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INTRODUCTION

Loosely speaking, Tannaka duality concerns the study of the relationship between
a group-like object G' (ordinary group, compact topological group, algebraic group,
group scheme, quantum group, etc.) and its category of representations Rep(G).
This category is naturally equipped with additional structures, the most basic being
the forgetful functor which sends a representation of G to its underlying space.
That is, for every group-like object G there is a triple (Rep(G),V,S) where V
denotes the forgetful functor and S stands for unspecified additional structures
(e.g. a monoidal structure). The question arises whether or not it is possible to go
in the other direction: Is there a way to associate a group-like object to a category
equipped with suitable additional structures? In other words, is there a way to
assign a group-like object E( . 5) to a category & equipped with structures S
and a functor w from &7 to the category of spaces:

Rep(—)

categories equipped with

Group-like objects :
up J ‘ suitable structures

\

B

If such a construction exists, there are three natural questions one would like to
answer.

(1) The reconstruction problem: If one starts with a group-like object G and
then applies E(_) to the associated category of representations, is the resulting
group-like object isomorphic to G?

(2) The recognition problem: Is it possible to give a characterization of those triples
(7, w, S) which are equivalent to (Rep(G), V,.S) for some group-like object G

(3) The description problem: Given a category &/ with structures S, is it possible
to find conditions for the existence a functor w from .« into the category of
spaces such that (&7, w,S) is equivalent to (Rep(G),V, S) for some group-like
object G?

We are interested in the case where the group-like objects are the affine group
schemes over some commutative Ring R. For R a field, the above questions were
discussed by Deligne (see [Del90]), and his approach was generalized by Wedhorn
(see [Wed04]) to the case of Dedekind rings.
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It turns out that, in this context, it is very convenient to use the duality between
spaces and their algebras of functions: the category of affine schemes over R is
equivalent to the opposite of the category of R-algebras. In particular, an affine
group scheme G over R corresponds to a certain R-algebra H. The multiplication
of the group scheme gives a comultiplication on H, the unit turns into a counit, and
the homomorphism of R-algebras which corresponds to the morphism of schemes
which sends an element of G to its inverse is called the antipode. Such an algebra
is called a commutative Hopf algebra. Moreover, an action of G on an R-module
M corresponds to a coaction of H on M; a module equipped with a coaction will
be called an H-comodule. For R a field, one has the following correspondence
between structures on the vector space H and structures on the category of finite
dimensional comodules, where the structure on the left is required for the existence
of the structure on the right:

comultiplication and counit ~» necessary for the definition of comodules

multiplication and unit ~~ tensor product of comodules

antipode ~> duals
This suggests that, in a first step, one should stick to the minimal structure required
for defining comodules, i.e., to coalgebras.

Definition. An R-coalgebra is an R-module C' together with a comultiplication
0: C — C®C and a counit e: C — R such that the diagrams

J ®C

C cCeC C0)eC C
o1 1
Jl la and J{‘S
CeC oo C®(C®C) C®R<¥C®e C®C?®C R®C

are commutative. A (left) comodule of C'is an R-module M together with a coaction
p: M — C® M, that is, a homomorphism p: M — C'® M of R-modules such that
the diagrams

M . CoM M—tsceoM
Pi it?@]bf and idi ia@M
O@MWO@(O(@M)?(O@C)@M M<;ZR®M

are commutative.

Next we have to decide what our category of representations should be. It turns
out that replacing ‘finite dimensional’ by ‘finitely generated’ does not give the cat-
egory we want, for the following reason. We will eventually be interested in the
reconstruction of Hopf algebras instead of mere coalgebras, and the existence of du-
als in the category of representations is crucial for the reconstruction of the antipode
map of the Hopf algebra (see [Str07], section 16). But for arbitrary commutative
rings, a comodule of a Hopf algebra has a dual if and only if its underlying module
is Cauchy, i.e., finitely generated and projective (see [Str07], proposition 10.6). In
order to apply the reconstruction results for Hopf algebras from [Str07] we should
therefore ask the following question: Is it possible to reconstruct a coalgebra C
from the category of comodules whose underlying module M is Cauchy? Such a
comodule will be called a Cauchy comodule, and the category of Cauchy comodules
of C' will be denoted by Comod®(C).

The statements at the beginning of the introduction have precise counterparts in
this context. We denote the category of coalgebras by Coalgg, and we write
catr / Mod$, for the category whose objects are the pairs (&, w) consisting of an



TANNAKA DUALITY 3

R-linear category o together with an R-linear functor w: & — Mod$%, from «/ into
the category of Cauchy modules. The morphisms in catr / Mod§, between (o7, w)
and (&/',w') are the R-linear functors F': &/ — /" which make the diagram

Mod¥%

commutative. The assignment C' — (Comod®(C),V) which sends a coalgebra
C to the pair consisting of the category Comod®(C) and the forgetful functor
V: Comod®(C) — Mod% naturally extends to a functor

Coalg — caty /Mod5,
and it turns out that this functor has a left adjoint E_y:

Comod*(—)
Coalgp catp / Modj .
\_/
Ec)

That is, there is a bijection
Coalgy(E(y ), C) — catr / Mod% ((#,w), (Comod®(C),V)),

natural in C and (¢/,w), between the morphisms of coalgebras Ey ,) — C
and R-linear functors F: &/ — Comod®(C) with VF = w. In particular, the
identity morphism of E(. ., corresponds under the above bijection to a functor
N: o — Comod‘(E(y ) such that VN = w. This functor is called the unit
of the adjunction. Similarly, the identity functor of Comod®(C) corresponds to
a morphism of coalgebras €: E(comoac(c),v) — C, the counit of the adjunction.
The reconstruction and recognition problems mentioned at the beginning of the
introduction can now be turned into precise mathematical statements:

(1) Reconstruction problem: Under which conditions on the R-coalgebra C is the
counit
€: E(ComodC(C),V) - C
an isomorphism?
(2) Recognition problem: For which pairs (&7,w) is the unit

N: o — Comod®(E(y .))
an equivalence of categories?

The goal of this paper is to give answers to the above questions. We succeed in
giving a necessary and sufficient condition for (1), and we can provide a sufficient
condition for (2). It is well-known that for R = k a field, the counit morphism e
is always an isomorphism ([Str07], proposition 16.3). The proof uses the fact that
any k-coalgebra C, considered as a comodule over itself, is the union of its Cauchy
subcomodules. It is not to be expected that the same result holds over arbitrary
rings. However, a union is a special case of the more general notion of a colimit, and
it turns out that the latter can be used to give a necessary and sufficient condition
for € to be an isomorphism over arbitrary rings.

Namely, instead of considering a diagram which consists only of inclusions of
Cauchy subcomodules we consider a diagram built from all morphisms of comod-
ules p: M — C whose domain M is a Cauchy comodule. This diagram is called
the diagram of Cauchy comodules over C. Under certain conditions, C' (considered
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as a C-comodule) is the colimit of the canonical diagram of Cauchy comodules over
C, for example if C itself is Cauchy. We say that C has enough Cauchy comodules
if for every C-comodule M and every element m € M there is a Cauchy comodule
N and a morphism ¢: N — M such that m lies in the image of ¢.

Proposition If C is flat and has enough Cauchy comodules, then C is the

colimit of the canonical diagram of Cauchy comodules over C.

Theorem The counit €: E(comoac(c),v) — C is an isomorphism if and
only if C, considered as a C-comodule, is the colimit of the canonical diagram of
Cauchy comodules over C.

It follows immediately that the counit € is an isomorphism if C itself is Cauchy,
or if C' is flat and has enough Cauchy comodules.

Open question. Are there any examples of coalgebras for which the counit € is
not an isomorphism?

Next we turn to our result concerning the recognition problem.

Theorem Let o be a small additive R-linear category, and let w: &/ —
Mod$; be an R-linear functor. If

i) w is flat, and
it) w reflects colimits in Modg,

then the unit N : o/ — Comod“(E( .) is fully faithful. If in addition
ii1) w reflects those colimits in Modg which are Cauchy modules,

then N is an equivalence of categories.

The functor w is called flat if a certain other functor Lany w associated to w
(the left Kan extension of w, see section is left exact, just as a module is flat
if the associate functor M ® — is flat. This condition is quite strong: it implies for
example that the coalgebra E(. . is flat.

Proposition The forgetful functor V: Comod®(C) — Mod; is flat if C
is flat and has enough Cauchy comodules.

Open question. Does flatness of the coalgebra C' imply flatness of the forgetful
functor V: Comod®(C') — Mod§, ?

On the other hand, the properties i) and 4ii) hold whenever the unit N is an
equivalence. Explanations of these properties can be found in section [[.2]

In order to prove these two theorems we use various concepts and results from cat-
egory theory. Our main source is Kelly’s book ‘Basic concepts of enriched category
theory’ [Kel82]. In section || we introduce those concepts which we will need later.
Since we work with R-linear categories instead of the more general ¥ '-categories
from [Kel82] we can give elementary proofs for all the facts we need later. Another
important tool are pasted composites of natural transformations (see section ,
which were introduced in [KS74]. The proof of the recognition theorem uses the
concepts of locally presentable categories and accessible categories. We cite the
necessary results from [AR94] in section [3] The fact that the above functor has
a left adjoint follows from [Str07]; here we give a different construction, which
uses an embedding of the category of R-modules in the category of endofunctors
MOdR — MOdR.

Acknowledgments. I would like to thank Prof. Pink for our weekly discussions.
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1. PRELIMINARIES

1.1. Overview. This chapter contains the material from category theory which we
need for the proofs of our main results. In section|l.2|we introduce some terminology
for colimits, and we define R-linear categories. The main purpose of this section
is to fix notations. We proceed with introducing the pasted composites and mates
from [KS74] in section The former is a notation for handling composites of
natural transformations, and we frequently use this in subsequent sections. The
notion of a mate under adjunction is important for the proof of our reconstruction
result.

In the remainder of this chapter we give definitions of some concepts from [Kel82),
adapted to the special case of R-linear categories. In section [[.4] we introduce
tensor products between modules and objects in an arbitrary objects in an R-linear
category. The key result from this section is corollary To motivate the
introduction of left Kan extensions and dense functors we mention the following
observation. In section[2.3]we will see that for any coalgebra C' the forgetful functor
V: Comod(C) — Modg from the category of all comodules to the category of R-
modules has a left adjoint W: Modg — Comod(C); and that VW is isomorphic
to C®—: Modr — Modp (cf. proposition. In other words, reconstructing
the coalgebra C is equivalent to reconstructing a certain left adjoint R-linear functor
L: ¥ — Modg from a subcategory of . This problem is analogous to the problem
of reconstructing a group from a set of generators; and for this, the notion of a
free group plays an important role. The goal of the sections [I.5| and [I.6] is the
construction of the counterpart of a free group in the context of R-linear categories
and R-linear functors. More precisely, we will show that the Yoneda embedding
can be interpreted as a ‘free cocompletion’ (see corollary .
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1.2. Colimits, adjoint functors and R-linear categories. First we fix some
notations. We use script letters o/, B, €, ... for categories, capital roman letters
A, A’, ... for objects of &/ and lower case letters for morphisms. Functors are
usually denoted by capital letters F', G, H, etc. A category < is called small if the
objects of & form a set.

Given two functors F,G: & — A, a natural transformation o from F to G is a
family (aa)aee such that for every morphism f: A — A’ in o7, the diagram

FA—%>GA

Ffi lcf

FA TS GA'

is commutative. We call a4 the A-component of the natural transformation «, and
we usually denote natural transformations by double arrows a: F = G. If & is
small, then the natural transformations from F to G constitute a set, which we
denote by Nat(F, G).

In our constructions we will frequently use colimits, and we introduce some termi-
nology for handling them. A functor D: 9 — € is called a diagram of shape 2 in
%. A cocone on D is a pair (A, (kq)dew) consisting of an object A of € and a family
of morphisms k4: D(d) — A, d € 2, such that for every morphism f: d — d’, the
diagram

p(d) —2Y L pay

A

is commutative. A cocone (A, (kq)dew) on D is called a colimit cocone if for any
other cocone (X, (£4)aco) on D there is a unique morphism ¢: A — X such that
&4 = pryq for all d € 2. In this situation we say that A is the colimit E| of D, and
we call the k4 the structure morphisms of the colimit. Since a colimit, if it exists,
is unique up to unique isomorphism, these structure morphisms are sometimes
omitted from the notation, and we write A = colim? D or A = colimgey D(d)
to express the fact that there exists a family (kq)deo such that (A, (kq)aco) is a
colimit cocone. On the other hand, if we want to emphasize the role of the structure
morphisms we say that the morphisms kq: D(d) — A exhibit A as colimit of D to
express the fact that (A, (kq)aco) is a colimit cocone.

A diagram of shape 2 is called small if the objects of 2 form a set. A category
€ is called cocomplete if for all small diagrams D, the colimit of D exists. A
functor F': of — £ is called cocontinuous if F' preserves colimits of small diagrams,
meaning that for every small diagram D: 9 — &, if (A, (k4)dco) is a colimit cocone
on D, then (FA, (F(k4))dco) is a colimit cocone on FD. The functor F reflects
colimits (of a certain shape 2) if, whenever (F A, (F(kq))deo) is a colimit cocone
on F'D, then the k4 exhibit A as colimit of D. We say that F' creates colimits if|
whenever the {;: FD(d) — B exhibit B as colimit of F'D, there exists a unique
cocone (A, (kq)aew) on D such that FA = B, F(kq) = &g for every d € 2 and
(A, (Kd)deo) is a colimit cocone. The dual notions of colimits, cocompleteness and
cocontinuity are limit&ﬂ completeness and continuity. They are less important for
what we will do, hence we do not spell out the definitions explicitly.

A functor F': &/ — A is called left adjoint to a functor G: # — & if for every

LColimits are sometimes called inductive limits or direct limits in the literature.
2Limits are also called projective limits or inverse limits.
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A € of and every B € A there are bijections
vap: BFA B)— (A GB)

which are natural in A and B. We say that F' and G form an adjoint pair, and
we denote this by F' 4 G: &/ — AB. If we let n4a = para(idra) and ep =
@52, p(idgr) we get natural transformations 7: id = GF and ¢: FG = id, called
the unit and counit of the adjunction F' 4 G. These natural transformations satisfy
the equations

EFAOF(UA):idFA and G(EB)OUGB:idGB

for every A € &, B € . These are called the triangular identities, and giving the
natural isomorphism ¢ is equivalent to giving two natural transformations 7 and ¢
satisfying these identities. A full subcategory & of a category &7 is called a reflective
subcategory if the inclusion functor i: ¥ — &7 has a left adjoint r: &/ — A.

From now on we fix a commutative, associative ring R with unit 1. We denote
the category of R-modules by Modpg, and we write [—, —] for the internal hom of
Modp, (i.e., [M, N] is the R-module of homomorphisms M — N). A category &
is called R-linear if the hom-sets </ (A, B) are endowed with the structure of an
R-module in such a way that the composition maps

oapc: ¥ (B,C)x (A B)— (A C)

are R-bilinear. Note that with our definition biproducts need not exist in an R-
linear category «; we say that 7 is additive if it does have biproducts. An R-linear
functor T : of — 9B between R-linear categories &/, % is a functor T: &/ — A
such that the maps

TA,A’ : JZ%(A, A/) — <@(7114, TA/)

given by f +— T(f) are homomorphisms of R-modules. An R-linear category .o/
is called small if the objects of o/ form a set. We denote the category of small
R-linear categories and R-linear functors between them by catpg.

Definition 1.2.1. An R-module M is called a Cauchy module if it is finitely
generated and projective. We let Mod%; be the full subcategory of Mod g generated
by those submodules R*, k € N, which are Cauchy modules. We let

catr / Mod$

be the category with objects the pairs (&, w) of small R-linear categories &/ to-
gether with an R-linear functor w: & — Mod%, and morphisms (&, w) — (&', ")
given by those R-linear functors F': &/ — &/’ which make the diagram

commutative.

Remark 1.2.1. Note that with the above definition, the objects of Mod§ form a
set, i.e., Mod% is a small category. On the other hand, the full subcategory of
Modp consisting of all Cauchy comodules is not small: there is already a proper
class of modules which are isomorphic to the zero module. The two categories are
of course equivalent.

Given two R-linear categories & and %, we can construct a new R-linear cate-
gory of ® A, the tensor product of &/ and Z. The objects of &/ ® A are the pairs
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(A, B) of an object A of &7 and an object B of £, and the R-module of morphisms
(A,B) — (4, B’) is given by

(o ® B)((A, B), (A, B)) i= o/ (A, A') & B(B, B).
The composition is given by (f®g, f'®¢') — ff ®gg'. Giving an R-linear functor
Fi:od @B —F€

is equivalent to giving an ordinary bifunctor Fy: &/ x 4 — % which is R-bilinear,
meaning that for every f: A — A’ and every g: B — B’, the induced functions

Fo(f,—): B(B,B') — %(T(A,B),T(A',B’))
and

FO(fvg) : %(Av AI) - %(T(Aa B)v T(A/a Bl))
are R-linear.
Let o/ be a small R-linear category, let 2 be an arbitrary R-linear category and let
F,G: o/ — % be two R-linear functors. The set Nat(F,G) is naturally endowed
with the structure of an R-module: given two natural transformations a: F = G,
B: F = G and an element r € R, we let (a«+8)a :=aa+La and (r-a)a :=7-@a.
The fact that the composition in € is R-linear immediately implies that a + 8 and

r -« are natural transformations, and it is clear that this gives the structure of an
R-module on Nat(F, G). We denote this module by

(o, B)(F,G)

to distinguish it from its underlying set Nat(F,G). If H: o — 2 is another
R-linear functor, the usual composition of natural transformations

o: [, B(G, H) x [, B)(F,G) — |, B)(F, H)

given by (a, 8) — (o) 4 := (a0 4) is clearly R-bilinear. We conclude that the
category of R-linear functors &/ — 2 and natural transformations between them
is again R-linear. We denote this category by [</, 4)].

Recall that the Yoneda lemma says that for any functor F': &/°P — Set, the map

Nat(e/(—, A), F) — FA

which sends « to aa(ida) is a natural bijection. Given an element a € FA, we
denote the unique natural transformation a: &/(—, A) = F with as(ida) = a
by @ := «a. It is not difficult to see that if &/ is a small R-linear category and
F: o — Modpg is an R-linear functor, the assignment o — a(ida) gives an
isomorphism of R-modules

[%7M0d3](”<2{(_a A)7F) i FA.
It follows in particular that the Yoneda embedding gives a fully faithful R-linear
functor Y: & — [&7°P, Modg], where Y (A) = &7 (—, A).

1.3. Pasted composites and mates under adjunction. In category theory it is
common to summarize the situation  f is a morphism with domain A and codomain
B’ by the picture
f
A——1B
and to denote the composite of a collection of morphisms f; with domain A;_; and
codomain A4;, i =1,...,n, by the chain

Ag Do a2 4, A, A,.
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In the special case of a category of functors and natural transformations between
them, there is another useful notation. A natural transformation n with domain F'
and codomain G is an ‘arrow between arrows’. The picture

F—2%>@G

does not fully capture the situation, for F' and G have domains and codomains,
too. Therefore we use the notation

to say that « is a natural transformation from the functor F' : &/ — 2% to the
functor G : &/ — 8. At first this might seem rather clumsy; it is for example
difficult to arrange such expressions in a commutative diagram. The strength of
the notation only becomes apparent once we introduce the basic pasting operations.
Definition 1.3.1. Given functors and a natural transformation as in the diagram

PN

F K
g —RB o €— 9,
~7
H

we denote the natural transformation from K GF to K HF with A-component given

by Kapa by
KGF
T T
KHF

We say that KaF is obtained by whiskering n by K and F.
If we have functors and natural transformations as in the diagram

we call the natural transformation from F' to H with A-component given by by the

composite FAAGA&HA the vertical composite of a and (3, and we denote
it by

F
v
H
Whiskering and vertical composition are the two basic pasting operations.

Now, given a diagram of functors and natural transformations such as

\

7\
i
X
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we can use the basic pasting operations to get a natural transformation going from
the composite of the functors on the top of the diagram to the composite of those on
the bottom as follows: First, we choose any natural transformation whose domain
is contained in the top chain of the diagram. Then we ‘split’ the diagram along the
codomain of this natural transformation:

\Y

JIN

A

~
i

We proceed by whiskering the diagram on the top to obtain a natural transforma-
tion between functors with domain &7 and codomain £, and then iterate this whole
process with the rest of the diagram. The pasted composite of the diagram is the ver-
tical composite of the resulting collection of natural transformations. Usually this
process involves choices, namely whenever there are several natural transformations
whose domains are contained in the top chain of the diagram. It is a consequence
of the following proposition that the resulting composite is independent of these
choices.

Proposition 1.3.1. Given functors and natural transformations as in the diagram

F H
/N/\
o An %z n @,
= x5

the vertical composites

HF F PN
% d—x@\l};‘f
¢—>KFW ¢
n T
N

I
]

KG
G
and
A
HF H
o \n B——%
%m% B 7
U/ILG - /I;I\
\.I_{_.;f

are equal. In other words, the pasted composite of the diagram

A/EI\

o In 2z n @
D e
G K

is well-defined. We call this the horizontal composite of n and p, and denote it by
x .
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Proof. We have to check that for every object A of o7, the A-components of the two
natural transformations are equal. By definition these are given by K(na) o
wra and pga o H(na) respectively. But the diagram

H(FA) 2" g qa

NFAl iﬂcA

K(FA) 1 K(GA)

(na

is commutative by naturality of u, which shows that the A-components are indeed
equal. O

With this proposition one could prove by induction that for any diagram to which
the pasting operation described above can be applied, the resulting composite does
not depend on any choices. However, in order to do this we would first have to give
a formal definition of such ‘admissible’ diagrams, which would complicate matters
needlessly. In all the examples we will consider it will be evident that the general
pasting operation can be applied, and using proposition it will be easy to see
that the pasting composite is well-defined.

We now introduce a useful convention from [KS74]: Demanding that a diagram of
functors

be commutative is equivalent to demanding that one can place the identity natural
transformation in the diagram:

Therefore we introduce the following convention: when we compute the pasted
composite of a diagram of categories, functors and natural transformations between
them, if the diagram has parts containing no natural transformation, these parts
will be commutative. Moreover, these parts are treated as if the identity natural
transformation would stand there.

Now we are ready to give some applications of the pasting operation. Given an
adjoint pair of functors F' 4 G: &/ — % with unit n: id = GF and counit ¢: FG =
id, the triangular identities are equivalent to the two equations

&y_/”i%\\\&{ Q{AAE%>&{
n
AN e N T F
B \ B
T~ 7 B—RB

id id
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and
d id
G “ P “ T
SN = e e
%\j% o — of.
id id

between pasted composites.

Proposition 1.3.2. Given adjunctions F 4 G: of — B, F' 4G : of — B, the
assignments

, o o
/‘F“‘& A G’ FU/H
d oz = B e o = 2
\;"ﬂ G E'U/F G
BV =z
id
and
id
T
’ d !’ M
/’G“& /E\ TIU'G/ - F
B o — o T B = N
\E;/ \FT;X B GU/E
2V »
id

are mutually inverse, that is, they give a bijection between the set of natural trans-
formations F = F' and the set of natural transformations G' = G. The natural
transformation @ is called the mate of o, and T is called the mate of T.

Proof. The triangular identities imply that the equalities

id id d d
7 ., ol o
{n n
el F F F
F | F e F F
2V Sz YV 2 B
id id

o
N
B B

of of o
Gl
T
G G
BB

and
Ve U
N / \ / _
hold, which shows that the given maps are indeed mutually inverse. (|

Proposition 1.3.3. Let F 1 G: o =2 % and F' 4 G': o = B be adjoint pairs,
and let o: F = F' and 7: G' = G be mates under adjunction (i.e. 7 = & and
o =7). Then the equations

7F' o' =Goon and coFr=¢"00G
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hold, and for every A € &/, B € A the diagram

B(F'A,B)— > o/ (A,G'B)
@(UAaB)l lW(AﬁB)
PB(FA,B) — (A, GB)
is commutative, where ¢ and ¢ are the natural isomorphisms induced by the given

units and counits. Moreover, if F"" 4 G": o/ 2 % is another adjoint pair and if
p: F' = F" is a further natural transformation, then

poo =0cop.

If all the above categories and functors are R linear, then the formation of mates
is R-linear, i.e.,

T 0g+Y-01=x-00+Y- 01
for all natural transformations o;: F = F' and all elements x,y € R.

Proof. The equality 7 = @ means that 7 is the pasted composite of the diagram

id
M
el “ PR i
\<
o F G
5V >

id

and it follows by a triangular identity that

\% \"“/m/ \\/

holds. Spelling out the pasted composites of the diagram on the left and on the
right of this equation yields

TF' o' =Goon,
and the equation involving the counit can be derived in a similar fashion. Next we
will prove that the diagram
B(F'A, B)— > o/ (A, ' B)
K@(JA,B)l ld(AmB)
HB(FA,B) — (A, GB)

is indeed commutative. Recall that the natural transformations ¢ and ¢’ send
morphisms f: FA — B and f': I'A — B to pap(f) = Gf ona and ¢ 5(f') =
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G’ f" o'y respectively. It follows that for any object A of &7 we have
A (A, 7pra) 0 Py pralidpa) = Tra oy

(TF on')a

=(Goon)a

=G(oa)ona

=@araloa)

= SDA,FA (e} %(O’A,FA)(idFA),
and by Yoneda it follows that for every B € %

M(AvTB) o 30{»4,3 = PAB° e%(0.47 B)7

as claimed. To see that forming mates is compatible with vertical composition we
consider the composite @ o p. This composite is given by the pasted composite of
the diagram

KQVQ/

and the triangular identities for F’ and G’ imply that this is equal to the pasted
composite of

/R NV

id
On the other hand, the pasted composite of the latter diagram is clearly equal to
p oo, which gives the desired equality
poog =adop.

It remains to show that if all the involved categories and functors are R-linear, then
forming mates is R-linear, too. But the mate of o is given by

o =GeoGoG onG,

and vertically composing with a fixed natural transformation is clearly R-linear.
Thus it suffices to show that the the whiskering operation is also R-linear, i.e., that

G(x-o0+y-01)G =2 -GooG' +y-GoG’

for all z,y € R and all 0;: FF = F’. Since addition and scalar multiplication
of natural transformations are defined component wise, this follows directly from

definition [[.3.1] 0

1.4. Tensor products. Given an object A in an R-linear category ¢, the R-linear
functor ¢(A,—) : € — Modpg preserves all limits which exist in . This is a
necessary condition for a functor to have a left adjoint, and in a sufficiently nice
setting the fact that a functor preserves all limits is equivalent to the existence of
a left adjoint. This motivates part of the following definition.
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Definition 1.4.1. i) For any object A in an R-linear category % and any R-
module M we say that the tensor product of M and A exists if the functor
[M,€(A,—)]: € — Modp, is representable, i.e., if there is an object M ® A in
% together with isomorphisms

C(MeAC)=[M,EAC)

which are natural in C.

ii) An R-linear category is said to have tensor products if for all objects A of €
and all R-modules M, the tensor product M ® A exists. This implies that all
representable functors have left adjoints, and we assume that for each A € €,
a fixed left adjoint —® A : Modr — % to €(A,—): € — Modpg has been
chosen. We denote the unit and counit of this adjunction —® - € (4, —) by
n? and e respectively.

The notation is motivated by taking ¥ = Modg. Then any representable func-

tor [A, —] is right adjoint to — ®g A : Modr — Modpg. So Modpg has tensor
products, and they are given by the usual tensor product of R-modules.
Let € be an R-linear category with tensor products. Any morphism f: A — A’
gives a natural transformation «7(f,—): o/ (A4’,—) = </(A,—), whose mate (see
proposition we denote by — ® f: — ®A = — ® A’. Thus — ® f is given by
the pasted composite of the diagram

id
wa -y
Modp — 22> o Jo(f. - Modg —> o

Proposition [I.3.3] implies that for f’: A’ — A”, we have —® f'o —®@ f = — ®
(f' o f), and the triangular identities imply that — ® id4 is the identity natural
transformation. Naturality of — ® f implies that for any homomorphism ¢: M —
M’ of R-modules, the diagram

M
Ma A2 vrear

<,0®Mi \L@@A'

M’@AmM’@A/

is commutative. This shows that, whenever % has tensor products, we get an
R-bifunctor — ® —: Modgr ®¢ — € (R-bilinearity of — ® — follows by proposi-
tion .

We will later see that cocompleteness of o7 is sufficient for the existence of tensor
products. For this we need the following results and constructions. Let .# be the full
subcategory of Modp generated by the modules R™, n € N. For any module M we
write (& | M) for the category with objects the homomorphisms o : R™ — M, and
morphisms from o : R — M to ¢’ : R™ — M the homomorphisms 7 : R"® — R™
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which make the diagram

commutative. We let Dy be the ‘domain functor’ (% | M) — Modg, which sends
an object o : R"® — M to R™ and a morphism 7 : ¢ — o’ to itself.

Lemma 1.4.1. The morphisms o : Dy(c) — M exhibit M as the colimit of the
diagram Dyy.

Proof. Given a cocone 1, : Dp(0) — N, we have to construct a homomorphism
¢ : M — N with poo =, for every object o : R" — M of (% | M). Form € M,
we choose o : R" — M such that m lies in the image of 0. The we let ¢(m) be the
element 7, (), where x is any element of R™ with o(z) = m. We first have to check
that ¢ is well-defined. If o’ : R™ — M is another homomorphism and if o/ (2’) = m,
then the pair (z,z’) is in the pullback E = {(a,b) € R™ x R™;0(a) = o’'(b)}. Let
a : R — FE denote the morphism which sends 1 to (x,2’). With the notation
T =pryoq, 7 =pryoa and ¢” = o o7 =0’ o7/, we get the commutative diagram

/\
\/

and therefore 1, (z) = 75 (7(1)) = 15 (1) = 15 (7'(1)) = nes(2’). This means that ¢
is a well-defined map, and R-linearity of ¢ immediately follows from this fact. [

We are now ready to prove that the existence of all colimits in ¥ is sufficient for
the existence of tensor products in €.

Proposition 1.4.2. Let € be a cocomplete R-linear category. Then € has tensor
products.

Proof. We fix an object A € €. It suffices to show that for each module M there
is an object C' € ¥ together with a morphism 7: M — ¥ (A, C) such that for any

B: M — €(A,C") there is a unique morphism § : C' — C’ making the diagram

M —1>%(A,0)

x l%(m)

C(A,C)

commutative.

We first consider the special case M = R™ for some n € N. Let i, : R™ — €' (A, A™)
be the unique morphism with 7, (e;) = in; for ¢ = 1,...,n. The pair (A", n,) has
the desired universal property; for if C' € ¢’ is any obJect with a homomorphism
B: R — €(A,C), the unique morphism B: A" — C with Boin; = B(e;) makes
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the diagram
R" _Gn_ F(A, A™)

X l%m,ﬂ)

%(A,C)

commutative, and it is clearly unique with this property. The assignment R™ — A™
has a unique extension to a functor F' : .% — € if we demand that the diagram

R" —" > ¢(A, FR™)

‘ri \L‘K(A,FT)

R™ "> €(A, FR™)

be commutative for every homomorphism 7 : R® — R™. In fact it is quite simple
to give an explicit description of F'r. There are elements a;; € R such that 7(e;) =
ZT:O aijej, and F'1 is the unique morphism A" — A™ with prjoFToin; = a;;-ida.
This shows in particular that F': % — % is R-linear.

Using lemma it is now possible to construct an object C' with the above
mentioned universal property for an arbitrary module M. Namely, we let C be
the colimit of the functor FDy; : (F | M) — €, and we denote the structural
morphisms by ¢,: FDy (o) — C. We let ap; : M — €(A,C) be the unique
morphism which makes the diagrams

Rr s € (A, A™)
o J/%(FR,S%)
M—5 ¢(A,0)

commutative for all o : R® — M. To see that this map has the desired uni-
versal property we let C’ € € be any object with a homomorphism 8 : M —
¢ (A,C"). Since the universal property is already established for the maps n, :
R™ — ¥(A, A™), we can conclude that for every o : R" — M there is a unique
morphism &, : A™ — C’ such that €(A,&,)on, = foo. If 6/ : R™ — M is another
homomorphism, and if 7 : R” — R™ makes the diagram

commutative, we have ;- o F(T) = £,. Indeed, all the quadrilaterals in the diagram

Rn Tin Cg(A7 An)

/ 7 %,Fr)

R — 2 6(A, A™) C(ALy)
N
M @A, C")

are commutative by definition of F'7 and &,, £. The uniqueness part of the
universal property of 7, : R" — % (A, A™) now gives the desired equality &, o
F(r) = & . This shows that the &, constitute a cocone on the diagram FDj :
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(Z | M) — %, so there is a unique morphism B: C — C' with Bo 0o = &,. For
any o : R® — M, the equalities

C(A,B)onu oo =7C(A,B)oC (A ¢ps)onn
=% (A,&)omm
= ﬁ oo

hold by definition of 5 and &, respectively. Since the o : R" — M are collectively
epimorphic, we find that §: C' — C’ is indeed the desired morphism. Uniqueness
of 3 is immediate: if 3 is another morphism with €' (A, 8) o 7y = 3, the diagram

R" — 2 €(A, A™)
Ui \L%(A#Po)
M—25%(A,0)

X J/(K(A,ﬁ)

(A, C")

is commutative for all o: R® — M, and it follows that (3o ¢, = &,; and thus that
[ = [ because the morphism with this property is unique. O

Proposition 1.4.3. If € is any R-linear category and if F' : Modg — ¥ is
an R-linear functor which preserves colimits, then F is left adjoint to the functor
¢ (FR,—) : ¢ — Modg, with unit n* :id = ¢(FR,F—) such that nk. : R —
C(FR,FR") sends e; to F(in;) fori=1,...,n.

Proof. We need to construct a natural transformation n : id = ¢ (FR, F—) such
that each component satisfies the usual universal property (for the sake of brevity
we write 1) for nf” in this proof). First, we let o, : R" — € (FR, FR™) be the unique
homomorphism which sends e; to F'(in;) for ¢ = 1,...,n. Given any module M, we
let nar : M — € (FR, FM) be the unique morphism which makes the diagrams

R —"> €(FR, FR")

al J(?;(FRJ?U)

M —s ¢ (FR, FM)

commutative for all o : R™ — M. Such a morphism exists by lemma Choos-
ing M = R™ and ¢ = id : R™ — R" we immediately find that ng» = a,,. To see
that the 1y constitute a natural transformation, we let ¢ : M — N be an arbitrary
homomorphism of modules. Then the upper square and the outer rectangle of the
diagram

R" -~ ¢(FR, FR™)

Ul J{%(FR,FU)

M —* > €(FR,FM)

4Fl l%’(FR,ng)

N —2>%(FR,FN)
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are commutative for every o : R® — M, by definition of ny; and ny respectively.
It follows that the equalities

nNowoo=C(FR,Fp)o€(FR,Fo)oay
=C(FR,Fp)onyoo

hold, and thus that nyop = €(FR, Fo)ony since the o : R™ — M are collectively
epimorphic. It remains to show that for any object C' € ¢ with a homomorphism
B: M — %€ (FR,C) there is a unique morphism § : FM — C such that the diagram

M~ ¢ (FR, FM)
i%ﬁ(mﬁ)
%€ (FR,C)

is commutative. For any o : R™ — M, we let &, be the unique morphism FR" — C
with &, o F(in;) = Boo(e;) for i = 1,...,n. We claim that the £, constitute a
cocone on the diagram FDy; : (% | M) — %. To see this we have to show that
for any commutative diagram

we have &,/ o F(1) = &,. It suffices to check that the equalities
€0 () 0 F(in) = & o F(in;)

hold for every ¢ = 1,...,n. But the right hand side of the above equation is
by definition equal to o o(e;) = (o o'(r(e;)). There are a;; € R such that

7(ei) = >_j-, aijej. This means that 7oin; = 7" | a;; - in; and therefore that

F(7oin;) E a;; - F(inj).

By R-linearity of ¢ it follows that

&y 0 F(1) 0 F(in;) =&, 0 <Z a;; - F(in; )

= Zaij . fg/ o F(inj)

j=1

m
=i Boole))
j=1

:ﬁ”'(Z%‘ '€j>
j=1

=Boo'(r(e:)),

so the &, do indee(i form a cocone on F' DM~. Since F' preserves colimits there is a
unique morphism 3 : FM — C such that 5o F(o) = &, for every o : R — M.
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From this we conclude that
€ (FR, 5) onpy oo(e;) =% (FR, E) 06 (FR,Fo)oay(e;)
= € (FR, ) o €(FR,Fo)(F(in;))
=B o F(o) o F(in;)

= 50 o F(lnz)

=pBoo(e)
for i = 1,...,n. This implies that € (FR, B) onpy = B, and the result follows since
[ is clearly unique with this property. O

Corollary 1.4.4. The functor evg : Cocts|Modgr, €] — € which sends a cocon-
tinuous R-linear functor F' to FR and a natural transformation o: F = F' to
agr : FR — F'R is fully faithful. In particular, if € is cocomplete, this gives an
equivalence of categories Cocts[Modg, €] ~ €.

Proof. The mate of « is a natural transformation @ : ¢ (F'R,—) = ¢ (FR,—). By
Yoneda it must be of the form € (p,—) for a unique morphism ¢ : FR — F'R.
Since the diagram

R %(F'R, F'R)
W}lgl iaF’R—%(‘PﬁF/R)
€ ,Q
@(FR, FR) — " _ (PR, F'R)

is commutative (see proposition it follows that ¢ = agr. This shows that
evg is faithful. If ¢ : FR — F’'R is any morphism, the natural transformation
C(p,—): €(F'R,—) = €(FR,—) has a mate 3 : F — F’, and the mate 3 of 3
is equal to € (SR, —) by the above considerations. But the mate of a mate is the
natural transformation itself (see proposition , so €(Br,—) = €(p,—) and
by Yoneda it follows that 8z = ¢; in other words, that evg is full. O

Proposition 1.4.5. Let € be an R-linear category, and let A be an object of €
such that the tensor product — ® A exists, with unit n :id = €(A,— ® A). Then
nr: R — €(A,R® A) sends 1 € R to an isomorphism A — R® A. We call this
the canonical isomorphism ¢ : A — R® A.

Proof. This follows immediately from the fact that the homomorphism « : R —
% (A, A) which sends 1 to id g has the same universal property as nr : R — (A, R®
A); for this implies that there is a unique isomorphism ¢ : A — R ® A such that
the diagram

R ——> (A, A)

- l(g(A,so)
C(A,R® A)
is commutative, and thus that ng(1) = ¢ o a(1) = ¢ is an isomorphism. O

Corollary 1.4.6. Let € and £ be R-linear categories with tensor products. If an
R-linear functor F : € — % preserves colimits, then it preserves tensor products.
More precisely, whenever n :id = € (A, — ® A) is a unit, the composites

MM 9(AM® A) —~ B(FA, F(M ® A))
exhibit F(— ® A) as left adjoint of B(FA,—).
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Proof. For every object A of &7, the composite Flo—® A is an R-linear functor which
preserves colimits, so it is left adjoint to € (F(R® A), —). We write p: A - R® A
for the canonical isomorphism. Let 1}, be the composite

Y B(Fo,F(M®A))

M——BFRDA),F(M®A) ——— B(FA F(M® A)).

The 7}, obviously constitute a natural transformation 7': id = Z(FA, F(—® A)).
This exhibits FI(— ® A) as left adjoint of Z(F A, —) because ¢ is an isomorphism.
It follows that for every module M there is a unique morphism &r : F(M ® A) —
F(M ® A) such that the diagram

M

M

B(FA,F(M ® A))
WMi \LS@(FA,&M)
C(A,M® A) —> B(FA, F(M® A))

is commutative. Since the £, are defined by the universal property of an adjunction
it follows easily that they constitute a natural transformation F(— ® A4) = F(— ®
A). By Corollary this natural transformation is entirely determined by the
component {g. For M = R the above diagram reduces to {gnj(1) = F(nr(1)) =
F(¢). But /(1) = idoF (), so g = id and consequently {3 = id for every module
M. The above diagram thus gives the desired result. O

1.5. Coends and left Kan extensions. The goal of this section is to prove a
‘parametrized’ version of the fact that for a cocomplete R-linear category ¢, the
functors (A, —) have left adjoints for every A € €.

Definition 1.5.1. For any R-linear functor K : &/ — % from a small R-linear
category & to €, we write K for the functor ¢ — [7°P, Modp| which sends
Ce%to?(K—,C): &/° - Modpg and ¢p: C — C" to €(K—,¢): €(K—,C) =
C(K—,C").

We want to show that for cocomplete R-linear categories &, the functor K has
a left adjoint. In order to this we first have to introduce coends.

Definition 1.5.2. Let T : &/°P ® & — ¥ be an R-linear functor. A pair
(X, (M) acwr) consisting of an object X of ¥ and a family of morphisms Ay :
T(A, A) — X is called a coend of T if the diagrams

T(f,id
_—

7, A) T 1o, 4)

T(id,f )l Aa
A
T(AA) —2 > X
are commutative for every morphism f : A — A’ and the pair (X, (Aa)acw) is
universal with this property; that is, if, whenever py : T(4,A) — X’ make the
analogous diagrams commutative, there is a unique morphism « : X — X’ such
that ua = a o Ay for every object A of &7. A category % is said to have coends if
for every small R-linear category </ and every functor T': &/°P ® &/ — €, there is
a chosen coend, which we denote by

(/ ), Aacer )

The morphisms Ag: T(A, A) — fA T(A, A) are called the structure morphisms of
the coend.
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Remark 1.5.1. Let € be an R-linear category, and let &/ be a small category. A
pair (X, (M) acw) is a coend of T: &/°P @ of — € if and only if the diagram

(ina oT(f,id))f_A B
@f:AHA’ T(A/’ A) ®A€£¢ T(Av A) A X
(inas oT(id,f))f:AﬁA,

is a coequalizer diagram. In particular, if ¥ is cocomplete, then % has coends.

Proof. This is a straightforward reformulation of the universal property of coends.
O

Remark 1.5.2. If o7 is small and if the R-linear category % is cocomplete, the coend
construction uniquely extends to a functor

Aco/
/ AP @A, C) —C

such that for any natural transformation « : T — T' and any object A in & the
diagram

T(A, A) 2w (A€ iy g)

is commutative.
Proof. This follows immediately from the universal property of coends. O

Definition 1.5.3. Let K : & — % be an R-linear functor, where 7 is a small
and % is cocomplete. We write G for the functor [&/°P, Modg| — [&/°P ® o, €]
which sends F to F~QK— : /P« — € anda: F = A toa®id : F—
®K— = F'—®K—. The composite fAe“Q{ oG : [&/°P, Modpg| — € is denoted by
Lk =Lany K : [¢/°?, Modg| — €. For any R-linear F : &/°? — Modp, we thus
have the formula

Acgol
LanyK(F):/ FA® KA,

and we denote the structure morphisms of this coend by \{: FA® KA — fA FA®
KA.

This functor is called the left Kan extension of K along Y : &/ — [</°P, Modg].
Since we only need some basic facts about Kan extensions and the above formula
for computing them we simply take that formula as the definition. The general
concept of a Kan extension can be found in [Kel82).

Proposition 1.5.3. With K : & — € as in definition[1.5.3, the functor
Lany K : [@/°?, Modg] — €
is left adjoint to N
K : ¢ — [¢/°°, Modg],

with unit n and counit € given by the unique morphisms such that the diagrams

KB
FB—*5 . ¢(KB,FB® KB) [*(KA,C)® KA—"=C
P and C(K(-),C)
(nr)B l%(KB)\B) Az T &8

C(KB, ["FA® KA) ¢(KB,C)® KB
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are commutative for every B € o .

Proof. Note that the definition of ec makes sense: For every morphism f: B — B’,
the diagram

G(KB',C)e KB L kg o) e KB

%(KﬂC)@KBi lEgB’

%(KB,C)® KB C

KB
€c

is commutative by proposition[I:3.3] and by definition [[.5.2]it follows that there is a
unique arrow £ making the desired diagrams commutative. Next we have to check

that the (ng)p really do constitute a natural transformation F' = € (K—, [ AFA®
KA), i.e., that the outer composites of the diagram

¢(KB, ["FA® KA)

/ \ N

€(KB,AE) C(Kf,[* FAQKA)

\
¢(KB,FB® KB) m ¢(KB, ["FA® KA)

¢ (Kf,FBRKB) ¢ (KB’ \E)
/
¢(KB',FB® KB)

nKB ) ¢(KB',FBRK) (3) G(KB' L)

¢(KB',FB® KB')

KB T~
FB “(KB',FfQKB')

FB (1) ¢(KB',FB' ® KB')
F ’

\ %
B’

are equal for every morphism f: B’ — B. But part (1) is evidently commuta-
tive, part (2) is commutative since — ® K f is the mate of € (K f,—) (see propo-
sition [[.3.3), part (3) is commutative by definition of a coend, and part (4) is
commutative by naturality of n%5".

We have to show that the ny and e¢ are natural in F' and C respectively. For any
natural transformation a: F' = F’, the diagram

/

KB € (KB,\E)
FB—"" > ¢(KB,FB® KB) — "> @(KB, [ FA® KA)
ap l%(KB,aB(@KB) i%(KB,fA aa®KA)
F'B———>¢(KB,F'B® KB) C(KB, [* F'A® KA)

nkp ¢(KBAE)
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is commutative, which shows that the g are natural in F'; and for any morphism
p: C — (', the outer composites in the diagram

€ (K—,C)
¢(KB,C)® KB [Y4(KAC)® KA C
€ (KB,p)QKB if*‘ C(KAQ)QKA lw
¢(KB,C")® KB > [P (KA, CY® KA c’
/\ﬁ(K—,C )

are equal, hence the universal property of coends implies that the e are natural
in C. It remains to show that the triangular identities hold. One of these follows
from commutativity of the diagram

¢(KB,%¢(KB,C)® KB)

€ (K—,C
K// KBAE )

¢(KB,C) G(KB 5P C(KB, [P C(KA,C)® KA)
KB, C

which is a consequence of the definition of - and the fact that the triangular
identities hold for the adjunction — ® KB 4 ¢ (K B, —). The diagram

[ KA, [P FA® KA) @ KA’

Lany K(ng NG FA@KAW\

[YFA® KA C(KB, ["FA® KA)——— ["FA® KA
5] FA®KA
ABT ey C(KBAg) 2 ]AB
FB® KB —— %(KB,FB® KB)® KB—————> FB® KB
\ Nrg QKB €EFBRKB
id

is commutative: part (1) is commutative by definition of (nr)p and of Lany K (see
definition [1.5.3)), and part (2) commutes by naturality of e%Z. This shows that the
second triangular identity holds. O

Proposition 1.5.4. Let o/ and € be R-linear categories such that < is small
and € is cocomplete. For every R-linear functor K: of — € there is a canonical
natural isomorphism arg: K = LY.

Proof. Writing ¢ ¢ for the natural isomorphism
C(LgF,C) 2 [o/°P, Modg](F,%(K—,C))
from proposition [[.5.3 we get by Yoneda an isomorphism

Pot(—,4A),C

¢ (Lx((—,4)),C) [«/°P, Modg](#/(—, A), € (K—,C))

C(KA,C),

YA ¢(K—,C)
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where 14 (k- c) sends a natural transformation x to r4(id4). Since these iso-
morphisms are natural in C, the Yoneda lemma implies that there are unique
isomorphisms (ag)a: KA — LgY (A) such that

Yag(K-.C) ° Pa(—a),c =C((ak)a,C).
Because the left hand side of the above equation is natural in A, so is the right

hand side, and it follows that the (k)4 are natural in A. O

1.6. Dense functors. The notion of density of a functor is motivated as follows
(see [Kel82], chapter 5): A continuous map f: X — Y between Hausdorff topo-
logical spaces has dense image if and only if a continuous map ¢g: Y — Z into
another Hausdorff space is uniquely determined by the composite gf. The notion
of a dense functor is analogous to this property, with ‘continuous map’ replaced by
‘cocontinuous functor’; see proposition for the precise statement.

Definition 1.6.1. Let K : &/ — % be an R-linear functor. The functor K is called
dense if K: € — [@/°°, Modp] (see definition [1.5.1)) is fully faithful.

Proposition 1.6.1. For any small R-linear category <f , the Yoneda embedding
Y: o — [/°P, Modg]
is dense.
Proof. The Yoneda lemma gives a natural isomorphism
Yp: [2°P, Modg|(Y(-),F) = F.
The Y r are natural in F', hence they give a natural isomorphism
¥: Y = id{or Modn] -
It follows in particular that Y is fully faithful. O

Lemma 1.6.2. Let F 4 G: B — € be an adjunction with unit n and counit £, and
let C € €. Thenec: FGC — C' is an isomorphism if and only if Ge.p: €(C, D) —
HB(GC,GD) is a bijection for every D € €. In particular, G is fully faithful if and
only if ec is an isomorphism for every object C of € .

Proof. The triangular identities imply that for every B € %, the map

¥B,C

¢ (FB,0) 22% 3(B,G0)

given by ¢p.c(g) = G(g) onp is an isomorphism. For any morphism f: C — D we
have

Yac,D © % (ec, D)(f)

G(foec)onac
= G(f) o G(ec) onae
=G(f),

where the last equality follows by the triangular identities. It follows that pgc,p ©
%(ec,D) = Geo,p. By Yoneda, e¢ is an isomorphism if and only if (¢, D) is an
isomorphism for every object D; and the above equality shows that this is equivalent
to the fact that G¢, p is a bijection for every D € €. (|

Proposition 1.6.3. Let K : & — € be an R-linear functor, where o/ is small
and € is cocomplete. Then K is dense if and only if for every object C of €, the
counit morphisms eK4: €(KA,C) ® KA — C exhibit C as coend of the functor
CK-C)K—: PRy — €.
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Proof. Tt follows directly from the definition of the counit e¢: LxKC — C in
proposition that ec is an isomorphism if and only if the counit morphisms
KA €(KA,C)® KA — C exhibit C as coend of the functor €(K—,C) @ K— :

AP ® o — €. By lemma this is equivalent to the fact that K is fully
faithful. (]

Proposition 1.6.4. Let € be a cocomplete R-linear category, and let K : &/ — €
be a dense functor. Let F\F' : € — 9B be cocontinuous functors and o : FK =
F'K be a natural transformation. Then there is a unique natural transformation
B: F = F' such that a = 8K.

Proof. Since F preserves colimits and because K is dense, the morphisms F’ (Eg Ay
F(¢(KA,C)® KA) — F(C) exhibit F(C) as the coend of F(%(K—,C) @ K—),
and the analogous result holds for F’ (see proposition . Write vE4 for the
unique morphism which makes the diagram

F A
FrA YL PR KA)

aAl »yg"‘l
( 1A

FEAD) P (R KA)

commutative, where ¢4 and <p’A denote the canonical isomorphisms (see propo-
sition . By corollary there is a unique natural transformation y%4 :
F(-® KA) = F'(— ® KA) with R-component y54. If we write 523 for the mor-
phism 75;5(,4,0) : F(¢(KA,C)® KB) — F'(¢(KA,C) ® KB) we get a natural

transformation
¢ F(¢(K—-,C)®@ K-)= F'(¢(K—,C)® K-).

Indeed, naturality in the first variable follows directly from naturality of v%4, and
naturality in the second variable follows because for any morphism f : A — A’
AEA o F(—® Kf) and F'(— ® Kf) o v54 both have the same R-component;
hence they are equal by corollary Therefore there is a unique morphism
B¢ : FC — F’'C such that
F(eg™)
F(¢(KAC)® KA)——= FC
§§,A \L Bc
F'(¢(KAC)® KA) —= F'C

F'(e6™)

is commutative, and since both §¢ and ¢ are natural in € it follows that 3 : F = F”
is a natural transformation. It remains to show that K = « and that § is unique
with this property.

We first consider the diagram

KA A F EKAK
F(Ro KA) L5 (KA, R KA) © KA) — %) p(Re KA)
’YgAi ’Y%((AKA,R@)KA):(SII:,IZ lBR®KA
F(R® KA) ——— F(¢(KA R® KA) ® KA) - F(Re KA),
F'(np*®KA) F'(eBbra)

which is commutative by naturality of y%4 and by definition of Srgx 4. By the
triangular identities for the adjunction — ® KA 4 € (K A, —) it follows that the top



TANNAKA DUALITY 27

and the bottom morphism in the above diagram are identity morphisms, and there-

fore that Srgra = ’ygA. This and the definition of 'ygA imply that x4 = aa.

If 3: F = F'is another natural transformation with this property, we find immedi-

ately that 'yEA = BR@KA and by corollary that 754 = 3 — KA. Therefore

537 5 must be equal to B%( KA,0)@kA» and naturality of 3 implies that the diagram
5

F(e
F((KA,C) o KA) ") po
5g,A_ﬁ<5‘(KA,C)®KA\L Bc

F'(¢(KA,C)® KA) F'C

—_—
F’(SgA)
is commutative, hence that 3 = (. O

Corollary 1.6.5. For any cocomplete R-linear category € and any small R-linear
category <, the functor
[Y, €] : Cocts([«7°P, Modg],€) — [, €]

which sends a cocontinuous functor F to FY : o — € is an equivalence of cate-
gories.

Proof. By proposition the functor [Y,%] is fully faithful, and in proposi-
tion we have seen that for any K : & — €, Lany KoY = K. In other words,
[Y, €] is essentially surjective. O

Definition 1.6.2. Let K: &/ — % be an R-linear functor, where 7 is a small
R-linear category. For any C € € we define the category (K | C) as follows: the
objects of (K | C') are pairs (A, ¢), where A is an object of & and p: KA — Cis a
morphism of €, and the morphisms (A4, ) — (A4’, ¢’) are the morphisms f: A — A’
in & for which the diagram

K

KA Y
C

is commutative. We let Do (K | C') — € be the functor which sends (4, ¢) to
KAand f: (A, p) — (A, ¢') to Kf. The canonical cocone on D¢ is the cocone

<C’ (H(A"P))(AW)G(KLC))
given by the morphisms k(4 ,) = ©.

Proposition 1.6.6. Let K: &/ — ¢ be an R-linear functor, where &/ is small and
additive and € is cocomplete. For any object C' of €, the counit ec: Lx K — C

(see propositio s an isomorphism if and only if the canonical cocone on D¢
1.6.2

(see definition|1.6.9) exhibits C as colimit of Do. In particular, K is dense if and
only if this holds for every object C of €.

Proof. The second statement follows immediately from the first by lemma [1.6.2
We denote the set of cocones

(X, (7<A,¢))(A,<p)e(m0>)

on D¢ with target X € € by Sx. If a: €(K—,C) = €(K—,X) is a natural
transformation, we let x(a)(a,,) = @a(p). If f: (A, ) — (4’,¢) is a morphism of
(K | C), then ¢ = ¢’ o K f, and by naturality of « it follows that

X(@)(a,0) = aalp) = aa(¢ o Kf) = aa(yp) o Kf,
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which shows that the X(a)( A,p) constitute a cocone. In other words, we get a map
x: Nat(€¢(K—-,C),¢(K—, X)) — Sx.

Moreover, the composite

(0, X) % Nat(@(K -, C), € (K —, X)) —> Sx
sends a morphism g: C' — X to the cocone with components
X(Ke,x(9)(a0) = X(€(K=,9))(a4) = C(KA,9)(¢) = gop.

Thus x o f?c,x is a bijection for every X € € if and only if the canonical cocone on
D¢ exhibits C as colimit of De. On the other hand, lemma shows that ¢ is
an isomorphism if and only if f(q x 1s a bijection for every X € ¥. The statement
of the proposition is thus equivalent to the fact that x is a bijection.

It remains to construct an inverse of y. Given a cocone

(X7 (7(A>¢))(A,¢)E(ch))’

on Do welet B(y)a: €(KA,C) — €(KA, X)be the map which sends p: KA — C
to Y(4,p). We claim that 3(7)4 is a homomorphism of R-modules. For r € R, the
diagram

K(r id)

\/

is commutative. By definition it follows that r -id: (A,7 - ) — (4,¢) is a
morphism in (K | C). Since the (4 . constitute a cocone on D¢ it follows that
TAre) = VA 0 K(r-1d) =774,

hence that B(7)a(r-¢) =r-B(7)a(p). Since & is additive, the sum A @ A exists.
We denote the inclusions by in;: A — A@ A, i = 1,2. The fact that K is R-linear
implies that the K (in;): KA — K(A® A), i = 1,2 exhibit K(A® A) as sum of two
copies of KA. Tt follows that for any two morphisms p;: KA — C in % there is a
unique morphism (¢1 ¢2): K(A® A) — C such that the diagram

K(lnl)

S /

is commutative for ¢ = 1,2. Furthermore, the diagram

K(1n1 +ino)

NG

is commutative because K is R-linear. These three diagrams show that we have
morphisms in;: (4,¢;) — (A®A, (p1  ¢2)) and a morphism K (in; +ins): (A, 1+
@2) = (AD A, (o1 2)) in (K | C). The fact that the (4, constitute a cocone

KAg A)
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on D¢ therefore implies that

’Y(A,Lp1+<,02) = 7(A$A7(¢1 ) ] K(inl + in2)

2)

) o) K(ml) + ’Y(A@A,(sol <,02)) ] K(IHQ)

- IY(AEBA(LPl ©2)

= Y( A1) T V(Apn)-

This shows that 5(y)a(p1 +2) = A1) + B(1)a(p), as claimed. For any
morphism f: A — A" and any ¢p: KA — C, f gives a morphism (A, oo Kf) —
(A,p) in (K | C), which implies that

YAoK f) = V(A © Kf,

i.e, that B(v)a(p o Kf) = B(7)a(p) o Kf. In other words, 8(v) is natural in A,
and we have in fact constructed a map §: Sx — Nat(€(K—,C), ¢ (K-, X)). For
every natural transformation a: €(K—,C) = ¢ (K—, X) and every ¢: KA — C
we have

(B0c(@)) (@) = x(@)a.0) = @a(9),
and if the v(4,): KA — X constitute a cocone on D¢, the equalities

X(B(Y))(a,0) = B(1)ale) =4,
hold. This shows that y and 8 are mutually inverse, which concludes the proof. [

Corollary 1.6.7. Let </ be a small additive R-linear category. For every R-linear
functor F: &/°° — Modpg, the canonical cocone on Dp: (Y | F) — [/°P, ModRg]
(see deﬁnition exhibits F as colimit of Dp.

Proof. This is a direct consequence of proposition and proposition [1.6.6{ [

2. THE RECONSTRUCTION PROBLEM

2.1. Overview. In this chapter we give an explicit construction of the left adjoint
mentioned in the introduction, and we use this construction to prove theorem|2.6.5
In section [2.2] we show that the equivalence of categories from corollary[I.4.4]extends
to an equivalence of the category of coalgebras and the category of cocontinuous
R-linear comonads (see definition [2.2.2). The proof is straightforward but rather
tedious.

In the sections and we introduce the categories of comodules for coalgebras
and for comonads, and we show that these are compatible with the equivalence from
section (see proposition [2.4.3] for the precise statement). We also cite Beck’s
monadicity theorem (theorerln—_ZEED which will be used in the proof of our recog-
nition result in section [3:4] We construct the left adjoint to the comodule functor
in section using left Kan extensions (see definition , and the equivalence
mentioned above. This enables us to give an explicit formula for the counit in
section which can then be used to prove our reconstruction theorem.

2.2. Comonoids and monoidal functors. Recall that a monoidal category is a
category .# together with a bifunctor —® — : # X . # — .# and an object I € . #
such that —®— is associative up to natural isomorphism a = a4 g,c : (A®B)®C —
A®(B®C) and such that [ is a unit up to natural isomorphism =14 : I® A — A
and r =r4: A® I — A. Furthermore, these natural isomorphism have to satisfy
certain axioms (coherence laws), which then imply that all diagrams containing
only instances of a,l,r and —® — applied to such morphisms are commutative (see
IML9S]).
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Definition 2.2.1. Let .# be a monoidal category. A comonoid in .4 is an object
C € A together with a comultiplication § : C — C ® C' and a counit ¢ : C' — T
such that the diagrams

4 0RC

C cCeC CeC)aC C
T71 l71
5 J{a and J{a
C®C rY C®(C®C) C®I<7C®a C®C*>E®C I®C

are commutative. A morphism of comonoids (C,d,e) — (C’,d,¢’) is a morphism
¢ : C — C' in .# which is compatible with the comultiplications and the counits,
that is, such that the diagrams

c—>cocC C = c’

“’l Jros o \\ /
& I

CIHC/®C/

are commutative. The comonoids in .# with comonoid morphisms constitute a
category, which we denote by Comon(.Z).

We are interested in the following two examples of monoidal categories: The
first is Modp, itself, with its usual tensor product and unit R. The second example
is the category Cocts[Modg, Modg] of cocontinuous R-linear functors Modpr —
Modg, with tensor product given by the composition of functors and unit object
the identity functor idmod,: Modr — Modpg. This category is strict monoidal,
i.e., the natural isomorphisms a, [, r are in fact identities.

Definition 2.2.2. A comonoid (C,d,¢) in Modp, is called a coalgebra, and the cat-
egory of coalgebras is denoted by Coalgp. A comonoid (7,67 ,eT) in the category
Cocts|[Modg, Modg] is called a cocontinuous R-linear comonad, and the category
of cocontinuous R-linear comonads is denoted by CCg.

The goal of this section is to construct an equivalence between Coalg, and CCr.
In order to do this we need a notion of morphism between monoidal categories.

Definition 2.2.3. A monoidal functor F : .# — .#' between monoidal categories
(M, 2,1,a,r1)and (A, &, I' a',7",I') is a functor F : A4 — ' together with a
natural transformation 4 g : FA®'FB — F(A®B) and a morphism g : I’ — FI
such that for all objects A, B, C of .#, the diagrams

’
T

, FAQ'I FA
(FA®R' FB)® FC —*=FA® (FB® FC)
FA® o F(r)
'FC FAR'
YaA,B® \L i ®YB,c FA® FI . F(A@I)
F(A® B) & FC FA® F(B®C) M
l i I'e FA——>FA
YAQB,C YA,BRC

FA®’¢0\L TF(z)
FI®Q FA—— F(I® A)
Pr,a

F((A®B)® ()

) F(A® (B ()

are commutative. A monoidal functor (F,, ) is called strong if the ¥4 g and g
are isomorphisms.
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Proposition 2.2.1. Let (F,¢,0) : M — A" be a strong monoidal functor which
is fully faithful and essentially surjective. Then the functor F : Comon(.#) —
Comon(.#") which sends a comonoid (C,d,€) in M to the comonoid FC with

comultiplication
1

o=
FC 2> FCe0) 2% Fow FC
—1
and counit FC'&FILI’ and a morphism ¢ : C — C' of comonoids to
Fyp: FC — FC' is an equivalence of categories.

Proof. First one has to check that Fis well-defined, i.e., that F'C with the described
comultiplication and counit is indeed a comonoid in .#’. This follows from the facts
that C is a comonoid and that F' is strong monoidal. For example, the diagram

w—l
FC il F(C®CQ) ac FC® FC
F(6®C) (2) Fé®'FC
Fs 1) F(CaC)®0) F(C®C)®' FC
8@0,0
F(a) Yo lc® FC
Feoo) — " _peoecec) @ (FC& FO)& C)
Yoo 3) Ye.ceo a’
F(C)& F(C) —————FC® F(C® () ———— FC & (FC ®' FO)
FC®'F$§ FC®'Y,

is commutative. Indeed, commutativity of (2) and (3) follows from the naturality
of ¢, (1) is commutative because C' is a comonoid and (4) is commutative because
(F,1,10) is strong monoidal. The remaining comonoid axioms and the axioms for
F¢ to be a morphism of comonoids can be checked similarly. Next we want to show
that F is fully faithful. Clearly Fis faithful, because F' is. To see that Fis full, we
let ¢’ : FC — F'C’ be a morphism of comonoids, where (C’,§’,¢’) is any comonoid
in .. Since F is full, there is a unique morphism ¢ : C' — C’ in .# such that
Fy = ¢'. Tt remains to check that ¢ is in fact a morphism of comonoids. But the
diagram
-1

P
FC 25 F(C®C)—% FC @ FC

Yo,c

F(C®O)
\
Fsa—sa/l w’®’w’:¢F¢®’FvJ lF(</>®s&)

FC'—=F((C'®(C")—FC'® FC' — F(C'® (")
Fo' o Ve o

is commutative, hence F(p ® ¢ 0 §) = F(§' o ¢). Since F is faithful, this yields
the desired equality ¢ ® p 0§ = §’ o, and the compatibility with counits follows
similarly.

It remains to show that F is essentially surjective. If (C,4’,¢’) is any comonoid in
M, there is an object C of .# such that C' and F'C' are isomorphic. There is then
a unique comonoid structure on F'C such that a chosen isomorphism FC — C’ is an
isomorphism of comonoids. Without loss of generality we can therefore assume that
FC=C" Weletd:C — C®C and ¢ : C — I be the unique morphisms with F'¢ =
eo,cod and Fe = 1pgoe. We are done if we can show that (C, 4, €) is a comonoid in
A , because we then obviously have 13((77 d,e) = (C',¢,¢"). We illustrate how one
can check that (C,4,¢) is a comonoid by proving the coassociativity axiom. This
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can be done with the same strategy which was used to prove that F is well-defined:
The outer composite in the diagram

FC o F(C®C) Y FC® FC
F(6®0) (2) FéQ'FC
Fs (1) F(Ce(C)®(C) ——F(Co0)&' FC
F(a) el Yo o® FC
Feoo)— " _peecec) @ (FCs FO)& C)
volo (3) Yoo o
F(C) &' F(C) — > FC& F(C&C) roae FC®' (FC & FC)

is precisely the coassociativity axiom for ¢/, because z/;élc oF'§ = ¢'. Since the parts
(2), (3), (4) are commutative, it follows that (1) is commutative, too. Coassociativ-
ity of (C, 9, ) now follows by faithfulness of F'. O

Proposition 2.2.2. The functor e = evy: CoctsModgr, Modgr] — Modpg is
strong monoidal, with ¥y = id : R — id(R) and Yp g : e(F) @ e(G) — e(F o G)
given by (ép)er : FR® GR — F(GR), where (g : FR® — = F is the unique
natural transformation with (§p)r =r: FR® R — FR.

Proof. The diagrams

e(F) ® R—"—= ¢(F) R® e(F) —— e(F)
e(F)®wU\L Te(T) and e(F)®¢oi Te(l)
e(F) ® e(id) e e(F oid) e(id) ® e(F) —e(id oF)
51 id, F

reduce in this context to the diagrams

FR®R—>FR R®FR—->FR

FR®idl Tid and FR®idl Tid
FR® R —> —

® (Er)r R RE® e(F) (&a)FR FR,

which are commutative because ({r)r = r by definition and because (&aq)p =
Ilpyg: R® M — M. The latter follows from the fact that g = rg: R® R — R, so
l: R®— = idMmody, is indeed the unique natural transformation with R-component
rg: R® R — R.

It remains to show that for cocontinuous functors F, G, H : Modr — Modg, the
diagram

o(@)) ® e(H) — > o(F) @ (e(G) ® e(H))
Yr,acQe(H i ie(F)(@wG,H

G)®e(H o(F) @ e(G o H)

0oG)oH) ——— > ¢(F o (GoH))

e(id)
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is commutative. Using the definition of e and ¢ we find that this is equivalent to
commutativity of

(FR® GR)® HR —“> FR® (GR® HR)

(5F)GR®HRi iFR(X)(ﬁG)HR
FGR® HR FR® GHR
@FG)HRi | oo
FGHR ———7— FGHR,

which is an instance of the more general diagram

(FR®GR)® M —*>~FR® (GR® M)

<5F>GR®Ml iFR@(&:)M
FGR® M FR®GM
<sm>Mi i(smcM
FGM FGM,

with M = HR. Since both morphisms in the previous diagram are natural in M,
corollary implies that it suffices to check its commutativity for M = R. This
means that we are done if we can show that the outer composites in the diagram

(FR®GR)® R—+>FR® (GR® R)

(fF)GR@Rl \ lFR(@(EG)R—FR@T

FGR® R FR® GR
(gFG)R"'\L l(gF)GR
FGR a FGR

are equal. But the lower pentagon of this diagram commutes by naturality of r, and
the upper triangle is commutative by Mac Lane’s Coherence Theorem for monoidal
categories. O

Proposition 2.2.3. The functor H: Modgr — Cocts[Mod g, Modg] which sends
an R-module M to M ® —: Modg — Modpgr and ¢: M — M’ to the natural
transformation ¢ @ — is strong monoidal, with oo =171: id = R® — and

N =ay y_t HM) o HIN)(-) =M@ (N®—-)= (MaN)® —.
Proof. This is a direct consequence of Mac Lane’s coherence theorem for monoidal

categories. For example, unraveling the definitions and using corollary we find
that commutativity of the diagram of natural transformations

(H(M) o H(N)) o H(L) —%> H(M) o (H(N) o
LpM,N*H(L)l lH M)*onN, L
H(M ® N)o H(L) H(M)o H(N ® L)
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is equivalent to commutativity of

M®(N®(L®R) —4>Me(N®(LR))

a’M{N,L@Ri iM®a’N,1L,R

(M®N)® (L®R) Me(N®L)®R)
v &
AMQN,L,R AM,NQL,R

((M@N)@L)@RW(M@@(N@L))@R,

which is indeed commutative by the coherence theorem. The remaining axioms
follow in a similar fashion. O

Lemma 2.2.4. Let (T,67,eT) be a cocontinuous R-linear comonad. With the
notations of the propositions|(2.2.1],[2.2.2 and |2.2.5, the natural transformation

&' T = He(T)
is a morphism of cocontinuous R-linear comonads.

Proof. We let (C,d,e) = e(T). By proposition it follows that ¢ is given by the
composite

ok ()7

TR TTR TR® TR,

and that ¢ = sﬁ: TR — R. The same proposition, applied to H, implies that the
comultiplication

-~ ~

He(C) = He(C) o He(C)

has as M-component the composite

SEeoM (§T);};®M ATR,TR,M
—

TR® M TTR (TR®TR) @ M TR® (TR® M).

In order to show that &, ! is a morphism of comonoids we thus have to check that
for every R-module M, the diagram

(&)
™M TR® M

SEeMm
TTR® M

T, (Er)7r®M
(TR®TR)® M

TR, TR,M

TTM

—~TR®TM ~TR® (TR® M)

gT)TM TR®(£T)M
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is commutative, where the lower composite is the M-component of £, Ly &r ! By
corollary [T.4:4] it suffices to check that the outer square of the diagram

(€r)g'=r—"

TR TR® R
6T SEOR
TTR - TTR® R
()7 R®R
€r)rh (TR®TR)® R
eTRTRR

TR® TR — ~TR® (TR® R)
TR®(ér) ' =TR®r

is commutative. But this is a direct consequence of the fact that »~! is natural and

the observation that TR ® 7’}11:{ = ATR,TR,R © T;“Il%@)TR' The counit of fI?(T) has as
M-component the composite

EE(X)M 1
TROM —RQ@M —— M.

Thus it remains to check that the diagram

(€1)3f
TM -2 TR M
sffl J{s%@M
M RoM

l

is commutative for every R-module M, which is equivalent to commutativity of

(€r)g'=r_"

TR—">TR®R
EE\L leﬁ@R
R<——RQ®R

lr

by corollary[1.4:4] This follows by naturality of » because [ = rgp: RQR — R. O

Lemma 2.2.5. Let (C,6,¢) be a coalgebra. Using the notations of the proposi-
tions|2.2.1,(2.2.9 and|2.2.4, ro: C® R — C is a morphism of coalgebras €H (C) —
C.

Proof. Unraveling the definitions we find that the comultiplication of e¢H (C) is
given by the composite

R (féé_)aga

CoR— > (CeC)aR—22" Co(CoR) "5 (CoR)®(C®R)

and its counit is given by

CoRZEReoR—>R.
The diagram
Co®R—>C

ml l

R®R—R

lR:'fR
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is commutative by naturality of r, which shows that ro is compatible with the
counits. Since the R-component of the natural transformation rc ® —: (C ® R) ®
—=>CR-isrc®R=rcgr: (CRR)®R — CRR, it follows that {cg— = re® —
(see proposition . Therefore it suffices to check that the diagram

coR L (Co0)oR-22" 0o (CoR)

Tci TCfC lrcl®R

C——(Ce(C)~—— (C®R)®(C®R)

§ rc®rc

is commutative. This follows immediately from the coherence theorem. O

Proposition 2.2.6. With the notation of the propositions|2.2.1], 12.2.9 and [2.2.5,
the functors

T=H: Coalgp — CCpr
and

C =¢: CCpr — Coalgp
are mutually inverse equivalences, with natural isomorphisms m: id = T o C given
by T = &5 T = ToC(T) and f: CoT = id given by o =rc: C® R — C.
Moreover, ™ and (8 are the unit and counit of the adjunction C -4 T.

Proof. 1t follows from the lemmas [2.:2:4) and that w7 and fS¢ are well-defined,
i.e., that they really are morphisms in the desired categories. Naturality of 3
follows from naturality of r, and naturality of w7 in T reduces by corollary to
commutativity of

€z )nr=r""
TR-E"" > TR®R
le l¢R®R
TTR—>T'RQR

(& r=r~"

where ¢: T — T’ is a morphism of comonoids in Cocts|Modg, Modg]. This is
again a consequence of the naturality of r. It remains to check that the triangular
identities hold for m and 3. For every comonoid (T, 67, eT) in Cocts[Mod g, Modg]
we have
Bory o C(rr) =rrro (& )r =rrroryp =idrg

by definition of &, ! (see proposition . On the other hand, we have for ev-
ery comonoid (C,d,¢) in Modpg the equality 5’5(10) = Tal ® — between natural
transformations, because their R-components are equal. It follows that

(T(Bc) C’7TT(C))M =rc®@Morg'® M =idogm

for every R-module M. These two equations are precisely the triangular identities
for m and . O

2.3. Coalgebras and comodules. In this chapter we prove some basic facts about
comonoids in Modpg, define the category of comodules of such a comonoid and
introduce the standard terminology. In the next section we will introduce the
standard terminology for comonoids in Cocts[Mod g, Modg] and give basic results
and constructions.

Definition 2.3.1. A comonoid (C,d,¢) in Modpg (see definition [2.2.1)) is called a
coalgebra. The coalgebra (C, §,¢) is called flat if the R-module C' is flat. We denote
the category of coalgebras by Coalgp.
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Definition 2.3.2. Let (C,d,¢) be a coalgebra. A (left) comodule of C is an R-
module M together with a coaction p: M — C ® M, that is, a homomorphism
p: M — C® M of R-modules such that the diagrams

M 7 CoM M-——t>ceoM
pl ié@M and idl ie@M

are commutative. A comodule M is called a Cauchy comodule if the R-module M
is Cauchy, i.e., if it is finitely generated and projective. A morphism of comodules
p: (M, p) — (M',p’) is a homomorphism ¢: M — M’ such that the diagram

M——

C®M?W'C®M/

is commutative. The category of C-comodules and morphisms between them is
denoted by Comod(C), and the full subcategory of Cauchy comodules is denoted
by Comod®(C).

Proposition 2.3.1. For any coalgebra (C, 6, ¢€), the functor W = C®—: Modg —
Comod(C) which sends a module N to the C-comodule (C ® N,§ ® N) is right
adjoint to the forgetful functor V: Comod(C) — Modg which sends a comod-
ule (M, p) to the underlying module M. The unit of this adjunction is given by
p: (M,p) = (C@M,0®M).

Proof. Tt follows directly from the definition of a coalgebra that (C @ N,d @ N) is
a C-comodule. The natural bijection

[+ Comod(C)((M,p),(C®N,§®@N)) = Modg(M,N)
is given by f(p) = e @ Noy and f~1(¢) = C @1 o p. In particular, ny =
fGdar) = p. O
Proposition 2.3.2. Let (C,d,e) be a coalgebra. Then the forgetful functor V :
Comod(C) — Modpg creates colimits. This means that for any diagram F : 9 —
Comod(C), if the colimit X of the diagram VF : 9 — Modpg exists, then there

is a unique coaction p on X such that the structure morphisms become morphisms
of comodules and (X, p) with these structure morphisms is a colimit of F.

Proof. If we demand that the structure maps np : FFD — X be comodule mor-
phisms, the coaction p on X must make the diagram

nD

FD X
pFDi lp
C®FDCWC®X

commutative for every object D of &. Since X is the colimit of the diagram V F
there is a unique such p, and one can easily check that (X, p) is the colimit of F' in
Comod(C). O

Proposition 2.3.3. Let (C,d,e) be a coalgebra. Then the forgetful functor V :
Comod(C) — Modgpg creates those limits which are preserved by the functors
C®—: Modgr — Modp and (C® C)® —: Modg — Modg. In other words, if
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F: 2 — Comod(C) is a diagram such that the limit (L, (kp)peo) of the diagram
VF: 9 — Modg exists and is preserved by C® — and (CRC)® —, then there is a
unique coaction p: L — CRL such that the structure morphisms become morphisms
of comodules and (L, p) with these structure morphisms is a limit of F.

Proof. The fact that C'® — preserves the limit L implies that (C® L, (C®kp)pez)
is a limit of the diagram C®V F(—). Thus there is a unique morphism p: L — C®L
such that the diagram

L—=2 > FD

C®L@>C®FD

is commutative for every D € 9. Because (C®C)®— preserves the limit L it follows
that p is a coaction. Proving that (L, p) is the limit of F is straightforward. O

Corollary 2.3.4. For any coalgebra (C, 6, ¢), the category Comod(C) is cocom-
plete. If C is flat, then Comod(C) is abelian.

Proof. This is a direct consequence of proposition and proposition O

Proposition 2.3.5. Let C be a flat coalgebra, M a C-comodule and let m € M.
Then there is a subcomodule My C M containing m and a submodule N C M
such that N is a finitely generated R-module and My C N. In particular, if R is
Noetherian, then My is finitely generated as R-module.

Proof. There are elements n, € M and ¢; € C such that p(m) = Z?:l ¢ ®n;. Let
N be the submodule of M generated by the n;, i =1,...,n and write i : N — M
for the inclusion. By proposition the morphism C®i: C® N — C ® M is
a morphism of comodules. Since C' is flat, C' ® ¢ is injective. Now let E be the
pullback (in Comod(C)) of p: M — C ® M and C ® 4. The diagram

E—>CoN e N

jl \LCQM lz
M®e

ML)C@MHy’
_

id
where the left square is a pullback diagram, is commutative. By proposition [2.3.3]
it follows that o and j are injective. Commutativity of the diagram implies that

My = j(E) is a submodule of N, and m lies in M, because p(m) lies in the image
of C ®1. O

2.4. Comonads and comonadicity.

Definition 2.4.1. A comonad on a category ¥ is an endofunctor T' : € — €
together with natural transformations § : T' = T o T (the comultiplication of T')
and € : T = id¢ (the counit of T) such that the equations

Téod=06Tod, Teod=1r and eT od=1p
hold. A morphism between comonads (T, 0,¢) and (T,¢’,€’) is a natural transfor-
mation « : T = T" satisfying the equations

goa=¢ and axaod=4¢§oa.

Remark 2.4.1. A comonoid in Cocts[Mod g, Modg] is a comonad on Mod g whose
underlying functor is cocontinuous and R-linear, and a morphism of comonoids in
Cocts[Modg, Modp] is precisely a morphism of the corresponding comonads.



TANNAKA DUALITY 39

Definition 2.4.2. Let (T, 4,¢) be a comonad on €. A T-comoduleﬂ consists of an
object C' of ¥, together with a morphism £ : C' — T'C such that ec o £ = id and
doco& =T() o0& A morphism of T-comodules (C,§) — (C’,¢’) is a morphism
¢ : C — C' in € such that & oo = T(p) o T. The category of T-comodules and
morphisms between them is denoted by Comod(T").

Recall from definition that the category catr / Mod¢; has objects the pairs
(#/,w), where & is an essentially small R-linear category and w: &/ — Mod§ is
an R-linear functor, and the morphisms between two objects (&7, w) and (&', w’)
in catp / Mod§, are the R-linear functors F': &/ — /' making the diagram

o e o

N A

Mod¥%

commutative.

Definition 2.4.3. Recall that the category of R-linear cocontinuous comonads
Modr — Modpg and morphisms of comonads is denoted by CCpr (see defini-
tion 2.2.2). For any T € CCg, a T-comodule (M,¢) is called Cauchy if the
underlying module lies in Mod%, (see definition . The category of Cauchy
T-comodules is denoted by Comod®(T), and the forgetful functor is denoted by

Vr: Comod®(T) — Modg .
Any morphism of comonads ¢: T'— T’ in CCpg induces a morphism
Comod®(¢): Comod®(T) — Comod®(T"),

given on objects by (M, &) — (M, ppr 0€&) and on morphisms by the identity. This
construction extends to a functor

Comod®(—): CCr — catr /Mod%,

which sends T to (Comod®(T"), Vr) and ¢: T — T’ to Comod®(¢). We call this
functor the comodule functor.

Remark 2.4.2. The comodule functor is well-defined: the category (Comod“(T), V)
is small since Mod, is small (see definition 7 and for any R-module M the
collection of all possible coactions M — T(M) forms a subset of the set of all
homomorphisms M — T(M).

Proposition 2.4.3. Let (C,6,¢) be a coalgebra. With T(C): Modr — Modg as
in proposition the categories Comod(T(C)) of T(C)-comodules is equal to

the category Comod(C) of definition .

Proof. This follows directly from the definition of a T-comodule (see definition|2.4.2))
for a comonad T, the definition of T(C) in proposition and the definition of
a comodule of a coalgebra C' (see definition [2.3.2)). O

This suggests the following generalization of proposition [2.3.1

Proposition 2.4.4. Let (T,6,¢) be a comonad on €. Then the functor W =
Wrp: € — Comod(T) which sends an object C' of € to the T-comodule (TC,é¢)
and a morphism ¢ : C — C" to T(yp) is right adjoint to the forgetful functor
V = Vr : Comod(T) — € which sends (C,§) to C. The unit of this adjunction is
given by niye) =& M — TM = VW(M).

3Note that a T-comodule is usually called a T-coalgebra. However, in this context this termi-
nology would be rather misleading, and our choice is for example justified by proposition m
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Proof. First we have to check that W is a well-defined functor, i.e., that (T'C, d¢) is
a T-comodule and that T'(p) is a morphism of T-comodules. By definition we
have T'd 0§ = 6T o . Looking at the C-component of this natural transformation
we find that T'(0¢) 0dc = dr¢ 0 ¢, which is one of the two axioms which must hold
for (T'C,d¢) to be a T-comodule. Again by definition of a comonad we must have
eT o = 1y, which shows that er¢ o d¢ = idr¢, i.e., that the second axiom holds.
So (T'C,d¢) is indeed a T-comodule, and T'(p) is a morphism of T-comodules by
naturality of §: T'= T o T.

The natural bijection

f:EV(C,€),C") — Comod(T)((C, &), (TC,5cr))

is given by f(a) = T(a) o £ with inverse given by f~1(3) = ecr o 3. These are
indeed mutually inverse: for any « : C' — C’ the equalities

F7Hf(@) =ecroT(a) o0&
=aoecof

=

hold, by naturality of ¢ and because (C,¢) is a T-comodule respectively. For any
B:(C,&) — (TC',é¢cr) we have

FUF7H(B)) = oT(ecr 0 B) 0 &

=T(ecr)oT(B)of

=T(ec)odcof3

=p
since § is a morphism of T-comodules and because Te 0 § = 1. One can easily
check that this bijection is natural in (C,¢) and C’. O

In the previous proposition we have seen that for any comonad (7,6,¢) on €
we have an associated adjoint pair V' -4 W: Comod(T) — ¥. The next proposi-
tion concerns the converse situation. It gives a construction for a comonad on ¢
associated to a given adjoint pair FF 41 G: B — €.

Proposition 2.4.5. Let F: B — € be left adjoint to G : € — B, with unit
n: id = GF and counit ¢: FG = id. Then (FG,FnG,e¢) is a comonad on € .

Proof. The pasted composite of the diagram
id id
/_\ /\
. n . " .
R e

can be computed in two ways, either as the vertical composite
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Since the pasting composite is well-defined it follows that these two vertical compos-
ites are equal, i.e., that FGFnGo FnG = FnGFGo FnG. The triangular identities
for the adjunction yield the equalities

id o
G _——— F
. U/n C— _ /IJ/T\
IaNScls ~ v,
i FG
and
¢ N = _re
. " . B
s - b
id Fa
hence that eFF'G o FnG = 1pg and FGe o FnG = 1pg. [l

Proposition 2.4.6. Let F: B — € be left adjoint to G : € — AB, with unit
n: id = GF and counit e: FG = id. Then there is a comparison functor J: B —
Comod(FG) (where FG is endowed with the structure of a comonad as in propo-
sitionm which sends an object B of A to the FG-comodule (FB, Fng) and a
morphism p: B — B’ to F(p).

Proof. We only have to show that J(B) = (F B, Fng) is a FG-comodule and that
F(¢) is a morphism of FG-comodules. We have

(FnG)rp o Fnp = F(ncrp °1B)
= F(GF(ng)ons)
by naturality of n, and a triangular identity shows that
erpoltnp =idrp,

so (FB, Fng) really is a FG-comodule. For any ¢: B — B’ we have FGF(p) o
Fng = Fnp o F(p) by naturality of n: id = GF, which shows that F(y) is indeed
a morphism of F'G-comodules. Functoriality of J follows immediately from the fact
that F' is a functor. O

It turns out that there is a nice characterization of the adjunctions F 4 G: & —
% for which the functor J: # — Comod(F'G) from proposition is an equiva-
lence of categories. This will be useful when we consider the recognition problem.

Definition 2.4.4. A functor F': 8 — € with a right adjoint G: € — £ is called
comonadic if the comparison functor J: £ — Comod(F'G) from proposition m
is an equivalence of categories.

Definition 2.4.5. The diagram

p q

E—>A—=B

in a category € is called a split equalizer or contractible equalizer if us = ws,
ps = idg, qu = ida and qv = sp.

Remark 2.4.7. If

p q
E—>A—=%B

is a split equalizer, s is the equalizer of u and v.
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Proof. We have to check that for any morphism a: X — A with ua = va, there is
a unique b: X — F with a = sb. If there is such a morphism, we must haveb =
idg oB = psb = pa, hence it remains to check that s(pa) = a. But we have

s(pa) = qua = qua = id 4 ca = a,
which concludes the proof. O

Theorem 2.4.8. A functor F' : B — € with left adjoint G : € — B is comonadic
if and only if the following holds:
i) The functor F reflects isomorphisms, that is, a morphism f in A is an iso-
morphism whenever F f is an isomorphism in € .
it) If f,g: A — B is a pair of morphisms in B for which there is a split equalizer

p q

S Ff
E—>FA—=FB

g

in €, then f and g have an equalizer in P which is preserved by F.

Proof. This is the dual result of Beck’s monadicity theorem. There are many
proofs of this theorem in the literature, for example in [BWO05], theorem 3.14,
or in [Bor94b], theorem 4.4.4. O

We will later use the following special case of this result.

Corollary 2.4.9. Let F': 8 — € be a left adjoint. If

(a) F reflects isomorphisms,
(b) the category P has equalizers and
(c) the functor F preserves equalizers,

then F is comonadic.
2.5. The comodule functor has a left adjoint.

Proposition 2.5.1. If w: &/ — Mod% is an R-linear functor, the associated
functor & : Modg — [#/°P,Modpg)] (see definition[1.5.1]) is cocontinuous.

Proof. Since colimits in [«7°P, Modg] are computed pointwise, it is sufficient to
show that for any object A € &7, the functor [w(A),—] : Modr — Modp, is cocon-
tinuous. But w(A) is by assumption a Cauchy module, i.e., finitely generated and
projective, hence this functor is naturally isomorphic to w(4)¥ ® — = [w(A), R|® —,
which is indeed cocontinuous. (]

Corollary 2.5.2. For any essentially small R-linear category </ and any R-linear
functor w: o — Mod$, the comonad Lany w o @ on Modpg associated to the
adjunction

Lany w 4 @: [«7°P, Modr] — Modg
(see propositionm and propositionm 18 cocontinuous.

Proof. This follows immediately from proposition because Lany w, as a left
adjoint, is cocontinuous. U

From now on we fix an R-linear functor w: & — Mod{, where <7 is an essen-
tially small R-linear category, and we abbreviate Lany w as L.

Proposition 2.5.3. Let F: Modgr — Modg be an R-linear functor. The map
(®g)p: Nat(L,w, F) — Nat(L,, FL,)
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given by
id
) Lw L
S vy
\?,/ % é—\}f/

s 1nverse to

L. _ Lo
o N

id
Moreover, the (®g)r are natural in F.

Proof. The above assignments are mutually inverse since the triangular identities
hold for 1 and ¢ (see proposition [1.5.3)), and for any «: F' = F’ we have

((I)O)F’ (a © 90) = (O‘ © @)Lw oLyn=al,opL,oL,n=al,o ((I)O)F(SO);
which shows that the (®g)p are natural in F. O

Proposition 2.5.4. Let F: Modgr — Modg be a cocontinuous R-linear functor.
Then the map

®p: Nat(L,w, F) — Nat(w, Fw)

w
5 L. /JO\
»U/Sa\ Y P N Ly
F

given by

— — L, _—
w F
is a natural bijection.
Proof. The morphism @ is equal to the composite

D _
Nat(Lo@, F) 225 Nat(Ly, FL.) — > Nat(L,Y, FL,Y)

— - Nat(w,FL,Y)
Nat (o, ,Fafj)

where —Y stands for whiskering with Y (see definition and Nat(ay,, Faj!)
sends (3 to Fa,! o Boa,. The map (®¢)r is an bijection by proposition
whiskering by Y gives a bijection since Y is dense and the involved functors are
cocontinuous by assumption (see proposition and proposition . Finally,
Nat(a_ !, Fay,) is inverse to Nat(ay,, Fa_'). Naturality in F follows immediately
from the fact that pasting composites are well-defined. O

Lemma 2.5.5. Let (T,67,eT): Modr — Modpg be a cocontinuous R-linear
comonad, and let ¢: L,w = T be a natural transformation. Then ¢ is a mor-
phism of comonads

(L@, Lon@,e) — (T,0" ")
if and only if for every object A € o, the pair (w(A), Pr(p)a) is a T-comodule.

Proof. In order to increase readability we use single arrows when forming commu-
tative diagrams of natural transformations. Since T is fixed we write ® and ®q
for the morphisms ®7 and (®p)r from proposition and proposition re-
spectively. First note that (L@, L,nw, ) really is a comonad by proposition
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and by definition the pair (w(A), ®(¢)4) is a T-comodule if and only if the
diagrams

D(p)a P(p)a

w(A) —— Tw(A) w(A) —= Tw(A)
‘I’(%’)A\L J{‘;zm) and kx €h(a)
Tw(A) = TTw(4) w(A)

are commutative. We prove the lemma in two steps. First we show that the left
diagram is commutative for every A € & if and only if ¢ is compatible with the
comultiplications (i.e., if and only if ¢ * p o L,nw = §T o), and in the second step
we will see that the right diagram is commutative if and only if e o p = ¢.

The left diagram above is commutative for every A € o if and only if the inner
square of the diagram of natural transformations

LY Polo)Y TL,

o ) y

w T
2o()Y | (2) <I>(Lp)J/ lg% (3) §TL,Y

Tw m TTw

y (4) TTa

TL,Y TTL,Y
T®o()Y

is commutative. The parts (1), (2) and (4) are commutative by definition of ®
(see proposition , and part (3) is commutative since the two composites give
precisely the two ways to compute the horizontal composite 67 * o (see proposi-
tion . Since « is an isomorphism it follows that commutativity of the inner
square is equivalent to commutativity of the outer square. Since Y is dense and
because L, T are cocontinuous, it follows by proposition that commutativity
of the outer square is equivalent to commutativity of

D
L, =Y

%(@l l&TLw

TL, ——=TTL,,

TP ()
i.e., to the equality
Vi > T 3> ke
O B i e
T T T T

of pasted composites. Applying the bijection (@0);% (see proposition [2.5.3) we find
that this equality holds if and only if the equality

id

P T S L
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holds, that is, if and only if 67 o ¢ = ¢ * ¢ o L,nw, as claimed.
It remains to show that the diagram

w(A) 294 104

N

)
g(A)
w(A)

is commutative for every A € o if and only if e o ¢ = £. The above diagram is
commutative if and only if the inner triangle of the diagram

TL,Y
T(XT
o Y TL,Y
o(p) Te €
N
L,Y —w N w——=L,Y
N )
1o,y

of natural transformations is commutative. This is clearly equivalent to commu-
tativity of the outer triangle, and density of Y implies that the outer triangle

commutes if and only if
TL,,
@V KL‘U
L, L,
1L,

is commutative. By definition of ®y this diagram commutes if and only if the
equality

id

SERpl ey
Ly, w A 4
id Lo

\
<«

between pasted composites holds. Applying the bijection (@0);1}\/[ R find that
odp
this equality holds if and only if
@ Lo,
ST Lo
N Ve = < =
id id

that is, if and only if e¥ 0 p = ¢. O

Proposition 2.5.6. We use the notation of definition|2.4.5 The map
&r: CCRr(L.&,T) — catr /Mod§ ((«,w), (Comod®(T), Vr))

which sends a morphism of comonads ¢: L, = T to the functor F: (& ,w) —
(Comod(T), V) given by F(A) = (w(A),Pr(p)a) and Ff = w(f) is a bijec-
tion. Moreover, this bijection is natural in T. In other words, the assignment
(o, w) — L,w uniquely extends to a left adjoint for the comodule functor (see
definition . We denote this adjunction by

E(_y 4 Comod‘(—): catp /Mody — CCkg.
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We write N = Nawy: (o, w) — (Comod®(Low), VL &) and vr: E(Comode(T),vr) =
T for the unit and the counit of this adjunction.

Proof. This is follows from the observation that giving an R-linear functor F': &/ —
Comod®(T) with Vp o F = w is equivalent to giving a natural transformation
p:w = Tw such that (w(A),pa) is a T-comodule. Indeed, if p is such a natu-
ral transformation, we let G(p) be the functor &7 — Comod(T") which sends A to
(w(A),pa) and f: A — A’ to w(f). The fact that G(p) is a well-defined functor fol-
lows by naturality of p, and we clearly have VrG(p) = w. Conversely, given a functor
F: of — Comod®(T) with V7 F = w, for every A € & there is a module FyA and a
homomorphism &(F)4: FoA — TFyA such that FA = (FyA,§(F)a). We find that
FoA =VpFA =w(A) and, for any morphism f: A — A, Ff = VpFf =w(f). By
assumption, F'f = w(f) is a morphism of comodules, which shows that the {(F') 4
are natural in A. Moreover, we have G(§(F)) = F and £(G(p)) = p, hence the map

&7 = G odr: CCr(L,&,T) — catr / Mod%((«/,w), (Comod®(T), Vr))

is a bijection, and naturality in T follows directly from the definition of the comodule
functor (see definition |2.4.3]) and of @1 (see proposition [2.5.4)). O

Definition 2.5.1. We denote the composite
CE(_y 4 Comod‘(T(—)): catr /Mody — Coalgp

of the adjunction C + T from proposition @ with the adjunction E(_y -
Comod®(—) from proposition by
E_) 4 Comod‘(T(—)) = Comod®(—): catr /Mod} — Coalgp,.

Using notations from the propositions and [2.5.6] the unit and counit of E(_) -
Comod®(—) are given by the composites

id
W T
B /’D ~Comod®()
C T
and

Comod®(—) Ey

— T~

id
respectively.

Proposition 2.5.7. Let o/ be a small R-linear category and let w: o/ — Mod$; be
an R-linear functor. Then the unit N : (o ,w) — Comod®(E( ) of the adjunction
E(_y 4 Comod®(—) from propositz'on is naturally isomorphic to the composite

o — > [«7°P, Modg] —L > Comod(L,),

where J denotes the comparison functor associated to the adjunction L, - & (see
proposition . Consequently, the unit of the adjunction E_y 4 Comod®(—)
(see definition is naturally isomorphic to the composite

Comod(7r, & ~
o Y J Comod(L,,w) #bomod(C(wa)).

[«7°P, Mod g]
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Proof. The second statement follows directly from the first, so it suffices to con-
struct a natural isomorphism N = JY. Recall that JY sends an object A €
o to (L,Y(A), Luny(a)y) and N sends A to (w(A),®(1z,5)a). We claim that
as: w(A) — L,Y(A) gives the desired isomorphism. First we have to check that
a4 is a morphism of L,w-comodules. This follows since ®(1r,_z)4 is given by the
composite Lw@azl o LyMy(a) © s (see proposition , which shows that the
diagram

w(d) —2 > LY (4)

‘I’(lea)Ai iLur]Y(A)
LoGw(A) —> LuBL,Y(A)

L,owap
is commutative, i.e., that a4 really is a morphism N(A) — JY (A). This gives a
natural isomorphism N = JY because a: w = L,Y is a natural isomorphism. []

2.6. Reconstruction of coalgebras. The goal of this section is to give a necessary
and sufficient condition for the counit of the adjunction E_y 4 Comod“(—) from
definition to be an isomorphism. In order to do this we have to find a suit-
able description of this counit, hence we fix some notation first. Let T: Modgr —
Modpg be a cocontinuous R-linear comonad. We write &7 for the full subcategory
Comod“(T) of Cauchy T-comodules. We denote the unit and counit of the adjunc-
tion Vo = Wr by nT and €7 respectively. We denote the inclusion functor < —
Comod®(T) by K, and we let w: &/ — Modpg be the composite Vo K. By propo-
sition the functors K and w induce adjunctions Lx 4 K : [#7°P, Mod | — €
and L, 4 @: [/°?, Modg] — Modg. We denote their units and counits by n’,
ek and n®, e¥ respectively. The situation can be summarized in the diagram

K Lk
o — Comod(T') =—= [&/°?, ModRg].

Furthermore, we let ax: K = LigY and a,: w = L,Y be the natural isomor-

phisms from proposition By proposition and proposition there is
a unique natural isomorphism o: L, = Vp Lk such that

Recall that the natural transformations

e T
RN

and

st

W

id
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give the unit and counit of the adjunction VpLgx - KWy [¢7°P, Modpr] — Modpg.
We let 7: 0 = KW;Q be the mate of 0~ ': Vo Lg = L, under the adjunctions
L, 4@ and VpLg + KWy (see proposition .

Proposition 2.6.1. The T'-component vr of the counit v of the adjunction E(_ -
Comod®(—) from proposition [2.5.6) is given by

. -
X = o T e
R A
id

Proof. We use the notation introduced at the beginning of this section. We have
to check that the bijection ® defined in proposition sends x to the identity
functor of (Comod®(T), V1), i.e., to id (. .,) with the above notation. In order to do
this we first have to compute ®7(x). Since 7 is the mate of o1, proposition m
implies that the natural transformation

id

Y T\

L.
C;: —_— LKU

U TIr o T
bW s
~L Ve 7
id

is equal to the pasted composite of

which in turn is equal to
id
/’\ Lw
Y /L,-\

Ly

because the triangular identities hold for n’¢ and . This last natural transforma-
tion is obviously equal to the pasted composite of

id
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and by definition of ¢ it follows that this, and therefore (, is equal to

Since ®7(x) = VeWrat o ( o oy, (see proposition and the definition of ¢
above), we find that ®7(y) is equal to the natural transformation

id
n
%4

By proposition it follows that &)(VT) is the functor & — & = Comod®(T)
which sends an object A = (M, €) of <7 to (M, 77(TM,5)) and a morphism f: (M, &) —

(M, €& to w(f) = f. But nE[M,g) = £ by proposition which shows that EJ(X)
is indeed the identity functor &/ — <. O

Definition 2.6.1. Let (C,d,¢) be a coalgebra. The category of Cauchy comodules
over C' is the category with objects the pairs (M, ) of a Cauchy comodule M to-
gether with a morphism of C-comodules ¢: (M, ppr) — (C,9), and with morphisms
(M, ) — (M’,¢") the morphisms of Comodules 1) which make the diagram

(M, p) ’ (M, o)

(C,9)

commutative. We write & for this category, and we let Do: 2 — Comod(C)
be the functor which sends (M, ¢) to M and a morphism of Z to itself. The
functor D¢ is called the diagram of Cauchy comodules over C. Finally, we let
KMy = @2 Do(M,¢) = M — C. The k() constitute a cocone on D¢, called
the canonical cocone on D¢.

Remark 2.6.2. With the notation introduced in definition|1.6.2|and at the beginning
of this section we have 7 = (K | (C,9)).

Proposition 2.6.3. Let (C,0,¢) be a coalgebra. Then the canonical cocone

((C.0), (k(.0)) (M) 2)
on the diagram D¢ of Cauchy comodules over C' exhibits C' as colimit of D¢ if and
only if the cocone

(07 (SD)(M,L,D)G.@)
exhibits the module C as colimit of VD¢c: 9 — Modg, where V: Comod(C) —
Modg denotes the forgetful functor.

Proof. This follows directly from the fact that V reflects colimits (see proposi-

tion [2.3.2)). O

Definition 2.6.2. Let (C,d,¢) be a coalgebra. We say that C has enough Cauchy
comodules if the following holds:
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For every C’-comodule M and every element m € M there is a
Cauchy comodule M and a morphism of comodules ¢ : M — M
such that the image of ¢ contains the element m.

Proposition 2.6.4. Let (C,0,¢) be a coalgebra. If

1) C is a Cauchy module, or
it) if C is flat and has enough Cauchy comodules (see definition ,

then the canonical cocone on the diagram D¢ of Cauchy comodules over C' exhibits
(C,6) as the colimit of D¢ .

Proof. If C is a Cauchy module, then (C,id) is a terminal object of 2, and the
claim ¢) follows immediately from this fact. To see ii) we use proposition ie.,
we show that

(C (@) (M,0)e2)
is a colimit of VD¢o: 2 — Modg. To see this, we let

(N, Aarg) (m,0)e2)

be a cocone on V D¢e. We construct a homomorphism «v: C' — N as follows: For any
¢ € C we choose a Cauchy module M and a morphism ¢: M — C together with an
element m € M with ¢(m) = ¢, and we let y(c) = A(ar,p)(m). We claim that this
is a well-defined homomorphism of R-modules. To see this, we let p;: M; — C,
i = 0,1, be two morphisms of C-comodules, together with a elements m; € M;
such that ¢;(m;) = ¢ for i = 0,1. Since C is flat, the pullback E of ¢o and ¢1 in
Comod(C) is computed as in Modpg (see proposition . By assumption we
have (mg,m1) € E, and because C has enough Cauchy comodules it follows that
there is a Cauchy comodule M and a morphism of comodules ¢: M — E together
with an element m € M such that ¢(m) = (mg, m1). Writing 1); for pr; o1) we get
morphisms

i (M ¢) ( zv‘Pz)

1=0,1,in 2. Since A is a cocone on V D¢ it follows that

)‘(Mo,wo)(m()) = )‘(Moatﬂo)w()(m) = >‘(M71/’) (m) = )‘(M17<P1)¢1 (m) = )‘(wal)(ml)

e., that v is well-defined. The fact that + is a morphism of R-modules is an
immediate consequence of the fact that ~y is well-defined. (|

Theorem 2.6.5. We use the notation introduced at the beginning of this section.
Let (C,0,¢) be a coalgebra. The counit morphism E(comoac(c),v) — C of the ad-
junction E(_y 4 Comod®(—) (see deﬁnition is an isomorphism of coalgebras
if and only if the canonical cocone on the diagram D¢c of Cauchy comodules over

C (see definition exhibits (C, ) as colimit of Dc.

Proof. By definition [2.5.1} the counit morphism E(comoac(c),v) — C is given by
the composite

Be o Cvr(ce))-

Since f¢ is an isomorphism and because C is an equivalence (see proposition [2.2.6)
it follows that the counit morphism is an isomorphism if and only if vy is an
isomorphism. By proposition vr(c) is given by the pasted composite of

/E\ /’lﬂ\’
Wr(o) <1L’/ V(o)
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where we use the notation introduced at the beginning of this section. By corol-
lary this is an isomorphism if and only if its R-component

(VT(C)>R = VT(C) (E{;[(/T(c)(R)) (¢] VT(C)LKTR COHLR
is an isomorphism. Since 7 and o are isomorphisms and because V(o) reflects
isomorphisms, this is equivalent to the fact that sé(VT(m( R) is an isomorphism. By
definition we have equalities of T(C)-comodules

Wr(o)(R) = (T(C)(R),6% ") = (C® R,6 © R)

(see proposition and proposition respectively); and r¢: (C ® R,§ ®
R) — (C,9) clearly is an isomorphism of T(C)-comodules. By naturality of ¥ it
follows that E@T o (R) is an isomorphism if and only if E{é’ 5) is an isomorphism.
By proposition this is equivalent to the fact that the canonical cocone on
Dcsy: (K | (C,0)) exhibits (C,d) as colimit of Do 5. With the notation of
definition this is equivalent to the fact that the canonical cocone on the
diagram D¢ of Cauchy comodules over C exhibits (C,d) as colimit of Dg: 2 —
Comod(C). O

Corollary 2.6.6. Let (C,d,¢) be a coalgebra. The counit morphism

E(comodac(c),v) — C

of the adjunction E(_y 4 Comod®(—) (see definition |2.5.1)) is an isomorphism of
coalgebras if and only if the cocone ¢: M — C on VD¢ (cf. proposition m)
exhibits C' as colimit of VD¢c: 2 — Modg.

Proof. This follows from theorem and proposition [2.6.3 O

Corollary 2.6.7. Let (C,d,¢) be a coalgebra. If the inclusion functor
K: Comod®(C) — Comod(C)

is dense, then the counit morphism E(comoac(c),v) — C of the adjunction E_y -
Comod®(—) (see definition[2.5.1)) is an isomorphism of coalgebras.

Proof. This follows from theorem [2.6.5| and proposition [1.6.6) (]

Proposition 2.6.8. If R is a Noetherian hereditary ring, then every flat coalgebra
(C,6,¢) has enough Cauchy comodules.

Proof. Let (M, par) be a C-comodule and let m € M. Then there are elements
c1,...,¢x € C and elements nq,...,n, € N such that py(m) = Zle c; @ n;. Let
¢ : RF — M be the morphism which sends e; to n;. Then C®p: CQR* — Co M
sends the element z = Zle ¢ ®e; to Zle ¢ ®n;, so (myz) € E = {(a,b) €
M@ (C® RF); par(a) = C®@¢(b)}, the pullback of M along C ® . Since C is flat,
there is a unique coaction pg : £ — C' ® E such that the diagram

ProgRrk

E——CQR*

PrMi lC@g&

M- ceM

becomes a pullback diagram in the category of C-comodules (see proposition [2.3.3)).
Let Ey be a finitely generated subcomodule of E which contains (m, z) (such a sub-
comodule exists by proposition [2.3.5). Then m lies in the image of pr,, restricted
to Ep, and we are done if we can show that Ej is in fact projective. But the
morphism przrge : £ — RF ® C is a monomorphism as pullback of the monomor-
phism pys, hence Ey is (up to isomorphism) a finitely presented submodule of the
flat R-module R* @ C. Since R is hereditary it follows that Ej is projective. O
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Corollary 2.6.9. Let R be a noetherian hereditary ring, and let (C,0,¢) be a flat
R-coalgebra. Then the counit morphism E(comoac(c),v) — C of the adjunction
E(_y 4 Comod(—) (see deﬁm’tionw is an isomorphism of coalgebras.

Proof. This follows from proposition and theorem [2.6.5 (]

In the entire section we rarely used properties of the category Modpg besides
the fact that it is a complete cocomplete symmetric monoidal closed category. For
an arbitrary complete cocomplete symmetric monoidal closed category ¥ we write
¥'¢ for the full subcategory of the Cauchy objects, i.e., the objects of ¥ which have
duals, and we use the notation from [Kel82]. In order to define a comodule functor

Comod®(—): Comon(¥) — ¥-cat /¥*
as in definition we must assume that the category #¢ is small.

Open question. Under which conditions on ¥ do the above results generalize?
More precisely, is there a left adjoint
E: ¥-cat /¥° — Comon(¥)
to the comodule functor? If such an adjoint exists, is the counit an isomorphism if
and only if the canonical morphisms
Comod(C)(KA,C)@ KA — C
exhibit C as coend of the functor
Comod(C)(K—,C) @ K—: Comod®(C)°? ® Comod®(C) — ¥ ¢

As far as I can see, there are no requirements besides smallness of #¢.

3. THE RECOGNITION PROBLEM

3.1. Overview. The goal of this chapter is to give a sufficient condition for the
unit

(o, w) — Comod(E(y .))
of the adjunction E(_y 4 Comod®(—) (see definition to be an equivalence of
categories. Proposition [2.5.7) implies that this functor is an equivalence if and only
if the composite

o —> [2/°P, ModRg)] A Comod(L,w),

gives an equivalence between &7 and Comod®(L,&), where J denotes the compar-
ison functor of the adjunction L, 4 & (see proposition . Since the Yoneda
embedding is fully faithful, comonadicity of L, - @ would imply that the compar-
ison functor is fully faithful. However, this is not to be expected in the general
situation, because the category Comod(C') is usually not equivalent to a category
of R-linear functors. Hence we first have to analyze the situation where (&7, w)
is equal to (Comod®(T), V) more carefully. Writing K : &/ — Comod(T) for the
inclusion functor, this situation is summarized by the diagram

Lk
o 2 Comod(T) = [&/°P, Modg].

K
N
Ly
MOdR
Under the additional assumption that K is dense we find that Comod(T) is a
reflective subcategory of [«7°P, Modg], and that the comonads L& and VrWr are
isomorphic (cf. proposition [2.6.1]). Moreover, it follows directly from definition
that K o K =Y. This suggests that we adopt the following strategy:
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(a) Find conditions for w: &/ — Mod% which imply the existence of a reflective
subcategory € of [«/°P,Modg], together with a comonadic adjunction V' A
W: € — Modg such that the comonad VW is isomorphic to L,w, and

(b) find conditions for w which imply that the Yoneda embedding

Y: o — [&/°P, Modg]
factors through the embedding ¢ — [27°P, Modg] from (a).

In order to do this we need some background material on locally presentable
and accessible categories, which we summarize in section and section
We then state the sufficient conditions for w: & — Mod% to be of the form
Vr: Comod®(T) — Mod, for some cocontinuous comonad 7' in section

3.2. Locally presentable and accessible categories. This is a summary of the
terminology and of certain results found in [AR94].

Definition 3.2.1. An infinite cardinal A is called regular if it can not be written

as a union
U
i€l

such that each A; has cardinality less than A and |[I| < A

For example, Ry = w, the first infinite cardinal, is regular; for an infinite set can
not be written as a finite union of finite sets. More importantly, there are enough
reqular cardinals, meaning that for any cardinal « there is a regular cardinal A > «
(see e.g. [Cam99]).

Definition 3.2.2. A category Z is called M-filtered (A a regular cardinal) if

i) it is non-empty,
ii) for any family (D;);es of objects in 2, if |I| < ), there exists an object D and
morphisms f;: D; — D, and
iii) for any family (g;: Do — D1)ier, if [I| < A, there exists an object D and a
morphism g: D; — D such that go g; = gog; foralli,j € I.

Definition 3.2.3. An object C of a category € is called A-presentable (A a regular
cardinal) if the functor €(C, —): € — Set preserves M-filtered colimits.

Definition 3.2.4. Let A\ be a regular cardinal. A colimit colim;c4 D; is called
A-small if 2 has less than A morphisms.

Proposition 3.2.1. A A-small colimit of \-presentable objects is A-presentable.

Proof. See [AR94], proposition 1.16. O

Definition 3.2.5. A category % is called A-accessible, where ) is a regular cardinal,
if
i) it has A-filtered colimits, and
ii) there is a set & of A-presentable objects of € such that each object of € can
be written as a A-filtered colimit of objects from 7.

The category ¥ is called locally A-presentable if it is A-accessible and cocomplete.
A category is called accessible (resp. locally presentable) if there exists a regular
cardinal A such that € is A-accessible (resp. locally A-presentable).

Proposition 3.2.2. Let ¥ be a set of objects of a locally presentable category € .
Then there ezists a reqular cardinal p such that all elements of . are p-presentable.
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Proof. By assumption there is a regular cardinal A such that every object C' in .
is a A-filtered colimit C' = colim;e g, D; such that the D; are A\-presentable. Let p
be a regular cardinal which is bigger than the set of morphisms of the categories
De, C € & and such that p > A. The latter condition ensures that a u-filtered
diagram is automatically A-filtered as well, and it follows that all C € .% are p-
small colimits of u-presentable objects. Thus proposition shows that all C are
p-presentable. O

Proposition 3.2.3. For each locally \-presentable category €, each functor cate-
gory € (o small) is locally \-presentable.

Proof. See [AR94], corollary 1.54. O

In order to give examples of finitely presentable categories we will use a charac-
terization involving strong generators.

Definition 3.2.6. An epimorphism p: F — B in a category ¥ is called eztremal
if it does not factor through a proper subobject of B, i.e., if p = ig for some
monomorphism i: B’ — B, then 7 is an isomorphism.

It is called a strong epimorphism if for any monomorphism i: A — X in € and any
commutative diagram of solid arrows

jo

B—>X
there exists a dotted arrow such that the diagram is commutative.
Lemma 3.2.4. Any strong epimorphism is extremal.

Proof. If p: E — B is strong, and if p = iq for a monomorphism ¢ : B’ — B, there
exists a morphism j : B — B’ such that the diagram

E—1sp

1/

is commutative. Thus ¢j = id, and 4ji = ¢. Since ¢ is a monomorphism, the latter
equation implies that ji = id, which shows that ¢ is an isomorphism. O

The following definition is from [Bor94al; by the previous lemma it follows that
a strong generator in the sense of [Bor94a) is also a strong generator in the sense
of [AR94].

Definition 3.2.7. A set {G;|i € I'} of objects of a cocomplete category € is called
a strong generator if for any C' € ¥ the induced morphism

I ¢—c

¢: G;—C
is a strong epimorphism, where the coproduct runs over all morphisms ¢: G; — C
for all i € I. In [AR94] it is only required that the induced morphism be an extremal
epimorphism.

Proposition 3.2.5. If the cocomplete category € has finite limits, then a set
{Gili € I} is a strong generator if and only if the functors €(G;,—): € — Set
collectively reflect isomorphisms.
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Proof. See [Bor94al, proposition 4.5.10. O

Proposition 3.2.6. If a cocomplete category € has a strong generator consisting
of A-presentable objects, then € is A-presentable.

Proof. See [AR94], theorem 1.20. O

Corollary 3.2.7. For any small R-linear category <, the category [/, Modg] of
R-linear functors &/ — Modg is w-presentable.

Proof. The category is complete and cocomplete, and the representable functors
form a strong generator consisting of w-small objects. Indeed, by Yoneda we have
a natural isomorphism [«/, Modg|(</ (A, —), F) = F A, and since colimits are com-
puted pointwise it follows that the functors

F— [/, Modg](#(A,—), F)

preserve w-filtered colimits (in fact they preserve all colimits). Recall that a nat-
ural transformation « has an inverse if and only if all its components a4 are iso-
morphisms. Proposition [3:2.5] and the Yoneda lemma therefore imply that the
representable functors do indeed form a strong generator. O

Definition 3.2.8. A functor F': of — 2 is called A-accessible (where X is a regular
cardinal) if &/ and Z are A-accessible and F preserves A-filtered colimits. The
functor F' is called accessible if there exists a regular cardinal A such that F is
A-accessible.

Definition 3.2.9. A subcategory & of € is called accessibly embedded if it is full
and if there is a regular cardinal A such that &7 is closed under A-filtered colimits
in €.

The following proposition (resp. its corollary) is crucial for our description result.

Proposition 3.2.8. If F': # — £ is an accessible functor, and if £, is an
accessible, accessibly embedded subcategory of £, then F~1(Z,) is an accessible,
accessibly embedded subcategory of H , where F~1(Z,) denotes the full subcategory
of J consisting of those objects K € & with F(K) lying in £.

Proof. See [AR94], remark 2.50. O

Corollary 3.2.9. Let o/ be a small R-linear category and let L: [«/,Modgr] —
Modg a cocontinuous functor. Denote by ¥ the class of morphisms of [/, Modg]
which are sent to isomorphisms by L. Then the full subcategory of Mor([</, ModRg])
generated by 3 is an accessible, accessibly embedded subcategory.

Proof. The following argument is from [AR94], section 2.60. Recall that Mor(%)
is the category of morphisms of %, i.e., the category of functors 2 — %, where 2 is
the category with two objects 0,1 and one morphism 0 < 1. By proposition [3.2.3
and corollary it follows that 2 = Mor([«/, Modg]) and . = Mor(Modg)
are locally w-presentable. We write F': Z — £ for the functor induced by L.
Since colimits in Mor (%) are computed pointwise whenever % is cocomplete, it fol-
lows that F' is cocontinuous. Thus F': # — % is an w-accessible functor. Writing
% = Iso(Modpg) for the full subcategory of £ generated by the isomorphisms,
we find that the full subcategory of % generated by ¥ is precisely F~1(.%;). The
result follows if we can show that proposition can be applied.

Since we already know that F is accessible it suffices to show that Iso(Modpg) is
an accessible, accessibly embedded subcategory of Mor(Modg). But the functor
Iso(Modg) — Modpg which sends an isomorphism to its domain is an equivalence
of categories, hence Iso(Modpg) is accessible; and Iso(Modg) is closed under ar-
bitrary colimits in Mor(Modg), which shows that Iso(Modg) is indeed accessibly
embedded. U
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3.3. Orthogonality and the orthogonal reflection construction.

Definition 3.3.1. Let X be a class of morphisms in a category ¥. An object C of
€ is called orthogonal to % if for all solid arrow diagrams

A—2=C
i A
e

where s € 3, there exists a unique dotted arrow making it commutative. The
class of all objects which are orthogonal to ¥ is denoted by X+. We call this the
orthogonality class of X.

We fix a locally presentable category %, together with a set 3 of morphisms of
% . By proposition there is a regular cardinal A such that all domains and all
codomains of the morphisms in ¥ are A-presentable. For any object X of € we
construct a functor X(_y: A — % by transfinite induction:
i) First step: We let Xy = X.
ii) Successor step: If X(_y is defined on the subset {3 € A3 < a} of A, we let
Xa+1 be the colimit of the diagram

C P C/
X P’
P q

A ! X
s A /f,
B s

B/

where B<87A*f>Xa ey B’<LA’L>XQ runs over all spans whose

left leg lies in X, and the pairs (p, q), ..., (p',¢’) run over all pairs of morphisms
for which there exists a morphism s € ¥ with pos = gos. We let i, 441 be the
structure morphism from the above diagram, which extends X(_) to a functor
{elf<a+l} —7.

iii) Limit step: If X(_y is defined on {8 € A3 < pu} for some limit ordinal u € A,
we let X, be the colimit of the functor

X(,): {ﬂ S /\‘ﬂ < u} — .
We extend X(_) to a functor {8 € |3 < u} — € by letting i, : Xg — X,

be the structure maps of this colimit.

Definition 3.3.2. For any X, the colimit 7X of the functor X(_y: A\ — % defined
above is a called the orthogonal reflection of X. We denote the structure morphisms
by iq: Xo — X, and we let nxy = ig: X — rX.

Since our definition differs slightly from the one in [AR94] and because the
construction is so important for our description result, we provide a proof of the
following proposition. All the arguments can be found in [AR94], section 1.37.

Proposition 3.3.1. The orthogonal reflection construction has the following prop-
erties:

(1) for any object X of €, the object rX is orthogonal to X, and
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(2) if Y is orthogonal to 3 and f: X =Y is any morphism, there is a unique
morphism f:rX — Y such that the diagram

X 20 x

RN

Y

18 commutative.

In other words, the orthogonal refiection construction provides a left adjoint to the
inclusion X+ — €

Proof. First we show that r.X is orthogonal to 3. So let s: A — B be any morphism
of 3, together with a morphism f: A — rX. Note that A, considered as a category,
is M-filtered. It follows that for any A-presentable object C of €, €(C,rX) is the
colimit of '(C, X(_y): A — Set. Equivalently, this means that

a) any morphism C' — rX factors via some i,: X, — rX, and

b) if i, 0a = iy 0 b for a,b: C — X,, there exists a 5 € A\, f > « such that
iq,300=1q300.

In particular, there is a morphism g: A — X, such that f =i, o g. By definition

of X(_y it follows that there is a morphism B — X441 such that the diagram

A g Xa TX

|17

B—— Xa+1

is commutative. Indeed, the span B < At « occurs in the defining diagram
of X411, and the structure map B — X1 gives the desired morphism. This shows
existence of the dotted arrow in

A*f>7“X,
J/ 7
B

and it remains to show uniqueness. Thus let a,b: B — rX are two morphisms with
as = bs = f. By a) it follows that both a and b factor as a = i,p and b = i,q for
some morphisms p, q: X, — rX. Since i,ps = i,gs, the property b) above implies
that there is an element 3 of A such that i, gps = i, ggs. But this means that the
pair (iq,8p, ia,8q) occurs in the defining diagram of X1, and therefore that

18,841 © la,3 OP = 8,841 © la,3 © ¢,

which shows that a = i,p = 1oq = b.

We now turn to the proof of (2). Since r X is the colimit of the functor X(_y: A — &,
the statement in (2) is equivalent to the following: For each morphism f: X — Y
there is a unique cocone f,: X, — Y with fy = f. We prove this by transfinite
induction.

i) First step: demanding fo = f uniquely determines a cocone on X(_) restricted
to {0} C A

ii) Successor step: Given a cocone fz: X3 — Y on X(_) restricted to {5 € |G <
a}, we have to show that there is a unique extension fu41: Xor1 — X to a
cocone of X(_y restricted to {# € A\| < a+1}. Equivalently, we have to show
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that the morphism f,: X, — Y uniquely extends to a cocone on the solid

NA
\

7

S

B

Since Y is orthogonal to ¥ there is a unique dotted arrows for all the spans in
the above diagram. The dotted arrows together with f, constitute a cocone if
and only if fop = faq for all the pairs (p,q) occurring in the above diagram.
If (p,q) is such a pair, there is a morphism s € ¥ such that ps = ¢s; hence
faps = faqs, and orthogonality of Y implies that f,p = faq.

ili) Limit step: If g € A is a limit ordinal and if the cocone fg: X3 is defined for the
restriction of X(_y to {8 € A|# < u}, we have to show that there is a unique
extension to a cocone defined on {# € A|f < p}. This follows immediately
from the definition of X, as a colimit.

The morphism f: 7X — Y is now given by the morphism which is induced by the
unique cocone extending f: X — Y. O

3.4. Recognition of categories of Cauchy comodules. We need one more
concept in order to state our description theorem.

Definition 3.4.1. Let o be a small R-linear category. An R-linear functor
w: o/ — Modp is called flat if the left Kan extension Lany w: [&/°P, Modg| —
Modp of w along Y (see definition|1.5.3)) is left exact, i.e., if Lany w preserves finite
limits.

This definition is a generalization of flat R-modules: if o is the R-linear category
-7 with one object x and .# (x, *) = R, giving an R-linear functor w.#°? — Modp, is
the same as giving an R-module M = w(x). Under this equivalence [.#°P, Modp] =
Modg, the left Kan extension Lany w corresponds to M ® —: Modr — Modg.
Hence w is flat if and only M is flat in the usual sense.

Definition 3.4.2. Let o7 be a small R-linear category, and let F': of — Modpg
be an R-linear functor. The category el(F) of elements of F' has objects the pairs
(A,a) with A € o and a € FA, and morphisms (A4,a) — (A’,a’) the morphisms
fi A— A in & with Ff(a) =

Proposition 3.4.1. If & is an additive R-linear category, a functor F: of —
Modg, is flat if and only if the category el(F') of elements of F is cofiltered, i.e., if
and only if el(F)°P is filtered.

Proof. This follows from [OR70], theorem 3.2. O

Proposition 3.4.2. Let C be a flat coalgebra. If C' has enough Cauchy comodules,
then the forgetful functor V: Comod®(C) — Modg is flat.

Proof. By proposition it suffices to show that el(V) is cofiltered. Since C
has enough Cauchy comodules it follows immediately that el(V') is non-empty. Let
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(M;,m;), i = 0,1 be two objects of el(V). By proposition it follows that
(Mo ® My, (mo,my)) is an object of el(V) and that

pry: (Mo ® My, (mg,mq)) — (M;,m;),

i = 0,1, are morphisms in el(V). It remains to show that for two morphisms
o, p1: (M,m) — (N,n) in el(V) there is a Cauchy comodule L, an element [ €
L and a morphism ¢: L — M of Cauchy comodules with ¢ (l) = m, such that
woot = pio. Let v: K — M be the equalizer of ¢g and ;. There is a unique
coaction px on K such that (K, pk) is the equalizer of ¢y and ¢; in Comod(C)
(see proposition , and by assumption we know that m € K. Since C has
enough Cauchy comodules there is a Cauchy comodule L, a morphism 7: L — K
and an element | € L such that 7(l) = m. Now 9 = v7 gives the desired morphism
Y: (L) — (M, m) in el(V). O
Theorem 3.4.3. Let &/ be a small R-linear additive category and let w: o/ —
Mod$% be an R-linear functor. If

i) w (considered as a functor with domain Modpg) is flat and

i) the functor of ——= Mod% Modg reflects colimits,
then the unit

(,!Zf,w) — (COmOdC(E(d’w)), V)

of the adjunction E(_y 4 Comod‘(—) (see definition s fully faithful. If in
addition

i) the functor o/ — = Mod$% Modpgr creates those colimits which happen
to lie in Mod§,
then the unit
(o, w) — (Comod®(E(y ), V)

is an equivalence of categories.

We split the proof into several lemmas, and we fix some notation. Let w: &/ —
Mod%, be an R-linear functor. We consider the left Kan extension

Lany w: [&7°P?, Modg| — Modg

of w: @ — Modp along Y (see definition [.5.3), which we abbreviate as L :=
Lany w. Let ¥ C Mor([«7°?,Modg]) be the class of morphisms in [2/°P, Modg]
which are sent to isomorphisms by L. Since L is cocontinuous it follows that
the full subcategory of Mor([«/°P, Modpg]) generated by ¥ is cocomplete, with
colimits computed as in Mor([«/°P, Modg]). Let € be the full subcategory %+
of [&7°P, Modg] consisting of the objects which are orthogonal to ¥ (see defini-
tion . By corollary it follows that 3 is an accessible, accessibly embed-
ded subcategory of Mor([2/°P, Modpg]). Accessibility of ¥ implies that there is a
regular cardinal X and a subset ¥y C X such that every element of ¥ can be writ-
ten as a X -filtered colimit of elements in 3¢ (see definition . It follows that
the full subcategory € = X+ is equal to Eé‘. Moreover, there is a regular cardinal
A such that the domains and codomains of all morphisms in ¥ are A-presentable
(see proposition [3.2.2]), hence the orthogonal reflection construction applied to g
(see definition gives a left adjoint r: [«/°P,Modpg] — % to the inclusion
i: € — [9/°P,Modg].

Lemma 3.4.4. For any R-module M, &(M) is orthogonal to . In other words,
the functor @: Modgr — [2/°P, Modg] factors via the inclusion

i: € — [2/°P,Modg].
We write W: Modg — € for the unique functor with iW = @.
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Proof. Let s: A — B be any morphism in Y. The existence of a unique dotted
arrow in the left diagram

~ #
A 4f> w(M) LA f*> M
7 7
l E ~ (S)l
B LB

is by adjunction equivalent to the existence of a unique dotted arrow in the right
diagram. But the latter is evident since L(s) is an isomorphism, so &(M) really
does lie in ¥. (|

Lemma 3.4.5. Let V = Li: ¥ — Modg. Using the notation from lemma
the functor V is left adjoint to W, with unit and counit given by the unit n and
counit € of the adjunction L 4 & (see proposition . Moreover, the comonad
associated to the adjunction V.4 W (see proposition is equal to the comonad
associated to the adjunction L 4 ©.

Proof. For every X € €, @(L(X)) lies in ¢ by lemma[3.4.4] Since the subcategory
% is full it follows that n: X — @W(L(X)) = WV(X) is a morphism in €. Fur-
thermore, we have VW (M) = LiW (M) = Lo(M) for every R-module M, which
implies that s is a morphism VW (M) — M. The triangular identities obviously
hold, because 7 and ¢ are the unit and counit of L 4 w. The statement about the
associated comonads follows directly from the definition in proposition [2.4.5 O

Lemma 3.4.6. The class X is equal to
{f € Mor([«7°P, Modg])|r(f) is an isomorphism}.

Proof. To see this, we will first show that for any X € [«7°P, Modg], the morphism
nx: X — rX (see definition[3.3.2) is in %, i.e., that L(nx) is an isomorphism. This
follows from the fact that the morphisms L(in g): LX, — LX3 are isomorphisms
for all a, 8 € A\, a < (8, which can be seen by transfinite induction:

i) First step: there is nothing to show.

ii) Successor step: If L(ig s ): LXg — LXp is an isomorphism for all 8,8 < «,
we have to show that L(iq,a+1): LXa — LX4+1 is an isomorphism. Since L
preserves colimits, L X1 is the colimit of the diagram

I Lo
L(g) L(p")
Jp—L mLXa/A )
| LA’/L(;/)
LB lL(s/)
LB’

with morphisms defined as in section In particular, s, s’ lie in Xg, hence
L(s), L(s’") are isomorphisms; and for any pair (p,q) occurring in the above
diagram there is a s” € X such that ps” = ¢s”, which implies that L(p) =
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L(q). It follows that

LC Lot
N A
L L(q")
LA L(f) X )
L(s) Copa T P sk,
B
LB L(s") "L(f/)oL(s’)*l
LB~

is a colimit cocone, too. But L(iq,q+1) obviously is the comparison morphism
between the two colimit cocones, hence it is an isomorphism.

ili) Limit step: We have to show that for any limit ordinal p € A, if L(ig s) is an
isomorphism for all 3, 8" < pu, then L(ig,) is an isomorphism for all § < p.
The induction assumption implies that one way to compute the colimit of the
pu-chain

LX, LX, LXg —— ...

is given by LXy, with structure morphisms L(ip ) ~': LXg — LX,. Coconti-
nuity of L implies that LX,, also is a colimit of this chain, hence its structure
maps L(ig,): LXg — LX, must be isomorphisms, too.

Now, applying L to the diagram

X 250 x

1 e

YT>7“Y

we find that L(f) is an isomorphism if and only if L(r(f)) is an isomorphism.
Equivalently, this means that f € ¥ if and only if 7(f) € X. But the latter is
equivalent to the fact that r(f) is an isomorphism, for if r(f) is an isomorphism,
then so is L(r(f)); and conversely, if r(f) € X, there is a unique morphism g: rY —
rX such that

rX s rX
i
r(f)l 777,—'9
rY

because rX is orthogonal to X. It follows that L(g) is an isomorphism, and hence
that the dotted arrow in

TYi*d>7“Y

rX

exists, which shows that ¢ is an isomorphism, and thus that »(f) = g~ is an isomor-
phism. This concludes the proof of our claim that ¥ = {f|r(f) is an isomorphism}.
O

1

Lemma 3.4.7. Ifw: o — Modp is flat, then the adjunction VAW : € — Modg
(see lemmam s comonadic.
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Proof. The left adjoint V reflects isomorphisms, for if f: X — Y is a morphism
in € such that V(f) = L(f) is an isomorphism, it follows that f € ¥; and in
lemma we have seen that this implies that (f) is an isomorphism. Since X
and Y already lie in ¢ and because r: [«7°P, Modg] is a reflection, it follows that
f is an isomorphism, too. Furthermore, our assumptions imply that the functor
V = Li is left exact: L is left exact because w is flat, and i, as right adjoint to 7,
is automatically left exact. The claim now follows from corollary O

Definition 3.4.3. Let ¥; be the set of those morphisms s;: F — &/(—, A) for
which there exists a morphism sq: Fy — G in g, an object A € &/ and a morphism
a: o/(—,A) — Gy which fit in a pullback diagram

rF Fy

o (~, A) — Go.

In other words, ¥; consists of the pullbacks of elements of ¥y along morphisms
with domain &7 (—, A) for some object A € <.

Lemma 3.4.8. If w is flat, the orthogonality classes ¢ and %1 are equal.

Proof. Flatness of w implies that L preserves finite limits. It follows that ¥; C X,
hence that ¥+ C Xi. Therefore it suffices to show that for any X € ¥y, any
so: Fo — Gp in ¥y and an arbitrary morphism ¢g: Fy — X, there exists a unique
dotted arrow such that the diagram

Fo—S>x
7
Sgl
Go

is commutative. The assumption X € ¥i implies that we have unique dotted

arrows
F .

A (—,A) ?Go

for any @: @/ (—, A) — Go, where the square on the left is a fixed pullback diagram.
Uniqueness of the dotted arrows immediately implies that they constitute a cocone
on the diagram Dp from definition [1.6.2] By corollary [1.6.7] it follows there is a
unique morphism h: Gy — X such that the diagrams

F F—2sx

LA

&Q{(_aA) ?GO

are commutative for every a: &/ (—, A) — Gy. This already shows that if the desired
lift exists, it must be equal to h. It remains to show that hsqg = g, i.e., that for
every x € FyA, the equality

hao(s0)a(r) = ga(w)
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holds. If we fix some = € FA and let a = (sg)a(z), the diagram
o (—,A) —= F,
|
A (=, A) —= Go

is commutative (recall that T stands for the unique natural transformation with
Ta(ida) = z). Since s;: F — o/ (—, A) is the pullback of sy along @, it follows that
there is a unique dashed arrow making the diagram

(= 4) —> Go

is commutative, which shows that g = ha and thus, by definition of a, that
ga(z) = ga(Ta(ida)) = ha(@a(ida)) = ha((so)a(x)).

Since x € FyA was arbitrary, this implies that hsy = g, i.e., that X is orthogonal
to so. This concludes the proof of our claim that ¥+ = 3+ O

Lemma 3.4.9. Assume that w is flat and that w: o/ — Modpg reflects colimits.
Then for every object A of &, the functor o (—, A) lies in €. In other words, the
Yoneda embedding factors through the inclusion i: € — [2/°P, Modg].

Proof. By lemma it suffices to show that o7 (—, A’) is orthogonal to 3 for all
A’ € of. In other words, we have to show that for any morphism s: F — &7 (—, A)
such that L(s) is an isomorphism, and for any morphism f: F — &/ (—, A’), there
exists a unique dotted arrow

F—t s ()

%(_714)

making the diagram commutative. Let (Y | F) be the category from defini-
tion We consider the diagram D: (Y | F) — & which sends (B,b) to
B and f: (B,b) — (B',b) to f. With the notation of definition we find
that Y o D = Dp. We let £ gy D(B,b) — A be the morphism sg(b): B — A
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(this makes sense because b = bp(idg) € FB, and s: F — &/(—, A) is a natural
transformation). We find that

Y(“(B,E))B(idB) = (B, “(B,E))(idB)
=~ (B
= sp(b)

= SB (BB(ldB))7

hence the Yoneda lemma implies that Y(H( B E)) = sob. The right-hand side is a

cocone on D = Y D because the b constitute a cocone. Since Y is fully faithful, it
follows that the (BB constitute a cocone on D. Similarly, we let f(Bj) : D(B,b) —

A’ be the morphism fp(b). An analogous argument shows that Y'({ z7)) = fo b
and thus that the & (B.F) constitute a cocone on D. Since L preserves colimits and

because the b: Y D(B,b) — F exhibit F' as colimit of YD (see corollary
it follows that the L(b) exhibit LF as colimit of the diagram LY D. But L(s)
is an isomorphism by assumption, which implies that the L(sob) = LY (K )
exhibit LY (A) as (another) colimit of the same diagram LY D. Now the natural
isomorphism LY = w (see proposition @ implies that the w(rp 7)) exhibit w(A)
as the colimit of the diagram w o D. But w reflects colimits by assumption, which
shows that the kg3 D(B,b) — A constitute a colimit cocone. Hence there is a

unique morphism g : A — A’ in &/ such that gor(p ) = B, for all objects (B,b)
of (Y | F). Applying the Yoneda embedding we find that, for every b € F B,
Y(g)os0b=Y(g)o¥(k5)
=Y ()
=fob.

Since the b exhibit F' as colimit of the diagram Dy = Y D, this implies that Y (g) o
s = f. This shows the existence of a dotted arrow making

Pt ()

'!Z{(_v A)

commutative, and if h is any other arrow with hs = f, it must be of the form Y (k)
for a unique k: A — A’ (since Y is fully faithful), and the fact that hsb = fb implies
that Y (ko kg ) = Y (§(B,)), hence that ko K5 = &pp)- But the morphism g
is unique with this property, which shows that k = g and h =Y (k) = Y (g). O

Proof of theorem[3.4.3 By proposition it follows that the unit
(d7 w) - (ComOdc(E(d,w))a VC)
is a fully faithful if and only if the composite
o — > [2/°P, ModRg)] L Comod(L,,w)

is fully faithful, where J denotes the comparison functor of the adjunction L, 4 @
(see proposition @ With V 4 W: 4 — Modg as in lemma we get by
proposition@ a comparison functor J': ¢ — Comod(VW). Since the comonads
VW and L,& are equal (see lemma 7 this gives in fact a functor J': 4 —
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Comod(L,w). Moreover, the diagram

¢ : [7°P, Modp]

Comod(L,w)

is commutative by definition of J and J’'. If w satisfies ), then J’ is fully faithful

(see lemma [3.4.7). By ii) it follows that the Yoneda embedding factors via € (see
lemma [3.4.9). This shows that JY is equal to J'Y, and therefore that JY is fully

faithful.

It remains to show that if w creates those colimits which are finitely generated
and projective, then the functor JY = J'Y gives an equivalence between & and
Comod®(L,w). Since J' is compatible with the forgetful functors, this is equivalent
to showing that for every object X of € with V(X) finitely generated and projective,
there is an object A of </ and an isomorphism X 2 ¢ (—, A). By corollary
it follows that X is the colimit of some diagram D: 2 — % which is of the form
D =Y oD for a unique D': 2 — /. Since V preserves colimits, we find that
V(X) is the colimit of VD = VY D' = LY D' 2 wD’ (see proposition [1.5.4]). By i)
it follows that there is an object A of &/ and morphisms k4: D’(d) — A expressing
A as colimit of D’, such that w preserves this colimit. The Y (ky4) constitute a
cocone on YD’ = D, hence there is a unique morphism f: X — &/(—, A) which
is compatible with the respective cocones. Since both cocones are sent to colimit
cocones by V it follows that V() is an isomorphism, and by lemma it follows
that f is an isomorphism. O
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