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Abstract

This thesis deals with Galois representations associated to Drinfeld modules
in special characteristic. Our main goal is to determine the best possible results
about the openness of the image of the adelic Galois represenation.

Let K be a finitely generated field over a finite field s of arbitrary transcen-
dence degree and set G%™ := Gal(K®P/KE). Let ¢ be a Drinfeld A-module
of rank r over K of special characteristic py and let F' denote the quotient field
of A. The essential case boils down to proving the following statement: If the
endomorphism ring D of ¢ over an algebraic closure of K is an order in a central
simple algebra over F' that does not grow when restricting ¢ to infinite subrings
of A, then the intersection of the image of G%°™ in the adelic representation with
| J Cent‘éeﬁr(Ap)(D ®a Ap) is open in both groups.

In closing we deduce from this the openness result for arbitrary Drinfeld
modules in special characteristic.






Résumé

Cette these parle de représentations galoisiennes associées aux modules de
Drinfeld en caractéristique spéciale. Notre but principal est de déterminer les
meilleurs résultats possibles concernant ’ouverture de I'image de la représentation
galoisienne adélique.

Soit K un corps finiment engendré sur un corps fini £ de degré de transcen-
dence arbitraire et écrivons G5°" = Gal(K*P/KF%). Soit » un A-module de
Drinfeld sur K de rang r en caractéristique spéciale py, et soit F' le corps de frac-
tions de A. Le cas essentiel revient a prouver I'affirmation suivante: si ’anneau
des endomorphismes D de ¢ sur une cloture algébrique de K est un ordre dans
une algebre centrale simple sur F' qui ne s’agrandit pas quand on restreint ¢
aux sous-anneaux infinis de A, alors l'intersection de 'image de G%°™ dans la
représentation adélique et de [, Cent‘é}eﬁr( a,)(D ®4 Ap) est ouverte dans les
deux groupes.

Pour finir nous en déduisons le résultat concernant l'ouverture de l'image
adélique pour un module de Drinfeld arbitraire en caractéristique spéciale.
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CHAPTER 1

Introduction

1.1. Notation

Let IF, be a finite field with ¢ elements and of characteristic p. Let F' be a
finitely generated field of transcendence degree 1 over its constant field IF,. Let A
be the ring of elements of F' which are regular outside a fixed place co of F'. Let
K be another finitely generated field over I, of arbitrary transcendence degree.
Then the ring of F,-linear endomorphisms of the additive algebraic group over K
is the non-commutative polynomial ring in one variable K {7}, where T represents
the endomorphism u — u? and satisfies the commutation relation 7u = u¢r for
all u € K. Consider a Drinfeld A-module

¢: A— Endy, (G, k) = K{1}, a — ¢,

of rank » > 1 over K. In what follows we assume that ¢ has special characteristic.
This means that the kernel pg of the homomorphism A — K determined by the
lowest coefficient of ¢ is non-zero and therefore a maximal ideal of A. For the
general theory of Drinfeld modules the reader can for example consult Drinfeld
[Dri74], Deligne and Huseméller [DH87], Hayes [Hay79] or Goss [Gos96].

Inside a fixed algebraic closure K of K we let KP denote the separable
closure of K. For any non-zero ideal a of A we let

ola] :={z € K |Va € a: p,(r) = 0}

denote the module of a-torsion of . If pg 1 a, then its points are defined over
K*? and form a free A/a-module of rank r. For any prime p of A let A, and
F, denote the completions of A and F' at p, respectively. For p # po, the p-
adic Tate module Tp(¢) = limp[p"] is a free Ay-module of rank r, on which
there is a natural action of the absolute Galois group G of K. This action
commutes with the action of Endg () on Ty(p). It was proved independently
by Taguchi [Tag95] and Tamagawa [Tam94a], [Tam94b|, [Tam95] that the
natural homomorphism

EHdK<g0) ®A Ap — EndAmGal(Ksep/K) (Tp((p)) (11)
is an isomorphism. This yields a continuous representation
Pp - Gg — CentAutAp (Th (w))(EndK(go) XA Ap) = CentGLr(Ap)(EIldK((p) X4 Ap).

We denote its image in Centqr, (4,)(Endg () ®4 Ayp) by Ty
Let k denote the constant field of K and % its algebraic closure in K*®. Then
Gal(R/k) is the free pro-cyclic group topologically generated by the element Frob,
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which acts on & by u + ul®l. Writing G%°™ := Gal(K*?/KF), we have a natural
short exact sequence

1 — G¥™ — Gxg — Gal(kR/k) — 1.

We are ultimately interested in the image of G%°" under p,, which we denote

by T5°™. By construction this is a closed normal subgroup of I', and the quotient
is pro-cyclic.

Let P be a finite set of places p # po, 00 of F. We set Tp(p) := @pepTp(p),
which is a free module over Ap := ®ycpA, of rank . We denote the image of
the combined representation

pp: G — CentAutAP(TP(@))(EndK(go) XA Ap) = CentGL7,(AP)(EndK(g0) XA Ap)

by I'p and the image of G%°™ under pp by I'5°™.
For a place p # po,00 of F' with residue field £k, we consider the residual
representation

Pp - G — Centauy, (o)) (Endx () @a ky) = Centar, (k) (Endi (9) @4 kp).

The name comes from the fact that this representation is nothing more than the
reduction of p, modulo p.
For n > 2 we denote the reduction of p, modulo p" by py .

Let A}”O"”) denote the ring of adeles of F' outside of pg and co. We also
consider the adelic representation

paa s G — Centey 6o (Endi () @4 Af),

At last, we introduce some non-standard terminology that will be in use
throughout this work: we say that a Drinfeld module ¢ : A — K{7} has minimal
endomorphism ring if Endz(¢) = A.

1.2. Main result

Let ¢ : A — K{r} be a Drinfeld module of rank r of special characteristic
po. The aim of the present work is to describe the image of the adelic Galois
representation up to commensurability. Pink [Pin06b| has shown that for all
primes p # po, 00 the image of ;"™ under the determinant is finite; thus the
subgroup det(T'y) C Ay is essentially pro-cyclic and therefore cannot be open.
It follows that we cannot expect the image of Gi to be open in the adelic
representation and the central question becomes describing the image of G%™™
under paq.

Let D := Endg(y), let Z denote the center of D ® 4 F' and let us write

dimy D@4 F=d* and [Z/F]=e.

We know that there exists a finite separable extension K’ of K such that all
endomorphisms contained in D are already defined over K’; since we are only
interested in the image of the Galois representation up to commensurability, we
may thus assume that all endomorphisms of ¢ are defined over K. In this case we
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can select a maximal commutative subring A of D and pass to the correspond-
ing Drinfeld module ¢ : A — K{r}, which has rank ' := r/de and satisfies
End(¢) = A. The image of the adelic Galois representation associated to ¢
can be obtained as a projection of the image of the adelic Galois representation
associated to ¢; thus we can reduce ourselves to the case of Drinfeld modules
with minimal endomorphism ring.

In generic characteristic the case of such Drinfeld modules can be treated
in a uniform way. However, in our setting a new phenomenon can occur that
we need to take into account, namely the fact that Drinfeld modules in special
characteristic can have non-commutative endomorphism rings. As a consequence,
it is possible that if we restrict ¢ to a subring B of A, then the endomorphism
ring of the Drinfeld B-module thus obtained is larger than the one we started
out with. A natural question to ask then is whether the endomorphism ring can
grow indefinitely if we undertake a series of successive restrictions, or whether
the process stabilizes after a finite number of steps. This question was answered
by Pink in [Pin06b] and it turns out that both cases can occur:

On the one hand, if ¢ is isomorphic to a Drinfeld module defined over a finite
field, then the endomorphism ring can grow infinitely often. Pink proved that
this occurs if and only if 7' = 1 and that in this case ;"™ is finite for all places
p # pg, 00 of F; more precisely, he proved that after replacing K by a finite
extension we obtain I';"™" = 1 for all p # pg,00. This effectively describes the
image of the adelic representation in the case r’ = 1.

On the other hand, Pink proved that if ¢ is not isomorphic to a Drinfeld
module defined over a finite field, which is equivalent to saying r’ > 2, then
there exists a uniquely determined infinite subring B of A such that End= (go|B)
over K is an order in a central simple algebra over the quotient field of B and
that for every infinite subring C' € A we have End(¢|C) C Endg(¢|B). The
adelic Galois representation associated to ¢ coincides with the adelic Galois
representation associated to g&]é; thus, if " > 2, then we can always reduce
ourselves to the case of a Drinfeld module with the characteristics of 3|B, and
studying the behavior of such Drinfeld modules describes the image of the adelic
representation for arbitrary ones. This is what has inspired us to formulate our
Main Theorem as follows:

THEOREM 1.1.

Let o be a Drinfeld A-module over a finitely generated field K of special charac-
teristic po. Assume that D := Endg(p) is an order in a central simple algebra
over F of dimension d* and that for every infinite subring B C A we have
Endz(p|B) = D. Letr be the positive integer such that the rank of ¢ is equal to
rd and assume that r > 2. Then

Paa( GE™™) N Centd g0 (D @ AP

3



er (D ®A A(FPOvoo))

. . m d
is open in both pqa(G5%°™) and CentGer(A;i’O'“>)

Compare the formulation of this theorem with Theorem 6.1 of [Pin06b]:
Under the assumptions of our theorem the latter says that for any finite set P of
primes of A not containing pg, the intersection Cent%eﬂrd( ap) (D@4 Ap) NTE™ is
open in both groups. This was the result that helped us determine the outcome
to aim for in the adelic case.

The reduction steps mentioned above and the general result for arbitrary
Drinfeld modules in special characteristic that are not isomorphic to a Drinfeld
module defined over a finite field will be explained at greater length in Chapter
9.

To complete this section, we describe a special case of Theorem 1.1. Assume
that ¢ has minimal endomorphism ring which does not grow when restricting ¢
to infinite subrings of A. This is the simplest case that can occur and the one in
which the result obtained mimics closely the one for Drinfeld modules in generic
characteristic ([PRO09a], Theorem 0.1):

COROLLARY 1.2.
Let ¢ be a Drinfeld A-module of rank r > 2 over a finitely generated field K of
special characteristic po. Assume that for every infinite subring B C A we have

End#(¢|B) = A. Then
pad( GR™) N SL (A7)

is open in both pqa(G5°™) and SLT(A(FPOOO))'

1.3. Outline of the chapters

In Chapter 2 we present a few preparatory results that do not involve the
theory of Drinfeld modules. To begin with we use the general theory of rep-
resentations of linear algebraic groups to show that, if certain explicitly stated
algebraic relations are satisfied on a connected semisimple algebraic group G,
then G is isomorphic to SL,, for some n > 1. Next we prove an analogous result
for finite subgroups of linear algebraic groups that, combined with a previous re-
sult by Larsen and Pink [LP98], allows us to establish certain criteria that help
approximate finite subgroups of SL,, in non-zero characteristic by a subgroup of
the form SL, (k) or SU, (k) for some finite field k. The exact formulation of the
result thus obtained can be found in Theorem 2.19.

Chapter 3 is also devoted to preparatory results, this time on the side of the
theory of Drinfeld modules. In the first two sections we list previously known
results about Drinfeld modules in special characteristic, in some cases after re-
formulating them to fit our setting. In Section 3.3 we collect and explain a few
important reduction steps that one can carry out before attacking the proof of
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Theorem 1.1. Finally, we devote the last section of the chapter to the properties
of Frobenius elements in the representations p, and p, at a given prime p of A.

The proof of the Main Theorem is carried out in Chapters 4 to 8. We assume
throughout that ¢ satisfies the conditions of Theorem 1.1 and that the reduction
steps introduced in Section 3.3 are in effect. In Chapters 4 to 7 we make the ad-
ditional assumption that the field K has transcendence degree 1; this assumption
will only be lifted in Chapter 8. We split the proof into chapters as follows:

In Chapter 4 we prove that the image of the residual representation contains
SL, (k) for almost all primes p of A. The key ingredients are the irreducibility
of the residual representation [PTO06], the Zariski density of I', [Pin06a], the
characterization of k, in terms of the image of Frobenius elements and Theorem
2.19. In the last part we prove that the image of G in the product of two
residual representations at distinct primes cannot be contained in the graph of
an isomorphism between the factors.

In Chapter 5 we collect a few auxiliary results from group theory and coho-
mology that will be used in the subsequent chapters.

In Chapter 6 we prove that the image of p, contains SL,(A,) for almost all
primes p of A. We accomplish this by proving a purely algebraic result first:
if a closed subgroup H of SL,(A,) maps surjectively onto SL,(k,) and contains
a non-scalar matrix of the form 1+ M, with M, € gl (p) \ gl,(p?), then H is
equal to SL,(Ap). The group I'y™" satisfies the first condition for almost all
p by the results of Chapter 4; thus we are left with proving the existence of a
corresponding non-scalar element M, for almost all p. This is achieved with the
help of Frobenius elements.

In Chapter 7 we use the results of Chapter 6 and the openness of the image
of I£°™ at a finite set P of primes proved in [Pin06b] to establish the Main
Theorem for fields of transcendence degree 1.

In Chapter 8 the field K can have arbitrary transcendence degree, but ¢ is
still assumed to satisfy the assumptions of Theorem 1.1. We use a reduction
argument similar to the one in [PR09a] in order to deduce the general case of
Theorem 1.1 from the results of Chapter 7.

Chapter 9 is a natural completion of Section 1.2. It gives a precise description
of the results that we can deduce from Theorem 1.1 for arbitrary Drinfeld modules
of special characteristic that are not isomorphic to a Drinfeld module defined over

a finite field.






CHAPTER 2

Linear algebraic groups and their finite subgroups

This chapter builds towards its main result, Theorem 2.19, which will play an
important role in determining the image of the restricted residual representation
P_p’Gigom at a given place p of F.

2.1. Root system combinatorics

In this section we prove the following result: the only root systems where
there is an orbit of the Weyl group that generates the ambient vector space
while not satisfying a certain simple relation of linear dependence are of type A,,.
Moreover, we show that if the dimension of the root system is different from 2,
then the orbit in question is, up to a non-zero scalar multiple, the orbit of the
first fundamental weight relative to a given base of the root system.

Then, assuming that a second simple linear dependence relation is not satis-
fied, we show that the general result also holds when the dimension of the root
system equals 2.

THEOREM 2.1.
Let ® be a non-trivial root system generating the Euclidean vector space V. Let
W be the associated Weyl group and S a W-orbit in V.

Assume the following conditions are satisfied:

(a) V' is generated by S as a vector space;
(b) There are no distinct elements Ay, ..., Ay € S such that \j+X s = A3+ 4.

Then either
(1) there is an integer n > 1 and a constant ¢ # 0 such that
d2A, ={+(e; —¢;) |0<i<j<n}CV=R""/diag(R)
and S ={ce; |0 <i<mn}, or
(2) = A,.

Assuming a third condition similar to the second one from above, we get an
even stronger result:

THEOREM 2.2.
Let &, VW and S be as defined in Theorem 2.1 and assume that in addition to
Assumptions (a) and (b) of that theorem, the following condition also holds:
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(¢) There are no distinct elements A1, ..., ¢ € S such that A\; + Aa + A3 =
A+ As + g
Then there is an integer n > 1 and a constant ¢ # 0 such that

P2A, ={+(e; —¢;) | 0<i<j<n}CV=R""/diag(R)
and S ={ce; | 0 <1< n}.

PROOF OF THEOREM 2.1. In what follows we suppose that the assumptions
of the theorem are satisfied. First we show that ® is simple and only contains
roots of the same length, thereby excluding the cases B, C,,Fs and Gy. Next
we impose some restrictions on the position of S in V relative to ¢ in order
to exclude the cases D,,, Eg, E; and Eg. Finally we make use of the well-known
structure theory of A, to prove that, up to a non-zero scalar multiple, S is the
Wh-orbit of the first fundamental weight relative to the standard base of ®.

Before we start, let us note that it follows from the assumptions of the theorem
that S does not contain 0; indeed, under the action of the Weyl group the orbit
of 0 is {0}, which cannot generate the non-trivial vector space V.

LEMMA 2.3.
Let A € S and oy, ay be two orthogonal roots in ®. Then X L aq or X L as.

PROOF. Let s,, (respectively s,,) in W denote the reflexions corresponding
to oy (respectively as). Then

A+ Sa18az(A) = S0, (A) + Sy (A)

and in order to avoid a contradiction to Assumption (b), we must have one of
the following equalities:

Say(A) =X or Sa,(A) =X or =54 84,(N).

The last equality yields A = s,,(\) = s4,(A\) and it follows that in each case we
have A L aq or A L . O

PROPOSITION 2.4.
The root system ® is simple.

PROOF. Let us assume that & = ¥; + ¥, is decomposable and let A € S.
Since ¢ generates V' there exists o € ® such that « is not orthogonal to A.
Assume without loss of generality that a € W5. Then, by Lemma 2.3, the vector
A is orthogonal to all roots that are orthogonal to «, in particular A 1. ¥, . Then
w(A) L Uy for all w € W and therefore S | W;. However, this is a contradiction
to Assumption (a). O



PROPOSITION 2.5.
All roots in ® have the same length and are therefore conjugate under the action
of the Weyl group.

PROOF. Let us assume that ® contains roots of different lengths. By Propo-
sition 2.4 the root system @ is simple and hence contains two roots of different
lengths that are not orthogonal; consequently these generate a sub-root system
U of type By or Gy. Let {a1, s} be a basis of W. Since S generates V', we can
find an element A € S that is not orthogonal to W. We show that there are
distinct elements wy, ..., ws € W(¥) C W with wy(X) + wa(X) = ws(A) +wa(A),
thus obtaining a contradiction.

Since S is a W-orbit, we can without loss of generality assume that the projec-
tion X of A onto the plane generated by W lies in the Weyl chamber corresponding
to a; and ay. Since W(W) acts the same way on A as on X, it is enough to find
relations for \’'. This effectively reduces the problem to the two-dimensional case.

Case By: Let us assume that «; is the longer root. We distinguish three cases
according to whether )" is on one of the boundaries of the Weyl chamber or in the
interior. In each case we proceed similarly to find a quadruple wy, ..., w4 that
yields the desired contradiction: we put w; = Id and for w, we choose an element
of the Weyl group that sends X to —X. (If X' lies on the exterior of the Weyl
chamber, it is the scalar multiple of a root, thus we can choose the symmetry
respective to the root in question; otherwise we can take the product of two
symmetries relative to orthogonal roots.) By this choice, we get two distinct
elements w;(\) = X and wy(N) = —N whose sum is zero; if we apply to this
sum a symmetry relative to a root that is neither parallel nor orthogonal to X,
we obtain a pair of distinct elements ws()\') and wy()\’) with sum zero that are
also distinct from the first pair. Here are the exact computations for each case:

o If N =c(ag + as),c € Ry, then

A+ Sar+az (N) = 80, (X) + SasSar+az (V);
o If N =c(ag 4 2a3),c € Ry, then

N+ Say 4200 (N) = San (X)) + SaySayr2as (N);
e If ) is in the interior of the Weyl chamber, then

N+ Sy Say 1200 (N) = Say (V) + Say 1205 (N).

Case Gg: Let us assume that ay is the shorter root. Again we distinguish
three cases according to the same principle as in the case By and apply the same
method to find linear relations of the desired form:

o If N =c(3a;1 + 2a3),c € Ry, then
A+ S3014202 (A) = S2014a5 () + 52011025301 +205 (A);
o If N =c(201 + a3),c € Ry, then
A+ 8201 1as () = 80, (A) + 8015201 4+a2 (V);
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e If ) is in the interior of the Weyl chamber, then

N+ 5a232041+042()‘/) = Say ()‘/) + 5201 +as ()‘/)-

We found non-trivial relations contradicting Assumption (b) for B, and for G,

as well.

Consequently the root system cannot contain roots of different lengths.

The well-known fact that the Weyl group acts transitively on every simple root
system where all roots are of equal length completes the proof. 0

LEMMA 2.6.
Suppose dim(V') > 3.

(1)
(2)

(3)

Let \€ S and a € ®. Then ) € (a)* U ({a}t N ®)*L.

If ® is of type D,, (n > 4),Eq, E; or Eg, then ({a}t N ®)*t = (a) for all
ac d.

If ® is of type A, (n > 3) and o = e;—e; with i # j, then ({a}tN®)L =
<6i,€j>.

PROOF.

(1)

If A L «, then A € {a)t. Now suppose A and « are not orthogonal. Since
dim(V) > 3, we can find # € ® such that « L 3. By Lemma 2.3 we
know that X is orthogonal to either ao or 3; therefore A L 3. It follows
that A L ({a}+ N ®). Thus in each case we have

A€ ()t u({a}tna)t.

Since all roots are conjugate under the action of the Weyl group, it is
enough to prove the assumption for an arbitrary element a of ®. Clearly
we have (o) C ({a}t N ®)*. Henceforth we proceed case by case:

Case D,,: We choose the following construction of the root system:

O ={*(e;te;)|1<i<j<n}CR"
and the corresponding simple roots
a=e —e 1 fori=1...,.n—1 and «,=e, 1+e,.
By explicit calculations for o = e; — e5 we then find
Ha}r N ®) = {e; + ey, 03,...,a,).

This last subspace of R™ has dimension n — 1. Combining this with the
fact that (o) C ({a}t N ®)* yields (o) = ({a}t N ®)L.

Case Eg: We choose the following construction of the root system:

®={t(e;£e;)|1<i<j<5b}

6
U{<%€1,---7%557\/7§56> | €1,...,66 € {il}:Hgi = 1} CR°
i=1
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and the corresponding simple roots

(673 :e,-+1—eifori:1,...,4,
(0731 :€1+62,

_ 1 1 V3
Qg = (—5, .. .,—5,—7).

Again, by explicit calculations for a = e; — ey we find
Ha}r N ®) = (es +eq,as, ..., aq).
This last subspace of R® has dimension 5. Therefore we can again con-

clude (o) = ({a}t N ®)*.

Case E7: We choose the following construction of the root system:

d={+(e;+e;) [ 1<i<j<6U{(0,...,0,£V2)}

6
U{(%gly"'7%€67%§87> |517"'7€7 S {:tl}?H‘El = 1} CR?
i=1

and the corresponding simple roots

o =e —e fori=1...5
g = €1+ e,

— 1 1 1
a7 = (—5,,—5,—75)

Again, by explicit calculations for a = e; — ey we find
({Oz}J‘ N (I)> = <€3 + €4,Q3, ... ,CY7>.
This last subspace of R” has dimension 6. Thus we can again conclude
(@) = ({a}-na)h.
Case Eg: We choose the following construction of the root system:

= {t(ete) | 1<i<j<8)

8
U{(%gla'ﬂaéfs) |€17---758 e{il},HEZ:1} CR7

i=1
and the corresponding simple roots

o =€ —eqfori=1,....7,
_ 1 1 1 1 1 1 11
as = (=3 =3 "2 "2 "33 23)

Again, by explicit calculations for a = e; — ey we find
<{O./}J' N (I)> = <€1 +e2,03, ... ,a/g).

This last subspace of R® has dimension 7. Therefore we can again con-
clude (o) = ({a}*+ N @)+,
11



(3) Just like in the second part of the proof, here it is also sufficient to prove
the statement for an arbitrary element «a of ®, say @ = eqg — e;. For this
choice of a we indeed have

({a}rN®)t = (eg —e3,... 01 —en>L = (eq, €1). d

PROPOSITION 2.7.
The root system ® cannot be of type D,, (n > 4),Eg, E; and Eg and is therefore
equal to A, for some n > 1.

PROOF. Let ® be of one of the types D,, (n > 4),Eg, E; or Eg and let u € S.
Combining the first two statements of the previous lemma, for all & € & we get

p € (a)U{a)*.

Since ® generates V, we have (,.4()" = {0}. Therefore we find an o € @
with p € (a). Let 8 € ® be a root not orthogonal to a with § # +a, in other
words such that (3) ¢ (a) U (a)*. Since W acts transitively on ®, there exists
w € W with w(a) = . Then it follows from p € (o) that A := w(p) is contained
in (w(a)) = (B) and therefore not contained in (a) U (a)*. On the other hand,
since S is stable under the operation of W, we have w(u) = A € S. Applying
Lemma 2.6 (1) to A leads to a contradiction. Since we have already excluded
root systems with different root lengths, the only remaining possibilities are the
root systems of type A,, for some n > 1. O

One part of Theorem 2.1 is now proven. It only remains to show that if n # 2,
then up to a non-zero scalar multiple S is the W-orbit of the first fundamental
weight. This is the object of the following proposition.

PROPOSITION 2.8.
Let

A:{ai:zei,l—e”lﬁign}
denote the standard base of the root system A,,. If n # 2, then there is a constant
¢ # 0 such that
S ={ce; |0 <i<n}.
PRrROOF. The claim is trivial for n = 1. Let us therefore suppose n > 3.
Relative to A the fundamental weights are

i-1
{/\i::ZejHSiSn}.

=0
Let €(A) denote the Weyl chamber relative to A. A vector s = (sg, S1,...,5,) €
R/ diag(R) then lies in €(A) if and only if 59 > 51+ > s,,.

Let us now fix A € S that lies in €(A) and suppose there exist 1 <i < j <n
such that A £ o; and A £ «;. By Lemma 2.3 this is only possible if o; and o
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are not orthogonal, in other words if j =7+ 1. By Lemma 2.6 this means
A€ (eim1,6i) N(ej_1,e5) = (€i1,€) N (e, eip1) = (€;),
hence A = ce; with ¢ € Ryy and 0 < @ < n. However,
C(A)N{ce; | c € Rup, 0 <i < n} =10,

a contradiction.

Therefore there exists a unique 1 < 7 < n such that A X a;. Thus X is a
non-zero scalar multiple of the fundamental weight \; = Z;;t e;. We now show
that i =1 or i =n.

Indeed, let us suppose 2 < i <n—1. Then A [ (eg—ep—1) and A L (e; —ey,).
Given that ey — e,_1 and e; — e, are orthogonal, we obtain a contradiction by
Lemma 2.3. Hence we have i =1 or i = n.

For i = 1 we find A = cep and S = {ce; | 0 < ¢ < n}. For i = n we find

A= CZ?:_& e; = —ce,, which yields the same result for S in this case also. [

This in turn finishes the proof of Theorem 2.1. Now we turn to the proof of
Theorem 2.2.

PROOF OF THEOREM 2.2. Given Theorem 2.1, it only remains to show that
if we add Assumption (c) to the original hypotheses, in the two-dimensional case
we get S = {ce; | 0 <1i <2} for some ¢ # 0.

Let & = A,. Then W is the symmetric group on 3 elements and it acts on the
vector space V = R3/diag(R) by permuting the coefficients. Let \; = (x,v, 2)
be an element of S. Since S is W-stable, the conjugates of A\;, namely

>\2: (yazvx)a )\3: (Z,I,y), )\4:<1’727?J)7

>\5 = (y7$72)a )‘6 = (Zayvx)

are all elements of S. Clearly we have
A F A+ A3 = g+ A5+ Ag,

which leads to a contradiction unless two of the \; are equal. This happens if
at least two of the coefficients z,y, z are equal. Having three equal coefficients
would mean A\; = 0, which is impossible by Assumption (a), so exactly two of the
coefficients are equal. Let us assume without loss of generality x > y > 2. The
two cases to consider are z = y and y = x. In the first case we get \; = (z,y,y) =
(x —y,0,0) = (z — y) - €9 and, putting ¢ := z — y, we find S = {cey, cey, ces}.
The second case yields A\ = (z,2z,2) = (0,0,z —x) = (2 — ) - ey that, writing
c:=z —x, also gives S = {cey, ceq, ces}. O
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2.2. Defining algebraic relations

Let R be a commutative ring, n > 1 an integer and A € GL,(R). Moreover,
let

ca(T)=T"+ BT +---+ B3, € R[T)

be the characteristic polynomial of A and let cs(T) = [[-,(T — a;) be its
decomposition into linear factors in R'[T] for a suitable ring extension R’ of R.

We define
f(A) = H (ailai2 - aisai4>7

i! ,....,z'4
distinct

g(A) = H (ang - a/i3ai4)’
12,13,04
distinct

h<A) = H (Oéilo‘hais - ai4ai5ai6)'
11,516
distinct
The expressions f, g and h are symmetric in the roots of cy4; therefore they are
polynomial expressions in fi,..., 3, with coefficients in Z. This shows that the
above constructions can be carried out over any commutative ring R. Thus they
yield algebraic morphisms

f,g,h:GL, — A"

LEMMA 2.9.

Let k be a field and let f,g,h : GL, 1 — A} be defined as above. For an integer
c>1let f., g., he denote the composition of the morphism v +— ~¢ with f, g and
h, respectively. Then f., g., h. do not vanish identically on SL,, .

PROOF. Let ¢ be the characteristic of k, let k& denote an algebraic closure of

k and let p be a prime # 2,q. Consider in SL, (k) the diagonal matrices of the
form

(8%
ap
ap
A=
n—2
ap
a_Z?;OQPZ
Then
i1 i i3 4 pid i1 4 pio iz _§n—2 5
fo(A) = H (aCPHP2) _ epetp)y H (acPHP'2) _ ool Py
i1yeia <n—2 01,6203 <n—2
distinct distinct
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It is easy to check that for 7y, ..., distinct and p prime, we have c(p* + p?) #
c(p + p™), so the first product does not vanish identically on SL, ;. In the
second product one of the exponents is positive, the other negative; thus they
cannot be equal and this product does not vanish identically on SL,, ; either.
Using the same diagonal matrices we can show that h. and g. do not vanish
identically on matrices of the above form. For h. we can take any prime exponent
p different from the characteristic; for g. we need the extra condition p # 2. [

2.3. Linear algebraic groups

We now use the results obtained about root systems to find certain conditions
under which a given linear algebraic group is equal to the special linear group.

THEOREM 2.10.

Let G be a connected semisimple linear algebraic group over an algebraically
closed field L and V' a finite dimensional, irreducible and faithful representation
of G over L.

If f,g and h do not vanish identically on G, then G = SLy .

We start by proving the following lemma:

LEMMA 2.11.

Let G be a connected semisimple linear algebraic group over an algebraically
closed field L. Let W denote its Weyl group, ® the associated root system and
E the FEuclidean vector space generated by ®. Let V be a finite dimensional,
irreducible and faithful representation of G over L with highest weight \. Then
E is generated by W - X = {w(\) | w € W}.

PRrooOF. Let Gy, ...,G,, be simple connected linear algebraic groups defined
over L with G = Gy---G,,. For all 1 < i < m let W, denote the Weyl group
of G; and ®; the associated root system and, by abuse of notation, R®; the
Euclidean vector space generated by ®,;. Then

W=W;x---xW,, and FE=Rd;P---dRD,,.

Let A\; € R®; denote the highest weight of the representation restricted to ;. For
the global highest weight A we have the decomposition A = A\ +---+ \,,,. Since
the representation V' is faithful, it cannot be trivial on any of the components
and thus for all 1 < i < m we have \; # 0. The factor W; of the Weyl group W
acts trivially on R®; for 7 # j and irreducibly on R®,. In particular, since J; is
non-zero, we find that W, - \; generates R®;.

Let W, C E denote the subspace generated by W - A. In order to prove that
Wy = F, it is now enough to prove that W; - \; C W, for all 1 <i < m. Since
Wy is W-invariant, it is enough to show that \; € W,. By symmetry, it suffices
to prove this for ¢ = 1.
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We proceed by induction. By the definition of W) we have \; +--- 4+ A, =
A € Wy. Now let 2 < k < m and assume that A\; +--- + X\, € W,. Then for all
wr € Wy we find

)\1—|—~-—|—)\k,1+wk()\k):wk()\l—l—---—l—)\k) e Wy
and hence also
Z u)k(>\1—|—"'+/\k) = ‘Wk|()\1+"'+)\k—1)+ Z wk()\k)

W EWY wWLEWL

= |Wk|()\1 + -+ >\k—1) - WA,

where the last equality follows from the fact that, as a fixed point of the action
of Wi, on R®,,, the vector Zwkewk wi(Ax) is trivial. Hence Ay + -+ -+ A1 € W
The induction then yields Ay € W,. OJ

PrROOF OF THEOREM 2.10. Let W denote the Weyl group of G and ¢ the
associated root system and F the Euclidean vector space generated by ®. Since
the representation V' is irreducible, it is characterised by its unique highest weight
A. From Lemma 2.11 it follows that S := W - X generates the whole vector space
E.

As the Weyl orbit of the highest weight, S consists only of weights. Since f
is not identically zero on G, for four distinct weights Ay, ..., Ay of V the relation
A1+ A2 = A3 + Ay cannot hold. Replacing f with h, we find that the analogous
relation for sextuples of weights cannot hold either. Hence the assumptions of
Theorem 2.2 are satisfied and we get & = A,, for some positive integer n, as well
as

S={ce; |0<i<n}, c#0.
Since S consists of weights, ¢ is an integer. The intersection of S with the set of
dominant weights consists of either cej or ce,, depending on the sign of ¢. Given
that the highest weight of a representation is by definition dominant, we thus find
that A\ = ceg if ¢ > 0, and \ = ce,, otherwise. Since these two cases correspond
to dual representations, which are interchanged by the outer automorphism of
A,, we can assume ¢ > 0 and \ = cey.

LEMMA 2.12.
Supose that char(L) =p > 0. Then 0 < ¢ <p— 1.

PRrROOF. Let us suppose that the projective representation induced by V is
tensor-decomposable, i.e. that we find 71,7 > 1 with ry7y = dim (V') such that
in the projective representation G acts on V' = L™ ® L™ through

PGLrl,L X PGLT%L — PGLV .

Let g € G and A\, X' (resp. p,p') be two distinct eigenvalues of g on PGL,, 1,
(resp. PGL,, ). Then vy := A, vy := N/, vz := Ny, vy := At/ are four distinct
eigenvalues of 7 in the projective representation with vy = v3v4. Since f does
not vanish identically on the projection of G if it does not vanish on G itself,
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there is an element in G for which the above relation on the eigenvalues yields
a contradiction. Consequently V' is not projectively tensor-decomposable and
therefore also not tensor-decomposable in the linear representation. It follows
that G is almost simple and according to Steinberg’s Tensor Product Theorem
(cf. [HumO6], Theorem 2.7) we get 0 < ¢ <p— 1. O

We now show, independently of the characteristic of L, that c is, in fact,
equal to 1. Let o := ey — e be the simple root corresponding to the fundamental
weight eg. Then there exists a homomorphism ¢, : SLy — G that sends the
matrices of the form (3 ¢) to the root subgroup of G corresponding to «. Let
Sa = ¢a(SL2). The subspace @,.; Vitia is Sq-invariant and irreducible with
highest weight A by [Jan03], Part II, Proposition 2.11. By classical results in
characteristic 0 and [Pre87|, Theorem 1, in positive characteristic under the
assumption 0 < ¢ < p — 1, that is a consequence of Lemma 2.12, the associated
representation of the Lie algebra [, of S, is irreducible with the same highest
weight. According to [Hum78], Proposition 21.3, the set of weights of this

representation is saturated. Namely, it consists of A, A — a,..., A\ — ra, where
r:=(\ a) = c{eg, €9 — 1) = c. More concretely,
(c,0,0,...,0),

(c—1,1,0,...,0),
(c—2,2,0,...,0),

0,¢,0,...,0)

all appear in the representation of S,, and hence in the representation V', as
weights. However, due to the fact that f and g do not vanish identically on G,
the equality

(¢,0,0,...,0)+(0,¢,0,...,0) = (c—1,1,0,...,0) + (1,c — 1,0, ...,0)

leads to a contradiction if ¢ > 2.

By [Che58] it follows from & = A,, that there is an epimorphism SL,,; — G.
The induced representation SL,, ;1 — G — GLy then also has highest weight ey,
which corresponds to the standard representation of SL, ;. Consequently the
image of the representation is SLy = S, ;. Hence G = SLy = SL,, 41 . [

2.4. Finite subgroups of linear algebraic groups

In this section we prove an analogue of the previous results about linear al-
gebraic groups for their finite subgroups.

In the following let L denote an algebraically closed field of characteristic
p > 0.
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DEFINITION 2.13.

Let G be a simply connected simple semisimple linear algebraic group over L
and let F' : G — G be a surjective endomorphism whose fixed point subgroup
GT is finite. Such a map F is called a Frobenius map and, in this setting, any
non-abelian Jordan-Holder constituent of G¥ is called a finite simple group of
Lie type.

The first result describes the general structure of finite simple groups of Lie
type.

PROPOSITION 2.14.
For almost all finite simple groups of Lie type I' there exists a simply connected
simple semisimple linear algebraic group G defined over L and a Frobenius map

F: G — G such that

(1) T =G"/Z(G"),
(2) G* is perfect, and
(3) the universal central covering group of I' as an abstract group is GF.

PRrOOF. By Definition 2.13 there exists a simply connected simple semisimple
linear algebraic group I' over L and a Frobenius map F' : G — G such that T’
is a non-abelian Jordan-Holder constituent of G¥. Then by [GLS98], Theorem
2.2.6 (f), the group G* is generated by the elements whose order is a power of p =
char(L). We can therefore apply [GLS98], Theorem 2.2.7, to G*. The first part
of this theorem says that with finitely many exceptions, G /Z(GT') is simple and
therefore isomorphic to I'; the second part says that, with the same exceptions as
in the first part, the group G* is perfect, proving (2). This also shows that I' can
only appear as the last non-trivial subgroup in any Jordan-Holder decomposition
of G¥'; hence the above isomorphism between I' and G¥'/Z(GT) is an equality,
which proves (1).

By [GLS98], Theorem 5.1.2, the simple and hence perfect group I' has a
universal central covering I' which is unique up to isomorphism. The kernel
M(T') of the covering I'“ — TI' is then called the Schur multiplier of I'. Now
assume that I" satisfies (1) and (2). Then by [GLS98], Theorem 6.1.4, the Schur
multiplier M(I") is in almost all cases (with the exceptions listed in Table 6.1.3)
isomorphic to Z(GT). By (1) the group G¥ is a central extension of T'; there
exists therefore a uniquely determined homomorphism « : I' — G¥ such that
the following diagram commutes:

FCL>GF

v

r
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From M(T) = Z(GF) it follows that « is injective and that T and G¥ have
the same cardinality. Consequently « is an isomorphism between G and the
universal central covering of T'. O

DEFINITION 2.15.

We call the finite simple groups of Lie type for which there exists a simply
connected simple semisimple linear algebraic group G satisfying the conditions
of Proposition 2.14 reqular.

The next result concerns irreducible representations of finite simple groups
of Lie type. It is a direct consequence of the stronger result stated in [HumoO6],
Theorems 2.11 and 20.2.

PROPOSITION 2.16.

Let G be a simply connected simple algebraic group, F : G — G a Frobenius map
and p : G — GL(V) an irreducible representation of G on a finite dimensional
L—-vector space V. Then there is an irreducible representation pg : G — GL(V)
such that p is the restriction of pg to G¥.

Now we can finally state an analogue of Theorem 2.10.

THEOREM 2.17.
Let V' be an L-vector space of dimension n > 2 and I' < SL(V') a subgroup that
acts irreducibly on V. Assume that T' is perfect and that T'/(I' N (scalars)) is a
direct product of finite simple groups of Lie type that are regular in the sense of
Definition 2.15.

If f,g and h do not vanish identically on I', then there is a finite subfield
k' C L and a model G' of SLy over k' such that I' = G'(k').

ProOF. By assumption there exist regular finite simple groups of Lie type
I'y,..., T, such that I'/(I'N (scalars)) = I'; x - - - x I',. Then by Proposition 2.14
there exist simply connected simple semisimple algebraic groups Gy, ..., G, and
Frobenius maps F; : G; — G; for all 1 < i < m such that I'; = Gf’/Z(G?) and
GT' is the universal central covering of T';. Let us write Z := I' N (scalars) and
r.=r/z.

LEMMA 2.18.
There exists a surjective homomorphism p : Gfl X« x GEm — T such that the
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following diagram is commutative:

P
G x...x GEn —=T

PrOOF. For 1 < 7 < m let fi C I' denote the preimage of I'; under the
projection map. The short exact sequence

1-Z—-I;—-T;,—1

then shows that T'; is a central extension of I';. Since GZF ¢ is the universal central
cover of I';, there exists a homomorphism &; : Gf ¢ — I'; such that

F; & -
G, ; Ly

T,
commutes. Let a; denote the composition map Gf N [; — I'. We define

p:Gflx-~><Gf;’" — I,

(91,2 9m) — a1(g1) - am(gm)-

7

Let 1 <i<j<mandletg; € fi,gj € fj. Then g;g; = g;7; in T, so there exists
z € Z such that g;g,2 = g;¢;, in other words such that [g;, g;] = z. This shows
that the image of the commutator homomorphism

[,]If‘in‘j—>F

is contained in the scalar subgroup Z. On the other hand, [, | is bilinear, so
it factors through a homomorphism I';/Z x T;/Z = T; x I'; — Z. Since Z is
abelian, this map is trivial on the commutator subgroup of I'; x I';. As a direct
product of non-abelian simple groups, I'; x I'; is perfect, so the map [, | itself is
trivial. It follows that T; and I'; commute with each other, which in turn means
that the homomorphism p is well-defined.

Let g,¢" € I'. Then there exist g, gy € Im(p) and 2,2’ € Z C Z(I') such that
g = goz and ¢" = goz". Then [g,9'] = [902,962'] = [90.90] € Im(p) and hence
[[',T] < Im(p). Since we have assumed I' to be perfect, i.e., that [I',T'] =T, we
conclude that p is surjective. 0

Let p: GI'x---xGEn — T be as in the above lemma. Since I acts irreducibly
on V', the map p induces an irreducible representation of Gf Lx oo x GEmoon V.
By [Gor68], Theorem 3.7.1, there exist non-trivial irreducible representations
pi » G — GL(V;), unique up to isomorphism, with V = V; ® --- ® V,, and
p=Ep®---® py. By Proposition 2.16 the representation p; is the restriction
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of an irreducible representation of G; on V; that we again call p;. Let us write
G =Gy X -+ X G, and consider the representation

PG =p1 @ py i G— GL(V).

As an exterior tensor product of irreducible representations, pg is itself irre-
ducible.

Since G is a connected semisimple algebraic group, pg(G) C GL(V) is also
connected semisimple. Let W be the associated Weyl group, ¢ the root system
of G and F the Euclidean vector space generated by ®. Let A denote the highest
weight of the representation pg. Then, by Lemma 2.11, the set W - A\ generates
E.

Moreover, since f,g and h do not vanish identically on I' C pg(G), they do
not vanish identically on pg(G). We can therefore apply Theorem 2.10 to p(G)
in order to find that ® = A,_; and pg(G) = SLy. Since the representations
p; are all non-trivial and SLy is simple, it follows that m = 1 and G = G.
Since SLy is simply connected, it even follows that the epimorphism G — SLy
is an isomorphism. Write F' := Fy. Then I' = GF = SL{? and, by standard
classification results, as in [Car87|, Proposition 4.5, the Frobenius map F' is
standard, i.e., there is a finite subfield £/ C L and a model G’ of SLy over k'
such that GT' = G'(K'). O

2.5. Subgroups acting irreducibly

The next theorem is the main result of this chapter.

THEOREM 2.19.
For every positive integer n there is an integer constant N such that for every
algebraically closed field L of non-zero characteristic and every finite subgroup
I'<SL,(L): if

(1) every subgroup of I' of index < N acts irreducibly on L™, and

(2) the map v — fgh(yN) does not vanish identically on T,

then there is a finite subfield k' of L and a model G' of SL,, over k' such that
G'(K') is a normal subgroup of I' of index < N.

REMARK.

We expect that the result of the theorem can be strengthened as follows: Let
7 : SL, — PGL, be the standard isogeny and G’*! the image of G’ under .
Then 7(G'(K')) € 7(T') € G"™(kK').

Now we gather some results concerning the structure of I' that we will use
later on in the proof of the above theorem. Let us start by recalling a general
result established by Larsen and Pink in [LP98], Theorem 0.2.
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PROPOSITION 2.20.
For every integer n > 1 there exists a constant ¢, depending only on n such
that any finite subgroup I' of GL,, over any field k possesses normal subgroups
I's c 'y C I'y such that

(1) [T :T4] < ey

(2) Either I'y =T, or p := char(k) is positive and 'y /Ty is a direct product

of finite simple groups of Lie type in characteristic p.
(3) T'y/I'3 is abelian of order not divisible by char(k).
(4) FEither I's = {1}, or p := char(k) is positive and I3 is a p-group.

We deduce from it the following special case that arises in our setting.

PROPOSITION 2.21.
For every integern > 1 there exists a constant d,, such that for every algebraically
closed field L of non-zero characteristic and every finite subgroup I' C GL, (L)
whose subgroups of index < n! act irreducibly on V := L", there exists a normal
subgroup I of T' such that

(1) [[': 1] < d,.

(2) I"/(I" N (scalars)) is a direct product of finite simple groups of Lie type

in characteristic p.
(3) If I' C SL,(L), then I is perfect.

PrRoOOF. Let ¢, and I';,I'5, '3 be as in Proposition 2.20 and let d,, := ¢, - n.
First we show that in our case I's is trivial. By definition, I's is a unipotent
normal subgroup of I'. Since I's is unipotent, we have VI3 £ 0 and since I's is
normal in I, the subspace VI3 of V is stabilized by I. On the other hand V is
an irreducible representation of I' and thus Vs = V. Consequently I's = {1}.

Now we show that I'y is a scalar subgroup of I'. Let us consider the represen-
tation of I'y on V. Since I'y is abelian of order not divisible by char(L), we get
a decomposition into weight spaces

V=Vig - &V,

By the normality of I'y in I') the weight spaces are permuted by I'. Let C' be the
centralizer of I'y in I'. Then C' is the intersection of the stabilizers of Vi,...,V,,
under the action of I'. This yields an injection I'/C' < S,,, where, for the
purposes of this proof, S, denotes the symmetric group on m elements and we
find

[:C <|Spu|=m! <nl
Hence the index of C in I' is bounded by n! and it follows from the assumption
that C acts irreducibly on V. On the other hand C stabilizes V;, so we get
Vi = V. Thus I's acts by scalar multiplication on V.
If I' ¢ SL, (L), then we can take [" = I'; and we have finished. Otherwise
I's is a scalar subgroup of SL,, and thereby it has order at most n. Moreover, as
', /Ty is a product of simple groups, we find (I';/T'5)4 = I'; /Ty. Let I" denote
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in this case the derived group of I'y. Then the surjection
[V =T — (T /Ty)% =T /Ty
yields the estimate [['y : '] < |I'y] < n. It follows that
C:T)=[:T4: T <cp-n=d,.

We can thus conclude that IV and d,, defined as above satisfy the conditions of
the theorem. U

Now we finally have all the ingredients together to prove Theorem 2.19.

PROOF OF THEOREM 2.19. Suppose that I' satisfies the conditions of the
theorem and let d,, and I'” be as in Proposition 2.21. Moreover, let e be the order
of the largest finite simple group of Lie type that is not regular in the sense of
Definition 2.15 and let N = e-max{n!,d,!}. Then in particular we have d,, < N
and, with the above definition, I is a normal subgroup of I" of index < N. Hence
I acts irreducibly on V' := L", and I"/(I"N(scalars)) is a product of finite simple
groups of Lie type.

Let us suppose that one of the simple groups appearing in the decomposition
of TV/(I" N (scalars)) is not regular. Let Iy be its preimage in IV and T'. the
preimage of its complement. Then, on the one hand, I" is a central product of
[y and ', and by [Gor68], Theorem 3.7.1, there exist irreducible representations
Vo of T'g and V, of T'. such that V =V, ® V. as a representation of I'V. Since V is
faithful and I'y is non-abelian, V{ has dimension > 1. Therefore dim V, # dim V'
and I'. does not act irreducibly on V. On the other hand

:T)=[:T0M":T.]<d, e<N,

so by the first assumption of the theorem I'. acts irreducibly on V', a con-
tradiction. Consequently all simple factors appearing in the decomposition of
I'/(I" N (scalars)) are regular.

Moreover, since N is a multiple of d,,!, for all v € T" we find that v € I"". Con-
sequently v — fgh(7) does not vanish identically on [" by the second assumption
of the theorem. In particular neither of the functions f, g and h vanishes iden-
tically on IV. Now we can apply Theorem 2.17 to I'" and its representation on
V' = L™ there is a finite field ¥’ C L and a model G’ of SL,, over £’ such that
G'(kK)=T". O

We close this chapter by establishing an auxiliary result that in some cases
can give a more precise description of the field k' and of the algebraic group G’
determined by Theorem 2.19.

PROPOSITION 2.22.
Let k. k' be finite subfields of L and G' a model of SL,, over k' such that G'(k') is
a subgroup of SL,, (k). If k is a subfield of k', then k = k' and G'(k") = SL, (k).
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PROOF. Let ¢ = |k| and ¢’ = |k/|. From k C £’ follows ¢ < ¢’. By [HumO6],
Table 1.6.1, if G’ is non-split, then
G'(K)| = (¢')"" D/ 12[((61’)”1 — (—1)"t) > gt f[(qi+1 —1) = | SLa(K)|,
i=1
a contradiction to G’(k ) < SL,(k), so this case cannot occur. If G’ is split, then
|G/<k/>| _ n (n+1)/2 f[ z+1 qn(n+1)/2 ﬁ(qi+1 _ 1) _ |SLn(k‘)|,
i=1 i=1
with equality if and only if

i ¢’. In that case k = K’; the second desired
equality follows from G'(k ( " (

q:
< SL, (k). O
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CHAPTER 3

Preliminary results on Drinfeld modules

3.1. General results

In this section we list the most important known results about Drinfeld mod-
ules in special characteristic, using the notation introduced in Chapter 1.

Let ¢ be a Drinfeld A-module over a finitely generated field K, of special
characteristic pg.

PROPOSITION 3.1 (cf. [Gos96], Proposition 4.7.4 and Remark 4.7.5).
There exists a finite separable extension K' of K inside of K such that

Let D := Endj(p), let Z denote the center of D ® 4 F' and let us write

dimy D@4 F =d*> and [Z/F]=e.

There exists an iteger > 1 such that rank(y) = rde. Fix a maximal commuta-
tive subring A of D and let P A—-K {7} denote its tautological embedding.
This is a Drinfeld A-module of rank r, except that Ais not necessarily a maximal
order in its quotient field. Let A denote the integral closure of A in its quotient
field and F denote the common quotient field of Aand A. By [Gos96], Corollary
4.7.15, the ring D® 4 F' is a division algebra over F'; thus its commutative subring
A®4 Fis a field. Tt follows that A®4 F = F and F is a subfield of D @4 F. By
[Hay79], Proposition 3.2, there exists a Drinfeld module ¢ : A — K{r} such
that cﬁ|fl is isogenous to ¢ and the isogeny in question induces an isomorphism

End(¢) ®4 F = End (@) @4 F.
On the other hand the definition of endomorphisms implies that
Endz() ®4 F = Centpa (po,r(A) = F

and thus End(¢) = A.

It was shown in [Gos96], Proposition 4.7.17, that Endy(p)® 4 Fu is a division
algebra over F.; consequently its commutative subring F®@uFis a field, which
shows that the place oo does not split in F. For later use, let us denote by oo
the place of F' above co and by Bo the characteristic of . The latter is a place
above the characteristic py of ¢.
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Let K’ be a finite extension of K as in Proposition 3.1. For a place p # pg, 0o
of F' we have G gs-equivariant isomorphisms

P Tp(?) @4, Fa =@ To(?) @4, F = Ty(p) @4, Fy; (3.1)
Plp Plp
hence the image of G'g» in the representation on T,(¢) ®4, F}, coincides with the

one on Py, Tp(P) ® 4, Fy.

Let us from now on assume that all endomorphisms of ¢ are already defined
over K, i.e., that D = Endz(¢) = Endg(p).

LEMMA 3.2. 3
Let p # po, 00 be a place of F' and B a place of F' above p. The representations
pp and pyp become isomorphic upon tensoring with Fy.

PROOF. Since Ais a maximal commutative subring of D and its quotient
field is F', we have D ® 4 F' = Mgy q(F') and in turn

D @4 Fyp = Myxa(Fy).
Thus, tensoring p, with ﬁm yields a representation
pp@Fyp : G — Centgy ) (D@ Fp) = Centgy ) (Maxa(Fip)) 2= GL, (Fy).
On the other hand, starting with pgp we find
pp ® Fy : Gx — GL,(Ap) ® Fy = GL,(Fy).

The isomorphism of the representations follows from the above G g-equivariant
isomorphism of rational Tate modules. O

Let G, denote the Zariski closure of I'y, which is an algebraic subgroup of the
centralizer of D ®4 Fy in the algebraic group Autp, (Ty(¢) ® Fp) = GLygp, -

THEOREM 3.3.
For all places p # po, 00 of I we have G\, = Centcr,, 5, (D®4Fy), in other words
Iy is Zariski dense in Center,, , (D ®4 Fy).

PROOF. Let P be a place of F' above p. By [Pin06a], Theorem 1.1, the
group I'y is Zariski dense in GL,. - On the other hand by Lemma 3.2 we have

Gy xr, Fp 2 GL, ;

T',ng ?
Le., Gy C Centg,, , (D®aF,) is amodel of GL, 7, over Fy,. The desired equality
follows. ([l
Combining the above theorem with [PT06], Lemma 3.8, yields
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COROLLARY 3.4.
Let p # po, 00 be a place of F such that I'3™ C Cent‘éefrd(Ap)(D ®a Ap). Then

L5 is Zariski dense in Centg | . (D®4 Fp).

3.2. Results building towards Theorem 1.1

Let us in this section assume that ¢ satisfies the conditions of Theorem 1.1.
We make explicit the implications for this case of a few previously established
results.

THEOREM 3.5.
For every non-empty finite set P of places # pg, 00 of F, the subgroup

Cent(éeﬂrd(AP)<D XA AP) N F%Om

is open in both Cent%eer(AP)(D ®a Ap) and T5™.

PROOF. A careful reading of the proofs of Theorems 6.1 and 6.2 of [Pin06b]
shows that, even though one of the original assumptions on ¢ required it not to
be isomorphic to a Drinfeld module defined over a finite field, for the theorems
to hold it is sufficient to have the analogous assumption for . By [Pin06b],
Proposition 2.1, this is equivalent to r = rank(®) > 2. Since this is one of the
assumptions of Theorem 1.1, we can apply [Pin06b], Theorems 6.1 and 6.2, to
¢. Combining them shows that there exists a subfield E of F' with [F/E] < oo
and B := F N A that is uniquely defined by either one of the following two
properties:

(1) For every infinite subring C' C A we have Endy(p|C) C Endg(¢|B).
(2) For every non-empty finite set P of places # pg, 00 of F', let ) denote
the set of places of E below those in P and let G denote the centralizer
of Endg(¢|B) ® Eq in Auty, (1g(¢p|B) ® Eq). Then Gy*(Bg) NIg™
is open in both G&*(Bq) and T'H*™.
Since F' satisfies property (1) by the assumptions of Theorem 1.1 and F is

uniquely determined, we have £ = F. The theorem then follows from prop-
erty (2). O

The following result is a special case a theorem proved by Matthias Traulsen
in his thesis ([PT06], Theorem B) for the case where K has transcendence degree
1 and later generalized by Egon Riitsche ([PR0O9b], Theorem 0.2) for fields of
arbitrary transcendence degree.

THEOREM 3.6.
For almost all primes p of A the rings D @4 A, and Ap[l'y] are commutants of
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each other in Endy, (T,(p)). More precisely, for almost all primes p we have

D XA Ap = ded(Ap) and AP[FP] = err(Ap)-
Let p be a prime of A for which Theorem 3.6 holds. Then

Centgr, (4,)(D ®4 Ay) = Centar, ,(4,)(Maxa(Ap)) = GL,(A,)
and the Galois representation associated to ¢ at p can simply be rewritten as

The following result is then a direct corollary of the above theorem:

COROLLARY 3.7.
For all primes p of A for which Theorem 3.6 holds, the residual representation
P - Gk — GL,(ky) is absolutely irreducible.

3.3. Reduction steps building towards Theorem 1.1

Let us again assume that ¢ satisfies the assumptions of Theorem 1.1. The Ga-
lois representations remain the same under replacing ¢ by an isomorphic Drinfeld
module, thus doing so does not alter the outcome of the aforementioned theorem.
Since it only attempts to describe the image of G up to commensurability,
the theorem is also invariant under replacing K= by a finite extension, and thus
under replacing K by a finite extension. Therefore we may make the following
additional assumptions, all direct consequences of previously established well-
known facts, on ¢ before tackling its proof:

(a) T3™™ is contained in Centheﬁrd( 4,)(D ®4 Ay) for every place p # po, 00

of F. Indeed, fix a maximal commutative subring A of D and let
A, F, 3,y and oo be as in Section 3.1. By [Pin06b], Proposition 2.3
we may assume that I'H™" C SL,(Ay) for all places P # Po, 5o of F.
The desired result for I's™" then follows from Lemma 3.2.

(b) ¢ has semistable reduction everywhere.

Let x be one of the finitely many places of K at which ¢ has bad reduction. The
Tate uniformization of ¢ at x (cf. [Dri74], §7) is a pair (¢., A,) where ¢, is a
Drinfeld A-module over K, of rank r'd < rd with good reduction at z and A,
is, via ¢,, an A-lattice in K3 of rank rd — r'd. Since D, acts on A, through a
finite quotient, after replacing K by a finite extension we may also assume that

(c) For every place x of bad reduction, the decomposition group D, acts
trivially on A,.

These assumptions will be in use from Chapter 4 until the end of Chapter 8.
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3.4. Frobenius action

In this section we temporarily drop most assumptions of Theorem 1.1 on ¢;
initially we only assume that Endz(¢) = Endg(p).

Let z be a place of K where ¢ has good reduction. We let Frob, € Gal(K*P/K)
denote any element of the decomposition group above z that acts by u — ulF!
on the residue field k5.

We start by adapting a few well-known results about Drinfeld modules with
minimal endomorphism ring to the general case. Lemmas 3.8 and 3.9 are useful
tools for carrying out these adaptations.

LEMMA 3.8.
The Drinfeld A-module ¢ has good reduction at a place x of K if and only if ¢
has good reduction at x.

Proor. The following good reduction criterion for Drinfeld modules in spe-
cial characteristic is a special case of the criterion proved by Takahashi in [Tak82],
Theorem 1, for arbitrary Drinfeld modules:

REDUCTION CRITERION (IN SPECIAL CHARACTERISTIC). Let ¢ be a Drin-
feld A-module over a field K of characteristic py # 0. Let x be a place of K and
let p be a prime ideal of A different from po. Then ¢ has good reduction at x if
and only if the p-adic Tate module T,(p) is unramified at v.

Let p # po be a place of A. By (3.1) we have a G g-equivariant isomorphism

To(¢) @a, Fp = €D Tp(?) ®4, Fy
Plp

Assume that ¢ has good reduction at x. Then, by the Reduction Criterion, the
left hand side is unramified at x. Since the isomorphism is G g-equivariant, the
right hand side is also unramified at z; applying the Reduction Criterion to the
Drinfeld module ¢ : A — K{r} in the other direction, we find that ¢ has good
reduction at z.

The converse follows similarly from applying the Reduction Criterion to the
above isomorphism of rational Tate modules. O

The result of the last proposition will be used implicitly in every argument
that involves passing from ¢ to ¢ and then considering the set of places of good
reduction for ¢.

LEMMA 3.9. ~
Let p # pg, 00 be a place of F' and P a place of F' above p. Then the characteristic
polynomial of py(Frob,) is equal to the characteristic polynomial of pg(Frob,).
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PRrROOF. By Lemma 3.2 we have p, ® Z:TB = pp® F‘B' The result follows
directly from the fact that tensoring with Fi does not change the characteristic
polynomial on either side of the isomorphism. O

ProPoOSITION 3.10.

For every place p of F different from the characteristic po of ¢ and from oo,
the representation p, is unramified at x and the characteristic polynomial f, of
pp(Frob,) has coefficients in A and is independent of p.

PRrROOF. Applying [Gos96|, Theorem 4.12.12 (b), to the Drinfeld A-module
¢, we find that for every place P of F different from the characteristic 9y of
¢ and from oo, the representation pg is unramified at  and the characteristic
polynomial g, of pgp(Frob,) has coefficients in A and is independent of p.

Let p # po, 00 be a place of F and B a place of F' above p. By Lemma 3.9
we have f, = g, and thus g, has coefficients in A N A, = A. The other two
properties are direct consequences of the isomorphism

Pp ® Fyp = pp © Fy
that was established in Lemma 3.2. O

Let o4, ..., a, be the roots of f, in an algebraic closure F of F, with repe-
titions if necessary. Consider any normalized valuation v of F' and consider an
extension v of v to F'. Let k, denote the residue field at v.

PRrROPOSITION 3.11.
There exists an integer dy independent of x with 1 < dy < d such that the
following properties hold:
(1) If v does not correspond to po or 0o, then for all 1 <i < r we have
(2) If v corresponds to oo, then for all 1 < i < r we have
1 [ke/F]

)= )

(3) If v corresponds to po, then there exists an integer 0 < s, < r such that

o) = { Szldo . {ngﬁ for precisely sm of the a;, and
0 for the remaining r — s, of the «;.
PROOF. In this proof let v always denote a normalized valuation of F' and ©
an extension of v to F.
By Lemma 3.9 the characteristic polynomial of Frob, associated to ¢ is the
same as the one associated to the Drinfeld A-module ¢. Applying [Dri77],
Proposition 2.1, to ¢, we find
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(1) If v does not correspond to Py or co, then for all 1 < i < r we have

(2) If v corresponds to co, then for all 1 < i <7 we have
_ 1 [k /F]
(ay) = ——- :
r o [ko/Fy]

(3) If v corresponds to Py, then there exists an integer 0 < s, < r such that

Sz [kv/]Fq}

B(a;) = L ke gy precisely s, of the «;, and
Z 0 for the remaining r — s, of the a;.

Let us recall that [F/F] = d. The result then follows directly from passing from
normalized valuations of F' to the corresponding normalized valuations of F'. [

Let Ad denote the adjoint representation of GL,. Proposition 3.10 implies
that the characteristic polynomial of Ad(p,(Frob,)) has coefficients in F' and is
independent of p. In the case where ¢ satisfies the assumptions of Theorem 1.1,

these characteristic polynomials can be used to give a characterization of the
field F'.

PROPOSITION 3.12 (cf. [Pin06b], Theorem 1.3).

Let ¢ be a Drinfeld A-module satisfying the assumptions of Theorem 1.1. Let X
be an integral scheme of finite type over F,, whose function field K' is a finite
extension of K, and over which @ has good reduction. Let 3 be any set of closed
points x € X of Dirichlet density 1.

(1) If p #£ 2 or v # 2, then the subfield F generated by the traces of
Ad(py(Froby,)) for all v € X is equal to F.
(2) If p = r = 2, then either the subfield F'™ generated by the traces of

Ad(pp(Froby)) for all x € X or the subfield generated by their square
roots is equal to F.

PROOF. Applying [Pin06b], Theorems 1.2 and 1.3, to ¢ : A — K{r}
yields the analogous result for the subfield Fgad of F' generated by the traces of
Ad(pg(Frob,)) for all x € X. The proposition then follows from Lemma 3.9. [

We deduce from this a result concerning the field generated by the traces of
Frobenius elements in the residual adjoint representation.

PROPOSITION 3.13.
Let ¢ be a Drinfeld A-module satisfying the assumptions of Theorem 1.1. There
exists a finite set of primes S of A such that

(1) for all primes p & S the traces of Ad(py(Frob,)) mod p for all places
of good reduction x of K generate ky, and
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(2) for all distinct primes pq,p2 & S the traces of Ad(py, (Frob,)) mod pips
for all places of good reduction x of K generate ky, X ky,.

PRrROOF. Let X denote the set of places of K at which ¢ has good reduction
and let B denote the ring of elements of F' that are regular outside of py. For
x € Ylet ay,...,a, € F denote the eigenvalues of Frob,. By Proposition 3.11
they all have trivial valuation at places not above pg, 00 and constant valuation
above co. The eigenvalues of Ad(Frob,), which are the ratios a;/a;, are thus
units at all places not above py. Consequently

tr(Ad(py(Frob,))) = > = € B.
(Adlpa(Frob) = 32 2

Let B’ denote the subring generated by the traces of Ad(p,(Frob,)) for all
x € 2. We distinguish two cases according to Proposition 3.12.
First let us suppose that the field of fractions of B’ is equal to F'. Then B’ has
finite index in B. Let § := {b € B’ | bB C B’}. Then { is a non-trivial ideal of B
and the set .S of primes of B containing oo and those dividing § is finite. Moreover
for all p ¢ S the intersection p N B’ is a prime of B’ and B'/pN B’ = B/p. On
the other hand for all p & S we have B/p = k,. Hence for all p ¢ S the map
B' — B/p — k, is surjective and the first assertion follows. For the second, we
use the fact that for p; # ps outside of .S, the ideal p1po N B’ can be decomposed
into a product of prime ideals in B" as (py N B’)(p2N B’). Then, using the Chinese
Remainder Theorem and the above observations, we find

B,/plpgﬂB/ = B’/plﬂB'xB’/plﬂB’

= B/p1 x B/ps
kpl X km,

proving the surjectivity of the map B’ — B/p1ps — kp, X ky,. This is the second
assertion.

By Proposition 3.12 the only remaining case is where p = r = 2 and the field
of fractions of B’ is equal to F?. Let qo denote the place of F'? below py and By
the ring of elements of F? that are regular outside of qo. Then [Bp: : B] < oo
and, as above, there exists a finite set Sp2 of places of F? such that for all q & Sp»
the map B’ — Bpz/q is surjective. For a prime q € Sp2 of F? let p be a place of
F above q. Since F//F? is purely inseparable, we have Br2/q = k,. Let S be the
set of primes of F' lying above the places contained in Sg2. For this choice of S,
both assertions now follow analogously to the first case. ([l
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CHAPTER 4

The surjectivity of the residual representation

Let K denote a field of transcendence degree 1 and let ¢ : A — K{7} be
a Drinfeld module satisfying the assumptions of Theorem 1.1. Proving that the
residual representation is surjective at almost all places is the first step towards
the proof of Theorem 1.1.

Throughout the chapter we assume that the reduction steps introduced in
Section 3.3 are in effect.

4.1. Surjectivity at a given prime.

For all primes p of A let A, denote the image of Gk under p, and Ay™™ the
image of G%°™. Our aim is to prove the following result:

THEOREM 4.1.
In the above situation, we have SL,(k,) = AL for almost all primes p of A.

Outline of the proof. First we prove that for almost all primes p of A
the finite group AF*™™" satisfies the assumptions of Theorem 2.19. Next we prove
that the field %" given by Theorem 2.19 is almost always equal to k,. Using
Proposition 2.22, we then deduce the desired equality.

DEFINITION 4.2.
We denote by S; the finite set of primes of A for which Theorem 3.6 does not
hold.

Since we are mainly interested in statements that hold for almost all primes
of A, we can focus our attention on primes not contained in S7. One particular
advantage of this is that for p ¢ Sy the residual representation at p can be simply
written as

PROPOSITION 4.3.
For every integer ¢ > 1 there exists a finite set of primes S(c) D S of A such
that for allp & S(c) every subgroup of A, of index < c acts absolutely irreducibly.
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PROOF. For any prime p of A and any subgroup H < A, let H’ denote
N ea, vH~~!. This is a normal subgroup of A,; we define v,  as the composite
of the following homomorphisms

apn: Gg — Ay — Ay/H'.

LEMMA 4.4.

For every integer ¢ > 1 there exists a finite set of primes So(c) of A such that for
all p & So(c) and all subgroups H of A, of index < ¢ the homomorphism oy i is
unramified at all places of K.

PRrROOF. For every place z of K at which ¢ has good reduction, the inertia
group I, acts trivially on ¢[p] and therefore the homomorphism c, g is unramified
at these places. Since there are only finitely many places x of K where ¢ has bad
reduction, it is then enough to prove the lemma for one of them. By reduction
step (b), ¢ has semistable reduction at z. Let (¢, A;) be its Tate uniformization
at x and let p be any prime of A. Then there is an exact sequence

of representations of the decomposition group D, that is invariant under the
action of Endy(p). By good reduction the inertia group I, acts trivially on
©.[p] and by reduction step (c) it also acts trivially on A,/pA,. Therefore its
image under p, lies in a subgroup of the form

1] %
( 01 ) = HOInEndg(QD)@Akp (A:v/pAmSD:c[p])

Let H be a subgroup of A, of index < ¢. Then |A,/H’|, and thereby every
element of A,/H', has order dividing ¢!. In particular we have a, g (Frob®) = 1. Tt
follows that the restriction of ay, i to I, factors through the group of coinvariants

HomEndf(ap)@JAkp (Ax/pA:m P [p] )Frobg! :

It suffices to prove that this group is trivial for almost all p. Since Frob;! acts
trivially on A, /pA, by reduction step (c), it is enough to prove that the group
of coinvariants ¢, [plpe vanishes.

Let f, denote the characteristic polynomial of Frob® on the Tate module
of ¢, at the prime p, which by Proposition 3.10 has coefficients in A and is
independent of p. Moreover, by Proposition 3.11 every eigenvalue of Frob, has
valuation < 0 at co. It follows that 1 is not an eigenvalue of Frob? and so f,(1)
is a non-zero element of A. For all p not dividing f,(1), no eigenvalue of Frob¢
is congruent to 1 modulo a place lying above p; consequently for these p we have

Pz [p]Frob;! =0. [l

For every integer ¢ > 1 let Sy(c) denote the finite set of primes given by
the above lemma and S(c) := Sy(c) U S1. For every p & Syp(c) and for every
subgroup H of A, of index < clet K (r.H) be the field fixed by the kernel of Qp.H-
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By Lemma 4.4 it is unramified over K. Moreover, its degree [K™) /K] < ¢! is
bounded independently of p and H. By a function field analogue of the Hermite-
Minkowski Theorem (cf. [Gos96], Theorem 8.23.5) about unramified extensions,
there are only finitely many possibilities for K ). Therefore their compositum
K’ is a finite extension of K such that the restriction ap gl : G — Ap/H' is
trivial for all p & Sp(c), in particular for all p & S(c). For these primes p we find
that
7o(Gg) C H C H.

By the assumption on 57 C S(c) the Galois group Gk acts absolutely irreducibly
under p, for all p & S(c). This yields the desired conclusion. O

DEFINITION 4.5.
For p ¢ S(r!) let A, denote a fixed choice of normal subgroup of A, satisfying
the conditions of Proposition 2.21 and let A, 5 denote A, N (scalars).

LEMMA 4.6.
Forp & S(r!) we have Ayy C Ao AF™.

PROOF. By construction, A5™™ is a normal subgroup of A, and their quo-
tient is cyclic. Therefore

Aple%eom/A’ggeom ~ Ap,l/(Ap,l N A%eom)

is also cyclic and the derived group ASY is contained in A, ;NAG™™. On the other
hand, A, /A, is perfect, so there is a surjection A‘gf{ — Ap1/Ap2. Combining
these two statements we find Ap; = Apo(Apy NAF™). This in turn yields the
desired result. 0

The following statement is an analogue of Proposition 4.3 for subgroups of
AF™ of bounded index.

PROPOSITION 4.7.
For every integer ¢ > 1 there exists a finite set of primes S D Sy of A such that
for allp & S, every subgroup of AY™™ of index < ¢ acts absolutely irreducibly.

PROOF. Let ¢ be fixed and let S be the union of the finite sets S(r!) and
S(d,c). For all n > 1 we have by definition S(n) D S;; hence S D S;. Let p
be a prime outside of S and H a subgroup of AF™" of index < ¢. Since A, is
a scalar group, H acts absolutely irreducibly if and only if A,.H does. Then,
using Lemma 4.6 and the definition of A, ;, we find

[Ap t ApaH] = [Apt Ap 2 ASM[A AL 1 Ay o H
< d,-c.
Therefore A, o H acts absolutely irreducibly by the choice of S. O
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PROPOSITION 4.8.
Let f,g and h be the algebraic morphisms defined in Section 2.2. For every
integer ¢ > 1 there exists a finite set of primes S D Sy of A such that for all

geom

p &S, the map v — fgh(~°) does not vanish identically on AF™™.

PROOF. Let us suppose that there is an infinite set P of primes p of A for
which v — fgh(y¢) vanishes identically on A5*™. By Lemma 4.6, possibly after
taking a finite number of primes out of P, we have PN.S; = () and for all p € P

and all § € A, there exist a € k and §, € AF™™ with 6" = ad,. Consequently

5dr!7’ B (a59>r
det 64! det(ad,)

__xr geom
_6g € Ap )

Let x be a place of K at which ¢ has good reduction and let Frob, € Gg

be an associated Frobenius element. Then there exists §, € AF™™ such that
Py (Frobdr'™)

Tot po(Frobn) T = 0,. For p € P we have by assumption

oo (ToER)
det pp(Frob, )d'e

) — fgh(5) =0

and therefore fgh(pp(Frob?'™)) = 0.

It is a consequence of Proposition 3.10 that the characteristic polynomial
fo of pp(Frob®'™) has coefficients in A and is independent of p. Since there
are only finitely many possibilities to choose a bounded amount of eigenvalues
of Frobi""!rc, there is either a quadruple of distinct eigenvalues aq, as, ag, ay of
Frobff[”"C in F such that ajas — asay = 0, or a triple of distinct eigenvalues
a1, a3,y of Frobi*!“’ in F' such that a? — azay = 0, or a sextuple of distinct
eigenvalues aq, an, as, oy, a5, g of Frobi’“!"c in F such that ayasas — agasag =0
modulo a prime lying above p for infinitely many primes p of P. Since the two
other cases work analogously, let us suppose that it is the first case that occurs.
Then oy — gy = 0 and therefore

fc : GLr,Fp - A}?pv v f(,ydrh"c)

vanishes on p,(Frob,) for all places x of good reduction of K. Since these Frob,
form a dense set of conjugacy classes of Gk and the morphism f, is conjugation-
invariant, we obtain f.|r, = 0 and in particular fC|F§90"‘ = 0. By Corollary 3.4
the image T'y™ of the geometric Galois group is Zariski dense in SL, 5, . Since
fe is an algebraic morphism, from fC]p%eom = 0 it follows that f. also vanishes on
SL,,r,. However, this is a contradiction by Lemma 2.9. O

PROPOSITION 4.9.

For almost all primes p of A there is a finite subfield k, ofk_,J and a model G’
of SL, over ky, such that G'(ky) is a normal subgroup of AF™™ of index bounded
independently of p that acts absolutely irreducibly.
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PRrROOF. Let N, be the integer depending on r provided by Theorem 2.19 and
let S, D S be the finite set of primes of A for which, applied with the constant
N.,., either Proposition 4.7 or Proposition 4.8 does not hold. By reduction step
(a), for all primes p ¢ Sy, the image AL™™ of the geometric Galois group is
contained in SL,(k,) and thus we can apply Theorem 2.19 to Ay™™. By the
definition of Sy,, assumptions (1) and (2) of Theorem 2.19 are satisfied for all
p & Sn,. It follows that for every such prime p there is a finite subfield & of k_,,
geom

and a model G’ of SL, over kj such that G'(k;) is a normal subgroup of Ay
of index < N,., thereby acting absolutely irreducibly. 0

PropPOSITION 4.10.
For almost all primes p of A as in Proposition 4.9 we have ky C ky,.

PROOF. Let S D Sy be the finite set of primes of A for which either Propo-
sition 3.13 or Proposition 4.9 does not hold and let p be a prime outside of
S.

Let A, be the normal subgroup of A, as in Definition 4.5. By the con-
struction carried out in the proof of Proposition 2.19, on which Proposition 4.9
is based, we may assume that G'(k;) = Agf{ . As the derived group of a normal
subgroup, G'(ky) itself is normal in A,,.

Let v € Ay and inte(y) € Aut(G'(ky)) denote the conjugation action of
on G'(ky). This action, extended to G', is defined over ky; thus its derived map
Adg(v) € End(Lie G') has trace in k. Tensoring Lie G’ with k_;, and considering
Adgr(7) as an element of End(Lie G’ @ k) does not change the characteristic
polynomial of Adg(7); therefore the trace of the latter still lies in ky,.

On the other hand, since A, C GL,(k,), we can also consider the conjugation
action intgy, () of v on SL, (k). As in the case of inte/(y) above, we conclude
that the derived map Adgy, (7) € End(sl,x, @y, k) has trace in k.

Since G’ is a model of SL, over ky, we have

Lie G/ ®k£ k’_‘; = 5[7",7% ®kpk_p'
Moreover, given the inclusion G'(ky) < SL,(ky), we have

inter () = intsw, (7)|erky)-

Together with the equality of Lie algebras this yields that Adg (y) = Adsy, ()
on sl, . Thus tr(Adsy, (7)) lies in ky N k.

Since tr(Adsy, (7)) = tr(Ad(y)) — 1, it follows that tr(Ad(y)) lies in k, N k..
On the other hand, by Proposition 3.13, the field generated by {tr(Ad(y))}ea,
is equal to k. Therefore k, C k. O

The ingredients to finish the proof of the main theorem of this chapter are
now all gathered together.
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PrOOF OF THEOREM 4.1. By Propositions 4.9 and 4.10 for almost all primes
p of A there is a model G’ of SL, over an extension k;, of k, such that

G’(k;) < AFO™ < SL(Ky).
By Proposition 2.22 both inclusions are then equalities. [l

4.2. Surjectivity of products of residual representations.

Here we consider the image of the product representation p,, X py, for pairs
of distinct primes p; and p, of A.

PROPOSITION 4.11.

There exists a finite set S of primes of A such that for all pairs of distinct primes
p1 and py not in S the image of (Pg, X Ppy ) (G i) in PGL, (ky, ) X PGL,.(ky, ) contains
PSL, (ky, ) x PSL, (ky, ).

PROOF. Let S D S; be the finite set containing all primes p of A for which
the residual representation does not map surjectively onto SL, (k,), all those with
|ky| < 3 and all those for which Proposition 3.13 is not satisfied. Let py,ps & S
be distinct primes and let A denote the image of G in PGL, (ky,) x PGL,(ky, ).
Suppose that

AT £ PSL, (ky, ) x PSL, (ky,).

The assumptions on p; and p, ensure that AT surjects to both factors.
Moreover, as |ky, |, |ky,| > 3, these groups are simple. We can therefore apply
[Pin00], Lemmas 9.4 and 9.5, that show the existence of a field isomorphism
o kg, AN ky, and of a corresponding isomorphism « : o* PGLMP1 — PGLMF2
such that A C Graph(a). Noting that the adjoint representation of GL, factors
through PGL,, we thus have Ad op = o* Ad.

Calculating inside A/ps = ky,, for every place x of K where ¢ has good
reduction we find

o~ (tr Ad(pp, (Frob,)) mod p;) = (tr Ad(py, (Frob,)) mod py).

This implies that the image modulo p,ps of the ring generated by the traces of
all such Ad(py, (Frob,)) is contained in Graph(o™!) C ky, X ky,, in contradiction
to Proposition 3.13 (b). O

38



CHAPTER 5

Cohomological remarks and some group theory

We collect a few general results that are used in the next chapter. Let
gl,,,sl,, pal, and psl(, denote the Lie algebras of GL,, SL,, PGL, and PSL,, re-
spectively and let ¢ denote the center of gl,,.

PROPOSITION 5.1.
Let n > 1 and k be a finite field.

(1) If |k| > 3, then
H'(SL,(k), gl,(k)) = 0.
(2) If |k| > 9, then
H*(SL,.(k), pgl,(k)) = 0.
(3) Let H be a subgroup of GL, (k) that contains SL, (k). If |k| > 9, then
HY(H, pal, () = 0.

PROOF. Part (1) was proved in [TZ70], Theorem 9. For (2), we show that
the natural map

H(SLa(k), gl (k)) — H'(SLa(k), pgl, (k)
is an isomorphism. Indeed, let us consider the exact cohomology sequence
H'(SLn(k), (k) — H'(SLa(k), gl,,())
—  H'(SLy(k), pal, (k) — H*(SL,(k), c(k))
associated to the short exact sequence
0 — (k) — gl (k) — pgl, (k) — 0

of SL, (k)-modules. Since SL, (k) is perfect if |k| > 3 and ¢(k) is abelian, the
group H'(SL,(k),c(k)) = Hom(SL,(k),c(k)) is trivial. In a similar way, the
group H?(SL,(k),c(k)) of central extensions of SL, (k) by c(k) is trivial since, if

|k| > 9, the group SL, (k) has no central extensions by [Ste81], Theorem 1.1.
Consequently the required map is indeed an isomorphism. Combined with Part
(1) this yields (2).

Let SL, (k) < H < GL, (k). Then [H : SL, (k)| divides [GL, (k) : SL, (k)] =
|k| — 1. In particular it is prime to the characteristic of k; therefore by [CPS75],
Proposition 2.3 (g), the restriction map

H'(H, pgl,(k)) — H'(SLy(k), pgl, (k))
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is injective. Part (3) then follows from (2). O

The following proposition is an adaptation of [PR09a], Proposition 2.1.

PROPOSITION 5.2.

Let n be a natural number, k a finite field with at least j elements and H an
additive subgroup of gl,, (k). Assume that H is invariant under conjugation by
SL,(k). Then either H is contained in the group of scalar matrices or H contains

s, (k).

Proor. Consider the restriction of the adjoint representation of GL,, } to
SL,, , the weights of which are e; — e; € R"/diag(R) for i # j with multiplicity
1 and 0 with multiplicity n. The weight space W, of weight 0 is the group of
diagonal matrices in gl,(k) and the weight space W, ; of weight e; — e; is the
group of matrices with all entries zero, except, possibly, in the position (3, j).
Thus we can decompose gl, (k) as

gl (k) = Wo & P Wi
1,7
Since the multiplicative group k* has at least 3 elements, any two distinct weights
of the form e; — e; remain distinct and different from 0 upon restricting the
representation to SL, (k). Therefore H can be decomposed as

H = (HN W) & P HNW;,).
2%
Each W, ; is a k-vector space of dimension 1 and the diagonal matrices 7'(k) in
SL,,(k) act on it through a homomorphism 7'(k) — k*.

If n > 3 then the above homomorphism is surjective. Hence H MW, ; is either
0 or equal to W, ;.

If n = 2, then the homomorphism T'(k) — k* is not necessarily surjective.
Let us suppose that there is a non-zero h € HNW; ;. Then at least {a?h | a € k}
is a subset of HNW, ;. Since HNW;; is an additive group, {(a*+ *)h | a € k}
is also a subset thereof. As every element in the finite field k£ can be written as
the sum of two squares, we then have H N'W;; = W; ;. Thus in this case also
H NW;; is either 0 or equal to W ;.

Consider the subgroup of SL, (k) generated by the permutation matrices of
positive signature and the products of a permutation matrix of negative signature
with a scalar matrix of determinant —1. This subgroup permutes the weight
spaces W, ; transitively. Since H is invariant under conjugation by SL,(k), we
find that either every H NW,;; = 0 or every H NW,; ; = W, ;. In other words,
either H is contained in the group of diagonal matrices or contains the sum of
all W; ;, which is the group of matrices with diagonal 0.

If H is contained in the group of diagonal matrices, then take any element h
of H and denote its diagonal entries by hq, ..., h,. Let i # j and u € SL, (k) be
the matrix with entry 1 on the diagonal and in the position (4, j) and 0 elsewhere.
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Then uhu~! has entry h; — h; in the position (i, 7). However this entry has to be
0 because uhu~! € H, and hence h; = h;. This can be done for any pair (4, j),
which shows that H is contained in the group of scalar matrices.

If H contains the group of matrices with diagonal 0, we consider the trace
form

al, (k) x gl (k) — k, (A,B)w— tr(AB),

which is a perfect pairing invariant under SL, (k). The orthogonal complement
H+ of H is again an SL,(k)-invariant subgroup, and since the inclusion for
orthogonal complements is reversed, it is contained in the group of diagonal
matrices. The arguments in the other case show that H+ is contained in the

group of scalar matrices. Taking orthogonal complements again, we deduce that
H contains all of sl,,(k), as desired. O

COROLLARY 5.3.
Let k be a finite field of characteristic 2 with at least 4 elements and H a non-zero
additive subgroup of pgly(k). Assume that H is invariant under conjugation by

SLo(k). Then H contains psly(k).

PRroOF. Consider the short exact sequence

) — gly(k )ﬂpg[Q( ) — 0.

_>c

(
Let us suppose that psl,(k) ¢ H. Then (ps[g( )N H) < psly(k) and therefore
proj ! (psly (k) N H) < sly(k). Given that proj ' (psly(k) N H) is SLy(k)-invariant
if psl,(k) N H is, by Proposition 5.2, the group proj ! (psl,(k) N H) is contained
in the group of scalars c(k). Hence proj(proj ' (psly(k) N H)) = psly(k) N H is
trivial.

Let (%) be a non-zero element of H. From h ¢ psl,(k) follows that x is
non-zero. Since H is SLy(k)-invariant, we have

(Fo)(8)(Vo)=(55)er

Since H is an additive group, it follows that

Ty T z\ _ 0 y+z
(20>+<y O)_(y+z 0 )EH‘

This is also an element of psl,(k), thus it must be zero. Consequently we have
y = 2. Now let a € k*. Then

1 2
a a Ty a a\ T a°r
G ) (0 8) (% 2)=(a% 0 )em
as well as
2 2
r Yy r a‘w\ 0 a‘r +y
<y 0>+<a2y 0 >_(a2y+y 0 )EH'



Since this is an element of psl,(k), it must be zero. In particular we have
a’r +y = 0.

Since |k*| > 1 and x # 0 and this holds for all a € k*, we obtain a contradiction.
Hence H must contain psl, (k). O
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CHAPTER 6

Second order and higher order approximation

In this chapter we return to the notation and the assumptions of Chapter 4.
Most notably, we assume that the field K has transcendence degree 1, that
the Drinfeld A-module ¢ satisfies the conditions of Theorem 1.1 and that the
reduction steps introduced in Section 3.3 are in effect.

6.1. Congruence filtration.

Let 7 be a uniformizer of A at p. The congruence filtration of GL,(A,) is
defined by
Gy = GL.(4,) and

G, = 1+gl(p) foralli>1.
Its successive subquotients possess natural isomorphisms
vo: GY = GY/GL 5 QL (ky) and

vii Gyli= GGy gl (p/p ), [+ y] o [y] forall i > 1.

For any subgroup H of GL,(A,) we define H* := HNG), and HY .= H'/H™* Via
v; we identify the latter with a subgroup of GL, (k) or gl,.(p*/p“™!), respectively.
In particular, let

Gy = SL,(Ap)"  forall i>1.
Via v; we get isomorphisms

~

G = GO /Gl s SL, (k) and
Gyl = Gy /Gy syl o).
Similarly, for PGL,(A,) we set
PGS = PGL,(4,) and
PG, = 1+pgl.(p') foralli>1.

For i > 0 the natural isomorphisms v; for GL, induce a series of natural isomor-
phisms

W PGy = PGY/PGL > PGL, (k) and

W PGy = PGy/PG = pgl,(p/pY).
For any subgroup H of PGL,(A,) we define H' := HﬁPGf3 and HU .= {i/H™*,
Via 7; we identify the latter with a subgroup of PGL,(ky) or pgl,(p’/p"t), re-
spectively.
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For + > 1 the isogeny P : SL, — PGL, induces a natural commutative
diagram

Gy — sL.(p'/p™1)
ip ldP

PG}, — pgl,(p'/pit1).

6.2. Generalized commutator maps.

The commutator map of SL, factors through a map
[, ]”: PGL, x PGL, — SL,..
Its total derivative at the identity element defines a generalized Lie bracket

{7 ]N :pg[r X pg[r I 5[7“7

denoted by the same symbol. Its composite with the map dP : sl, — pgl, is the
usual Lie bracket [, ]| on pgl,, respectively on sl,. We also denote the induced
pairing pgl, x sl, — sl by [, |~. Proposition 1.2 of [Pin00] shows that the
images of these pairings generate the following subspaces.

PROPOSITION 6.1.
(a) We have [sl,,sl,] = sl, unless r = 2 and we are in characteristic 2. In
that case we have [sly, sls] C ¢, where ¢ denotes the center of sls.
(b) In all cases we have [pgl,,sl.]~ = sl,.

The generalized commutator maps
SL, x SL, — PGL, x SL,, — PGL, x PGL, — SL,

induce for any i, j > 1 a commutative diagram

~

Gl x Gy eiipyerd sl (p'/p™h) x sh(p7 /p7*)

PGl x G — PG x G —=— pgl, (p' /p'*") x str%

p \

\[7]

PG, x PG{J' — PG;[;ﬂ X PGLJ'] — o pgl (pi/pit1) x pgl (p? /piT) /

(]~ (]~
Gg” G;J[Hﬂ ~ sl (pit /pititl)

involving, in the rightmost column, the generalized Lie brackets defined above.
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6.3. Second order approximation.

For any subgroup H of GL,(A,), let HM denote the image of HI' in the
quotient gl, (p/p?)/c(p/p®) and H denote the image of H/H? in the quotient
GL,(A,/p?)/(1 + ¢(p/p?)). We have the following commutative diagram with
exact rows:

0 g H/H? ol 1
0 H1 H HO] 1

0 ——gl.(p/p*)/c(p/p?) — GL,(Ap/p?) /(1 + ¢(p/p?)) — GL,(ky) — 1.

Let us recall that 'y, and 3™ denote the image of G, respectively G5

under py, as well as A, and AF™" their images under p,. Let us also note that,
with the notation introduced at the beginning of the chapter, we have A, = FLO]
eom eom, [0]
and A" =T} .
Let us also recall from Definition 4.2 that .S; is the finite set of primes of A

for which Theorem 3.6 does not hold. In this chapter we once more focus our
attention on primes outside of 5.

PROPOSITION 6.2. .
For almost all primes of p of A we have FLH # 0; in other words, FL” contains a
non-scalar element.

PROOF. Let S D S; be the set of primes q with |ks| < 9 and of all those
for which the residual representation does not surject onto SL, (k). Let p be a
prime outside of S. There is a natural section

so : GL,(ky) — GL,(4p/p?)
using Teichmiiller representatives. This in turn gives rise to a section
50 ¢ GL, (ky) — GL, (Ay/p2)/(1 + e(p/p).
Al

We denote the restriction of 5, to A, again by 5y. Suppose that I';* = 0. Since

', surjects onto A, this then yields another section

51 Ay — GL.(Ap/p?) /(1 + c(p/p?)).

By the assumptions on p we have |k,| > 9 and SL,(k,) C A,. Proposition 5.1
(3) then shows that H'(Ay, gl,(p/p?)/c(p/p?)) = 0, from which we conclude that
sections sy and 57 are conjugate. We may therefore assume that they are equal.
Then I'y = 50(A,) C So(GL,(ky)) in GL,(Ay/p?)/(1 + c(p/p?)). Tt follows that
every element v € I'y/Ty C GL,(Ap/p?) can be written uniquely in the form
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v = (1+7A)y with A € k, and vy € GL, (k). Since scalars act trivially in the
adjoint representation, we have Ad~y = Ad~;. Thus

{tr(Ad~) |y € [y,/T3} C ky

and in turn
{tr(Ady) |y € Tp} C ky @ p* in A

If F'ad = F' then this is a contradiction to the fact that the traces of Ad(p,(Frob,))
for all places of good reduction x of K generate A, = k, @ p and the proof is
finished.

Suppose from now on that F'2d = F2 which can only occur if p = r = 2.
Then we have to use further information related to the structure of the Drinfeld
module ¢ in order to arrive to a contradiction. This will be achieved through a
series of reduction steps contained in the following lemmas.

LEMMA 6.3.
After replacing K by a finite extension, we can assume for all p & S that

[p/T5 C GLa(kp) C GLo(Ap/p%).

PROOF. Let p & S. If v € I',/T'2, then we have already shown that there are
uniquely determined A € k, and v, € GLy(k,) such that v = (1 + 7).
Let us consider the composite map

Bo: G — (147ky) x GLy(ky) — ky =57,
g = pp2(g) =1 +7AN — A

where d, denotes the dimension of k, as a vector space over the prime field Fs.
Being the composition of two homomorphisms, (3, itself is a homomorphism.
Moreover 3, is unramified at all places of K. Indeed:

(1) If = is a place at which ¢ has good reduction, then pyo(I,) = {1} and
thus 5,(1,) = {0}.

(2) Let = be one of the finitely many places of bad reduction of K and
(g, A;) the corresponding Tate uniformization. By reduction step (c)
of Chapter 4 we have that p,2(I,) lies in a subgroup of the form (§7)
in GL,(A,/p?). The second map composing 3, maps all matrices of this
form to 0; therefore in this case we also have §,(1,) = {0}.

Let us consider the d, projection maps to the direct simple factors of ]de ". Since
By is unramified, these maps are again unramified. The kernels of all such maps,
for all p € S, correspond to unramified extensions of K of degree < 2. By the
Hermite-Minkowski Theorem for function fields (cf. [Gos96], Theorem 8.23.5),
there are only finitely many such extensions. Taking their compositum K’, which
is again a finite extension of K, and replacing K by K’, we get the desired
result. O
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LEMMA 6.4.
After replacing K by a finite extension, we can assume for all primes p of A that
det(pp3(Gk)) C (Ap/p®)* is contained in k.

PROOF. By the definition of G%°™ there exists 0 € Gk such that Gx =

G5 . gL, where oZ denotes the closed subgroup of G that is topologically
generated by o. For all p, writing A} = k(1 + 7A,), we have

det(py(0*)) € kj(1+7°A,) C A,

It follows that the image of G&°™ - ¢4Z under det op,s is contained in ky. The

group G&°™.4Z is a subgroup of index 4 of G; replacing K by the corresponding
extension of degree 4, we get the desired result. U

LEMMA 6.5.

After replacing K by a finite extension, we can assume for all p & S that for
all g € G we can write py3(g) in the form (1 4+ 72y)y1 with 2 € sly(ky) and
Y1 € GLQ(kp)

PROOF. Let us replace K by a finite extension for which both previous lem-
mas are satisfied. Let p ¢ S and g € Gx. By Lemma 6.3 the element p,3(g)
can be written in the form (1 + 72y2)y; with 1o € gly(ky) and 71 € GLa(ky).
Computing the determinant, we find

det(pya(g)) = det((1 +7°y9)m) = (1 + 7 tr(72)) det(m).

By Lemma 6.4 this expression is contained in ky. However, this is only
possible if tr(y2) = 0, in other words if 5 € sly(ky). O

LEMMA 6.6.
For the adjoint representation Adgr, of GLag, on slog,, there is a short evact
sequence of representations

0 — Fy - slyp, — (std @ det™)g, — 0, (6.1)

where the representation on the left is the trivial representation of GLaog, and ¢
denotes the inclusion of scalars.

PROOF. In order to alleviate the notation, we omit the subscript [y for the
length of this proof. The Lie algebra sly is generated by (§9),(84) and (99).
The center ¢ of sly, generated by ({9), is a subspace of sly on which GLy acts
trivially in the adjoint representation. Consequently Adgy,, factors through sl /c;
we denote the representation thus obtained by Adgy,. Let [J§] and [{§] denote

the images of (J3) and (99) in sly /c, respectively and let A = (¢%) € GLs.
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Then

EE&““;H :de{g‘gy
st ] - il2 4]

On the other hand, let stdéQ) : GLy — GLs be given by g — ¢®, where ¢
denotes the matrix obtained by raising the coefficients of g to the second power.

Then
(std? @ det™1)(A) ( ; ) = detl( 3 ( ’ )

(std? @ det~1)(A) < ; ) _ #@4) < f; ) |

It follows that Adgr, and stdg) ® det™! are isomorphic representations of GLs;
this proves the desired result. ([l

Tensoring (6.1) with A,/p?, we find the short exact sequence of representa-
tions
0 — Ay/p® =5 sy 4y — (stdS @ det™) 4, s — 0,
where the representation on the left is the trivial representation of GLg 4, /p3.
For v € GLy(A,/p?) this yields the equality of traces

tr(Adsr, (7)) = 1+ tr(std? @ det ) (7) = 1 + tr(y?) - det ()"

where (7)) denotes the matrix obtained by raising the coefficients of  to the
second power.

Let g € Gk and py3(g) = (14 7y2)7: written in the form given by Lemma
6.5. Then

tr(Adse,) (ppa(9)) = 1+ tr((1+7%92) @) - det(1 + 7%72) " det(y1) ™"
= 1+tr<<1+w><%< D) (14 7 (7)) det(yr) !

= 14—tr(’y1 )det( )7t
where, in order to obtain the last equality, we used that (147275)® = 1474~ =
1 in GLa(A,/p?), as well as the fact that tr(y2) = 0.
Hence tr(Adsg, (7)) is an element of &, for all v € T,,/T";. Since tr(Ad~) =

tr(Adgr, (7)) + 1, it follows that
{tr(Ad~) |y € Fp/Fi} C ky,

thereby giving

{tr(Ady) |y €Ty} C k, @ p® in A4,
a contradiction to the fact that the traces of Ad(p,(Frob,)) for all places of good
reduction z of K generate AY) = {a2 | a € A} € kp @ p3. This completes the
proof of Proposition 6.2. 0
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COROLLARY 6.7. .
For almost all primes of p of A we have F%eom’[l] £ 0; in other words, F%eom’[l]
contains a non-scalar element.

PROOF. Let S be the finite set of primes defined in the proof of Propo-
sition 6.2 and let p ¢ S. Since pyo(G%°™) < pp2(Gr), the commutator group

[T pp 2 (GE™)] s a subset of TE™M Suppose that TE™" only contains scalar
elements. Then, after quotienting by 1 + ¢(p/p?), we find that

(1 Hgeom Neom,l
(1), Tyeom) € 1y = {o),

which means that the commutator action of f‘%eom on f‘Lﬂ is trivial. However, by
the assumptions on S this action coincides with the action of SLy (k). Since the
space of invariants (pg[Mp)SL?(k") is trivial, this yields a contradiction. O

6.4. Higher order approximation.

The following result is a straightforward consequence of the previous sections
if (p,7) # (2,2). The proof in the remaining case is slightly more involved and
will largely be based on [Pin00], Section 12.

PROPOSITION 6.8.
Let H be a closed subgroup of SL,(A,). Assume that |ky| > 4, that H® = SL,(k,)
and HY C sl,(p/p?) contains a non-scalar matriz. Then H = SL,(A,).

PROOF. Since H is a closed subgroup of SL,(A,), the claim is equivalent to
HU = SL,(A,)f for all i > 0. By assumption we have H") = SL, (k).

LEMMA 6.9.
We have HM = sl,.(p/p?).

Proor. Consider the conjugation action
H s 1Y — 1, ([g], [1]) = [ghg™").
Under vy and vy this corresponds to the map
SL; (k) x st(p/p*) — sl (p/p?), (9. X) — gXg ™.

Since H% = SL,(k,), it follows that HI) C sl,.(p/p?) is closed under conjugation
by SL,(kp). Since it also contains a non-scalar matrix, by Proposition 5.2 it is
equal to sl.(p/p?). O

LEMMA 6.10.
If (p,7) # (2,2), then we have HW = sl,.(p*/p™*') for alli > 1.
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PROOF. Assume that H = sl.(p?/p"*!) for some i > 1 and consider the
commutator map

[,]: HY x HI — gi+

Under vy, v; and v;11 it corresponds to the Lie bracket

[, ]:sl(p/p?) X s.(p"/p™") — sl(p"* /p™?).

If (p,7) # (2,2) then by Proposition 6.1 (a) the image of this latter map gen-
erates sl.(p't!/p™?) as an additive group. Since H!! = sl.(p/p?) and HII =
sL.(p'/p'*h), we find HOHY = 51, (p™™! /p™*2). By induction the claim holds for all
1> 1. U

If (p,r) # (2,2), this finishes the proof of the proposition. Let us assume
from now on that (p,r) = (2,2). In this case there is an exact sequence

0 — ¢ — sl 2 pgl, — pgl, / psl, — 0, (6.2)
where ¢ and pgl, / psl, both have rank 1. The map
SLy(kp) = G — PG = PGLy(ky)

is an isomorphism, since the isogeny P : SLy — PGLs is totally inseparable. It
follows that P~'(PG}) = Gy inside Gy. This yields the commutative diagram
with exact rows

0—= P7H(PGY) Gy PG,
0—= 1+ c(p/p?) G PGy (6.3)

Lk

0 —c(p/p?) — sla(p/p?) — paly(p/p?).

By the Four Lemma we find that the composite vertical map on the left, hence-
forth denoted by p, is surjective. Its kernel is Gf. Consider the maps indicated
by solid arrows in the diagram

_ P
P-Y(PG?) PG?

Z PGy
- (6.4)
c(p/p?) paly(p?/p°)
(pats / psly) (62/p°).
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By the exactness of the sequence (6.2) the composite morphism from the upper
left corner to the lower right corner restricts to zero on Gf. Hence it factors
through a unique dotted arrow making the diagram commutative.

LEMMA 6.11.
The dotted arrow in the diagram (6.4) is an isomorphism.

PROOF. Let A : G,, — PGLy denote the cocharacter given by ¢ — (¢ ) and
let A : G,, — SL, denote the one given by ¢ — (§,%) - Then X does not lift to
a cocharacter of SLy, but A? lifts to . In other words we have a commutative
diagram

t—t2
Gp —— Gy,

-
SL, —> PGLs,.

Let a denote the Lie algebra of G,,. Taking Lie algebras in the above diagram,
we get a commutative diagram with exact rows

~ 0 ~

de jdx i : (6.5)

pgly — pgly / psl, —=0.

A<—28n

0

The leftmost vertical map is an isomorphism for dimension reasons. The fact
that A is not congruent modulo 2 to a cocharacter coming from SLj implies that
Im(dA) ¢ Im(dP). Thus again for dimension reasons the rightmost vertical map
is an isomorphism.

Taking Ap-valued points in the respective groups, we get a commutative di-
agram

Gn(Ap) G (Ap)
U U
1+p t—1? |+ p2
\ \
P~Y(PG?) L r PG?
P/p2 el p [
c(p/p) - (paly /psl) (07
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The lower oblique maps correspond to the leftmost and rightmost vertical iso-
morphisms of the diagram (6.5), respectively. The vertical maps in the back are
defined by 1 4+ x + 2. Thus the dotted arrow in the back is given by

v (1+2)*—1=2+2z.

Since we are in characteristic 2, this is just the Frobenius map z — 22, which
clearly induces an isomorphism. Therefore the dotted arrow in front is an iso-
morphism, as desired. 0

LEMMA 6.12.
The composite map P(H) N PG} — (paly / psly)(p*/p®) is surjective.

Proor. Consider the commutative diagram

HnG, > HNP'(PG}) P(H) N PG

| |

Gyl z PG}
slh(p/p®) > c(p/p?) > (pgly / psly) (p*/p®)

deduced from diagrams (6.3) and (6.4). The leftmost composite vertical map is
surjective by Lemma 6.9. By diagram (6.3) the left half is cartesian; hence the
middle map is surjective. The dotted arrow is bijective by Lemma 6.11. Thus
the rightmost composite vertical map is surjective. ([l

LEMMA 6.13.
We have HZ = sl,(p?/p3).

ProOF. We proceed similarly to the proof of Lemma 6.9. Lemma 6.12 implies
that the image of P(H) N PG in PG = pgly(p2/p?) is non-zero. By Corollary

5.3 the image of P(H)N PG} in PGE] thus contains psl,(p?/p3). The generalized
commutators

[P(H) N PG, H]™
are contained in H N Gf and their images under the composite map
HO G — G = sly(p?/p?) — psly(p°/5°)

contain all commutators of SLa(k,) with psl,(p?/p®). As SLa(k,) acts non-
trivially on this last group, the above composite map H N G — psly(p?/p?)
must be non-zero. Thus the image of H N Gf in G;p] is not contained in the

scalars. By Proposition 5.2 the map H N Gf — G;p] is surjective. U
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LEMMA 6.14.
We have H = sly(p? /p'*) for all i > 1.

PRrROOF. By the preceding lemmas and induction on ¢ we may take i > 2,
assume the assertion holds for all i/ < ¢ and prove it for i + 1. By Lemma
6.12 we may choose an element § € P(H) N PG} whose image X € PGE} =

paly(p?/p?) projects to a non-zero element of (pgl, / psl,)(p?/p?). Let us consider
the following commutative diagram, where the vertical arrow on the left hand
side is surjective by the induction hypothesis.

[6, HN Gg—l]N c HnN Gg“
i AN
X GG < g \

\
~ '

sly(p’/p™t1)

psly(p’/p™).

Proposition 6.1 implies that even though the Lie bracket pairing sl x sl —
psl, vanishes, we have [pgl,,sls]™ = sly. Let us recall that pgl, / psl, has rank
one. Hence for any Y € pgl, that maps to a generator of pgl, /psl, we find
that [Y, sl3]~ maps onto psl,. It follows that the oblique map in the diagram is
surjective.

Thus the composite vertical map on the right is surjective. By Proposition
5.2 the upper vertical map is then also surjective, as desired. O

Lemmas 6.10 and 6.14 together imply Proposition 6.8. 0

THEOREM 6.15.
For almost all primes p of A, we have I'y™™ = SL,(A,).

PRrOOF. Let S be the finite set containing the primes for which either Theo-
rem 3.6, Theorem 4.1 or Proposition 6.7 does not hold and those with a residue
field having at most 3 elements. For p ¢ S, the field &, and the group I'}"" satisfy
all the assumptions of Proposition 6.8. Consequently I'y*" = SL, (4,). O
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CHAPTER 7

Adelic openness for fields of transcendence degree 1

This chapter brings to a close the case where K has transcendence degree 1.
We keep the notation and assumptions of the previous chapters.

PROPOSITION 7.1.
There exist a finite set Sy of primes of A such that for every finite set of primes
S containing Sy we have

5™ = TE™ x H SL,.(A,).
peS\So

PROOF. First, let us fix a finite set Syy of primes of A that is sufficiently large
to ensure that for all primes outside Sy all previous propositions hold. Since
[0 is a closed subgroup of [[,cg,, Centéeﬂm( 4,)(D ®a Ap), it has only finitely
many non-abelian finite simple quotients. Let €2y,...,€2, denote these simple
quotients and let N be the maximum of their orders. Let Sy be the union of
Soo with the set of primes p & Sy for which | PSL, (k,)| < N. We will prove the
proposition for this choice of Sj.

We proceed by induction on S. Consider any finite set of primes S D Sy for
which the desired equality is proved and any p’ € S. To prove the equality for
S U {p'}, we have to show

R, = T x SL ().
Identifying SL,(Ay) with [] cs{1} x SL.(Ay), it suffices to show that
A =T, NSL(Ay)

is equal to SL,(Ay).

LEMMA 7.2.
The image of A modulo p'" is equal to SL,(ky).

ProoF. Consider the commutative diagram

T80 — Ty 2 % [Tpes,s, PSLe(ky) x PSL,(ky)

| i

g™ [Ti2: € x [pesso PSLr(Kp).
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All factors on the right hand side are non-abelian finite simple groups. The
inductive assumption implies that the lower homomorphism is surjective. By
Theorem 4.1 the map Fiﬁjﬁlﬁ,} — PSL,(ky) is surjective. Hence if the upper
homomorphism is not surjective, by Goursat’s Lemma its image lies over the
graph of an isomorphism between PSL, (k) and another simple factor. Since
| PSL,(ky)| > N > |€;] by construction, this factor must be PSL, (k) for some
p € S\ Sp. This would however contradict Proposition 4.11. Therefore the upper
homomorphism is surjective.

Given that the terms on the lower right hand side are all possible non-abelian
finite simple quotients of I'¢”™, we deduce that the surjective homomorphism
I'$omy — PSLi(ky) does not factor through I'¢™™. Thus its restriction to A
is non-trivial. Since A is a normal subgroup of F%‘ﬁﬁ,}, its image is a normal
subgroup of PSL,(ky). But this group is simple, and the image is non-trivial;
hence the image is equal to PSL, (ky).

Let A denote the image of A modulo p’. From the above it follows that A is
a subgroup of SL, (k) that surjects onto PSL,(ky). Let Z denote the center of
SL, (ky). Then

AZ|Z 2 ANJANZ = PSL,(ky)
and hence AZ = SL,(ky). It follows that
32 (KB = [B2,52] = [SL.(ky), SLi(ky)].

Since we chose Syo to be large enough so that |ky| > 4, the group SL,(ky) is
perfect and the last term of the inclusion sequence is equal to SL, (k). This
proves the desired equality. 0]

LEMMA 7.3.
The group AN contains a non-scalar element.

PROOF. In order to alleviate the notation, let us denote SL,(Ay) by G in
the following proof. On the one hand, by Theorem 6.15 we have [';*" = G. On
the other hand A < T, Hence A is a normal subgroup of G and thereby

, - . dDuppose that only contains scalar elements. en, after
(G A/A2Z] C AL S hat Al only i lar el Then, af
quotienting by 1+ ¢(p’/p’?), we find that

[GH A} c Al = {0}

This means that the commutator action of A on G is trivial. However, by the
previous lemma this action coincides with the action of SL, (%), which is known
to be non-trivial. We thus obtain a contradiction. 0

The two previous lemmas show that all assumptions of Proposition 6.8 are
satisfied for A. From this we conclude A = SL,(A,), which completes the
proof. O

We can now prove the following special case of Theorem 1.1.
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THEOREM 7.4.

The image of G%°™ under pqq is open in Cent®®

(Po,00)
L g(aigo==) (D ®a Ap™).

Proor. Taking the limit over all S containing Sy, Proposition 7.1 implies

that the image of G%°™ in Centder a(alr0 oo>)(D ®a4 A;?O’OO)) is equal to

TEo™ x ] SL(4p)
PEZSo
On the other hand, by Theorem 3.5 the subgroup
rge™ C ] Centdy a,) (D ®4 Ay)
PESH

is open; hence p,q(G%™™") is open in Cent(;elid(Ag’Om))<D®AAFo ), as stated. O
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CHAPTER 8

The case of arbitrary transcendence degree

In this chapter we let ¢ : A — K{7} denote a Drinfeld module satisfying the
assumptions of Theorem 1.1, but the transcendence degree of K is now arbitrary.
We prove the general case of Theorem 1.1 by reducing it to the case of a field of
transcendence degree 1, using a specialization argument in the vein of [PR09a],
Section 5.

We once more assume that the reduction steps introduced in Section 3.3 are in
effect. In particular we assume that I5"™ is contained in Centfy} 24 (D@4 Ayp)
for every place p # pg, 00 of F.

8.1. Some group theory

Let p # po be a prime of A and 7 a uniformizer at p. We use the same
notation for congruence filtrations as we did in Chapter 6.

PROPOSITION 8.1.
Let H be a closed subgroup of SL,(Ay). Assume that there exists an n > 1 such
that H"/H* = G /GP". Then we have

Gy =H"
PROOF. Since H is closed in SL,(A,), it is enough to show that
H'/H™ =G} /G (8.1)
for all I > n.
LEMMA 8.2.

We have H'/H? = Gg/Gg foralln <i<j <3n.
Proor. Let n < j < 3n. We have the commutative diagram with exact rows
1*>Hj/H3nHHn/H3n*>Hn/Hj — 1
L GG = G (G = GG 1.

The middle vertical map is an isomorphism by assumption and thus the rightmost
vertical map is surjective; it is therefore an isomorphism. It follows that for all
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n < 7 < 3n we have
H"/H =G /GY.
Then, for n < i < j < 3n, we have a commutative diagram
11— H'/H) — H"/H) —— H"/H' —— 1
1 — G} /G) —= GGy — G /G —1,

where the middle and right vertical maps are isomorphisms. By the Five Lemma
the left vertical map is also an isomorphism. 0]

From the above lemma we conclude that (8.1) holds for all n <1 < 3n — 1.
From here on we proceed by induction. Let us assume there exists m > 3n — 1
such that (8.1) holds for all for all n <1 < m. We distinguish two cases:

Let us first assume that (p,7) # (2,2). We have the commutative diagram

2n 12n+1 m—2n+1 m—2n+2 [] /m+41 m—+2
G2n G+ x Gt G —L L gryan

lg l:

S[T(an/an—&-l) X 5[7“ (pm—2n+1/pm—2n+2> [’] 5[r<pm+1/pm+2),

where the upper horizontal map denotes the commutator pairing and the lower
horizontal map the Lie bracket pairing. By Proposition 6.1 (a) the set of commu-
tators [sl,, sl,] generates sl,. Hence [G"/GZ !, G241 /G242 generates
Gyt /G2, By assumption

[G/p2n/G;2n+1’ G;m—2n+1/G/F,m—2n+2] — [H2n/H2n+1’ Hm—2n+1/Hm—2n+2]

and therefore
G;Jm—l—l/G;m—f—Q C Hm—i—l/Hm—i-Q'
The desired equality for m + 1 follows.

Let us now assume (p,r) = (2, 2).

LEMMA 8.3.
We have
PG* c P(G™) - PG**!,

Proor. The sets

pefrren (80 [end o fiamn (0 0)[een)

are contained in P(G"). Let a be an arbitrary element of A,. Since A,/p is a
finite field of characteristic 2, the Frobenius map A,/p — A,/p,a — o? is an
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isomorphism. Thus the image of a in A,/p is a square and therefore there exist
z,y € A, such that a = 2% + my + 72" 2?2y, Then

PO ) (e (50))
N D)
()

A:—{1+7r2"<8 8)

Since A, B and C together generate PGQ" the lemma follows. 0

and hence

a€ Ap} C P(G™)- PG

By Lemma 8.2 we have H" - G"*"*! = G, from which it follows that
P(Hn) . (G/2n+1) — (Gm)
and in turn P(H) - PG+ D P(G™). Combined with Lemma 8.3, this yields
P(H)- PGy D PGy

and thus
P(H)Qn/P( >2n+1 GQn/PGQn—H

We have the commutative diagram

PG?J”/PG'%"H % G;m—2n+1/G;m—2n+2 [,]~ G;m+1/G;m+2
pg[z(p2n/p2n+1) X 5[2(pm72n+1/pmf2n+2) i 5[2(pm+1/pm+2)’

where the upper horizontal map denotes the generalized commutator pairing and
the lower horizontal map the generalized Lie bracket pairing. By Proposition 6.1
(b) the set of commutators [pgl,, sls]™ generates sly. Thus

[Png/PngJrl, G;m72n+1/03172n+2]~
generates G /G2, By assumption
[PG’QJn/PG%n—i-l’ G;Jm—Qn-‘rl/G;m—?n-i-Q]w
— [P(H)Zn/P(H)Qn—H, Hm—2n+1/Hm—2n+2]~
and therefore
G;Jm+1/G;m+2 C Hm+1/Hm+2.
The desired equality for m + 1 follows also in this case. O
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8.2. Specialization with unchanging endomorphism ring

Let us choose an integral scheme X of finite type over I, with function field
K such that ¢ extends to a family of Drinfeld A-modules of rank rd over X. For
any point x € X, we obtain a Drinfeld A-module ¢, over the residue field k,
at x. The characteristic of ¢, is still py; hence for any prime p # pg of A, the
specialization map induces an isomorphism of Tate modules

To(p) — Tylepw). (8.2)

Let k, be a separable closure of k, and T := Spec(k;_x) the associated geometric
point of X over x. The morphisms Spec(K) — X « x induce homomorphisms
of the étale fundamental groups

Gy — (X, T) « 73" (2,T) = Gy, .
The action of G on Ty,(p) factors through 7{*(X,Z) and the specialization iso-
morphism (8.2) is equivariant under the above étale fundamental groups.

Let Xz := X x K. In this case the morphisms Spec(K%) — Xz < xx induce
homomorphisms of the étale fundamental groups

Gf{eom - T?t(XE, fﬁ) — W(ft (.’,UE, fg) == G%iom
Similarly to the case of Gk above, the action of G5°™ on T,(¢) factors through

75" (X%,T%) and the specialization isomorphism (8.2) is equivariant under the
étale fundamental groups.

PROPOSITION 8.4.
In the above situation, if ¢ satisfies the conditions of Theorem 1.1, then there
exists a point y € X such that k, has transcendence degree 1, we have

Endz(¢) = Endg(¢,)

and @, also satisfies the conditions of Theorem 1.1.

PROOF. Let p # pg, o0 be a place of F' for which Theorem 3.6 holds. Then
I'y is a closed subgroup of GL,(A;). For any point z € X let I';, denote the
image of Gy, in the representation on 7},(y,). This is also a closed subgroup of
GL,(A,). Since p # po, the specialization isomorphism (8.2) turns I', , into a
subgroup of I'y and I'5y™ into a subgroup of T’y

LEMMA 8.5.

There exists a point y € X such that k, has transcendence degree 1 and I'yy™ is
open in SL,(Ay).

PROOF. It follows from Theorem 3.5 that I';™™ is an open subgroup of
SL.(A,). Hence there exists n > 1 such that G' C I'y™". Let K’ be a finite
Galois extension of K such that

Gal(K'R/KF) = T&°™ /G, (8.3)
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Since (K'NKFR)rk = KR, replacing K by K'N K~ does not change property (8.3).
Let 73 : X — X be the normalization of X in K’ N K7. If there exists a point
j € X such that ky has transcendence degree 1 and the image of G, is open in
SL, (Ay), then m¢(y) satisfies the conditions of the lemma; consequently we can
assume that K and K’ have the same constant field x. Let wx : X’ — X be the
normalization of X in K’.

LEMMA 8.6.
Assuming that K and K' have the same constant field, there exists an irreducible
closed curve Y C X such that

(1) 7" (Y) is also irreducible, and
(2) the function fields of Y and w5 (Y) have the same constant field.

This result is proved in [Pin97], Lemma 1.6, even though the second claim
is not explicitly stated there.

Let Y C X be as in Lemma 8.6 and let y denote the generic point of Y. Then
k, is the function field of ¥ and thus has transcendence degree 1.

Since K and K’ have the same constant field, we have

Gal(K'r/Kr) = Gal(K'/K).
The irreducibility of 73 (Y) implies that

Gal(K'/K) = Gal(k -1, /ky)
and since k, and kfﬂ,—l ) have the same constant ﬁeld, we also have

Gal(k,1(,)/ky) = Gal(kﬂ)_(l(y)ﬁ/kyﬁ).
Combining these equalities Wlth (8.3), we find
Gal(k, -1, F/kyR) = regeom /G,

This in turn implies

geom /13n __ T geom
peeom . G = pgeom,

It follows that I'y;™" - GP" = G In other words we have
geom n geom,3n m 13n
pacomn pscomn _ i [ cén,
By Proposition 8.1 this yields T;™" = G}'. In particular T'y’;™ contains an

open subgroup of SL,(A,). Thus F%f’gm is 1tself open in SL,(A,). O

Let y € X be as in Lemma 8.5. By Proposition 3.1 there exists a finite
separable extension k;, of k, such that all endomorphisms of ¢, are defined over
k,. This extension corresponds to an open subgroup I', of I'; ™, which by
Lemma 8.5 is again open in SL,(A,). The Tate Conjecture for Drinfeld modules
(see (1.1)) yields an inclusion

Endg () = Endy, (o)) — Enda, r,)(Tp(ey))-
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Since I'y is open in SL,(A,), it is Zariski dense in SL,. Hence

EndAp [Fy}(Tp(SOy)) = EndAp [SL,] (To(py)) = EndAp [SLT](A;d) = Myxa(Ap)-
Combined with Endgz(e) C Endg(¢,) and Endz(p) ®a4 Ap = Maxa(Ay), this
yields

Endz(¢) ®4 Ap = End@(@y) R4 Ap;
hence Endz(p) = Endg(¢y).

Choose a maximal commutative subring A of End(¢) as in Section 3.1.
Since Endg(p) = Endg_ (), the ring A is a maximal commutative subring of

Endg(py). Let @, A — k,{7} denote its tautological embedding. Let A be a

normalization of A in their common quotient field F and let ¢, : A — k, {7} be
a Drinfeld module isogenous to ¢. Then rank(¢,) = r and by the assumptions
of Theorem 1.1 on ¢ we have r > 2. In order to apply Theorems 6.1 and 6.2 of
[Pin06b] to ¢, in a straightforward way, we need the assumption that ¢, is not
isomorphic to a Drinfeld module defined over a finite field. However, a careful
reading of the proofs of those theorems shows that it is sufficient to have the
analogous assumption for ¢,. By [Pin06b], Proposition 2.1, this is equivalent to
r = rank(g,) > 2. Thus we can apply [Pin06b], Theorems 6.1 and 6.2, to ¢,
Combining them shows that there exists a subfield E of F' with [F//E] < oo and
B := EN A that is uniquely defined by either one of the following two properties:

(1) For every infinite subring C' C A we have Endg(p,|C) C Endgz(¢,|B).
(2) For every non-empty finite set P of places # pg, 00 of F, let @) denote
the set of places below those in P and let G denote the centralizer of
Endz(p,|B) ® Eq in Auty, (To(vy|B) @ Eg). Then Gy%(Bg) NTEo" is

open in both G§%(Bg) and T5™.
By Lemma 8.5 the group I'},™ is open in SL,(A,) for all places p of F for
which Theorem 3.6 holds; hence the field F' satisfies property (2). Given that
E is uniquely determined, we thus have £/ = I' and ¢, satisfies the remaining
assumptions of Theorem 1.1 by property (1). O

PrOOF OF THEOREM 1.1. If K has transcendence degree 1, then the result
is Theorem 7.4. In the general case let us choose y as in Proposition 8.4. Then

Theorem 7.4 shows that the image of the adelic representation associated to ¢, is
D ®a Agfo’oo)). By the specialization isomorphism (8.2)

: der
open in Cent o
P L

this image is a subgroup of p,a(G%°"). Thus the latter is an open subgroup of

Centéelird(Ag’O’“))(D @4 AP) as well. O
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CHAPTER 9

The general case

In this chapter we generalize the result of the Main Theorem. Let ¢ be a
Drinfeld A-module over a finitely generated field K, of special characteristic pg
and assume that ¢ is not isomorphic over K to a Drinfeld module defined over a
finite field. Let Z denote the center of Endy(¢) ®4 F. The following result was
proved in [Pin06b], Theorems 6.1 and 6.2:

PROPOSITION 9.1.
In the above situation, there exists a unique subfield E of Z with the following
properties:

(a) The intersection B := ENEndg(p) is infinite with quotient field E, and
[Z/E] is finite.

(b) The tautological embedding v : B — K{r} is a Drinfeld B-module
(except that B is not necessarily a maximal order in E) whose endo-
morphism ring Endg(v) is an order in a central simple algebra over E
of dimension d?. Moreover, there exists an integer v’ > 2 such that 1
is of rank r'd'.

(¢) For any other infinite subring C' C Endg(y) let x : C — K{r} denote
the tautological embedding. Then Endw(x) C Endg(¢).

Let E, B and ¢ be as in the above proposition and let D := Endx(¢). By
Proposition 3.1 there exists a finite separable extension K’ C K of K such that
D = End K (1/))

We now introduce a common ring extension of A and B, and the correspond-
ing Drinfeld module. These will allow us to compare the Galois actions associated
to ¢ and 1, respectively.

Let C denote the center of Endw(p) and y : C — K{7} the tautological
embedding. It follows from property (c) of Proposition 9.1 that x is defined over
K'. Since A and B are contained in C, by the definitions of 1) and x we have
X|A = ¢ and x|B = 9.

The quotient field of C'is Z. As explained in Section 3.1, the ring End#(p)®4
F is a division algebra over F.; thus co does not split in Z. Let ooz denote
the unique place of Z above co. Among the places of Z above pg let P, denote
the one that corresponds to the characteristic of y. Let cog denote the place of
E below 0oz and qo the place of E below By.

Let P denote the set of places of F' outside of py and oo, let R be the set of
places of Z above those in P and let () be the set of places of E below those in R.
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Propositions 3.5 and 3.6 of [Pin06b] imply that the only place of Z above ocog
is 0oz and the only place of Z above qq is PBo; this shows that qq and cog are not
contained in Q. Let AL := AQEO’“) denote the ring of adeles of F' at places in P,
let AR C A(Z%’OOZ) be the ring of adeles of Z at places in R and A? AgO’OOE)
the ring of adeles of E at places in Q).

The following chart summarizes the notation that we have introduced.

C,Z,x

PBo, 0oz
the set R

AZ c A2

T

B7 E7 w A7 F? SO
Jo, XCE Po, 00
the set @) the set P
AZ C AR AL = Alp)

From y|A = ¢ and x|B = ¢ we get G g-equivariant homomorphisms

[[Tiw)eseEx [ Tu()ecZ — [] Te(0)@cZ = [[ To(e)@aF. (9.1)
qeQ Pla, 9€Q PER peP

We claim that the composite homomorphism induces an action of the alge-
braic group CentGLwd/, (D®p A%) on [[,cpTp(p) ®a F. This is a consequence

4Q
of the following lemma;

LEMMA 9.2.
For all places q # qo, 00 of E the decomposition map

T,(¢) ®@p B = HTm(X) ®c Z
PBla

is Centau(r, (v)opE) (D @B Eq)-invariant.

PROOF. Let q # qg,00g be a place of E. By Proposition 9.1 (c¢) we have
C C Endg(p) C D. This yields a series of inclusions

Endg, (T4(¢) ®3 E) D D®p Eq D C®p Eq= Z Qp By = HZ‘B
PBla
which, to start with, shows that H‘B\ q 2y acts on Ty(¢) ®p E and further implies

that this action commutes with the action of Centaui(r, (w)esE) (D ®p Ey). The
lemma follows. ]
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The inclusions B C C' C Endg(¢) and the definitions of P, @ and R yield a
series of inclusions

AY C AZ = C ®4 AL C Endr(p) ® AL,

which shows that A% acts naturally on [Toep To(p) ®a F.
It follows that the action of Centy,; | (AQ)<D ®p A%) on [locp To(p) @4 Fis
faithful and we can consider the intersection

Paa(GE™) N Cemder D ®p AY).

(A%(

THEOREM 9.3 (Adelic openness in special characteristic).
In the above situation, the intersection

pad(G%(eom) n Centder (AQ)(D OB Ag)
is open in both p.q(G5%°™) and Cent‘éei . (AQ)(D ®p AY).

PROOF. Since K is a finite extension of K, the Galois group G%,™ is open
in G5°™; hence it is sufficient to prove the statement for K’ instead of K. Given
that the map in (9.1) is G g/-equivariant, we can thus reduce the statement to
the following lemma:

LEMMA 9.4.
Let 1 : B — K'{1} be as above, let S D {qo,00g} denote a finite set of places of

E and let Ag) be the ring of adeles of E at places outside of S. Let p,q denote
the adelic representation associated to 1. Then the intersection

pad(Ggeom) N Centder (A(S))<D Qp A(S))
is open in both paa(GE5™) and Cent® (D ®s Ag))-

GLr 'd! (A(S))

) A(ES), it is enough to prove the

PRrOOF. Given the projection Aj (90,005
lemma for the case S = {qo, c0g}.

By Proposition 9.1 the Drinfeld B-module v satisfies the conditions of Theo-
rem 1.1, except that B is not necessarily a maximal order in E. Let B denote the
normalization of B in E. By [Hay79|, Proposition 3.2, there exists a Drinfeld
module ¢ : B — K'{r} such that t|B is isogenous to 9. Let D := Endg(1)).
Since any isogeny induces an isomorphism of endomorphism rings up to finite
index, we have D ® 3 E = D ®p F, and thus D is an order in a central sim-
ple algebra over E of dimension d’2 by Proposition 9.1 (b). By the same ar-
gument, Proposition 9.1 (c) implies that for every infinite subring C of B we
have End (1Z)|C') C D. Moreover, since any 1sogeny preserves the rank, we have
rank(vﬁ) = rank(¢)) = r'd’ with, let us recall, v’ > 2. Thus ¢ satisfies all condi-

tions of Theorem 1.1.
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On the other hand, the isogeny between ¢ and 1/; induces a Gg/-equivariant
isomorphism
H Tq(@D) ®p L= H Tq(l/’) ®p L.
4790,00E 47#40,00E
Applying Theorem 1.1 to zﬁ and using the above isomorphism then yields the
desired result for 1. 0

Using the set S of places of E outside (), which is finite by the definition of
the set @), the above lemma allows us to complete the proof of the theorem. [

This theorem effectively settles the question of adelic openness for arbitrary
Drinfeld modules in special characteristic.
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