individual anchor 
regression coefficients are bounded away from 0 for γ  ∈  [0, 1]. This can be seen as a weak form 
of anchor stability. We will demonstrate that this criterion can be used for distributionally stable 
variable selection.

Consider a fixed tissue t. For the anchor regression method, we compute

where b̂
� ,�

 is the p  −  1-dimensional anchor coefficient of a anchor regression of target variable 
y ∈ {1, …, p} on the other gene expressions x = {1, …, p} ∖ {y}. As regularization parameter λ we 
use the same as for the Lasso regression (see below). We also consider for Equation (22) the ranges 
γ ∈ {[0,0.25],[0,16]} and show the results in Section 8.17

For comparison, we compute the Lasso coefficients

where b̂lasso is the p  −  1-dimensional Lasso coefficient of a Lasso regression of target variable 
y  ∈  {1, …, d} on all other variables x = {1, …, d} / y, after removing the effect of the anchor variables. 
By definition, ̂blasso = b̂

0,�
, that is the Lasso coefficient vector coincides with anchor regression for γ = 0 

which implies ay,k,t ≤ ly,k,t. Hence, any non-zero effect found using anchor regression is also a nonzero 
effect using the Lasso. However, the ranking for the two methods is different. For both methods, a regular-
ization parameter λ has to be chosen. We use the one from cross-validation as implemented in the function 
cv.glmnet in the R-package glmnet. To make the methods comparable, this regularization parameter 
was also used for the anchor regression method.

We evaluate how many of the largest effects found by stable anchor regression or Lasso can be rep-
licated on another tissue. The results are depicted in Figure 6. The black solid line depicts how many 
of the K = 1, …, 20 largest effects ly,k,t are also among the K largest effects ly,k,t′ on another tissue t′ ≠ t 
for a fixed target y (and then averaged over y, see below). Analogously, the red-dashed line shows how 
many of the K largest effects ay,k,t are also among the K largest effects ly,k,t′ on a tissue t′ ≠ t. Finally, 
the green-dotted line shows how many of the K largest effects ay,k,t are also among the K largest effects 
ay,k,t′ on a tissue t′ ≠ t. The results are summed over all choices of t′ ≠ t and averaged over 200 random 
choices of y  ∈  {1, …, 12948}.

Both anchor stable and Lasso methods are better than random guessing. Ranking by anchor stable 
regression results in improved replicability across tissues. Note that this is a challenging data set and 
the predictive power among genes is small: the average R2 for a Lasso run estimated and evaluated 
on disjoint parts of one tissue is 0.37. The average R2 for a Lasso run estimated on one tissue and 

(22)ay,k,t:= min
�∈[0,1]

|b̂� ,�

k
|,

(23)ly,k,t: = | (b̂lasso)k | ,
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evaluated on another tissue is slightly negative. In Section 8.17 in the supplementary material, we also 
discuss the degree of replicability for the parameter b→∞.

6  |   PRACTICAL GUIDANCE

In this section, we summarize our results and give high-level guidance for using anchor regression, 
based on our empirical experience and theoretical results.

6.1  |  Possible Applications

Anchor regression can be applied in settings, where we are given data from a target variable Y and 
covariates X and are interested in generalizing across heterogeneous data sets. Examples of such dis-
tribution changes include batch effects, population shifts and heterogeneity across time or locations. 
In the case of prediction, the approach aims to achieve robust predictions across data sets. anchor 
regression is optimal if the data sets differ by (restricted) shift interventions. For the goal of parameter 
estimation, anchor regression can be used to find features that are invariant across a (restricted) set of 
distributions, see Section 3.2. Thus, the approach might help to increase the replicability of discover-
ies across data sets.

6.2  |  Choice of the anchor variable

In the case of prediction, the main assumptions are linearity of the system and exogeneity of the an-
chor. We recommend to choose the anchor based on the type of robustness or invariance one aims 
to obtain. For example, if one intends to obtain robustness of the prediction rule across locations, we 

F I G U R E  6   Replicability of variable selection in GTEx data. Plotting how many of the K  ∈  {1, …, 20} top-
ranked features found by anchor regression and Lasso on one tissue t are also one of the K top-ranked features on 
another tissue t′. The results are summed over all other tissues t′ ≠ t, averaged over all tissues t and averaged over 
200 random choices of y, and they are plotted as y-coordinates. For anchor regression, the ranking is according to 
Equation (22), and for Lasso, according to Equation (23). The legend describes the method used on one tissue t and 
the method used on another tissue t′. Anchor regression exhibits the highest degree of replicability
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recommend using location as an anchor variable. If the goal is to achieve robustness across time, we 
recommend using discretized time windows as an anchor variable. In our theory, this recommendation 
is justified by Theorem 1. Different choices of the anchor correspond to different matrices M, which 
in turn provide protection against different distributional shifts.

In the case of estimation, the exogeneity assumption for the anchor variable can be dropped. Details 
can be found in Section 3.2 and in Section 8.13 in the supplementary material. In that case, the anchor 
should be chosen such that it affects the covariates of interest as much as possible.

6.3  |  Choice of the regularization parameter

When using anchor regression for prediction, one has to choose a regularization parameter γ. If possi-
ble, this should be done based on subject matter knowledge. For example, if one expects perturbations 
on future data sets to be at most 1.5 times as large as on the training data sets, γ = 1.5 is a sensible 
choice. If the anchor variable has many categorical levels, it is also possible to choose γ using some 
form of leave level out cross-validation. This approach is described in Section 5.1. For data sets where 
the above considerations do not apply, we believe that γ = 2 is a good default choice.

For screening via anchor stability, in theory, it is sufficient to test whether the two end points γ = 0 
and γ = ∞ of anchor regression agree, see Proposition 1. In cases where the anchor is only weakly 
associated with the covariates, estimation of b→∞ will be unstable. Thus, in practice, we recommend 
to screen based on a weak form of anchor stability, as in Equation (22). That choice can be considered 
a heuristic, as its theoretical implications are yet to be investigated.

6.4  |  Limitations

All extrapolation statements of anchor regression rely on the assumption of linearity. Using anchor 
regression for prediction generally does not guarantee protection against ‘black swan events’. More 
specifically, anchor regression is not leading to robust prediction when the heterogeneity between 
the data sets is different from the restricted set of shift interventions that have been observed on the 
training data sets.

For example, in Theorem 1, the set Cγ contains shifts that lie in the span of M, as opposed to shifts 
in arbitrary directions. In cases where distribution shifts are complex, in the sense that distributions 
change arbitrarily between data sets, neither anchor regression nor any other method can provide re-
liable predictions. If the anchor does not shift any distributions, that is if the distribution of (X, Y) is 
constant across values of A then there is no benefit from using the anchor regression approach. Note 
however, that in this case there is also little harm from using the anchor regression approach as the 
penalty term in Equation (11) will be close to zero.

7  |   DISCUSSION AND OUTLOOK

We have introduced anchor regression, a regularization approach for fitting linear models. We have 
shown that this approach optimizes worst-case prediction risk over a class of perturbations and that it 
also leads to improved replicability of variable selection across different perturbed heterogeneous data 
sets. The methodology has relations to invariance properties from causality and the concrete proposed 
procedure of anchor regression interpolates between three common statistical estimation schemes, 
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namely partialling out (i.e. adjusting for) exogenous variables, OLS and two-stage least squares from 
IV regression (with exogenous instruments).

The penalty in anchor regression corresponds to the change in prediction loss under certain per-
turbations. More specifically, these perturbations are modelled as random or deterministic shift inter-
ventions and are estimated from a heterogeneous training data set. We have explored the prediction 
behaviour, both in terms of size and direction of the considered perturbations. When considering the 
regularization path of anchor regression as a function of the penalty or regularization parameter, we 
prove stability and replicability of the anchor stability criterion over a range of perturbations that is a 
range of potentially new heterogeneous data sets. Thus, anchor regression also contributes to much 
desired improved replicability of variable selection. We also derived a finite sample bound for worst-
case prediction in the high-dimensional case.

We consider the behaviour of anchor regression on real-data applications, in terms of replicability 
of variable selection and prediction on new potentially perturbed data. We believe that it is worthwhile 
to explore penalization schemes that exploit heterogeneities that occur in the training distribution and 
lead to robustness and replicability on new perturbed test data that is generalizing to new unobserved 
heterogeneity. Such a regularization allows us to explicitly balance the trade-offs between predictive 
performance on perturbed and unperturbed data sets, while avoiding the loss in prediction accuracy 
that is incurred when using more conservative approaches (e.g. causal parameters).

Looking ahead, there are some avenues which we think are worthwhile to pursue. In the following, 
we outline two directions that seem particularly promising.

7.1  |  Beyond shift interventions

Instead of considering shift interventions, it may be interesting to look at penalty schemes that arise 
from other types of perturbations, such as noise, edge functions and do-interventions. Depending on 
the application, such interventions may be more appropriate than shift interventions. In this light, 
structural equation modelling can serve as a scheme to generate and explore new types of perturbation 
penalties. Furthermore, it allows to obtain optimality statements to better understand the trade-offs 
between perturbation stability and predictive performance.

7.2  |  Nonlinear models

For the anchor regression method to be practical in a wide range of scenarios, it is important to extend 
it to non-linear models. Using a bias-variance decomposition, with PA = �train [ ∙ |A] the prediction 
loss of a non-linear function g(X) can be decomposed as

If the conditional variance is constant across strata defined by A = a, then the conditional loss simplifies to

This decomposition motivates non-linear anchor regression, which we define as the solution to

�train [ (Y − g(X ) )2 |A] = �train [ ( ( Id − PA ) (Y − g (X) ) )2 |A] + (PA (Y − g(X ) ) )2

�train [ (Y − g(X ) )2 |A] = �train [ ( ( Id − PA ) (Y − g (X) ) )2 ] + (PA (Y − g(X ) |A) )2.

g� : = argming∈�train [ ( ( Id − PA ) (Y − g (X) ) )2 ] + ��train [ (PA (Y − g(X ) ) )2 ] ,
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for an appropriate set of functions . Qualitatively this estimator behaves similarly to anchor regression. 
As before, it interpolates between nonlinear versions of PA, OLS and IV. For γ → ∞, non-linear anchor 
regression will strive for invariance in the sense that it tries to keep � [ (Y − g(X ) )2 |A] constant across 
all levels of A. The set of interventions that non-linear anchor regression protects against for a fixed γ is 
not as straightforward to describe as in Theorem 1. However, we conjecture that this estimator behaves 
similarly to linear anchor regression on data sets, in the sense that it potentially improves replicability 
across heterogeneous regimes and improves robustness of prediction rules across the strata defined by A. 
Other non-linear extensions of anchor regression and some preliminary empirical evidence can be found 
in Bühlmann (2020). We believe that it is a promising avenue to further investigate the behaviour of these 
and related estimators both in theory and practice.
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