
Recent highlights in low-dimensional topology
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We present three highlights, one from each of the years 2019, 2020, and 2021.

2020: Topology input yields Euclidean geometry result. An n-gone in the
Euclidean plane R2 is said to inscribe in a Jordan curve Γ ⊂ R2 if there exists an
orientation-preserving similarity of R2 that maps the vertices of the n-gone into Γ.
A quadrilateral (i.e. a four-gone) in R2 is called cyclic if its vertices lie on a circle.
The following result characterizes the quadrilaterals that inscribe in all smooth
Jordan curves.

Theorem 1 (Greene-Lobb, 2020 [GL20]). Every cyclic quadrilateral inscribes in
every smooth Jordan curve in the Euclidean plane.

The surprising (symplectic) topology input in Greene and Lobb’s proof of The-
orem 1 is the fact that there do not exist embedded Lagrangian tori in (R4, ωstd)
with minimum Maslov number 4 [Vit90, Pol91], where ωstd denotes the symplectic
form dx ∧ dy + dz ∧ dw. We describe three stepping stones towards Theorem 1.

Firstly, in 2018, Hugelmeyer [Hug21] discovered a strategy of proof that allows
to recover Schnirelman’s result that squares inscribe in all smooth Jordan curves
using the following knot theory input. The T (4, 5) torus knot in the three-sphere
S3 = ∂D4 is not the boundary of an embedded smooth Möbius band in the four-
ball D4. In fact, this is only implicit in Hugelmeyer’s work (see [FG20] for details);
instead, Hugelmeyer proved the following new result: rectangles with aspect ratio√

3 inscribe in every smooth Jordan curve. For this he used that another knot,
the T (5, 6) torus knot, is not the boundary of an embedded smooth Möbius band
in D4 [Hug18]. Secondly, in 2019, Hugelmeyer followed up by showing that for
every smooth Jordan curve “a third” of all rectangles inscribe [Hug21]. Thirdly,
building on ideas from Hugelmeyer’s follow-up, but crucially employing a symplec-
tic topology perspective, Greene and Lobb showed that all rectangles inscribe in
all smooth Jordan curves [GL21]. For this they employ that there do not exist
embedded Lagrangian Klein bottles in (R4, ωstd). The proof of Theorem 1 can be
understood as an improvement on their argument for this result.

2019: Porting Diff+(Sg)/Diff0(Sg) technology to Diff0(Sg). The identity com-
ponent of the group of C∞-diffeomorphisms of a compact smooth manifold M , de-
noted by Diff0(M), is perfect [Mat71, Mat74, Thu74]. In fact, results from [BIP08,
Tsu08, Tsu12] imply that, for every closed and oriented manifold M that is diffeo-
morphic to a sphere or has dimension two or four, the group Diff0(M) is uniformly
perfect: there exist an N ∈ N such that every element can be written as a prod-
uct of at most N commutators. In contrast, for the smooth, oriented, and closed
surfaces Sg of genus g ≥ 1 one has the following striking result.

Theorem 2 (Bowden-Hensel-Webb, 2019 [BHW19]). For g ≥ 1, the space of
homogeneous quasimorphisms on Diff0(Sg) is (uncountably) infinite dimensional.
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Theorem 2 relates to uniform perfectness as follows. A short calculation shows,
that, if G is a group for which there exists of a homogeneous quasimorphism
f : G → R that is not constantly 0, then G is not uniformly perfect. Hence,
Theorem 2 implies that Diff0(Sg) is not uniformly perfect.

For the proof of Theorem 2, the authors proceed in analogy to an idea that
can be used to show that the mapping class group MCG := Diff+(Sg)/Diff0(Sg)
for g ≥ 3 has many homogeneous quasimorphisms and hence, while being perfect,
is not uniformly perfect (originally proven in [EK01]). Here is a terse account of
this idea for MCG. Set C := {[K] | K is an essential simple closed curve in Sg},
where [K] denotes the isotopy class of K. The group MCG acts on C via MCG×
C → C, ([φ], [K]) 7→ [φ(K)]. This action allows to construct many homogeneous
quasimorphism on MCG, using the following celebrated fact. Equipped with the
curve graph metric1, C is a Gromov-hyperbolic metric space [MM99].

Bowden, Hensel, and Webb fearlessly consider the following “large” analogue
of C: the set C† := {K | K is an essential simple closed curve in Sg} with a
similarly defined metric (simply dropping equivalence classes in the definition).
Guided by analogy to the MCG setup, they show that C† is Gromov-hyperbolic
and they construct many homogeneous quasimorphisms on Diff0(Sg) using the
action Diff0(Sg)× C† → C†, (φ,K) 7→ φ(K).

2021: A space version of the light bulb theorem for all dimensions. In
this section results are only described in vague terms. In particular, information
about orientations and framings is suppressed.

The (folklore) light bulb theorem says that all smooth embeddings of the interval
D1 in S2 × D1 with boundary {p} × (∂D1) are isotopic rel boundary. Recent
developments are Gabai’s 4D light bulb theorem (same statement with D1 replaced
by D2) and further results concerning the fourth dimension [Gab20, Sch20, ST19].

An elegant perspective allows to put all of this in a “spacified” context. In-
formally, the following result says that for 1 ≤ k ≤ d the space of embeddings of
the k-disk Dk into a smooth oriented d-dimensional manifold M with prescribed
boundary s : Sk−1 ↪→ ∂M , denoted by Emb∂(Dk,M), is homotopy equivalent to a
certain path space of embeddings of the (k−1)-disk into a d-dimensional manifold,
if s has a geometrically dual sphere G, i.e. Sd−k ∼= G ⊆ ∂M and |s(Sk−1) t G| = 1.

Theorem 3 (Kosanović-Teichner, 2021 [KT21]). Let G ⊆ ∂M be a geometrically
dual sphere for s, and set MG to be the result of attaching a (d− k+ 1)-handle to
M along G. Then Emb∂(Dk,M) ' ΩEmb∂(Dk−1,MG).

Without further describing the path space ΩEmb∂(Dk−1,MG), we note that
in the case of k = 1 and d ≥ 3, one finds π0(ΩEmb∂(Dk−1,MG)) ∼= π1(MG) ∼=
π1(M). This recovers the light bulb theorem, since π0(Emb∂(D1,M)) ∼= π1(M) =
{1} for M = S2 × D1. In case of k = 2 and d = 4, Kosanović and Teichner
explicitly describe π0(ΩEmb∂(D1,MG)) using a so-called Dax invariant. This π0-
calculation amounts to a generalization of all prior light bulb theorems in 4D due

1The metric is the one induced from the graph with vertices C and one edge (of length 1)

between [K] and [L] for all disjoint, non-isotopic, and essential simple closed curves K and L.
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to the bijection between π0(Emb∂(D2,M)) and π0(ΩEmb∂(D1,MG)) provided by
Theorem 3. In general, the homotopy type of embedding spaces (and loop spaces
thereof) are easier to understand the larger the codimension d−k is. The striking
point of Theorem 3 is that, in the presence of dual spheres, the homotopy type of
the embedding space of interest can be understood via the homotopy type of an
embedding space with larger codimension.
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