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0 Introduction

The absolut Galois group of Q is of big interest in mathematics. In his Esquisse d’un
Programme, Alexander Grothendieck developed a correspondence between Gal(Q/Q)
and special types of graphs drawn on surfaces, which he called dessin d’enfants. One of
the most important result is that Gal(Q/Q) acts faithfully on the set of dessins in genus
1, on the set of dessins in genus 0 and even on the set of trees. This thesis eplains the
proof of the faithfulness of the action of Gal(Q/Q) on the set of trees.
In section 1 we assemble the basics to show that there is a bijection between a class
of holomorphic coverings of P1C and dessin d’ enfants, namely the Grothendieck corre-
spondence. Section 2 deals with Belyi’s theorem and Belyi morphisms. Here we show
that an algebraic curve A over C is defined over Q if and only if there exists a holomor-
phic covering p : A → P1C which is unramified outside {0, 1,∞}. Such a covering is
called a Belyi morphism. In section 3 we define dessin d’enfants and the cartographical
group of a dessin. Here we will prove the Grothendieck correspondence. Section 4 deals
with trees, which are embedded, connected graphs without cycles, on P1C. We give an
algorithm which computes a Belyi polynomial in Q[z], whose ramification orders over 1
are all exactly 2, for every abstract tree. We will show that for every abstract tree I (T )
there exists at least one Belyi polynomial β such that (β−1(0), β−1[0, 1],P1C) ∈ I (T ).
In general, there is no reason why this algorithm should give a Belyi polynomial defined
over the smallest possible field. But in some cases it does. We found some of them, called
them special trees, and prove the statement for them in section 5. Here we also define
the action of Gal(Q/Q) on abstract trees. In addition we give some invariants of this
action, one of them is the conjugacy class of the cartographical group of a dessin. Yet,
there are no invariants known which solve the problem of determining the Galois orbits
of dessins d’enfants completely. For example the cartographical groups do not separate
the trees from the orbit of Leila’s flower [5]. In section 6 we will give two examples of
the Galois orbits of abstract trees. In the first example we will obtain a set of abstract
trees with two distinct Galois orbits, the second example gives a set of abstract dessins
which are all contained in one Galois orbit.

Due to the proofs in this thesis, we are able to compute the degree of a Belyi poly-
nomial which corresponds to the tree! on the cover sheet. We only have to sum up
the number of incident edges of the black points . If we do so, we obtain that a Belyi
polynomial corresponding to the dessin on the cover sheet has degree 772.

I would like to thank Prof. Richard Pink and Patrik Hubschmid for their supervision,
which couldn’t have been better.
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1 About coverings

Theorem 1.1. [2, Theorem 2.1, page 10] (Local behaviour of holomorphic maps)
Suppose X and Y are Riemann surfaces and f : X → Y is a non-constant holomorphic
map. Let a ∈ X and b := f(a). There exist an integer k ≥ 1 and charts ϕ : U → V on
X and ψ : U ′ → V ′ on Y with the following properties:

(i) a ∈ U,ϕ(a) = 0; b ∈ U ′, ψ(b) = 0.

(ii) f(U) ⊂ U ′.

(iii) The map F := ψ ◦ f ◦ ϕ−1 : V → V ′ is given by F (z) = zk for all z ∈ V .

We say f has multiplicity k at the point a = ϕ−1(0) and k is the multiplicity of a.
We call a a critical point of f if its multiplicity is greater than one.

Definition 1.2. Let x be a critical point of f : X → Y , we call f(x) a critical value
of f .

Definition 1.3. [2, Definition 4.11, page 24] Suppose X and Y are topological
spaces. A continuous map p : X → Y is called a covering map if the following holds.
Every point y ∈ Y has an open neighborhood Uy such that its preimage p−1(Uy) can be
represented as

p−1(Uy) =
⋃
j∈J

Vj

where the Vj , j ∈ J , are disjoint subsets of X, and all the maps p|Vj : Vj → Uy are
homeomorphisms. In particular, p is a local homeomorphism.

Theorem 1.4. [2, Theorem 4.16, page 26] Suppose X and Y are Hausdorff spaces with
Y path-connected and p : X → Y is a covering map. Then for any two points y0, y1 ∈ Y
the sets p−1(y0) and p−1(y1) have the same cardinality.

The common cardinality of p−1(y) for y ∈ Y is called the number of sheets of the
covering.

1.1 Ramified coverings of Riemann surfaces

Definition 1.5. [2, Definition 4.3, page 21] Suppose X and Y are Riemann surfaces
and p : X → Y is a non-constant holomorphic map. A point x ∈ X is called a ramifi-
cation point of p, if there is no neighborhood U of x such that p|U is injective.We say
p is ramified over p(x). The map p is called unramified if it has no ramification points.

Theorem 1.1 implies

Corollary 1.6. A point x is a ramification point of p if and only if the multiplicity k of
x is greater than 1.
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This is equivalent to:

Corollary 1.7. {x ∈ X| x is a ramification point of p}={critical points of p}

Definition 1.8. [2, Definition 4.20, page 28] A continuous map f : X → Y between two
locally compact spaces is called proper if the preimage of every compact set is compact.
This is always the case if X is compact.

Theorem and Definition 1.9. [2, Theorem and Definition 4.23, page 29] Suppose
X and Y are Riemann surfaces and f : X → Y is a proper, non-constant, holomorphic
map. It follows from Theorem 1.1 that the set A of ramification points of f is closed
and discrete. Since f is proper, the set B := f(A) of critical values is also closed and
discrete. Let Y ′ := Y \B and X ′ := X\f−1(B) ⊂ X\A. Then f|X′ : X ′ → Y ′ is a proper
unramified holomorphic covering. If A is non empty then we call f : X → Y a ramified
holomorphic covering.

1.2 Classification of coverings of a connected Riemann surface

Let X, X ′ and Y be compact connected Riemann surfaces.

Definition 1.10. Two proper holomorphic coverings p : X → Y and p′ : X ′ → Y are
called isomorphic coverings, if there exists a biholomorphic map θ : X → X ′ which
is fiber-preserving, so the following diagram has to be commutative:

X
θ //

p
  @

@@
@@

@@
@ X ′

p′~~}}
}}

}}
}}

Y

Let B be a closed discrete subset of Y . Let p : X → Y and p′ : X ′ → Y be proper
holomorphic coverings ramified over a subset of B. Choose a basepoint y0 in Y \B.

Theorem and Definition 1.11. [6, Theorem and Definition 6.3.1, page 155, adapted
to ramified coverings] Let x0 be in the fiber of y0. The unramified covering

p : (X\p−1(B), x0)→ (Y \B, y0)

induces an injective group homomorphism

p∗ : π1(X\p−1(B), x0)→ π1(Y \B, y0).

The subgroup p∗π1(X\p−1(B), x0) is called the characteristic subgroup in
π1(Y \B, y0) of the covering p : X → Y , corresponding to the point x0.The index of
p∗π1(X\p−1(B), x0) in π1(Y \B, y0) is equal to the number of sheets of the covering p.

Theorem and Definition 1.12. [6, Theorem and Definition 6.3.3, page 156, adapted
to ramified coverings] Let p : X → Y be a holomorphic covering ramified over a subset
of B. Then C(X, p)B := {p∗π1(X\p−1(B), x0) | x0 ∈ p−1(y0)} is a class of conju-
gated subgroups of π1(Y \B, y0); it is called the characteristic conjugation class in
π1(Y \B, y0) of the covering p : X → Y .

6



Theorem 1.13. [6, Theorem 6.3.4, page 155, adapted to ramified coverings using
analytic continuation] (criteria of isomorphism) Two proper holomorphic coverings p :
X → Y and p′ : X ′ → Y , both ramified over a subset of B, are isomorphic if and only
if C(X, p)B and C(X ′, p′)B coincide in π1(Y \B, y0).

Theorem 1.14. [6, Theorem 6.6.2, page 165, adapted to ramified coverings] If we
assign to any holomorphic covering p : X → Y , ramified over a subset of B its charac-
teristic conjugation class C(X, p)B in π1(Y \B, y0), we obtain a bijection between the set
of isomorphism classes of holomorphic coverings of Y which are ramified over a subset
of B and the set of conjugation classes in π1(Y \B, y0) of subgroups of π1(Y \B, y0).

2 Belyi’s theorem and Belyi morphism

2.1 Belyi’s theorem

Choose a basepoint y0 in P1C\{0, 1,∞}.

Proposition 2.1. π1 := π1(P1C\{0, 1,∞}, y0) = 〈l0, l1, l∞ | l0l1l∞ = 1〉 ∼= F2, where li
is the loop around i and F2 is the free group with two generators.

Theorem 2.2. [5, Theorem 1.2, page 49] Let X be a smooth projective algebraic curve
defined over C. Then X is defined over Q̄ if and only if there exists a non-constant
holomorphic function f : X → P1C such that all critical values of f lie in the set {0, 1,∞}.

2.2 Unramified coverings of P1C\{0, 1,∞} and their extensions to P1C

Theorem 2.3. [2, Theorem 8.4, page 51] Suppose Y is a Riemann surface, A ⊂ Y is
a closed discrete subset and let Y ′ = Y \A. Suppose X ′ is another Riemann suface and
p′ : X ′ → Y ′ is a proper unramified holomorphic covering. Then p′ extends to a possibly
ramified covering of Y i.e., there exists a Riemann surface X and a proper holomorphic
map p : X → Y and a fiber-preserving biholomorphic map θ : X\p−1(A)→ X ′.

Proposition 2.4. [1] Let X be a smooth connected projective algebraic curve defined
over the field C. Then X is a compact connected Riemann surface. The converse is also
true: Any compact connected Riemann surface is obtained from some smooth connected
projective algebraic curve.

Proposition 2.5. [5, Proof of Lemma 1.1, page 48] Let f : X → P1C\{0, 1,∞} be
a proper unramified holomorphic cover and let G be an element of the corresponding
conjugacy class of subgroup of π1. Let f ′ : X ′ → P1C be the extended covering of P1C,
possibly ramified only over 0, 1 and ∞. Then the ramification indices over 0, 1 and ∞
are the lengths of the orbits in π1/G under the action of l0, l1 and l∞ respectively by left
multiplication.

Let L1 be the minimal normal subgroup of π1 which contains 〈l12〉. Let π′1 := π1/L1.
As a consequence of Theorem 1.14 and Prop. 2.5 we have
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Corollary 2.6. [5, Corollary (to Lemma 1.1), page 48] There is a bijection between the
set of conjugacy classes of subgroups of π′1 of finite index and the set of isomorphism
classes of holomorphic coverings of P1C, ramified only over 0, 1 and ∞, such that the
ramification over 1 is of degree at most 2.

2.3 Belyi morphism

Let X be a compact connected Riemann surface or equivalently a smooth connected
projective algebraic curve defined over C.

Definition 2.7. [5, Definition 1, page 50] A non-constant holomorphic map
β : X → P1C all of whose critical values lie in {0, 1,∞} is called a Belyi morphism.
We call β a pre-clean Belyi morphism if all the ramification degrees over 1 are less
than or equal to 2 and clean if they are all exactly 2.

Corollary 2.8. [5, Corollary (to Lemma 1.2), page 50]A smooth algebraic curve X
defined over C is defined over Q if and only if there exists a clean Belyi morphism
β : X → P1C.

Proof. From Theorem 2.2 we know that X is defined over Q if and only if there exists
a Belyi morphism α : X → P1C. Let α : X → P1C be a Belyi morphism, we will show
that β = 4α(1− α) is a clean one.
Let α′ and β′ be the derivation of α respective β. Let x be a point in X, then the
following equation holds:

β′(x) = 4
(
α′(x) (1− α(x))− α(x)α′(x)

)
= 4α′(x)(1− 2α(x)).

We conclude that x is a critical point of β if and only if x is a critical point of α or
α(x) = 1/2. We see that x is a zero of β if and only if x is a zero of α or (1 − α). If
α(x) = ∞ then β(x) = ∞. By construction of β we know that β(x) = 1 if and only
if α(x) = 1/2. Hence all critical values of β are contained in the set {0, 1,∞} and the
ramification order of β over 1 is 2. Therefore β is a clean Belyi morphism.

If X is a smooth algebraic curve defined over Q̄ and β is a Belyi morphism on it,
we call the couple (X,β) a Belyi pair. Two Belyi pairs (X,β) and (Y, γ) are said to
be isomorphic if there is a biholomorphic map θ : X → Y such that β = γ ◦ θ. We call
(X,β) a pre-clean Belyi pair respective clean Belyi pair if β is a pre-clean resp. clean
Belyi morphism.We denote the isomorphism class of a Belyi pair (X,β) by I (X,β).

3 Dessin d’enfants

Definition 3.1. Let X1 be a union of one-cells, X0 ⊂ X1 a subset of X1 consisting
only zero-cells. A line segment in X1\X0 is a connected component of X1\X0 which
is either the homeomorphic image of the open unit interval (0, 1) ⊂ R or the half open
unit interval (0, 1] ⊂ R.
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Definition 3.2. [5, Definition 2, page 50] A pre-clean Grothendieck dessin is a
triple X0 ⊂ X1 ⊂ X2 where X2 is a compact connected Riemann surface, X0 is a non-
empty finite set of points, X1\X0 is a finite disjoint union of line segments and X2\X1

is a finite disjoint union of open cells.

The last condition and the requirement on X2 to be connected implies that X1 is
connected. In the following we will always mean pre-clean Grothendieck dessins when
we talk about dessins. We denote a dessin by D = (X0, X1, X2).

Definition 3.3. [5, Definition 3, page 50] Two dessins D = (X0, X1, X2) and
D′ = (X ′0, X

′
1, X

′
2) are isomorphic if there exists a homeomorphism γ from X2 into X ′2

inducing a homeomorphism from X1 to X ′1 and from X0 to X ′0. We say γ is an iso-
morphism between D and D′. An isomorphism class of dessins is called an abstract
dessin. We denote the isomorphism class of D by I (D).

Definition 3.4. The valency of a vertex x0 ∈ X0 is the number of incident edges.

Definition 3.5. A dessin D = (X0, X1, X2) is called clean, if every line segment in
X1\X0 is open, i.e., they are all homeomorphic to (0, 1) ⊂ R.

3.1 The cartographical group of a dessin

Let D = (X0, X1, X2) be a dessin, we mark D according to the following description.
Considering a line segment x1 in X1\X0 which is homeomorphic to (0, 1) ⊂ R via
some homeomorphism γx1 , then we mark γ−1x1 (1/2) with ◦ and consider the new edges
γ−1x1 (0, 1/2) ⊂ X1\X0 and γ−1x1 (1/2, 1) ⊂ X1\X0. Since there are several homeomorphism
from x1 to (0, 1) the marking is not unique, but we always choose a point in between
the endpoints of the closure of x1.
If x1 is a line segment homeomorphic to (0, 1] via a homeomorphism γx1 , then we mark
γ−1x1 (1) with ◦ and consider the new edge γ−1x1 (0, 1) ⊂ X1\X0. So we mark the endpoint
of the closure of x1 which is not contained in X0.

We use the notation • for points in X0 and ◦ for marked points in X1\X0. Enumerate
the new edges with integers 1, . . . , n. Therefore every edge has a •-point and a ◦-point
as endpoints. We define deg(D) := n, this is well defined.

Let x0i be a vertex in X0. Due to our numbering above all edges which incident with
x0i are labeled with a unique number of the set {1, . . . , n}. We define si to be the cy-
cle (ki1 . . . kili), which we obtain by rotating all incident edges of x0i counterclockwise.
Because of the marking above we can see that an edge ki, which incidents with a vertex
x0i , does not incident with any other x0l ∈ X0. Therefore, for i 6= l, the cycles si and
sl are disjoint. We define δ to be the composition of the disjoint cycles s1 . . . sj in Sn,
where j is the number of • points. We define σ similarly for the ◦ vertices.

Definition 3.6. The cartographical group GD is the subgroup of Sn generated by δ
and σ.
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By construction, the cartographical group of a dessin is not unique, as it depends
on the numeration of the new line segments of the dessin. Therefore it is defined up to
simultaneous conjugation of the generators σ and δ by an element g ∈ Sn.

Here are some examples:

1

2

3

4

5

6

7

8

9

10

Figure 1: a clean dessin before and after marking
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13

24

5

6

78

9

10

11

Figure 2: Another clean dessin before and after marking. Its cartographical group is
〈(12)(34)(56)(7 8 10), (23)(45)(67)(89)(10 11)〉.

Observe that the cycle decomposition of σ consists only of transpositions. The num-
ber of fixed points of σ is equal to the number of semi closed line segments of D. So, if
D is a clean dessin then there is no fix point in σ. The cartographical group GD of a
dessin D of degree n is a transitive subgroup of Sn, as X1 is connected.

Lemma 3.7. Let D and D′ be two isomorphic dessins of degree n with cartographical
groups GD = 〈δ, σ〉 respectively GD′ = 〈δ′, σ′〉, then δ′ = g ◦ δ ◦ g−1 and σ′ = g ◦σ ◦ g−1,
for some g ∈ Sn.

Definition 3.8. Let D be a dessin and I (D) its isomorphism class. We define the
class of cartographical groups of I (D) by C (I (D)) = {GD′ | D′ ∈ I (D)}.

Observe that the class of cartographical groups of an abstract dessin of degree n is
a conjugacy class of subgroups in Sn.

3.2 Scheduling the Grothendieck correspondence

With Theorem1.14 and Theorem 2.3 follow:

Theorem 3.9. [4, 1.8.14, page 74] Let B ⊂ P1C be a finite subset. Choose a basepoint
y0 in P1C\B. There is a natural bijection between the following sets:

(1) Isomorphism classes of possibly ramified holomorphic n-sheeted coverings
f : C → P1C, where C is a compact connected Riemann surface, such that the set of
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critical values of f is contained in B.

(2) Conjugacy classes of homomorphisms θ : π1(P1C\B, y0) → Sn such that the image
of θ is transitive.

Here we say that
θ : π1(P1C\B, y0) → Sn and θ′ : π1(P1C\B, y0) → Sn are conjugated, if there is some
τ ∈ Sn such that θ(γ) = τθ′(γ)τ−1 for all γ ∈ π1(P1C\B, y0).

We can describe this assignement more precisely. Let I (C, f) be an isomorphism
class of n-sheeted holomorphic coverings, such that C is a compact connected Rie-
mann surface and all critical values of f are contained in B. We consider C(C, f)B
and for every element G ∈ C(C, f)B there is a conjugacy class of homomorphisms
θG : π1(P1C\B, y0) → Sn obtained by left multiplication of π1(P1C\B, y0) on the left
cosets of G. The bijection is now given by assigning I (C, f) to the conjugacy class of
θG.
Let B be the set {x1, . . . , xk} where xi ∈ P1C and li ∈ π1(P1C\B, y0) is the loop
around xi. For any two conjugate homomorphisms θ and θ′ we conclude that im(θ) =
〈θ(l1), . . . , θ(lk)〉 and im(θ′) = 〈θ′(l1), . . . , θ′(lk)〉 are generated by simultaneously conju-
gate elements.

Definition 3.10. The class of monodromy groups of I (C, f) is the set of the images
of the conjugacy class of homeomorphisms which is assigned to I (C, f) by the bijection
above.

Recall that π′1 = π1/L1. Let f : C → P1C be a holomorphic covering of degree n of
P1C, where C is a compact connected Riemann surface. Suppose that f is unramified
outside {0, 1,∞} and the ramification orders over 1 are at most 2. For G ∈ C(C, f){0,1,∞}
let θG : π1 → Sn be the homomorphism, given by the left multiplication of π1 on the
left cosets of G. As the ramification order of f over 1 is less than or equa tol 2, we
know that 〈l21〉 ⊂ ker(θG) and θG factors through π′1. On the other hand, if θG factors
through π′1, we know that l1

2 ∈ ker(θG). Therefore, by Proposition 2.5 we know that
the ramification orders of f over 1 are at most 2.

Corollary 3.11. There is a bijection between

(1) Isomorphism classes of n-sheeted holomorphic maps f : C → P1C, where C is a
compact connected Riemann surface, such that the set of critical values of f is contained
in {0, 1,∞} and the ramification order over 1 is at most two.

(2) Conjugacy classes of homomorphisms θ : π′1 → Sn whose image is transitive.

3.3 The Grothendieck correspondence

Theorem 3.12. There is a bijection between abstract pre-clean dessins and isomorphism
classes of pre-clean Belyi pairs.
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Proof. We define

Λ : {I (X,β) | (X,β) pre-clean Belyi pair} → {I (D) | D pre-clean dessin}

by
Λ(I (X,β)) := {(β′−1(0), β′−1[0, 1], X ′) | (X ′, β′) ∈ I (X,β)}

which is well defined. Let D′ and D′′ be two dessins which are contained in Λ(I (X,β)),
hence they correspond to isomorphic Belyi pairs (X ′, β′) resp. (X ′′, β′′). Therefore there
exists an isomorphism θ : X → X ′ such that β′ = β′′◦θ. Hence D′ and D′′ are isomorphic
via θ. Observe: By construction the class of cartographical groups corresponding to
Λ(I (X,β)) is the class of monodromy groups of I (X,β). Suppose there exist two
distinct isomorphism classes of Belyi pairs I (X,β), I (X ′, β′) such that Λ(I (X,β)) =
Λ(I (X ′, β′)). Corollary 3.11 and the observation above tell us that I (X,β) has to be
I (X ′, β′). Hence Λ is injective.
Surjectivity follows by considering a dessin D ∈ I (D) and the class of groups, generated
by the simultaneuous conjugation of its cartographical group. Corollary 3.11 gives us
an isomorphism class of pre-clean Belyi pairs I (XD, βD) having class of monodromy
groups the latter ones. I (D) will be the image of I (XD, βD) under Λ.

Corollary 3.13. There is a bijection between abstract clean dessins and isomorphism
class of clean Belyi pairs.

Proof. We show that the bijection restricted on isomorphism class of clean Belyi pairs
gives a bijection between abstract clean dessins and isomorphism class of clean Belyi
pairs. Let I (X,β) be an isomorphism class of clean Belyi pairs of degree n. Therefore
the ramification orders over 1 are all exactly 2. Let M be in the class of monodromy
groups of I (X,β) such that M = im(θ) for some homomorphism θ : π′1 → Sn in the
corresponding class of homomorphisms. Hence M = 〈θ(l0L1), θ(l1L1)〉. Since I (X,β)
is an isomorphism class of clean Belyi pairs, the cycle decomposition of θ(l1/L1) is the
composition of n/2 transpositions. Hence Λ(I (X,β)) is an isomorphism class of clean
dessins. On the other hand, if I (D) is an abstract clean dessin we can see that every
element in the class of monodromy groups of the corresponding ismorphism class of Belyi
pairs is generated by some elements g0 := θ(l0L1) and g1 := θ(l1L1) such that θ is in the
corresponding class of homomorphism between π′1 and Sn. The assumption of I (D) to
be a clean abstract dessin gives us that the cycle decomposition of g1 is the composition
of n/2 transpositions. But as the lengths of cycles in g1 are exactly the ramification
orders over 1 of elements in Λ−1(I (D)), we see that Λ−1(I (D)) is an isomorphism
class of clean Belyi pairs.

Note: Let (X,β) be a Belyi pair and D = (β−1(0), β−1[0, 1], X) be the corresponding
dessin. Then β−1(∞) gives a point in every open cell of X\β−1[0, 1].

A similar approach to the Grothendieck correspondence can be found in [4]
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4 Trees

Definition 4.1. A tree is a clean dessin T = (X0, X1, X2) such that X2\X1 consists of
exactly one open cell.

Therefore the eqivalence class of a tree is an abstract tree and not a tree in terms of
graph theory.
Denote by v the number of elements in X0 and define e to be the number of the old line
segments in X1\X0. We denote the number of open cells in X2\X1 by o. As T is a tree,
the relation e = v − 1 holds. If we denote the genus of X2 by g and consider the Euler
charcteristic, we get the equation

2g − 2 = e− v − o = (v − 1)− v − 1 = −2

which tells us that the genus g of X2 is zero.
Remark: Let (P1C, β) be a Belyi pair, then (P1C, β′) is in the same isomorphism

class if and only if there exists a σ ∈ PSL2(C) so that β = β′ ◦σ. Remark that for genus
g = 0, up to biholomorphic mappings, there exists only one compact connected Riemann
surface, namely P1C. Let I (T ) be an abstract tree and I (P1C, β) the corresponding
Belyi pair, such that T = (β−1(0), β−1[0, 1],P1C). From the remark above that β−1(∞)
gives a point in each open cell of the tree T , we see that β−1(∞) consists of only one
point. Precombining β with a suitable transformation in PSL2, sending β−1(∞) to ∞
and sending the set {0, 1} onto itself, we see that I (T ) = Λ(P1C, β′), where β′ is a
polynomial which has two finite critical values, namely 0 and 1.
The aim of the following section is to show that for every abstract tree I (T ) there exists
a clean Belyi polynomial β : P1C→ P1C ∈ Q[z] such that Λ(I (P1C, β)) = I (T ).

4.1 Chebyshev polynomials and clean Belyi polynomials

Definition 4.2. [5, Definition 10, page 67] A polynomial P ∈ C[z] is called a general-
ized Chebyshev polynomial if there exist c1 and c2 ∈ C such that for all z0 such that
P ′(z0) = 0 we have either P (z0) = c1 or P (z0) = c2, i.e. P has at most 2 critical values.
If the critical values of P are exactly ±1 we say that P is normalized.

Lemma 4.3. [5, Lemma 3.4, page 67]
(i) Let P (z) be a normalized generalized Chebyshew polynomial, and let β(z) = 1−P (z)2.
Then β(z) is a clean Belyi polynomial and the dessin given by D =

(
β−1(0), β−1[0, 1],P1C

)
is a tree with ∞ in its open cell.

(ii) Let I (T ) be an abstract tree. Then there is a normalized generalized Chebyshev
polynomial P (z) such that I (T ) = Λ(I (P1C, β)) for β(z) = 1− P (z)2.

Proof. (i) If β(z) = 1− P (z)2 then β′(z) = −2P (z)P ′(z). Hence z0 is a critical point of
β if and only if z0 is a root or a critical point of P . We see that β(z) = 1 if and only if
P (z) = 0. Since P is normalized, we conclude that 0 is no critical value of P . Therefore
the ramification order of β over 1 is 2. From assuming P to be a normalized generalized
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Chebyhev polynomial, we see that all critical values of β are contained in the set {0, 1}.
Thus β is a clean Belyi function and since it has only one pole β−1([0, 1]) must be a tree.

(ii) By Theorem 3.12 and Corollary 3.13 we know that for a given abstract tree I (T )
there exists a Belyi pair (P1C, β) such that Λ(P1C, β) = I (T ). Since I (T ) is an
abstract tree, β has only one pole. We may suppose that this pole is at ∞, so β is a
Belyi polynomial whose only critical values are at 0 and 1. Moreover because we assume
that β is clean, we must have β(z)−1 = cQ(z)2 for some constant c and some polynomial
Q having distinct roots. The critical points of β are the roots and critical points of Q.
Moreover β can only have 0 and 1 as critical values and 1 can only occur at the roots
of Q, so at a critical point z0 of Q which is not a root we must have 1 + cQ(z0)

2 = 0 so
Q(z0) = ±

√
−1/c. Set P (z) =

√
−cQ(z). Then β(z) = 1−P (z)2 and the critical values

of P are ±1.

4.2 Construction of clean Belyi polynomials corresponding to valency lists

For further information on this subsection, see [5, page 68-69]

Let I (T ) be the isomorphism class of a tree T = (X0, X1, X2), such that X0 contains
at least three elements. A bipartite structure on a tree is the assignment of ∗ or ∗ ∗
to each vertex in such a way that every edge connects a ∗ vertex with a ∗∗ vertex.
The bipartite structure is unique up to global change of ∗ with ∗∗. Let n be the highest
valency of any ∗ vertex and m the highest valency of any ∗∗ vertex. Let V ∗ = (u1, . . . , un)
be the ∗ valency list of T , where ui is the number of ∗ vertices having valency i. Let
V ∗∗ = (v1, . . . , vm) be the ∗∗ valency list of T , so vj is the number of ∗∗ vertices having
valency j. Every tree T ′ ∈ I (T ) has valency lists V ∗ and V ∗∗. Hence we say V ∗, V ∗∗

are the valency lists of I (T ).

Definition 4.4. Let I (T ) be an isomorphism class of trees, V ∗ = (u1, . . . , un) and
V ∗∗ = (v1, . . . , vm) its valency lists. If ui ≤ 1 for all i = 1, . . . , n and in addition there
exist distinct integers i0 and i1 such that ui0 = ui1 = 1 and vi0 = vi1 = 0, then we say
I (T ) is a special abstract tree. We call V ∗ and V ∗∗ special valency lists.

Let V ∗ = (u1, . . . , un) and V ∗∗ = (v1, . . . , vm) be the valency lists of an abstract tree
I (T ).
For 1 ≤ i ≤ n set

P̃i(z) := zui + Ci,ui−1z
ui−1 + · · ·+ Ci,1z + Ci,0

and for 1 ≤ j ≤ m set

Q̃j(z) := zvj +Dj,vj−1z
vj−1 + · · ·+Dj,1z +Dj,0
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where the Ci,k and the Dj,l are indeterminates. The set {P̃i, Q̃j} only depends on the
valency lists V ∗ and V ∗∗ and therefore corresponds to a finite number of abstract trees
as there are only finitely many disjoint abstract trees having valency lists V ∗ and V ∗∗.
We assumed that the isomorphism classes of trees which correspond to V ∗, V ∗∗ have
at least three vertices. Therefore either

∑m
j=1 vj ≥ 2 or

∑n
i=1 ui ≥ 2. Without loss of

generality we can assume
∑n

i=1 ui ≥ 2 otherwise we change ∗ and ∗∗.
Case (1): If there exists some i0 ∈ {1, . . . , n} such that ui0 ≥ 2 choose one of them and
set

Ci0,0 := 0, Ci0,1 := 1.

For all 1 ≤ i ≤ n set Pi(z) := P̃i(z) and for 1 ≤ j ≤ m set Qj(z) := Q̃j(z).
Case(2): If all ui ≤ 1, choose two distinct elements i0 and i1 of the set {1, . . . , n} such
that ui0 = ui1 = 1 and set

Pi0(z) := P̃i0(z)− Ci0,0 = z, Pi1(z) := P̃i1(z)− Ci1,0 + 1 = z + 1.

For all i 6= i0, i1 set Pi(z) := P̃i(z) and for 1 ≤ j ≤ m set Qj(z) := Q̃j(z). If I (T ) is a
special abstract tree, choose i0, i1 such that in addition vi0 = vi1 = 0.

Theorem 4.5. Let I (T ) be an abstract tree and V ∗ = (u1, . . . , un) and V ∗∗ = (v1, . . . , vm)
the corresponding valency lists. Set

P (z) :=
m∏
j=1

Qj(z)
j (1)

and let SV ∗,V ∗∗ be the set of polynomial equations obtained by comparing coefficients on
both sides of the following equation:

P (z)− P (0) =

n∏
i=1

Pi(z)
i (2)

under the side condition
P (0) 6= 0. (3)

We have:
(i) For each solution s of the system SV ∗,V ∗∗, let Rs(z) be the normalized generalized
Chebyshev polynomial given by replacing the indeterminates in the polynomial
2

P (0)P (z) − 1 by the values of s. Set βs(z) = 1 − Rs(z)2. Then βs(z) is a clean Belyi
polynomial.

(ii)Let I (T ) = Λ(I (P1C, βs)) for some solution s of SV ∗,V ∗∗, then I (T ) has valency
lists V ∗ and V ∗∗.

(iii) For every abstract tree I (T ) with valency lists V ∗ and V ∗∗ there is at least one
solution s in SV ∗,V ∗∗ such that I (T ) = Λ(I (P1C, βs)).
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(iv) The system SV ∗,V ∗∗ admits only a finite number of solutions, all defined over Q. In
particular, all the βs(z) are defined over Q.

In the proof below Ps, Pi,s and Qj,s are the polynomials obtained by replacing the
indeterminates in P , Pi and Qj by a solution s of SV ∗,V ∗∗ .

Proof. (i) First of all we have to show that for each solution s of SV ∗,V ∗∗ , the polynomial
Rs(z) := 2

Ps(0)
Ps(z) − 1 is a normalized, generalized Chebyshev polynomial. Hence we

have to show that if z0 is a critical point of Rs, then Rs(z0) = ±1. As

d

dz
R(z) =

2

Ps(0)

(
d

dz
P (z)

)
the relations

d

dz
Rs(z) = 0⇔ d

dz
Ps(z) = 0⇔ d

dz
(Ps(z)− P (0)) = 0

hold. By the construction of the valency lists, we know that
∑n

i=1 ui +
∑m

j=1 vj =: v is
the number of vertices and

∑n
i=1 iui =

∑m
j=1 jvj =: e the number of edges of any tree T

having valency lists V ∗ and V ∗∗. Using equation (1) and equation (2) we get

d

dz
Ps(z) =

 m∏
j=1

Qj,s(z)
j−1

 ·
 m∑
j=1

j
d

dz
Qj,s(z)

∏
i 6=j

Qi,s(z)

 (4)

and

d

dz
Ps(z) =

d

dz
(Ps(z)− P (0)) =

(
n∏
i=1

Pi,s(z)
i−1

)
·

 n∑
i=1

i
d

dz
Pi,s(z)

∏
j 6=i

Pj,s(z)

 . (5)

Lemma 4.6. Let z∗ be a root of d
dzRs(z) such that in addition z∗ is a root of Qj,s, for

some j ∈ {1, . . . ,m}. Then Pi,s(z
∗) 6= 0 for all i ∈ {1, . . . , n}.

Proof. Let Qj,s(z
∗) = 0 for some j ∈ {1, . . . ,m}. So z∗ is a root of Ps and we conclude

n∏
i=1

Pi,s(z
∗)i = −Ps(0) 6= 0.

But this means that Pi,s(z
∗) 6= 0 ∀i ∈ {1, . . . , n}

Therefore Lemma 4.6 tells us that the first factors of equation (4) and (5) are coprime.
Thus the product of those is a divisor of d

dzPs(z) and therefore of d
dzRs(z). Since

deg(
d

dz
Rs(z)) = deg(

m∏
j=1

Qj,s(z)
j−1 ·

n∏
i=1

Pi,s(z)
i−1)
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we conclude that there exist an element c ∈ C such that

d

dz
Rs(z) =

2

Ps(0)

 m∏
j=1

Qj,s(z)
j−1

 ·
 m∑
j=1

j
d

dz
Qj,s(z)

∏
i 6=j

Qi,s(z)


=

2

Ps(0)

(
n∏
i=1

Pi,s(z)
i−1

)
·

 n∑
i=1

i
d

dz
Pi,s(z)

∏
j 6=i

Pj,s(z)


=

2c

Ps(0)

m∏
j=1

Qj,s(z)
j−1

n∏
i=1

Pi,s(z)
i−1.

Note: By Lemma 4.6 and the equations above we can now conclude that for j ∈
{1, . . . ,m} and i ∈ {1, . . . , n} the polynomials Qj,s and Pi,s have distinct roots of mul-
tiplicity one, otherwise there would be a root of

m∑
j=1

j
d

dz
Qj,s(z)

∏
i 6=j

Qi,s(z) = c
n∏
i=1

Pi,s(z)
i−1

respective of
n∑
i=1

i
d

dz
Pi,s(z)

∏
j 6=i

Pj,s(z) = c
m∏
j=1

Qj,s(z)
j−1

which is a root of
∏m
j=1Qj,s(z)

j−1 respective
∏n
i=1 Pi,s(z)

i−1, in contradiction to Lemma

4.6 . So if d
dzRs(z) = 0 either Ps(z) = 0 and hence Rs(z) = −1 or Ps(z) = Ps(0) and

therefore Rs(z) = 1. But this means that Rs(z) is a normalized, generalized Chebyshev
polynomial and by Lemma 4.3 βs(z) is a clean Belyi polynomial.
By construction

βs(z) = 1−Rs(z)2

= 1−
(

2

Ps(0)
Ps(z)− 1

)2

= 1−

((
2

Ps(0)
Ps(z)

)2

− 4

Ps(0)
Ps(z) + 1

)

= − 4

Ps(0)
Ps(z)

(
Ps(z)

Ps(0)
− 1

)
= − 4

Ps(0)2

m∏
j=1

Qj,s(z)
j
n∏
i=1

Pi,s(z)
i

(ii) So, from above, we can see that the roots of βs are exactly the roots of the polyno-
mials Qj,s for j ∈ {1, . . . ,m} and those of the polynomials Pi,s for i ∈ {1, . . . , n}. Thus
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for all j ∈ {1, . . . ,m} and i ∈ {1, . . . , n} the polynomial βs(z) has exactly vj respectively
ui roots of multiplicity j, resp. i, which are all distinct. Now

Λ(I (P1C, βs)) = {(β′−1(0), β′−1[0, 1],P1C) | (P1C, β′) ∈ I (P1C)}

is by construction an abstract tree with valency list V* and V**.

(iii) and (iv) see [5, page 67/69]

Let I (T ) be a special abstract tree.

Theorem 4.7. Let V ∗ and V ∗∗ be the special valency list of I (T ). Let βs and βs′

be the Belyi polynomials corresponding to two different solutions s, s′ ∈ SV ∗,V ∗∗. Then
I (P1C, βs) 6= I (P1C, βs′).

Proof. Let V ∗ = (u1, . . . , un) and V ∗∗ = (v1 . . . , vm) be the special valency lists. Hence
there exist distinct elements i0 and i1 ∈ {1, . . . , n}, such that ui0 = ui1 = 1 and vi0 =
vi1 = 0, for which we set Pi0(z) = z resp. Pi1(z) = z + 1 in the construction above. For
any solutions s and s′ of SV ∗,V ∗∗ , we obtain the equations

Pi0,s(z) = z = Pi0,s′(z) (6)

and
Pi1,s(z) = z + 1 = Pi1,s′(z) (7)

If I (P1C, βs) = I (P1C, βs′) we know that βs(z) = βs′(
az+b
cz+d) for some elements

a, b, c, d ∈ C. Since βs and βs′ are both non-constant polynomials we must have c = 0
and w.l.o.g. we can assume d = 1, otherwise we replace a and b by a/d and b/d. Now
the equation

βs(z) = βs′(az + b)

leads to

4

Ps(0)2

 m∏
j=1

Qj,s(z)
j

( n∏
i=1

Pi,s(z)
i

)
=

4

Ps′(0)2

 m∏
j=1

Qj,s′(az + b)j

( n∏
i=1

Pi,s′(az + b)i

)
.

The multiplicity of roots of a polynomial are invariant under linear transformations.
Since vi0 = vi1 = 0 we conclude that the roots of the left and right side which have
multiplicity i0 are exactly the roots of Pi0,s and Pi0,s′ . This leads to

Pi0,s(z) = ci0Pi0,s′(az + b) (8)

for some constant ci0 ∈ C\{0}. As the roots of the left and right side with multiplicity
i1 are exactly the roots of Pi1,s and Pi1,s′ we know that

Pi1,s(z) = ci1Pi1,s′(az + b) (9)
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for some constant ci1 ∈ C\{0}. Equation (8) is equivalent to

z = ci0az + ci0b

hence we know b = 0. Therefore Equation (9) is equivalent to

z + 1 = ci1(az + 1) = ci1az + ci1

so we conclude that ci1 = 1 and therefore a = 1. Therefore βs(z) = βs′(z), in contradic-
tion to the assumption s 6= s′.

5 The action of Gal(Q/Q) on abstract clean trees

Let β(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a polynomial in Q[z]. Let σ be an
element of Gal (Q/Q). Define

βσ(z) := (an)σzn + (an−1)
σzn−1 + · · ·+ (a1)

σz + (a0)
σ

Let I (T ) be an abstract tree. According to the last section there exists at least one
clean Belyi polynomial β such that β ∈ Q[z] and Λ(I (P1C, β)) = I (T ). Therefore the
set

B(I (T )) := {(P1C, β) | Λ(I (P1C, β)) = I (T ) and β(z) ∈ Q[z]} ⊂ Λ−1(I (T ))

is not empty. Let β1 and β2 be two polynomials, such that (P1C, β1) and (P1C, β2) are
both contained in B(I (T )). Hence there exist some elements a and b in Q such that

β1(z) = β2(az + b) (10)

therefore
βσ1 (z) = βσ2 (aσz + bσ). (11)

This leads to the following definition:

Definition 5.1. Let I (T ) be an abstract tree and let (P1C, β) be an element of B(I (T )).
Let σ be an element of Gal(Q/Q). Define (I (T ))σ := Λ(I (P1C, βσ)). We say I (T )
and (I (T ))σ are Galois conjugated abstract trees.

5.1 Properties of the action of Gal(Q/Q) on abstract trees

[4, 2.4.1.2, page 117] Set Γ := Gal(Q/Q). The most important observation is the fact
that all orbits of the action of Γ on abstract trees are finite, we will prove this below.
Let I (T ) be an abstract tree. Consider its stabilizer ΓI (T ) ≤ Γ. Due to the fact that
the orbit of I (T ) is finite, the subgroup ΓI (T ) is of finite index in Γ. Let H ≤ ΓI (T ) be
the maximal normal subgroup of Γ contained in ΓI (T ) and let M (T ) be the fixed field
of the normal subgroup H E Γ. Note that the group H is the pointwise stabilizer of all
elements of the orbit.
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Definition 5.2. [4, Definition 2.4.3, page 117] The field K (T ) which is the fixed field
of ΓI (T ) is the field of moduli of the abstract tree I (T ). The field M (T ) is called
the field of moduli of the orbit of I (T ).

The field of moduli of the orbit of I (T ) is the minimal field extension K over K (T ),
such that K/Q is galois.

Theorem 5.3. The action of Gal(Q/Q) on the set of abstract trees is faithful.

Proof. [5, Proof of Theorem 2.4, page 58] Let σ ∈ Gal(Q/Q). We will exhibit an abstract
tree such that the action of σ on it is non-trivial. Let K be a number field and let α be
a primitive element for the extension K/Q such that the action of σ on α is non-trivial.
In order to show that there is an abstract tree on which σ acts non-trivially it suffices
to show that there is an abstract tree whose field of moduli is equal to K. So we show
that there exists an isomorphism class of clean Belyi functions I (P1C, β) corresponding
to an abstract tree such that β(z) is defined over K and βσ(z) is not equal to β(az+bcz+d)

for all a, b, c, d ∈ P1C i.e. I (P1C, β) 6= I (P1C, βσ).
A rational Belyi function β corresponds to a tree if ∞ has exactly one pre-image under
β, as a tree is a dessin on P1C with a unique open cell. In particular this will be the case
whenever β(z) is a clean Belyi polynomial, in which case the unique point over ∞ will
be∞. A clean Belyi polynomial β corresponds to a tree whose unique open cell contains
∞. If a polynomial satisfies βσ(z) = β(az+bcz+d) then we must have c = 0 and w.l.o.g. we
can assume d = 1. So we will exhibit a clean Belyi polynomial β(z) defined over K such
that βσ(z) 6= β(az + b) for all a, b ∈ P1C.
We construct such a β(z) explicitly as follows. Let fα(z) ∈ K[z] be a polynomial whose
derivative is

fα
′(z) = z3(z − 1)2(z − α).

The proof of [5, Theorem 1.2, page 49] and the proof of Corollary 2.8 state that there
exists a polynomial f(z) ∈ Q[z] such that gα := f ◦ fα is a clean Belyi polynom. Let
γ = ασ (by assumption, γ 6= α). Since f is defined over Q we obtain another clean
Belyi polynomial gγ = f ◦ fγ where fγ = fα

σ. Let I (Tα) be the abstract clean tree
corresponding to I (P1C, gα) and let I (Tγ) be the abstract clean tree corresponding to
I (P1C, gγ), so that I (Tγ) = I (Tα

σ). In order to prove that σ acts non-trivially on
I (Tα) we must show that I (Tα) and I (Tγ) are distinct. As mentioned above, this is
equivalent to showing that we cannot have gγ(z) = gα(az + b) for any constants a, b.
Suppose we do have such a and b. Then gγ(z) = gα(az+b), i.e. f(fγ(z)) = f(fα(az+b)).

Lemma 5.4. [5, Lemma 2.3, page 57] Let G, H, G̃ and H̃ be non-constant polynomials
such that G ◦ H = G̃ ◦ H̃ and deg(H) = deg(H̃). Then there exist constants c and d
such that H̃ = cH + d.

Applying this lemma with G = G̃ = f(z) and H = fα(az + b) and in addition
H̃ = fγ(z), we see that there exist constants c and d such that fα(az + b) = cfγ(z) + d.
Consider the critical points of both these functions. The right-hand function has the
same critical points as fγ , namely the point 0 (of order 3), the point 1 (of order 2) and
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the point γ (of order 1). The left-hand function has three critical points xi, i = 1, 2, 3,
where each xi is of order i and ax1 + b = α, ax2 + b = 1 and ax3 + b = 0. Since az + b
must take these three critical points to the critical points of fα, respecting their orders.
By equality of the two sides we must have x1 = γ, x2 = 1 and x3 = 0. But the two
equations ax2 + b = 1 and ax3 + b = 0 then give a = 1 and b = 0, so the equation
ax1 + b = α shows γ = α, contrary to the assumption γ 6= α. Therefore we cannot have
gγ(z) = gα(az + b) for any constants a, b ∈ P1C. Hence I (P1C, gα) 6= I (P1C, gγ) and
therefore I (Tα) and I (Tγ) are distinct.

If V ∗ and V ∗∗ are special valency lists Theorem 4.7 tells us that the algorithm above
gives exactly one solution for each abstract tree which has valency lists V ∗ and V ∗∗.
For a given abstract special tree I (T ) let βs,I (T ) be the solution which corresponds to
I (T ).

Theorem 5.5. The field of moduli of a special abstract tree I (T ) is the field of definition
of βs,I (T ).

Proof. We know that βs,I (T ) ∈ Q[z]. Let F be the field of definition of βs,I (T ) and ΓF
be the subgroup of Γ with fixed field equal to F . Let σ be an element of ΓI (T ) acting
non-trivially on

βs,I (T ) = − 4

Ps,I (T )(0)2

m∏
j=1

(Qj,s,I (T ))
j
n∏
i=1

(Pi,s,I (T ))
i. (12)

Hence

βσs,I (T ) = − 4

Ps,I (T )(0)2

m∏
j=1

(Qσj,s,I (T ))
j
n∏
i=1

(P σi,s,I (T ))
i (13)

is the clean Belyi polynomial corresponding to a different solution of (2). Since I (T )
is special we can conclude that I (P1C, βs,I (T )) 6= I (P1C, βσs,I (T )) which is in con-
tradiction to the assumption that σ is an element of the stabilizer of I (T ). Therefore
ΓI (T ) is a subgroup ΓF . Let γ be an element of ΓF . Let (P1C, β(z)) be a clean Belyi
pair contained in I (P1C, βI (T )). Hence there exist elements a and b in C such that
β(az + b) = βs,I (T )(z). Therefore βγ(aγz + bγ) = βs,I (T )(z) and we conclude that
γ ∈ ΓI (T ). Since γ was chosen arbitrary ΓF is a subgroup of ΓI (T ). So the two groups
are equal and the field of moduli of I (T ) is the field of definition of βs,I (T ).

Let I (T ) be a special abstract tree. Let (P1C, β) be a clean Belyi pair in Λ−1(I (T )).

Corollary 5.6. The field of definition of β contains the field of definition of βs,I (T ).

Proposition 5.7. [4, Remark 2.4.5, page 117] For a Galois orbit having N elements the
subgroup ΓI (T ) is of index N and therefore the field of moduli of the orbit is generated
by the roots of an irreducible polynomial p ∈ Q[z] of degree N . In particular, if the orbit
contains a single element, its field of moduli is Q itself.
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5.2 Combinatorial Invariants of the Galois action on abstract clean dessins

Corollary 5.8. The valency lists of Galois conjugated abstract trees are equal.

Proof. Let σ be an element of Γ. Let I (T ) = Λ(I (P1C, β)), let (P1C, β) ∈ B(I (T )).
Hence (I (T ))σ = Λ(I (P1C, βσ)). Since the multiplicity of roots are invariant under the
action of σ on a polynomial and as σ is an automotphism, we assume that the valency
lists of I (T ) and (I (T ))σ have to be equal.

Corollary 5.9. The Galois orbit of an abstract tree is finite

Proof. From Corollary 5.8 we know that the valency list of an abstract tree is preserved
under Galois conjugation. But there are only finitely many different abstract trees having
a given valency list.

Theorem 5.10. [3, Theorem, page 27] Let I (T ) be an abstract tree of degree n and
G an element of C (I (T )). Consider an element σ ∈ Γ and (I (T ))σ. Then, for any
Gσ ∈ C ((I (T ))σ) the groups G and Gσ are conjugated in Sn.

6 Examples of the method

Example 1: We consider the valency lists V ∗ = (3, 2) and V ∗∗ = (1, 1, 0, 1). There are
exactly four distinct abstract trees with valency lists (3, 2) and (1, 1, 0, 1):

***** *

*

*

*

* **

Figure 3: I (T1)

23



***** *

*

*

*

***

Figure 4: I (T2)

*****

**

*

*

*

*

Figure 5: I (T3)

***** *

*

*

*

*

**

Figure 6: I (T4)

Even without computing the corresponding Belyi polynomials of the abstract trees
above, we can say something about their Galois orbits. We can compute the order
of their cartographical groups with maple. If we do so, we see that C (I (T1)) and
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C (I (T2)) consist of groups of order 1270080. But the order of the groups in C (I (T3))
and C (I (T4)) is 56448. Hence Theorem 5.10 leads to the conclusion that the Galois
orbits of I (T1) and I (T2) are subsets of {I (T1),I (T2)} := O1 resp. the Galois orbits
of I (T3) and I (T4) are subsets of {I (T3),I (T4)} := O2.

The algorithm gives us four distinct solutions s1, s2, s3, s4 with corresponding Belyi
polynomials:

βs1(x) = 1− 56296884765625(−1 + x)2x8(27(31− 4
√

21) + 150(3− 2
√

21)x+ 625x2)2

47775744(3− 2
√

21)4(987− 208
√

21)2

βs2(x) = 1− 56296884765625(−1 + x)2x8(27(31 + 4
√

21) + 150(3 + 2
√

21)x+ 625x2)2

47775744(3 + 2
√

21)4(987 + 208
√

21)2

βs3(x) = 1 +
823543(−1 + x)2x8(−3− i

√
7 + (2− 2i

√
7)x+ 2x2)2

262144

βs4(x) = 1 +
823543(−1 + x)2x8(−3 + i

√
7 + (2 + 2i

√
7)x+ 2x2)2

262144

Consider σ1 ∈ Γ which sends i
√

7 onto −i
√

7. We have Gal(Q(i
√

7)/Q) = 〈σ1|Q(i
√
7)〉,

where (σ1|Q(i
√
7))

2 = 1. We see that βs3 and βs4 are both contained in Q(i
√

7)[x] and in

addition βσ1s3 (x) = βs4(x) and βσ1s4 (x) = βs3(x). Hence we conclude that O2 is a Galois
orbit.
Consider σ2 ∈ Γ which sends

√
21 onto −

√
21. We have Gal(Q(

√
21)/Q) = 〈σ2|Q(

√
21)〉,

where (σ2|Q(
√
21))

2 = 1. We see that βs1 and βs2 are both contained in Q(
√

21)[x] and

in addition βσ2s1 (x) = βs2(x) and βσ2s2 (x) = βs1(x). Hence we conclude that the O1 is a
Galois orbit.
If we note that complex conjugation corresponds to reflecting a plane tree over the real
line, we are able to conclude that the abstract trees which correspond to O2 are:

*****

**

*

*

*

*

***** *

*

*

*

*

**

Since there are two elements in O2, we see that the field of moduli of the orbit O2 is a
field extension of Q of degree 2. The field of moduli of any abstract tree I (T ) which is
contained in O2 is a field extension of the field of moduli of O2. The field of definition
of any Belyi polynomial β such that Λ(I (P1C, β)) = I (T ) is an extension field of the
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field of moduli of I (T ). Hence the field of moduli of I (T3) and of I (T4) is the field of
moduli of O2 and all of them are equal to Q(i

√
7).

The abstract trees which correspond to O1 are:

***** *

*

*

*

* ** ***** *

*

*

*

***

Again we are able to conclude that the field of moduli of the two abstract trees above
is Q(

√
21), which is also the field of moduli of O1.

Example 2: Let us now consider the special valency lists V ∗ = (0, 1, 1, 1) and V ∗∗ =
(5, 2). The algorithm produces six distict solutions s1, s2, s3, s4, s5, s6, such that the field
of definition of βsi is contained in Q(ri) where r1, . . . , r6 are the distinct roots of the
irreducible polynomial

8192x6 − 9216x5 − 76032x4 − 162432x3 + 62208x2 + 1571724x− 1750329

***** *
*

* **

**

****

**

Figure 7: a tree with valency lists (0, 1, 1, 1) and (5, 2).

Since (0, 1, 1, 1) and (5, 2) are special valency lists and as all solutions βsi are Galois
conjugated, because the polynomial above is irreducible, we conclude that there are
exactly six distinct abstract trees with valency lists (0, 1, 1, 1) and (5, 2) which are all in
one Galois orbit.
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