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Abstract

To develop a Galois theory for purely inseparable extensions we use higher
derivations and the notion of modular fields. Let L be a finite purely inseparable
modular field extension of K, and let M be an intermediate field such that L
is also modular over M. If Mj is the field of constants of all higher derivations
on M over K, we prove that every higher derivation on M over K extends to
L if and only if L = M ®)y, J for some field J.



1 Introduction

From Galois theory we know that the intermediate fields of a finite separable and
normal field extension F' of a field E are in bijection with the subgroups of the group
of automorphisms of F' over E. But there is no such correspondence for purely insep-
arable field extensions, because Aut(F/FE) is trivial. In fact, there is still no theory
giving a Galois correspondance for arbitrary purely inseparable field extensions.
Throughout this paper, we consider a finite purely inseparable field extension L of
K, where K is a field of characteristic p > 0. We denote by N the set of all integers
greater than or equal to 0. We say that L has exponent e € N over K if for every
element a € L, a” is in K and e is the smallest integer such that this property holds.
A derivation D on L is an additive map of L into L such that D(ab) = D(a)b+aD(b).
The field of constants of a derivation D is the set of all a € L such that D(a) = 0. It
can be shown that this subset of L is really a subfield. The field of constants of a set of
derivations on L is the intersection of the fields of constants of each derivation. Since
L? is in the field of constants of any derivation, we see that L has at most exponent
one over the field of constants of any set of derivations. It is known that Derg(L),
the space of derivations on L trivial on K, has field of constants K (L”) and moreover
that any intermediate field of L/K(L?) is the field of constants of a subspace. In the
case where Derg (L) is finite dimensional over K, Jacobson [1] has determined when a
subspace of Derg (L) is equal to the space of all derivations over its field of constants.
When the exponent is greater then one it is not sufficient to consider only derivations.
We have to use the notion of higher derivations (Def. 4.4), which is due to Hasse and
Schmidt [2], if we want to develop a Galois Theory for higher exponents. Concepts
like linear disjointness (Def. 3.6) and modularity (Def. 4.3) will be needed to state
our first main result, Theorem 4.11, which is due to Sweedler [3]. It states that L is
modular over K if and only if K is the field of constants of a set of higher derivations
of L. Tt also states that L is modular over K if and only if it is the tensor product
of simple extensions of K. So modular extensions are the inseparable equivalent to
Galois extensions in the separable case.

In chapter two we recall the definition of inseparable fields and give a theorem showing
us how purely inseparable polynomials look like. Chapter three gives a short intro-
duction of tensor products of field extensions. The concept of linear disjointness will
be formulated and later on frequently used. In section five we will consider HE (L),
the set of all rank ¢ higher derivations of L over K. We show that this set is a group
with a certain composition. Chapter six is based on a paper of James K. Deveney
[4]. Here we show that the only intermediate fields of L over K, which are invariant
under all higher derivations in H% (L), are of the form K(L?") for some r € N. We
also prove that if M is the field of constants of a group of higher derivations of L over
K and M, is the field of constants of all higher derivations of L over K, then every
higher derivation of M over K extends to L if and only if L = M ®,, J for some
field J.

I want to thank Professor Richard Pink and his PhD student Mohammad Hadi Heday-
atzadeh for their great support while writing this thesis. It has been a grat experience
to work with them.



2 Inseparability

Let K be a field of characteristic p > 0.

Definition 2.1. A polynomial f(X) € K[X] is called purely inseparable if it has
exactly one root in an algebraic closure K.

Lemma 2.2. For each purely inseparable polynomial f(X) € K[X] there exist m €
N\ {0} and ap € K* such that f(X) = ao - (fa(X))™, where fo is the minimal

polynomial over K of the root a € K.

Proof. We proceed by induction on the degree of f(X): Let k = deg(f). For k =1
the assertion is obvious. Let deg(f) = k+ 1 and assume that the assertion is true for
all n < k. We know that f,(X) divides f(X) in K[X], that is f(X) = g(X) - fo(X)
with deg(g) < k. But since f(X) is purely inseparable, g(X) must also be purely
inseparable and g(a) = 0. So by the induction hypothesis, g(X) = ag - (fo(X))™ for
some mg € N, ag € K*. Thus f(X) = ag - (fo(X))™0* O

Lemma 2.3. Let h(X) € K[X] be a monic, irreducible and purely inseparable poly-
nomial. Then there exist n € N and ¢ € K such that h(X) = X?" —c.

Proof. Let r € N be maximal, such that h(X) = g(X*") for some g(X) € K[X]. We
first show that g(X) is separable by using the fact that g(X) is not separable if and
only if ¢'(X) = 0. So let

then

We see that ¢'(X) = 0if and only if p | i or ¢; =0 for ¢ = 1,...,m. Now assume that
g(X) is not separable, that is ¢’(X) = 0. Then for the coefficients ¢; # 0 we have
p | i, and so g(X) must be of the form f(X?) for some f(X) € K[X]. This implies
hX) = g(X?") = f(X?"") which is in contradiction with the maximality of r. So
g(X) must be separable. Consequently we have

1<i<m

where a; € K and a; # a; for i # j. Hence

hX)= ] X" - a).

1<i<m

But since h(X) is purely inseparable, m must be equal to 1 and it follows that
h(X) =X —a. m



Polynomials of the form X P" _c are purely inseparable, since X?" —c = X?" —a?" =
(X — a)P" for an a € K. Using Lemma 2.2 and Lemma 2.3 we obtain the following
Theorem:

Theorem 2.4. A monic polynomial f(X) € K[X] is purely inseparable if and only
if there exist n € Nym € N and ¢ € K such that f(X) = (XP" —¢)™.

Definition 2.5. Let L be an algebraic field extension of K. An element o € K s
called purely inseparable over K if its minimal polynomial over K is purely insep-
arable. We call the extension L purely inseparable over K if each o € L 1is purely
iseparable over K.

By Theorem 2.4 this is the case if and only if the minimal polynomial is of the
form XP" — ¢ for some ¢ € K.

Lemma 2.6. L/K is purely inseparable if and only if for each x € L there exists
n € N sucht that 2" € K.

Proof. 7=": This follows immediately from the definition of purely inseparable and
Lemma 2.3.

7<" : Assume that for each x € L there exists n € N such that 27" € K. Let a € L
and n € N such that ¢ := a”" € K. Then a is the root of the purely inseparable
polynomial X?" — ¢ € K[X]. But then the minimal polynomial of a has also only one
root in K and a is purely inseparable over K. O

Definition 2.7. Let L/ K be a purely inseparable field extension. If there exists e € N,
such that o € K for all o € L, then the smallest such e is called the exponent of
L/K. The exponent (over K) of an element x € L is the smallest integer e, € N
such that 27" € K.

Example 2.8. F,(t)/F,(t*) is a purely inseparable field extension, where t is tran-
scendental over IF,,.

Proof. Let x € Fy(t), then

where a;,b; € F,,. Then

0<i<p—1
P = — =2 - € F(t7)
D bt
0<j<p-1
So by Lemma 2.6, [F,,(¢) is purely inseparable over [F,(¢?). O



3 Tensor products of field extensions

In this section L, M and T are vector spaces over the field K.

Definition 3.1. A map ¢ : L x M — T is called K-bilinear if ¢(z,-) : M — T is
K-linear Vx € L and ¢(-,y) : L — T is K-linear ¥ y € M.

Definition 3.2. Let 7 : LxM — E be a K-bilinear map with the following universal
property: For each K-bilinear map ¢ : L x M — FE into an arbitrary K — module
E there exists a unique K-linear map ¢* : T — E with ¢ = ¢* o T.

Then the pair (T, 7) is called a tensor product of L and M over K. We sometimes
say that T is the tensor product of L and M (with abuse of language). We also write
L ®xg M for the tensor product T', when it exists, and x ® y for the image of the pair

(z,9).

For the existence of the tensor product and further properties I refer for example
to Bosch [5].

Remark 3.3. From the construction of the tensor product it follows that every

z € L ®g M can be written as a finite sum of tensors: z = Z i R ;.
1<i<n

Remark 3.4. Let M/K be a field extension and V' a K-module. Then V ®x M is
a M-module. If {v;;7 € I} is a basis of V' (resp. linearly independent) over K then
{v; ® 1;i € I} is a basis of V ®x M (resp. linearly independent) over M.

Remark 3.5. Let L and M be field extensions of K. Then L ®x M is a K-Algebra
with multiplication z @ y - ' Q ¢y = z2’ Q@ yy/'.

Definition 3.6. Now let L/K, M/K be finite field extensions which are contained in
a field C. We say that the field extension L/K is linearly disjoint to the extension
M/K if each set S C L, linearly independent over K, is also linearly independent
over M.

Lemma 3.7. Let L be a commutative K-Algebra, and dimg (L) < oo. Then L is a
field if and only iof L is an integral domain.

Proof. =" : Obvious.

7« . It suffices to show that every x € L has an inverse. For any z € L we define
the map ¢, : L — L by sending L > y to x-y. Obviously, ¢, is K-linear. Now if x # 0
it follows that ¢, is injective, since L has no zero divisors. But ¢, is also surjective,

since L is a finite dimensional vector space over K. So there exists an [ € L such that
r-l=1. O

Prop. 3.8. Let L/K, M/K be finite field extensions. Then dimg(L @y M) =
dimgL - dimgM. In particular, of L and M are finite dimensional over K then
L ®x M is also finite over K.



Proof. Let {l;;i € I} and {m;;j € J} be respectively bases of L and M over K. Then
the set {l; ® m;; (¢,7) € I x J} is a basis of L ® x M over K. O

Lemma 3.9. Let L/K, M/K be finite field extensions contained in a field C, and let
¢: LR M — C be the M-linear map sending x®y to x-y. The following statements
are equivalent:

1. L s linearly disjoint over K to M
1. ¢ 1s injective
1i. L ®x M s an integral domain

Proof. i. = ii. : Let {l;;i € I} be a basis of L over K. Then by Remark 3.4
{li ® 1;i € I} is a basis of L @ M over M. Let x € ker¢ and write

iel
Then
0=g(x)=) I;-m,
j€J
and since we assumed that L is linearly disjoint over K to M, m; = 0 for j € J, that
sz =0.
12. = 1. : We use the fact that ¢ is injective if and only if linearly independent subsets
are mapped to linearly independent subsets. So take any subset S C L, linearly
independent over K. By Remark 3.4 the set {s® 1;s € S} is linearly independent
over M, so the set {¢p(s ® 1) = s;s € S} = S is linearly independent over M.
19. = 1i1. : Assume ¢ is injective. Then we can consider L ®x M as a K-subalgebra
of C, so there can’t exist zero divisors in L ®x M, since C'is a field.
191. = 1. : Assume L ®x M is an integral domain. By Remark 3.5, L ® x M is a K-
Algebra. By Lemma 3.8 it follows that dim (L ® x M) < 0o, so we can apply Lemma
3.7, 80 L ® M is a field. Since ker ¢ is an ideal in L ® x M and L ®k M is a field
and ¢ # 0, ker ¢ must be the zero ideal, so ¢ is injective. O]

Theorem 3.10. Let L and M be finite field extensions of K, both contained in a
field C'. Then L 1is linearly disjoint over K to M if and only if L @ M is a field.

Proof. 7 = 7 : If L is linearly disjoint to M we see by Lemma 3.9 that L ®x M is
free of zero divisors. Using Lemma 3.8, we see that we can apply Lemma 3.7, thus
L ®x M is a field.

7<= If L®k M is a field, then L @ M is free of zero divisors and by Lemma 3.8
L is linearly disjoint over K to M. O]

We see from by Theorem 3.10 that linear disjointness is a symmetric property:

Corollary 3.11. L is linearly disjoint over K to M if and only if M is linearly
disjoint over K to L.



Using Theorem 3.10 we can extend Definition 3.6 to arbitrary field extensions,
which may or may not lie in a common overfield.

Definition 3.12. For arbitrary finite field extensions L/ K and M /K we say that L
and M are linearly disjoint if and only if the tensor product L @k M is a field.

Here is an example, where L ® M is not a field:

Example 3.13. Let K C E C L be field extensions of K, with E = K(®/z) and
x € K\ K?. Then there exists a K-algebra isomorphism L @i E = L[T]/(T?").

Proof. Since E = K(n/r) & K [X]/(X?" —z), we have L @ F = L[X]/(X?" — ).
But L[X]/(X?" —z) 2 L[T]/(T?") since »/x € L and the map sending X to T+ »/x
is an isomorphism. O

4 Modular field extensions and p-independence

In this section, we assume that L is a finite and purely inseparable extension of the
field K, of characteristic p > 0.

Definition 4.1. Consider a purely inseparable extension L of K. We say that an
element x € L is relatively p-dependent over K on the subset S of L if x € K(LP)(S).
Accordingly, we call a subset S C L relatively p-independent if s ¢ K(LP)(S \ {s})
for every s € S. A relatively p-independent (over K) subset B C L such that
L = K(L?)(B), is called a relative p-basis of L over K. If L is of exponent one over
K then we call B a p-base of L over K.

One can check in the book of Jacobson [6] that there always exists a p-basis for a
purely inseparable extension L over K.

Remark 4.2. Let B = {by,...,b,} be a relative p-basis of L over K. Then 0! €
K(L?) but b; ¢ K(LP)(by,....,b;—1) for 1 < i < n. That is [K(L?)(by,....b;) :
K(LP)(by,....,b;—1)] = p and so [K(LP)(by,....,b,) : K(LP)] = p". We see that the

set {b} - b5+ bk 0 < k; < p— 1} forms a basis of L over K(LP).

Definition 4.3. L is said to be modular over K if and only if K and L*" are linearly
disjoint over K N LP" fori=1,2,... .

Definition 4.4. A rank ¢ higher derivation of a commutatve ring R with 1 is a se-
quence dY = {dy, d,, ..., d;} of additive maps from R to R such that

(1) dula-b)= Y dia)-dpi(b)

0<i<m



for all a,b € R, 0 < m < t, where dy = I is the identity map. A higher derivation
of infinite rank is an infinite sequence d = {dy, dy,ds, ...} of additive maps of R to R
such that (1) holds for all m € N.

The ring of constants of d*) is the set {a € F;d,,(a) =0 for all 1 <m <t} and the
ring of constants of a set of higher derivations of R is the intersection of the ring of
constants of each one.

For a subring S C R we say that d?) is a rank t higher derivation over S, if for all
m € N and a € S, dy(a) = 0. We denote by H5(R) the set of all rank t higher

deriwations of R over S, where 0 <t < oo.

Lemma 4.5. Let I be a set of rank t higher derivations on R. Then the subset S :=
{a € R;Vd € I,Ym € N : d,,(a) = 0} is a subring with 1, called the ring of constants
of I. If R is a field then S is a subfield.

Proof. One can easily check the first statement. For the second statement we have

only to show that z € S implies 27! € S. Let d € I. Since 1 € S we have

0=dy(l) = dp(z-27) = > di(x) dni(z™") = dn(z™"), since 2 € S and so
0<i<m

di(x) =0for 1 <i<m. O

Lemma 4.6. Let E = K|[X] be the polynomial algebra in one variable over the field
K. Since {1,X,X?, ...} is a basis of E over K, we can define K -linear mappings D;
of K[X] to K[X] by setting D;(X™) = (") X™ ", where m = 0,1,2,...and (") = 0
if i > m. Then D = {Dy, Dy, Dy, ...} is a higher derivation on E of infinite rank.
Furthermore, K 1s the field of constants of D.

Proof. 1t is enough to check (1) for the product X" X™ for all 0 < n, m. By definition
we have Dj(X"") = ("7") X" and Dy(X™) - Dj—y(X") = (7)(;") X+,

Since T
(6=
0<i<j )N J

> Di(X™) - DX = Dy(X").

0<i<y
This shows that D = {Dg = I, Dy, Ds, ...} is a higher derivation of infinite rank. Since
for every non constant f(X) € K[X] we have degD;(f(X)) = deg(f(X)) — 1 it is
clear from the definition, that K is the field of constants. n

we have

Corollary 4.7. Let D = {Dy, Dy, Ds, ...} be the higher derivation constructed in
Lemma 4.6. If f(X) € K[X] is of the form f(X) = X?" —a then D;(f(X)) =0 for
every 1 <1 <p" —1.

Proof. Since (pl.n) =0 for every 1 < i < p" — 1, we have D;(X?" —a) = D;(X?") =
)X~
0



Lemma 4.8. Let L = K(z) and n € N be the exponent of x over K. There exists

a rank p" — 1 higher derivation D"~V of L such that K is the field of constants of
D=1,

Proof. Let XP" —a be the minimal polynomial of z over K. Let D = {Dy, Dy, Do, ...}
be the higher derivation of the polynomial algebra K[X], as defined in Lemma 4.6.
Now since D is a higher derivation, every subset {Dy, D1, Ds, ..., Dy}, m € N is a
higher derivation of rank m. Let D®"~1) = {I, Dy, D, ..., Dpnfl} Then by Corollary
4.7 we have D;(X?" —a) =0 for every 1 < j < p” — 1. By property (1) in Definition
4.4 we have for every f(z) € K[X]and 0 <j <p"—1:

D;((X"" —a)- f(X))= Y Di(X" —a)- Ds(f(X)) = (X" —a) - D;(f(X)).

0<i<y

That is, the ideal I generated by the minimal polynomial X?" — a of x is mapped
into itself by every D;. Consequently, every D, induces an additive mapping D),
of K[X]/I to K[X]/I. One can check easily that D, satisfy (1) of Definition 4.4,
Since K[X]/I = K(x) = L we have now a higher derivation D®"~ of L such that
D;(x™) = (’f)xm_’ for every 0 < i,m < p"™ — 1. By definition, K is the field of
constants. [

Lemma 4.9. Assume that L/K has exponent n, and let DW be a higher derivation
of rank t of L. Then:

i. Dp(LPY CLP forall0<m <tand1<i<n

ii. If x € L is in the field of constants of DY, then D,,(x -y) = x - Dy (y) for every
ye L,0<m <t

Proof. i.: Note that a rank t higher derivation induces a ring homomorphism

¢ : L — LIX]/(X"!) sending y — Z D,,(y) - X™. Since the characteristic of L
0<m<t

is p > 0 and ¢ is a ring homomorphism we have ¢(y?) = ¢(y)? € LP[XP] for every

y € L. Then we have

Y Duly?)- X" =0y") = 6(y)" = (Y Duly)- X")

1<m<t 1<m<t

= > Du(y)-X™= > Duly’ X

1<m<t 1<m<[t/p]

Because of this equality we have for 1 < m <t, D,,(y*) =0 if ptm and D,,(y*) =
Dy /p(y)? if p | m. Hence for every 0 < m <t we have D,,(LP") C LP".
i1.) : We have Dp,(x - y) = Z D(z) - Dp—i(x) = x - Dpy(y), since D;(x) = 0 for all

0<i<m

1> 0. [l

Lemma 4.10. Let e € N be the exponent of L over K and S = {s1,...,8,} be a
p-basis of KL over K nL for1 <i<e. Then SP is p-independent in
KN L over K"V N L.



Proof. Suppose that S? is not p independent in Kr“ ' n L over Kr“ "V n L.
Then there exists s € S such that s? € (K277 N L)(KP 7" nL)P)(SP\ {s7}) =
(KP“7 7V A L)(SP\ {sP}). Without loss of generality we can assume that s = s;. So

F= D G () D

0<ks,....kn<p—1

where ag,..., € KP 77V N L. We have (¢ + b ?)? = (a+b) for all a,b € L and so
we have a™” + b7 = (a + b)P. Using this property we have that

s=(NTF = Y (argen) " (52)2 o (s € (K7 A L)(S\ {s})

0<kg,...,kn<p—1
which is a contradiction to the p-independence of S. n

Theorem 4.11. Let L/K be a purely inseparable and finite field extension. The
following are equivalent:

1. L is a tensor product of simple extensions of K

1. K 1is the field of constants of a set of higher derivations on L

1i. L is modular over K.

Proof. i. = ii. : Assume that L is a tensor product of simple extensions of K. Since
L over K is a finite extension, L must be a finite tensor product of simple extensions
Ly, ..., L, where r € N, L; = K(z;). That is, L is of the form L = K(x,...,x,), €
denotes the exponent of x; for 1 <i < r. If we define K; = K (21, ..., Ti_1, Tit1, -y Tpr),
we have L = K;(z;) and K;NKyN...NK, = K. So if we construct for each i a higher
derivation of L with field of constants K; as we did in Lemma 7, then we get a set of
higher derivations of L with field of constants K.

it. = 11i. : Suppose that there exists 7 € N such that LP and K are not linearly
disjoint over LP' N K. Then there exists a non-trivial relation 0 = ;- a; + ... + 1, - a, of
minimal length s, with s > 1, where {a; € K;1 < k < s} is linearly independent over
L NK and [, € L?". Since the length of the relation is minimal, the set {l;;1 < k < s}
must be linearly independent over L' N K, in particular [, # 0 for 1 < k < 5. We
have also s > 1 since if s = 1 then we would have a relation 0 = [y - a; with /; and
a1 # 0 which is impossible since L is a field. Dividing the relation by [;, we can as-
sume that /1 = 1. So we have 0 = ay+ly-as+...4+1s-as and since {l;, € K;1 < k < s}
is linearly independent over L' N K we have that I, ¢ LP N K. In particular, o
is not in K, the field of constants of our set of higher derivations. So there exists
m > 0 and D,, € D® such that D,,(l3) # 0. Applying D,, to the relation and using
Lemma 4.9, ii) we obtain a non-trivial relation 0 = Dy, (l2) - ag + ... + Dy, (1) - as,
where D,,(Iy) € L', k =1,...,t by Lemma 4.9, i). But this relation is shorter than
the one at the beginning and so we get a contradiction to the minimality of s.

1i1. = 1. : Let e be the exponent of L over K. Notice that we have the following

1 2 e

tower of field extensions: K C K» NLC KP "NLC..CKP NL=L. Let S}

10



be a p-basis for L = K ° N L over K*“"" N L. From Lemma 4.10 we sece that S? is
p-independent in K7~ N L over K*~“"” N L. Let S, be a completion of S? to a p-
basis of K" NL over K7 NL (that is, the disjoint union STI1.S; is a p-basis for
K?~“7NLover K “"?NL). Continue in this manner, such that S; is a completion to
a p-Basis of K* """’ NL over K»“7'NL of Sf(i_l) US§<i_2) U...US? ;. The procedure
“PU..U S., which is a p-basis of K?~' N L
over KNL = K. Notice that by construction, the set Sf(i_l) U 55“_2) U..US? US; is
a p-basis for K?~ """ "L over K»“"" N L. Consider the p-basis S; of L = K* “NL
over K* “7 N L: by Remark 4.2 we have that the set

{ 11 7550 < kg, <p}

r1E€51

: : (e-1) (
terminates when we arrive at S? U .S}

is a basis for L = K? “NL over K* “"" N L. Since SPUS, is a p-basis for K#~“'NL
over KP "V N L we have, again by Remark 4.2, that the set

{ IT @k T 25730 < kay b, <p}

T1ES51 x2E€852

e—

is a basis for K2V N L over K N L. Remembering that, if {ai,...,a,} is a
basis for L = K “N L over K» "V AL and {by, ..., by} is a basis for K»~“"’ N L over
K "2 N L then the set {a; b;;1<i<n,1<j<m}isabasisfor L=KP"NL
over K?~“7? N L we get: since

e
{ H ml 17O§ kxl <p}
T1E€S1
is a basis for L = K? “N L over K “" N L and
{ IT @) I 250 < kay < .0 <k <p}
xr1E€S1 x9E€So
is a basis for K?"“ "V N L over K" N L we have that
{ H :E]f“ : H xl;wz;O < kyy, <%0 < ky, <p}
z1€51 T2ES
is a basis for L = K? “N L over K»“"? N L. Continueing in this manner we see that
{ H x]l%1 ) H $]2%2 H :UIQ%E;O < kg <050 < Ky, <p€717“'70 < k. <p}
x1E€S1 T2E€S2 Te€Se

is a basis for L = K?" "N L over KNL = K. Note that since z; € S; C Kr~“ A
and S; is p-independent to S;_;, we have that e,, := p*~ (=1 is the exponent of z;

11



over K. Define B := S; U ... U S, and note that this is a disjoint union. We get a
K-Algebra-homomorphism
o : ® K(x)— L

z€EB
by sending
@~ [
TeB €D
e—(i—1)

where 0 < k, < e, and e, =p is the exponent of z € S;. Now since

{®xk1;0 <k, < ex}

zeB

is a basis for ® K(x) over K and, as we have seen,
zeEB

{ka‘”-;O <k,< e,;}

reB

is a basis for L = K? "N L over K, we see that ¢ is a K-Algebra-isomprphism. So L
is a tensor product of simple extensions of K. n

Example 4.12. Not every finite, purely inseparable extension is modular: Let k =
Z/pZ and K = k‘(Xp,Yp,sz) where X,Y, 7 are indeterminates. Now, set L =
K(Z,XZ+Y) and we see that L is a purely inseparable extension of K of exponent
2. We claim that L is not modular. By Theorem 4.11 it suffices to show that K is
not the field of constants of any set of higher derivations of L. Assume that there
exists a higher derivation D® of L with field of constants K. The element Z7 is
not in K and so it is not in the field of constants. Thus for some 1 < m < t we
have D,,(Z7) # 0. But as mentioned in Lemma 4.9, i) we have that D,,(Z?) is zero
if p t m and D,,;,(Z)P otherwise. So we are in the second case. Now notice that,
XP- D sp(Z)P = XP- Dy (ZP) = Dy (XP- ZP) = Dy (XP-ZP +YP) = Dy (X - Z4Y)P
where we have used Lemma 4.9. This implies X? = (Dy,/,(XZ+Y)- Dy jp(Z) )P and
X = (Dip(XZ+Y) - Dypyyp(Z)~") which contradicts the fact that X ¢ L. Thus Z?
is in the field of constants of all higher derivations of L over K and L is not modular
over K.

Lemma 4.13. Let L and E be fields such that L/L N E is finite and E/L N E is
algebraic. There exists a unique field extension F/L such that:
1. F and E are linearly disjoint over F N E.

ii. F is the smallest field extesnion of L satisfying property i).
iii. F' = L(S) for a finite subset S of E.

Proof. Let B = {x;;i € I} be a finite basis of L/L N E, and let C' = {x;;j € J} be
a maximal subset of B which is linearly independent over £ in L(E). Then C is a
basis for L(E) over E. Let D = B\ C. Then for each x € D we have

() T = Zax,jxj

jed
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for uniquely determined a,; € E. Set S = {a, ;2 € D,j € J} and F = L(S). Note
that S is a finite set since D and J are finite. Since C' is a basis of L(E)/E we can
extend C' to a basis C' := C U{y, € L(E);k € K} (where K is a finite index set) of
L(E) over FNE. Let A C F be a subset, linearly independent over F'N E. Assume
we have a relation ey - ay + ... + €, - a, = 0, with e¢; € F and a; € A. Since ¢; € L(F)

we have
/
e; = E Wi;Tj + g Wiz Yk

jeJ keK

where w;; and w}, are in FNE for all j € J.k € K and 1 <i < n. Consequently, we
have

Z (Z Wi;Tj + Z WipYk) - ;= Z( Z a;wi;)x; + Z( Z a;w,)yp = 0

1<i<n jeJ keK jeJ 1<i<n keK 1<i<n

and since {z;;5 € J} U{yx; k € K} is a basis of L(E)/F N E, we have that

Z ;Wi = 0

1<i<n

Z a;w;, =0

1<i<n
for all 7 € J and k € K. Since A is linearly independent over F' N E we have that
w;j =0and w), =0forall j€ Jke Kand1<i<n. Thuse;=0for1 <i<n
and we see that [’ and E are linearly disjoint over F'N E.
Now suppose M is a field such that M and FE are linearly disjoint over M N E and
L C M. Then C = {xzj;j € J} € M and since C is linearly independent over E it is
also linearly independent over M N E. For each z € D we have the identity (%), for
unique {a, ;;j € J,x € D}. By the linear disjointness of M and E over M N E these
relations also hold over M N E. Hence {a,;;j € J,jx € D} C MNE C M. Thus
M D L(S)=F. m

Lemma 4.14. Let E C K, and E C F C L be four fields having the following pop-
erties:

(1) L and F are finite over FF N K,

(2) L=F(KnNL),

(3) F and K are linearly disjoint over FN K.

and

Then L and K are linearly disjoint over L N K.

Proof. Let {z1,...,2,} C K be linearly independent over L N K. From (2) it follows
that F' and K'N L are linearly disjoint over K NF. By Theorem 3.10, F' @ prx (K NL)
is a field and one can see that F(KNL) = F®pnxg (KNL). Let {fi;i € I} be a basis
of Frover KNF. Since F(KNL) = F®par (KN L) we see that {f;;i € I} is a basis
of F(K N L) over KN L. Assume

Z AT =0

1<k<n

13



for some a; € L. Then a; = Z cri fi where ¢; € K N L, hence

icl
0= 2 > enfion=2 fi 3 cuar)
1<k<n i€l el 1<k<n

Consequently, Z cgixr = 0 and since {x1,...,x,} € K are linearly independent

1<k<n
over L N K we have that ¢i; =0 for all 1 <k <n and i € I. Hence a; = 0 for all &
and {z1,...,x,} is linearly independent over L.

]

Theorem 4.15. Let L/K be a finite and purely inseparable field extension of exponent
e. There exists a unique field extension F' of L having the following properties:

i. F/K is the smallest modular field extenion of K.

ii. F/K is purely inseparable of exponent e.

iti. F/K is finite.

Proof. We construct, by descending induction, fields F;,,, m < e, having the following
properties:

(1) FP" and K are linearly disjoint for s = m,m + 1, ... ,

(2) F,, is the unique minimal extension of L having property (1),
(3) F,,/K is purely inseparable,

(4) Fy,/ K has exponent e,

(5) [F : K] < 00,

We start our descending induction at m = e and set F, = L. Since F?" C K for
s =e,e+1,... we see that property (1) is fulfilled. Obviously L is the minimal ex-
tension of itsself having property (1), and the properties (3) and (4) are satisfied by
assumption. Since we assumed [L : K| < oo property (5) is also satisfied.

Suppose now that we have constructed F,, O L for a m < e, such that F,, satisfies
1) - (5). 1

We have to check if we can use Lemma 4.13 on the fields FZ" " and K: since F,,/K
is finite by (5), clearly F2™ /KP"" is finite. Since K*" C K N FP""" we see that
FP" /K A FP" 7 s finite. We have also that K/K N FP"" is algebraic, since every
element o € K is a root of a polynomial X?" ' —a?™ " e (K N FX" ") (X). So we
can use Lemma 4.13 .

By Lemma 4.13 there exists a unique minimal field M O F}%m_l such that M and K
are linearly disjoint over their intersection. Let F,,,_ 1 = M P~V We show now the
conditions (1) — (5) for F,_;.

(1) : Since FP",' = M, we see that F”" | and K are linearly disjoint over their
intersection. So we have to show condition (1) only for s > m. By Lemma 4.13,

M = FP"'(S) for a finite subset S of /. Thus for s > m, we have F¥_| = M7 """ =
FP°(SP. Clearly S7 " C FP_| and since S C K we have S """ ¢ F2_ NK,
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that is F2_, = FP’(F”_, N K). By induction hypothesis, F2" and K are linearly dis-
joint over their intersection for s > m. Hence, using Lemma 4.14, we see that Ff,’;_l
and K are linearly disjoint over their intersection for s > m — 1. Thus F},,_; satisfies
condition (1).

(3) and (4) : We have seen that F? | = FP'(FP N K) for s > m and since e > m
(by assumtion), we have F¥_ | = FP(F? NK)C K(F’  NK) =K. It follows by
using Lemma 2.6, that F,, ; satisfies (3). As we have seen, the exponent of F, ; is
greater than or equal to e and since F},, C F,,_; the exponent is equal to e, hence we
have (4).

(5) : By induction hypothesis, [F,, : K] < oo. Since S is a finite subset of K and

Fpqy = MP" = (FP"7(9)P" Y = Fo(SP ") we see that F),_; is a finite
extension of K.

(2) : Suppose E is an extension of L satisfying condition (1). Then F,, C E, since
by induction1 hypotheslis, F,,, is the minimal field extension satisfying condition (1).

Hence FP"" C EP" and by assumption EP"™" is linearly disjoint from K. By
Lemma 4.13, M C E*"". Thus F,,_; C E.

The induction ends when the field F} is constructed, which is the desired field. [

5 The group of higher derivations

Thoroughout this section, L will be a finite purely inseparable modular extension of
K.

Lemma 5.1. Let ¢ : L[T|/(T*"') — L[T|/(T*1) be a ring homomorphism, satisfy-
mg

i o(T) =T,

ii. ¢ =id mod (T)

Then ¢ is an automorphism of L[T]/(T*™).

Proof. Let ¢ be such an homomorphism. Then ¢ is injective: Let f = Z £;T" be
0<i<t

in L[T]/(T*) such that ¢(f) = 0. Let

o(fo) = fo + Z bT"

1<i<t

for some b; € L. Then

of) = fot+ 3 b+ G(f))T =0,

1<i<t

thus fo = 0 and since ¢ is a homomorphism, b; = 0 for all » > 1. Let

S(f)=F+ D> T

2<i<t
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for some b; € L. Then

o(f) = Z O(f)T" = fLT + terms of higher order = 0,

1<i<t

thus we have f; = 0. Continuing in this manner one can see that f; = 0 for all
0 <@ < t, hence ¢ is injective.

We show by descending induction that ¢ is surjective. Let f € L[T]/(T*™) such that
the first s coefficients fy, ..., fs_1 of f are equal to zero for some s < t. Then there
exist g € L[T]/(T*') such that ¢(g) = f:

s=m :set g = f, T and obtain

S(fmT™) = 6(fu)T™ = (fn + Y &THT™ = fuT™ = f

1<i<t

where all equalities are modulo (7™1).

s — s —1: Assume that for every f € L[T]/(T"™') with fo = fi = ... = fo_1 =0
there exists a g € L[T]/(T*™') such that ¢(g) = f. Let h € L[T]/(T*"') be a
polynomial with hy = ... = hy_s = 0. Define ¢ = h,_17°! and f =h—o(g)-
Then f has coefficients fy = ... = fi_; = 0 and by the induction hypothesis
there exists a g € L[T]/(T*"") such that ¢(g) = f. Defining ¢ := ¢1 + § we see
o(g) = ¢(g1) + 0(9) = o(g1) + f = d(g1) + h — ¢(g1) = h.

The induction is finished when s = 0 which states that for an arbitrary f € L[T]/(T*")
there exists a g € L[T|/(T*) such that ¢(g) = f. O

Theorem 5.2. The set H'(L) of all rank t higher derivations of L is a group with
respect to the composition do e = f where fi(a) = Z di(ei(a)).
i+j=k

Proof. By Lemma 5.1, the set of all ring homomorphisms ¢ : L[T|/(T*') — L[T]/(T*")
satisfying (1) and (2) of Lemma 5.1 is equal to the set of all automorphisms satisfying
(1) and (2). Let G denote the set of all automorphisms L[T]/(T*"!) satisfying (1)
and (2). One can easily check that G is a group. We now show that H'(L) is in
bijection with G, hence G induces a group structure on H*(L): Let ¢ : G — H'(L)
be the map sending o € G to d* where df(x) = i-th coefficient of a(z). First we
have to check that d* is a higher derivation of L over K for every a € G. Now since
a = id mod (T') we see that df is the identity on L. Now let z,y € L, 1 < m <t and

a € G. Let
a(z) = Z 1", ay) = Z y; 1V
0<i<t 0<j<t
and
a(zy) = Z 2, T"
0<k<t

for some z;,y;, 2z € L. Since « is a homomorphism we obtain

Dol = (> wT)- (> yT) = > (D wy)T"

0<k<t 0<i<t 0<j<t 0<k<t i+j=k
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From this equality we see that d% (xy) Z d®(z)d?(y)T", hence d* € H*(L).

i+j=m
Now we show that v is surjective Let d E H'(L). Define a ring endomorphism « of
LIT]/(T**") by setting a(z Z di(x)T" and a(T) = T. Then by Lemma 5.1,

0<i<t

is in G and we have ¥(a) = d* = d. Thus @ is surjective. Let a, 3 € G such that
d* = dP. Since ao(T) =T = ((T) it suffices to show that a(x) = B3(x) for every x € L.
But d® = d° if and only if for every z € L and all 0 < i < t the i-th coefficient of
a(z) is equal to the i-th coefficient of F(z). Hence a(x) = B(x). Thus ® is injective
and so v is a bijection.

Now we examin the group structure which is induced by G on H*(L). Let d,e € H*(L)
and define a composition on H'(L) as follows: set a = ¢~!(d) € G and 8 =y ~!(e) €
G. Then doe :=1(a o 3) = d*°P. Note that for z € L we have

aof(z)=a( Y bT)=> ab)T

0<i<t 0<i<t
j 7 k
= E (E ai; T7)T" = E (E aij)T
0<i<t 0<j<t 0<k<t it+j=k

for some a;j,b; € L. Hence (d o e),(z) = k-th coefficient of a o f(z) = Z ;.

i+j=k
Further we have a;; = (j-th coefficient of a(b; )) = df(b;) and b; = (i-th coefficient of
B(z)) = d’(x). Hence (d o e)y Z dadﬁ Z dje;(z). This is exactly the
i+j=k i+j=k
composition claimed in the theorem. O

Definition 5.3. A higher derivation d € HP (L) of L is called iterative of index g,
or simply iterative, if (;) dgi = dg.jdg.i—j for all j <, and dy, =0 if gt m. A rank t
higher derivation (t < 0o) is iterative if it is the first t+1 maps of an infinite iterative
higher derivation.

Remark 5.4. Let o € Aut (L[T]/(T*™)) be the corresponding automorphism of some
d € Hi, d being iterative of index q. Let 8 be the corresponding automorphism for
e =a-d, where a € L. Using the definitions, one can check that the i-th coefficient
of B(x), for some x € L, is equal to zero if ¢ i and equal to a® - ay. if i = q- k, where
k € N and ag, is the gk-th coefficient of o(x).

Lemma 5.5. If d € HY(L) is iterative of index q, and a is in L, we define ad = e
where e,; = a'dy;, and e; =0 if ¢t j. Then ad is in H(L).

Proof. Let x,y € L. We have to show

(5) em(zy) = Y ej(@)en—(y)

0<j<m

for all m € Ny. If ¢ { m then, by definition, e,,(zy) = 0 and the right hand side of (x)
is also equal to zero since ¢ cant devide both, 7 and m — j for j > 0 and e,,(y) = 0
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since ¢ { m. So let m = ¢ - ¢ for some i € N. Then we have

em(zy) = d'dp(ry) = 0’ D di(@)dm—j(y) = > dyi(@)dm—g;(y)

= Z'(ajdqj(x)ﬂai_jdq(i—j)(y)) = Zleqj(x)em—qj(y)
= Z ej(z)em—;i(y) = em(zy).

O

Remark 5.6. Let dY € H'(L) and a the corresponding automorphism. Then the
field of constants is equal to the set {x;a(x) = x}. As a consequence, the set Hi (L)
of all rank t higher derivations of L over K is a subgroup of H'(L), hence it is also
a group.

6 Invariant subfields and extensions of higher deriva-
tions

In this section the goal is to state the main theorem of this work. To do that, we
have to formulate several lemmas. So for the next lemma, note that a derivation (in
the usual sense) is a rank 1 higher derivation.

Lemma 6.1. Let py, ..., p, be a set of commuting derivations of L having the follow-
g properties:

1. The set {plfl v pkn 0 <kyy ok, <p— 1} 15 linearly independent over L,

it. p} =0 for all1 <1 <n.

Then [L : Ko| = p", where Ky is the field of constants of p1, ..., pn-

Proof. "L : Ko] > p"” : Suppose to the contrary that [L : Ky = m < p". We show
that we are led to a contradiction. Let wq,...,w,, be a basis of L over Ky. In the
linear equations

St @) ks, =0

0<k;<p—1

Z P e (w2) - Ty g, = 0

0<k;<p—1

> A o (W) - k=0

0<k;<p—1
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there are more unknowns (= p™) than equations (= m < p") so that there exists a
non-trivial solution which, we denote by {x,  x.;1 <k <p—1}. For any a € L
we can find ay, ..., a,, € Ky such that a = ajw; + ... + a,w,,. We multiply the first
equation by aq, the second by as, and so on. Using that a; € K, we obtain

> ot ok (wwn) - wy g, =0

0<k;<p—1

Z p e a,QWQ) xk‘l,...,kn = O

0<k;<p—1

E /0 : amwm) Lky,....kn =0

0<k;<p—1

Adding these last equations and using the additivity of derivations we obtain

0= Z pkl . pn (a1wy + oo + W) * Ty ko

= > P o Q) k-

Since a € L was arbitrary we get a contradiction to property (1) of our set of deriva-
tions.

"[L : Kol = p™” : Suppose that [L : K] > p™. Then there exist p” + 1 elements
{a;;1 <@ < p™+ 1} which are linearly independent over K. In the linear equations

> ae e =0

1<i<pn+1

Nzt pr(a) =0

1<i<pn+1

>t ) =0
1<i<pr+1
(where 0 < k; < p — 1) there are more unknowns (= p™ + 1) than equations (= p").
So there exists a non-trivial solution. Note that the solution can not lie in K,
otherwise the first equation would be a dependence relation of the «;’s. Among all
these solutions we choose one which has the least number of elements different from
0. We may suppose this solution to be 3y, ..., 3,0, ...,0 where the first r terms are
different from 0. Moreover, r # 1 because Bia; = 0 implies ; = 0 so (31,0, ...,0
would be a trivial solution. Also, we may suppose (3, = 1 since if we multiply the
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given solution by 3! we obtain a new solution in which the r-th term is 1. Thus we

have
(%) Z Bipht - phn () 4+ pit - i () = 0

1<i<r—1

for all 0 < kq,...,k, < p—1. Since (31, ..., B,_1 cannot all belong to K, one of these,
say (31, isin L but not in Kj. So there is a derivation p; such that p;(51) # 0. Applying
pi to (%) and using ther rule p;(ab) = p;(a)b + ap,(b) we obtain

() 3 puBIRN o pr (e £ ST Bl gt gl )+

1<i<r—1 1<i<r—1

p T (ed) = 0
for all 0 < ky, ..., ky, ..., kn, < p— 1. If we substract (xx) from (x) we obtain

S Bk P (as) = 0

1<i<r—1
foral 0 < k; <p—1,i#land 0 <k <p—1 Forki=p—1landall 0 <k; <
p—1, i # [ we obtain in (%)

> olBpk ot pi (i) =0

1<i<r—1

since by property (2) of our derivations pf = 0. But this is a non-trivial solution to
the system having fewer than r elements different from 0, contrary to the choice of
r. H

Definition 6.2. A subset M = {my,....,m,} of L is called a subbase of L over K if
L is the tensor product (over K ) of the simple extensions K(my), ..., K(m,.).

Since L is assumed to be modular over K, it is, by Theorem 4.11, a tensor product
of simple extensions of K. So let

L= K((L’Ll) ®...&Q K(.ILﬁ) ®...&Q K(ZL}LJ) ®...&Q K(xn,jn)

where z; . is of exponent 7 over K.
Let
={d"1<i<n1<e¢ <j}

be the set of rank t higher derivations of L defined by
i 1 () = O((ieo) ms))s
where [t/p] is the greatest integer less than or equal to t/p’. We set
difi(xm) =0, 1<i,r<n, 1<e<j, 1<s<j, a#[t/p]+1
One can see that A is a set of commuting derivations, hence
i d?’” = d?’eQdZ’eil

forall0 < a,f<tand 1 <iy,00 <n, 1 <ey <Jipy 1 <eiy < Jiye
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Definition 6.3. The set
is called a dual base for Arp.

Lemma 6.4. Let d be a rank t higher derivation of L over K. Then the first non-zero
map (of positive indez) of d is a derivation of L over K.

Proof. Let d,., r > 0 be the first non-zero map of d. For x,y € L we have

= D d(@)dii(y) = 2d,(y) + dy(z)y

0<s<r
since dy =dy=...=d,_1 =0. O

Let d’ “ denote the first non-zero map of d** of positive subscript z; . and r be in
N. Consider the maps

r+1,1 r+1,9r41 n,1 M, Jn
dzTH 1pTr e '7d2r+l,jr+1pr : 7dz JapT e 7dzng p"

By Lemma 4.9 we have that
d; (K (L") € K(L")

for every a > 0, thus d* k(r#") 18 @ higher derivation of K (LP"). Since défe is the
first non-zero map of d"“ there exist € L such that d.* () # 0. We have

& (@) = (d (2))

where we have used Lemma 4.9. Thus di’fi,pr| k(") 18 the first non-zero map of

dbei

k) Where r +1 <0 <n, 1 <e < j;. By Lemma 6.4, we see that
{dzlep |K(LP) T+1§/L§n7 1§€§j1}

is a set of derivations of K(LF") over K.
Now we want to check if the set of derivations

{d lkwryr+1<i<n, 1< e <ji}
fulfills the conditions . and ii. of Lemma 6.1.
Remark 6.5. Every higher derivation d*¢ € Ay is iterative of index z; .

Lemma 6.6. Assume there exist {akrﬂ’hm,k e K(LF);0<ki; <p-— 1} such that

n,JIn

Z Akri1,1,eeskn gy (d::}{,llpTlK(LPT))er’l T (dg;i?in’K(LPT))kn’jn (:C) =0
0<k;,j<p—1

for all x € K(LP"). Then ay, =0 forall0<k;; <p—1.

1,15 K0, g
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Proof. For indices 0 < l,411, ..., 15, < p — 1 define

)

r

Lloir 1y, jn — (l‘fg_l,l)l""‘l’l .. (xi,jn)ln’jn ]

Replacing = by x,,,,...1,,, We obtain

1,1 .
0= Z Akri1 1, bn gy (dgj_+1,1p’“|K(LP7ﬂ)>kT+L1 T (dznj pr |K(LP ))kn’jn (xlr+1,1,---,ln,jn)
0<k; j<p—1

T ) . s .
= it (i (@ V) (20 gy oin (22, o)
1,1 r T
= alr+1,1r"7ln7jn ) lr+111!d;_"|—+l,lpr |K(Lp7‘)((‘r£+1’1>> T ln?jn!dznvjnpr |K(Lpr)((x'z’:/7.7n))

= Qlyyygydn gy, et g,

Since 0 < loy11, ey lnyj, <p—1wehave l4 11!+ 1, # 0 and since K (L") is a field
it follows that a,,,,,..1,,, = 0. Thus varying the indices I, 11, ..., lnj, if follows that
Akyiy ok, = 0 forall 0 < ki ; <p—1. O
Lemma 6.7. We have (dr+ ° Algery)? =0 foralll <k <n-—randl<e< jp.

Zr4k,eP"

Proof. Note that K(LP") = K(xferp - mf:]n) hence it suffices to show

i irarr
that (d;+fkeep |K(Lpr))p(xf,;l7s) =0forallr+1<k<nl<e<jypandr+1<I[<
n, 1 < s < j.4. But this is clear since (dgtkkip k(@) (Thy1s) = Orthe) (rids)- u

Remark 6.8. By Lemma 6.4 and 6.6, and Lemma 6.7 we can apply Lemma 6.1, thus

[K(Lpr) c Ko| = pj””“'*j” where K is the field of constants of
r+1,1
ZT+1,1pT‘K(LPT) 7dzT+1 1p" |K(Lp )

Lemma 6.9. The set
r+1,1
B = {dz;:l 1p" ‘K(L”T)V ’dZnJ p" |K(Lp )}
of derivations of K(L”") has field of constants K(LP"").

Proof. Let Kq be the field of constants of B.

r+1 r+1
K(LP™) C Ky : As in Lemma 6.4 it suffices to show (dH'kkepTH|K(Lpr+1))(xf+?s) =0
forallr+2 <k <n,1<e<jpandr+2<[1<n, 1 <s<juy. Solet2 <k, [ <n.

Then:

k, r+1 , g . o
;;:k’eepr |K(Lpr) (forl,s) - d;:rkki (x$+s,l)pr (prJrk edz;:kki( T+l,8))p7 =0

where for the second equality we have used that d”k ¢ is a derivation on L.
Ko = K(L”"") : Note that [K(L"") : K(LP"")] = [K(:Efjrl’l,...,a:pr

r+1ljrg10 000 xi,]n) :

r+1 r41 1 ) ) .
K(xi;vl’""forJ;,sz’“"xz,jtl )| = preitetin since -TZ;Jrk,e is of exponent one over
K(LP"*) for 1 <k <n, 1< e < jrp By Remark 6.8, [K(LV) : Ko = piritotin,
thus using that K (LP""") C K we obtain Ko = K(L’'"). O

r
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Definition 6.10. We say that a subfield M C L is invariant under H (L) if for every
higher derivation d € Hb the corresponding automorphism « € Aut (L[T]/(T*))
satisfies a(M) C M.

Theorem 6.11. Let L be a finite purely inseparable extension of K of exponent n.
Let M be a subfield of L containing K. Then M is invariant under Hi (L) if and
only if M = K(LP") for some nonnegative r.

Proof. Assume M = K(LP"), and let d = (d;) € Hi{(L). If x € M, then
=Y all, di(x) =Y ad;(¥)

1<i<s 1<i<s

for some a;,b; € L. If p" 1 j, then (using Lemma 4.9) d;(x) =0 € M. If p" | j then

di(@) = 3 aildyr (b)) € K(LP) = M.

1<i<t

Since d; was arbitrary, M is invariant under Hj (L).

Conversely, assume M is invariant under HL(L). We can assume M C K(L*")
and M ¢ K(L”""), otherwise M = K(L*") = K and we are finished. Let z €
M\ K(L""™), and let A be the set of higher derivations which we constructed before.
By Lemma 6.7, there exists d*/ € A such that di’ijpr () # 0. Recall that by Remark
6.5, d“I is iterative of index z; ;. Hence by Lemma 5.5, for any a € L, ad™ has z; jp"
map aprdi’szr. Since M is invariant under H (L), for any a € L, aprdi’jjpr (r) € M.
Thus LP" C M and thus M = K(L*"). O

For the next theorem we need the following lemmas:

Lemma 6.12. Let L/M be purely inseparable of exponent e and B a subset of L.
Then B is a minimal generating set of L/M if and only if L = M(B) and B is a
relative p-base of L over M.

Proof. If B is a minimal generating set of L /M, then obviously L = M(B) and thus
L = M(LP, B). If B is not p-independent in L/M, then there exists b € B such that
be M(LP,B\ {b}). Thus b is both purely inseparable and separable algebraic over
M (B \ {b}), hence b € M (B \ {b}). This contradicts the fact that B is a minimal
generating set over M. Conversely if L = M(B) and B is a p-base of L/M then B is a
minimal generating set of L over M (L?), hence a minmal generating set over M. [J

Lemma 6.13. Let L/M be a purely inseparable field extension of exponent e over
M. Let {By,...,B.} be a subbase of L over M. Then B; is a subbase of L over
M' = M(By,...,Bi_1, Bit1, ..., Be) for every 1 <i <e.

Proof. Since [[ ¢! = [L : M] = [L : M|[M' : M], [L : M] < p!P and

1<j<e

(M= M] < H PPl H p11Pi2l we see that [L : M'] = p/Pil. The canon-
1< <i—1 i+1<j2<e

ical homomorphism from ) ,p» M'(b;) to M'(B;) = L is clearly surjective. Since

b, €B;
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dimpr (@ v M'(;))) = p!'Bil and [L : M'] = pB! we see that L = @ v M'(b;).
b, €B; b, €B;
[

Lemma 6.14. Let L/M’ be a finite purely inseparable field extension of exponent e
over M' such that [L : M'] = p" and B = {b1,...,b.} a subbase of L over M'. Then
for every relative p-base A = {ay,...,as} of L over M' we have:

(1) s=r,
(2) L= M'(ay) @ .. @ M'(ay),

Proof. Notice that since B is a subbase of L over M’ it is also a minimal generating
set of L over M’ and M’'(B) = L. Hence, by Lemma 6.12, B is also a p-basis of
L over M’'. From the theory of p-bases we know that different p-bases of the same
field extension must have the same cardinality, hence s = r. Since [L : M'] = p*”
we have [M'(b;) : M'] = p© for every 1 < i < r. Using the p-basis exchange theorem
we can exchange a; with by such that {ay, bs,...,b.} is a p-basis for L over M’. Since
L : M'| = p“" and [M'(b;) : M'| = p© for every 2 < j < r we have that [M'(a;) :
M'] = p°. Thus exchanging a; with b; for 2 < j < r we see that [M'(a;) : M'] = p® for
all 1 < j <r. Clearly, the canonical homomorphism from M’(a;) @y ... @y M'(a,.)
to M’'(A) is surjective, hence by considering the dimension over M’ we can see that
M'(A) = M'(a1) @pp ... @y M'(a,). Since [L @ M'| = p®" we see that L = M'(A),
thus property (2) follows. ]

Remark 6.15. Note that by property (1) and (2) of Lemma 6.1} every a € A is of
exponent e over M’'.

Theorem 6.16. Let K C M C L be fields and assume that L is modular over M of
exponent e. The following conditions are equivalent:

(1) There exists an intermediate field K C J C L such that L = M ®k J and J is
modular over K. _ .
(2) There exists a subbase B = By U ...U B, of L over M such that BY C (L' N
K)(M(Biy1, ..., B))P) forall1 <i<e.

Proof. 7(1) = (2)” : Since L = M ®k J, every subbase of J over K is also a subbase
of L over M. Since J over K is modular, J has a subbase {A;, ..., A.} over K. Clearly,
{Aq, ..., A} satisfies (2).

7(2) = (1) : Let {Bi,...,B.} be a subbase of L over M as given in (2). For
every 1 <i<e—11let M; = M(Bjy1,..., Be) and for i = e we set M, = M.

Claim 1 : LP' = (L*' N K)(szl) fori=1,... e
Proof. We prove this by induction. For ¢ = 1 we have by (2) that BY C (LP N

K)(M(BY,...,B?)). Since LP = (M(B,...,B.))? = MP(BY,..., B?) we see by re-
placing BP by (LP N K)(M (B2, ..., B)) that LP C (LP N K)(MP(BL,..., B?)). It
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is clear that L? 2 (LP N K)(MP(Bj,...,B?)), hence LP = (L? N K)(M{). Now

assume that for some i > 1 we have the equality L*' = (L*' N K)(M?). Then
= ("t n Kp)(Mp”l(BfiT,...,Bgi“)). By (2) we have By, C (L' n
K)(MP™ (B, ..., B*™)). Since B, e (L7 n K)(MPZ“(BZT;,...,Bg’”l)) we
see that P C (L' mK)(JW“(Bf+2 ,...,Bg”l)) (P N K)(MP,,). Tt is again

i+1

clear that L7 D (L™ 0 K)(M?,, ), hence L™ = (L™ n K)(MP,,). O

Claim 2 : For every 1 < i < e there exist Ay, ..., A;_1 C L such that :

(1) L= K(A )®...Q K(A;_1) @ M(B,, ...., B.),
(2) {A4,...Ai_1, By, ..., B.} is a subbase of L over M,
(3) a; € A; has exponent [ over K for all 1 <1 <.

Proof. For i = 1 we have by assumtion that {Bj,..., B.} is a subbase of L over
M, hence L = M(By,....,B.). So suppose that L = K(A;) ® ... ® K(4;-1) ®
M(B;, ....,B.) and {Ay, ..., A;_1, B;, ..., B.} is a subbase of L over M satisfying Afl C
K for1<l<i—1.Let M':= M(Aq,...,Ai_1, Bis1, ..., Be). By induction hypothesis
{Ay,...A;_1, B, ..., B.} is a subbase of L over M. So using Lemma 6.13 we see that
B, is a subbasis of L over M’. Notice that by Claim 1 we have L = M'(L N K ).
Hence there exists a subset A; € L N K? * which is a p-basis of L over M’. Using
Lemma 6.14 with B = B; and A = A;, we see that A; is a subbase of L over M’'. By
Corollary 6.15 every a € A; has exponent 7 over M'. We obtain

(+) K(A) @k ... 9k K(Aim1) @ M(Big, ..., Be) @ (X) K(a)

K
acA;

=M @k ® K(a)
K
a€EA;
since K(A;) ®k ... ®x K(A;—1) @ M(Bji1, ..., B.) is a field. Note that by property
(2) of Lemma 6.14 we have @) » M’'(a) = L. Using Corollary 6.15 we see that

a€A;

dimyp (L) = p“l4il. Clearly, the canonical homomorphism from M’ ®@x & K K(a)

to @ mr M'(a) is surjective. Since Afi C K we have [K(a) : K] < p' for all a € A;
a€A;
and hence dim (M’ @k ® K, K(a)) < p"l4l. By the surjection mentioned before

it follows that dim (M’ ®K ® K K(a)) = p"l4l. This implies that (%) is eqaual

to L and that [K(a) : K| = p' for every a € A;. Thus property (3) of Claim 2

follows. Consider now the surjective canonical homomorphism from ) K, K(a) to
acA;

K(A;). Since dme(® K K(a)) = pl4l = dimg(K(A;)) we see that K(A;) =

X K K(a). Hence, by replacemg ® K, K(a) by K(A;) in (x), we obtain property
ae

(1) of Claim 2. So it remains to show property (2) of Claim 2: Clearly, it suffices
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to show that ) o M(a;) = ® . M(b;). Now let a € A; and b € B;. Notice
that [M'(a) : M] [M'(a) : M][M’ : M| = [M'(b) : M'|[M' : M] where we have
used (2) of Lemma 6.14 in the second equality. So we obtain [M'(b) : M (b)][M(b) :
M] = [M'(b) : M] = [M'(a) : M] = [M'(a) : M(a)][M(a) : M] and using that
[M'(b) : M(b)] = [M': M] = [M'(a) : M(a)] we see that [M(b) : M] = [M(a) : M].
Hence Q v M(a;)) =Q m M(b;). O
(lieAi b, €B;

By Claim 2 we have L = K(A;)®...Q K(A.)®@ M, and {Ay, ..., A.} is a subbase of

L over M. By construction we have K(4;) = Q) K K(a;) for all 1 <i <e. Taking

J = K(A, ..., Ae) we see that

J= @) KA) = Q) K Kla),

K K K
1<i<e 1<i<e a;€A;
hence by Theorem 4.11 J is modular over K. [

Lemma 6.17. Let M be a subfield of L containing K. Assume that M is modular
over K and that every rank t higher deriwation on M over K can be extended to L.
Let x € L such that 27" € K(MP?") for some i € Ng. Then a?" € (LP' N K)(M?").

Proof. If 27" € K, the result is obvious. Hence assume 7' € K (M?")\ K(M?"") for
some r > . Let T := {x;.,;1 <i<e 1<e <7} be asubbase of M over K, and

let T be a dual base of Ay. Since xflm, e } is a subbase of K (L") over K we

nvj’n

can write

(x) 2 = Z as(ﬁll,l)%”“’l T (xitjn)ts’”’j"
1<s<m

where a, € K, 0 <t <p'~". Since 27 € K(M?")\ K(M?""), at least one t
is not divisible by p. . ‘

To show z*" € (LP' N K)(M?") it suffices to show that each a; € L*", since we have
assumed that 7 > ¢. The proof is by induction on m. If m = 1, then we see a; € Lr,
since we obtain in () that a; = :U”l((mfjru)tl»r“’l e (xﬁtjn)tlvf’jn)_l € LP". Assume
the result for m — 1. By induction it suffices to show a, € LP" for some 1 < s < m.
Since every higher derivation on M over K can be extended to a higher derivation
on L, and L*" is invariant under all higher derivations on M by Lemma 4.9, any map
in any higher derivation on M over K must map z*" into LP'. We will show that
some a, is in LP" by induction on the total exponent of (%), i.e. Y t545. If the total
exponent is 1, then m = 1 and the result follows. Since 27" € K(M? )\ K(M?"™), by

Lemma 6.9, some dl’el o (T P') £ 0. Applying dlzlel o to (x) yields a nonzero element of

¥ of lower total exponent with nonzero coefficients of the form wa,, w € Z/pZ. 1f

dilel o (27") ¢ K, then by induction some wa,, hence some ag, is in L and the result

follows. If do . (a#") € K, then since

le

(xr+171)ts,r+l,1 e (I'nhjn)ts,n,]'n, 0 < S] ey p]_r
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lvel
Zl,elpT

once again some a; is in L and the result follows. O]

is a vector space basis for K (M?") over K, we have d (2#") = a, for some s. Thus

Lemma 6.18. Let M be a modular extension of K and A a standard set of generators
for Hi (M) with dual base {x;,;1 <i<mn, 1<e; <j;}. The set of maps

S = {d“fi 1<i<n1<e Sji,0§0i<min(i,r)}

. Cq
Zie; P )

has field of constants K(MP").

Proof. We do this by induction on r. Let
S = {di’e" 1<i<n,1<e <75,0<¢< mm(i,l)}. If r =1, then

. ()
i,e; P )

S, = {dl’l 05 eees di’j? po} and by Lemma 6.9, S} has field of constants K (M?). Assume
1,]1

21,1P

the result for a r > 1. Let D be the set of maps in S,; which are not in S,. That is
D = {di’ie:pi;r <i<n,1<e < jz} If we restrict the maps in D to K(Mpr) then

we see, by Lemma 6.9, that the restricted maps have field of constant K (MPTH).
Hence K (M?") is contained in the field of constants of D, which we denote by Ty.
Let F,.,; denote the field of constant of S.,;. Note that since S,.; = S, U D, the
field of constants of S, is the intersection of the fields of constants of S, and D. By
induction hypothesis
S, =9 = {di’fi,p%;r <i<n1<e <j5,0<¢< mz’n(i,r)}

has field of constants K (M?").Hence F,yy = K(M?) N T, and sinceK (M?™") C
K(M") we see Fryy O K(MP™'). Assume now that there exists z € Foy \
K(M?""). Then x € K(M”") and by Lemma 6.9, there exists d2’ , € D such
that (di’szr) |kuery (z) # 0. Hence x ¢ F.yy which is a contradiction. That is
Froy = K(MP™).

O

Theorem 6.19. Let M be an intermediate subfield of L and K, such that L is modular
over M and M 1is modular over K. Then every rank t higher derivation on M over
K extends to L if and only if there exists a field J such that K C J C L, J is modular
over K and L = M Qg J.

Proof. If L = M ®k J then every rank t higher derivation on M over K can be
extended by acting trivially on J.

Assume now that every rank ¢ higher derivation on M over K can be extended to L.
Let B = ByU...U B, be a subbase of L over M where b € B; is of exponent i over M.
We claim B,T?r C K(M pr) for each 1 <r < n. Let A be a standard set of generators
for Hi (M) with dual base {z;.,;1 <i<n, 1 <e; <j;}. By Lemma 6.18, K(M?")
is the field of constants of the set of maps

S = {(di’ei )1 <i<n1<e <j,0<¢< mz’n(i,r)}.

. C.
Z'L,eip 4
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Thus it suffices to show each 2?7 € B’ is annihilated by all maps in S. If p { z;.,,
since d"® can be extended to L, we have

dit @) = (di (@) =0

for all 0 < ¢; < min(4, r), where we have used Lemma 4.9 for both equalities. If p | 2; ,
then consider the higher derivation e € Hj (M) with e, , 111 = dz, , 1 for (zie,+ 1) <
tand e; = 0 if (2., +1) 17, 7 <t. We claim (2;,, + 1)p® <t if 0 < ¢; < min(s,r)
(unless ¢ = 1, in which case the result is obvious). For if not, then (z; ., + 1)p"™* > ¢,
hence 2, +1 >t/ pi~! and Zie, +1 >t/ p* which is a contradiction to the definition
of zie. Since p { (zie, + 1) we see e, p1pr—1(2) = (e, 41 (2?))P = 0 where
we have used again Lemma 4.9. Thus we have 0 = e(,, , y1),r—1 (27 ") =d" e: (2P

by definition of e. Hence 27" € K(M?") and consequently B?" C K (Mp ) for all
1 <r <n. By Lemma 6.17,

BY C (L NK)(M?") C(L” NEK)(M(Byi1, s Ba))").
The result follows immediately from Theorem 6.16. O]

Corollary 6.20. Let M be an intermediate subfield of L and K such that L is modular
over M. Let My be the field of constantsof all rank t higher derivations on M over K.
Then every rank t higher derivation on M over K extends to L if and only if there
exists a field J such that My C J C L, J is modular over My and L = M ®yy, J.

Proof. Note that every rank t higher derivation on M over K is also a rank t higher
derivation on M over My. By Theorem 4.11, M is modular over M, and since
K C My C L, L is also finite dimensional over M,. Hence we can apply Theorem
6.19 to the chain of fields My C M C L and we obtain the result. O
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