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1 Introduction

Let G be a connected reductive algebraic group over an algebraically closed field,
P and P ′ two parabolic subgroups of G with Levi factors L and L′ respectively.
Let ϕ : L→ L′ be an isogeny. Consider the algebraic group

Z := (RuP ×RuP ′) o L,

where ` ∈ L acts on RuP by conjugation with ` and on RuP ′ by conjugation
with ϕ(`). The group Z acts on G from the left by

(u, u′, `) · g = u′ϕ(`)g`−1u−1.

We call such a datum (G,P, P ′, L, L′, ϕ) an algebraic zip datum. In this paper
we study the orbit structure of such an action.

Let W be the Weyl group of G with respect to a maximal torus T of G
contained in L and pick a Borel subgroup B of P containing T . This defines
a set of simple reflections S. There exists a subset I of S such that the Weyl
group W (L) of L is generated by the elements of I. On W there is a natural
partial order, the Bruhat order, which we denote by ≤. In W there exists a
natural set of representatives for W/W (L), namely

W I = {w ∈W | w ≤ ws for all s ∈ I}.

To each w ∈W I we associate a locally closed subset Gw of G such that:

Theorem 1.1 (see 5.19).

G =
∐

w∈W I

Gw.

Theorem 1.2 (see 6.12). The closure of Gw is given by

Gw =
∐
w′

Gw
′
,

where w′ ranges over the w′ ∈ W I for which there exists v ∈ W (L) such that
ϕ(v)w′v−1 ≤ w.

If P and P ′ are Borel subgroups of G and L = L′ is a common maximal
torus our decomposition is the Bruhat decomposition of G into double cosets
P ′wP for w ∈W .

The orbits in each Gw correspond to the orbits of the action of a certain
reductive group on itself by twisted conjugation (see Section 5). Of particular
interest is the case that there are only finitely many orbits in G. We call
algebraic zip data having this property Frobenius zip data. Using the Lang-
Steinberg Theorem, we deduce a criterion for a zip datum to be Frobenius. It
is satisfied in particular if the differential of ϕ vanishes, for example if ϕ is a
Frobenius morphism (see Section 8).
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Theorem 1.3. For Frobenius zip data, the pieces Gw are the orbits of Z. In
particular there is a bijection between the set of orbits in G and W I .

We also obtain a description of the stabilizers:

Theorem 1.4 (see Theorem 8.8). The stabilizer of an element of G under the
action of a Frobenius zip datum is the semidirect product of a finite group of Lie
type and a connected unipotent algebraic group.

In Section 9 we determine which elements of W lie in the same orbits under
the action of a Frobenius zip datum. In order to do this, we introduce the notion
of an abstract zip datum. This is a datum (W,X,X ′, ψ), where W is an abstract
group with subgroups X and X ′ and ψ : X → X ′ is a homomorphism. Each
algebraic zip datum gives rise to an abstract zip datum (W,W (L),W (L′), ψ),
where ψ is induced by ϕ. For each abstract zip datum we define an equivalence
relation on W , which is the equivalence relation defined by intersecting the
orbits in G with W in case the abstract zip datum comes from a Frobenius zip
datum. We give an inductive and an explicit characterization of this relation.

The main tool we use to deduce our results is the following: For each w ∈W ,
the Bruhat cell P ′wP is Z-invariant, and we show that the orbits in P ′wP
correspond to the orbits in L′ under the action defined by another algebraic
zip datum. This allows us to prove statements inductively, starting from the
case L′ = L = G. In this case, we simply have the group G acting on itself by
conjugation twisted with ϕ.

In order to study the closure of a piece Gw, we show that Gw is the minimal
Z-invariant subset of G containing the Bruhat cell BwB. Then we use the fact
that the closure order between the Bruhat cells is the Bruhat order to deduce
our result about the closure of Gw.

An important application is the classification of F -zips. Let k be a field of
characteristic p > 0. An F -zip over k is a datum (M,C•, D•, ϕ•) consisting of
a finite-dimensional vector space M over k, a descending filtration C• of M ,
an ascending filtration D• of M and Frobenius-linear isomorphisms ϕ• between
the graded pieces of these filtrations (see 10.2). This notion was introduced by
Moonen and Wedhorn in [4]. There, they classify the F -zips over an algebraically
closed field as follows:

The type τ of an F -zip is the function Z → Z≥0 sending i ∈ Z to the
dimension of the i-th graded piece of C•.

Theorem 1.5. Let k be an algebraically closed field of characteristic p > 0. Let
τ : Z→ Z≥0 be a function with finite support i1 > . . . > ir. Let nj = τ(ij) and
n = n1 + . . .+ nr. Then there is a bijection

{isomorphism classes of F -zips of type τ over k} ←→ (Sn1
× · · · × Snr

)\Sn

To prove this, they define a variety Xτ with an action of G = GLn such that
the orbits on Xτ correspond to the isomorphism classes of F -zips of type τ and
classify the G-orbits on Xτ .
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In [4], Moonen and Wedhorn use F -zips to define stratifications on certain
moduli spaces. For this application, it is also important to know the closure
order between the orbits in Xτ . This order was determined by Wedhorn in [9].

In Section 10, we show that these results also follow from our theory of alge-
braic zip data. We show that for a certain Frobenius zip datum (G,P, P ′, L, L′, ϕ)
there exists a morphism G → Xτ which induces a bijection between the orbits
of Z in G and the orbits of G in Xτ preserving the closure order. This L satisfies
W (L) = Sn1

× · · · × Snr
for n1, . . . , nr as in Theorem 1.5, hence Theorem 1.5

follows from our classification of the orbits in G. Furthermore, our result on
the closure order of the orbits in G implies the result of Wedhorn. Although we
work in a different setting than Moonen and Wedhorn, our proof of the closure
order uses methods similar to those of Wedhorn in [9].

Theorem 1.4 yields a similar statement about the automorphism group of
an F -zip (see 10.16). We also define certain universal constructions for F -zips,
namely direct sums and tensor products, and show how they can be realized as
morphisms of the algebraic zip data which classify the F -zips of a certain type.

2 Reductive Groups

Except for the beginning of Section 10, we shall use the language of varieties
over a fixed algebraically closed field k. By an algebraic group we shall always
mean a linear algebraic group over k.

For any algebraic group G, we denote by RuG its unipotent radical. For any
w ∈ G, we shall denote the conjugation map G → G, g 7→ wgw−1 by int(w) or
g 7→ wg. Let G be a connected reductive algebraic group.

Lemma 2.1 ([7], 8.4.6 (ii)). Let P and Q be parabolic subgroups of G. Then
(P ∩Q)RuP is a parabolic subgroup of G with unipotent radical (P ∩RuQ)RuP .

Lemma 2.2. Let H be a Levi factor of a parabolic subgroup of G and let T
be a maximal torus of H. If P is a parabolic subgroup of G also containing T ,
then H ∩ P is a parabolic subgroup of H with unipotent radical H ∩ RuP . If
P = LnRuP is a Levi decomposition of P with T ⊂ L, then

H ∩ P = (H ∩ L) n (H ∩RuP )

is a Levi decomposition of H ∩ P .

Proof. This follows from [3], II.1.8.

3 Algebraic Zip Data

An isogeny between two connected algebraic groups is a surjective homomor-
phism with finite kernel.

Definition 3.1. An algebraic zip datum is a tuple (G,P, P ′, L, L′, ϕ) consisting
of a connected reductive algebraic group G, two parabolic subgroups P and P ′

of G, Levi components L and L′ of P and P ′ and an isogeny ϕ : L→ L′.
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For each algebraic zip datum Z := (G,P, P ′, L, L′, ϕ), we consider the alge-
braic group

(RuP ×RuP ′) o L,

where ` ∈ L acts on RuP by conjugation and on RuP ′ by conjugation with
ϕ(`). This group acts on G from the left by

(u′, u, `) : g 7→ u′ϕ(`)g`−1u−1.

We call this the action of Z on G.

Definition 3.2. A morphism between two algebraic zip data (G,P, P ′, L, L′, ϕ)
and (G̃, P̃ , P̃ ′, L̃, L̃′, ϕ̃) is a homomorphism f : G → G̃ such that f(P ) ⊂ P̃ ,
f(P ′) ⊂ P̃ ′, f(L) ⊂ L̃, f(L′) ⊂ L̃′ and the diagram

L
f

//

ϕ

��

L̃

ϕ̃

��

L′
f

// L̃′

commutes.
The composition of two morphisms of algebraic zip data is the obvious one,

and in this way we obtain the category of algebraic zip data.

A different choice of Levi component L of P would differ from the given one
only by conjugation by an element of RuP , and, for any u ∈ RuP , the orbits
of the action of the algebraic zip datum (G,P, P ′, uL,L′, ϕ ◦ int(u−1)) are the
same as the orbits of the action of (G,P, P ′, L, L′, ϕ). The same is true for a
different choice for L′, hence the orbit structure of the action of an algebraic zip
datum only depends on the isogeny P/RuP → P ′/RuP ′ induced by ϕ.

There exists a maximal torus of G contained in P ∩P ′ and Levi components
of P and P ′ containing this torus. Since we are only interested in the orbit
structure, we can take L and L′ to be these Levi components. So we will
assume from now on that L ∩ L′ contains a maximal torus of G.

We pick a maximal torus T of G contained in L∩L′. Let N be the normalizer
of T and W = N/T the Weyl group of G with respect to T . We denote by Φ
the root system of G with respect to T . For any α ∈ Φ, we denote by Uα the
associated root subgroup of G. For all w ∈W , we fix a representative ẇ in N .

The algebraic group P ′ × P acts on G from the left by

(p′, p) : x 7→ p′xp−1.

Lemma 3.3. For any n ∈ N , the Bruhat cell P ′nP is a locally closed subvariety
of G that is invariant under the action of Z.

Proof. Since P ′nP is an orbit under the action of P ′ × P , it is locally closed
(see [7], Lemma 2.3.3). The second part of the claim follows directly from the
definition of the action of Z.
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We first show how to relate the orbits in P ′nP to the orbits in the reductive
group L′ under the action of another algebraic zip datum.

Construction 3.4. For each n ∈ N , we construct a new zip datum Zn as
follows: Let

Q := L ∩ n
−1

P ′,

Q′ := L′ ∩ nP,

M := L ∩ n
−1

L′,

M ′ := L′ ∩ nL.

By Lemma 2.2, Q and Q′ are parabolic subgroups of the reductive groups L
and L′, and M and M ′ are Levi factors of Q and Q′. The group ϕ(Q) is a
parabolic subgroup of L′ and ϕ(M) is a Levi factor of ϕ(Q). Hence, if we set
ϕ̃ := ϕ ◦ int(n−1) : M ′ → ϕ(M), we obtain an algebraic zip datum

Zn := (L′, Q′, ϕ(Q),M ′, ϕ(M), ϕ̃).

If H and H ′ are two algebraic groups acting on varieties X and X ′ respec-
tively we say that a morphism f : X → X ′ is equivariant with respect to a
homomorphism g : H → H ′ if for all x ∈ X and h ∈ H

f(h · x) = g(h) · f(x).

In this case, f induces a map from the orbits in X to the orbits in X ′.
By direct calculation, the morphism

in : L′ → P ′nP

`′ 7→ `′n

is equivariant with respect to the homomorphism

(RuQ′ ×Ruϕ(Q)) oM ′ → (RuP ×RuP ′) o L

(v, v′,m′) 7→ (n
−1

v, v′,
n−1

m′).

We will show that in induces a bijection between the orbits of the action Zn on
L′ and the orbits of the action of Z on P ′nP .

The stabilizer of n is

StabP ′×P (n) =
{

(p′, p) ∈ P ′ × P | p′np−1 = n
}

=
{

(p′, n−1p′n) | p′ ∈ P ′ ∩ nP
}
. (1)

This implies in particular

Lemma 3.5. The dimension of P ′nP is dimP + dimP ′ − dim(P ′ ∩ nP ).

Let Hn be the image of StabP ′×P (n) under the projection P ′×P → L′×L.
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Lemma 3.6. Hn = {(v′m′, vn−1m′n) | m′ ∈M ′, v′ ∈ RuQ′, v ∈ RuQ}.

Proof. By definition,

Hn = {(`′, `) ∈ L′ × L | ∃u′ ∈ RuP ′, u ∈ RuP : n−1`′u′n = `u}.

Let (`′, `) ∈ Hn. Choose u′ ∈ RuP ′ and u ∈ RuP such that n−1`′u′n = `u.

Let P̃ ′ = (P ′ ∩ nP )RuP ′ and P̃ = (
n−1

P ′ ∩ P )RuP . By Lemma 2.1 these
are parabolic subgroups of G. From the Levi decomposition P = L nRuP it
follows that

L ∩ P̃ = L ∩ n
−1

P ′ = Q

and analogously we find
L′ ∩ P̃ ′ = Q′.

Since `′u′ ∈ P ′ ∩ nP this implies `′ ∈ Q′, so we can write `′ = v′m′ for uniquely
determined m′ ∈M ′ and v′ ∈ RuQ′, and we have

` = (n−1v′n)(n−1m′n)(n−1u′n)u−1.

From u′ ∈ RuP ′ ∩ (P ′ ∩ nP ) we get n−1u′n ∈ n−1

RuP ′ ∩ P . Lemma 2.2
implies v′ ∈ RuQ′ = L′ ∩Ru(nP ), so we get n−1v′n ∈ RuP . Also,

n−1m′n ∈ n−1

M ′ = M ⊂ L.

This implies

` ∈ n−1m′n(
n−1

RuP ′ ∩ P )RuP.

By Lemma 2.1, we have (
n−1

RuP ′ ∩ P )RuP = RuP̃ . Hence

` ∈ n−1m′n(RuP̃ ∩ L).

Finally, again by Lemma 2.2, we have RuP̃ ∩L = Ru(P̃ ∩L) = RuQ, so we can
write ` = vn−1m′n for some v ∈ RuQ.

On the other hand, let (`′, `) = (v′m′, vn−1m′n) for some m′ ∈ M ′, v′ ∈
RuQ′ and v ∈ RuQ = L ∩ n

−1

RuP ′. From

n−1`′−1n` = (n−1m′−1n)(n−1v′−1n)v(n−1m′n) ∈ (
n−1

L′ ∩RuP )(L ∩ n
−1

RuP ′)

⊂ n−1

RuP ′ · RuP

it follows that there exist u ∈ RuP and u′ ∈ RuP ′ such that n−1`′u′n = `u.
This shows (`′, `) ∈ Hn.

Lemma 3.7. The morphism in induces a bijection between the orbits of the
action of Zn on L′ and the orbits of the action of Z on P ′nP .
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Proof. Any g ∈ P ′nP can be written as u′`′n`u for certain u ∈ RuP, u′ ∈
RuP ′, ` ∈ L and `′ ∈ L′. Since such a g lies in the same orbit as ϕ(`)`′n, the
map induced by in on the orbits is surjective.

Let `′, `′′ ∈ L′ such that in(`′) and in(`′′) lie in the same orbit. Then there
exist u ∈ RuP, u′ ∈ RuP ′ and ` ∈ L such that

`′n = u′ϕ(`)`′′n`−1u−1.

This implies
(`′−1ϕ(`)`′′, `) ∈ Hn.

By Lemma 3.6 the exist m′ ∈M ′, v ∈ RuQ and v′ ∈ RuQ′ such that

`′−1ϕ(`)`′′ = v′m′

` = vn−1m′n.

Together, this yields

`′ = ϕ(v)ϕ(
n−1

m′)`′′m′−1v−1,

so `′ and `′′ lie in the same orbit under the action of Zn.

Since Lemma 3.7 relates the action of an algebraic zip datum on an algebraic
group with the action of another zip datum on a group of smaller dimension,
it will allow us to prove facts about such actions inductively. The base case of
such an induction will always be the case where the above construction does
not yield a smaller group, that is the case where G = L′.

The following two lemmas will be needed later.

Lemma 3.8. The morphism

π : P ′ × P → P ′nP

(p′, p) 7→ p′np

is separable. In particular the differential of π at any point is surjective.

Proof. The claim is equivalent to the fact that the multiplication map P ′×nP →
P ′ · nP is separable. To prove this, it is sufficient to show that

Lie(P ′ ∩ nP ) = Lie(P ′) ∩ Lie(nP ),

where Lie denotes the Lie algebra functor. Since P ′ and nP both contain T ,
both sides of the equation are the direct sum of Lie(T ) and the Lie(Uα) for all
α ∈ Φ such that Uα ⊂ P ′ ∩ nP .

Since π is a P ′×P -equivariant morphism of homogenous P ′×P -spaces, the
last point follows from [7], Theorem 4.3.7(ii).
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For any variety X and any point x on X, we denote the tangent space of X
at x by TxX. If Y and Z are non-singular subvarieties of a non-singular variety
X, we say that Y and Z intersect transversally in X if for any x ∈ Y ∩ Z, the
space TxX is spanned by the subspaces TxY and TxZ.

The varieties L′n, P ′nP and any orbit of Z in G are non-singular, because
they are orbits of certain group actions (see [7], Theorem 4.3.7(i)).

Lemma 3.9. Any orbit o of Z in P ′nP intersects L′n transversally in P ′nP .

Proof. Let x ∈ o ∩ L′n. We need to show that Tx(P ′nP ) is the sum of Tx(o)
and Tx(L′n). Write x = `′n for some `′ ∈ L′. In P ′×P we consider X = L′× 1
and

Y = {(u′ϕ(`)`′, u`) | ` ∈ L, u ∈ RuP, u′ ∈ RuP ′},

which map onto L′n and o respectively under π : P ′ × P → P ′nP . By Lemma
3.8, the differential of π at (`′, 1) is surjective, so it is sufficient to show that
T(`′,1)X and T(`′,1)Y span T(`′,1)(P

′×P ) ∼= T`′P
′×T1P . Since X = L′`′×1 and

(RuP ′)`′ × 1 ⊂ Y , the sum of the two vector spaces contains T`′P
′ × 1. Since

this sum also contains 1 × T1(RuP ), it suffices to show that the differential at
(`′, 1) of the projection Y → L, (u′ϕ(`)`′, u`) 7→ ` is surjective. But this follows
from the existence of the section L→ Y, ` 7→ (ϕ(`)`′, `).

4 Coset Representatives in Coxeter Groups

We collect some facts about Coxeter groups which we shall need in the sequel.
These can be found in [2], sections 2.3 and 2.7.

Let (W,S) be a finite Coxeter group, i.e. W is a group with a set of generators
S = {s1, . . . , sn} such that W has a presentation

W =< s1 . . . , sn | (sisj)mij = 1 >

for certain mij ∈ N such that mii = 1 for all 1 ≤ i ≤ n and mij = mji for all
1 ≤ i 6= j ≤ n. Let ` denote the length function on W , i.e. for w ∈W the length
`(w) of w is the smallest number r such that w is the product of r elements of
S. An expression of w as the product of `(w) elements of S is called reduced.

Let I be a subset of S. We denote by WI the subgroup of W generated
by I and by W I (respectively IW ) the set of elements w of W which have
minimal length in their coset wWI (respectively WIw). Then every w ∈W can
be written uniquely as w = wI · wI = w̃I · Iw with wI , w̃I ∈ WI , w

I ∈ W I and
Iw ∈ IW , and `(w) = `(wI)+`(wI) = `(w̃I)+`(Iw) (see [2], Proposition 2.3.3).
In particular, W I and IW are systems of representatives for W/WI and WI\W
respectively. The fact that `(w) = `(w−1) for all w ∈W implies W I = (IW )−1.

Furthermore, if J is a second subset of S, let JW I be set of w ∈ W which
have minimal length in the double coset WJwWI . Then JW I = JW ∩W I and
JW I is a system of representatives for WJ\W/WI (see [2], Proposition 2.7.3).
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Theorem 4.1 (Kilmoyer, [2], Theorem 2.7.4). If w ∈ JW I , then

WJ ∩ wWI = WK ,

where K = J ∩ wI.

Proposition 4.2 (Howlett, [2], Proposition 2.7.5). Let JwI ∈ JW I and K =
J ∩ wI ⊂ S. Then every element w of the double coset WJ

JwIWI is uniquely
expressible in the form w = wJ

JwIwI where wJ ∈ WJ ∩WK and wI ∈ WI .
Moreover, this decomposition satisfies

`(wJ
JwIwI) = `(wJ) + `( JwI) + `(wI).

Lemma 4.3. The set W I is the set of elements w for which in the decomposition
of Proposition 4.2 the factor wI is 1.

Proof. Let JwI ∈ JW I and K = J ∩
JwI

I. If wJ ∈ WJ ∩WK then for any
wI ∈ WI the decomposition wJ

JwIwI is the unique decomposition given by
Proposition 4.2. So we get

`(wJ
JwIwI) = `(wJ) + `( JwI) + `(wI) ≥ `(wJ) + `( JwI) = `(wJ

JwI),

which shows that wJ
JwI ∈W I .

Now let w ∈ W I and w = wJ
JwIwI the decomposition from Proposition

4.2. Since by the preceding paragraph wJ
JwI ∈W I we must have wI = 1.

On W there exists a natural partial order, the Bruhat order, which we shall
denote by ≤. It is characterized by the following property: For x,w ∈ W we
have x ≤ w if and only if for some (or, equivalently, any) reduced expression
w = si1 · · · sin as a product of simple reflections , one gets a reduced expression
for x by removing certain sij from this product. More information about the
Bruhat order can be found in [1], Chapter 2.

Using this order, the set W I can be described as

W I = {w ∈W | w < ws for all s ∈ I}

(see [1], Definition 2.4.2 and Corollary 2.4.5).
Assume that in addition W is the Weyl group of a root system Φ, with S

corresponding to a basis of Φ. Denote the set of positive roots with respect to
the given basis by Φ+ and the set of negative roots by Φ−. For I ⊂ S, let ΦI
be the root system spanned by the basis elements corresponding to I, and let
Φ±I := ΦI ∩ Φ±. Then

W I = {w ∈W | wΦ+
I ⊂ Φ+} (2)

(see [2], Proposition 2.3.3).
Also, for w ∈W , the length of w is the cardinality of the set

{α ∈ Φ+ | wα ∈ Φ−} (3)

(see [2], Proposition 2.2.7).
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5 The Orbits of an Algebraic Zip Datum

Definition 5.1. A zip datum Z = (G,P, P ′, L, L′, ϕ) is nice with respect to a
maximal torus T ⊂ L ∩ L′ and a Borel subgroup B of G, if ϕ(T ) = T ,

T ⊂ B ⊂ P ∩ P ′

and
ϕ(L ∩B) = L′ ∩B.

If there exist such T and B, we shall also just say that Z is nice.

Proposition 5.2. Let Z = (G,P, P ′, L, L′, ϕ) be an algebraic zip datum. Then
there exists a nice algebraic zip datum Z̃ = (G, P̃ , P̃ ′, L̃, L̃′, ϕ̃) and an isomor-
phism of varietes ψ : G → G which maps each orbit of Z in G bijectively onto
an orbit of Z̃ in G.

Such Z̃ and ψ can be obtained as follows: There exist a Borel subgroup B of
G, w ∈W and z ∈ L such that

B ⊂ P,
ẇ
ϕ(
z
(L ∩B)) =

ẇ
L′ ∩B

and

ẇ
ϕ(zT ) = T.

For any such B,w and z the algebraic zip datum

Z̃ = (G,P,
ẇ
P ′, L,

ẇ
L′, int(ẇ) ◦ ϕ ◦ int(z))

is nice with respect to T and B and the morphism ψ : G → G, g 7→ ẇgz is
equivariant with respect to the isomorphism

(RuP ×RuP ′) o L→ (RuP ×Ru(
ẇ
P ′)) o L

(u, u′, `) 7→ (z
1

u,
ẇ
u′, z

−1

`).

Proof. Let T be a maximal torus of G contained in L∩L′. There exists w ∈W
such that P and

ẇ
P ′ both contain a Borel subgroup B of G which contains T .

Since int(ẇ)◦ϕ : L→ ẇ
L′ is an isogeny and

ẇ
L′∩B is a Borel subgroup of

ẇ
L′,

its preimage B′ := (int(w) ◦ ϕ)−1(
ẇ
L′ ∩B) is a Borel subgroup of L. Similarly,

the subgroup T ′ := (int(w) ◦ ϕ)−1(T ) is a maximal torus of L.
Since the action of L by inner automorphisms on pairs consisting of a Borel

subgroup and a maximal torus contained in the Borel subgroup is transitive,
there exists z ∈ L such that

z
(L ∩B) = B′ and zT = T ′, that is such that

ẇ
ϕ(
z
(L ∩B)) =

ẇ
L′ ∩B
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and

ẇ
ϕ(zT ) = T.

Hence the algebraic zip datum Z̃ := (G,P,
ẇ
P ′, L,

ẇ
L′, int(ẇ)◦ϕ◦ int(z)) is nice

with respect to B and T .
Let ψ : G → G be the isormorphism of varieties sending g ∈ G to ẇgz. For

(u, u′, `) ∈ (RuP ×RuP ′) o L and g ∈ G

ψ(u′ϕ(`)g`−1u−1) =
ẇ
u′(int(ẇ) ◦ ϕ ◦ int(z))(z

−1

`)ψ(g)(z
−1

`)(
z−1

u−1).

This shows that ψ is equivariant with respect to the isomorphism

(RuP ×RuP ′) o L→ (RuP ×Ru(
ẇ
P ′)) o L

(u, u′`) 7→ (z
1

u,
ẇ
u′, z

−1

`),

which implies that ψ maps each orbit of Z in G bijectively to an orbit of Z̃
in G.

This allows us to reduce to the case of a nice algebraic zip datum for many
questions, so we will only consider such data in the following.

So let Z = (G,P, P ′, L, L′, ϕ) be nice with respect to T and B. The Borel
subgroup B defines a set of simple reflections S of W . Let I and J be the
subsets of S such that P and P ′ are the standard parabolics of type I and
J respectively. Then W (L) = WI and W (L′) = WJ . Since ϕ(T ) = T , the
isogeny ϕ induces an isomorphism WI →WJ which we also denote by ϕ. Since
ϕ(L∩B) = ϕ(L′ ∩B), this isomorphism maps I bijectively to J , and so it is an
isomorphism of Coxeter groups (WI , I)→ (WJ , J).

We denote by Φ be the root system of G with respect to T , and for any
closed subgroup H of G which is normalized by T , we denote by ΦH the root
system of H. Also, we denote by Φ+ the set of positive roots with respect to
B, by Φ− the set of negative roots, and we let Φ±H := ΦH ∩ Φ±.

Definition 5.3. For w ∈W , let Kw := J ∩ wI.

Lemma 5.4. Let JwI ∈ JW I . Let Z JẇI = (L′, Q′, ϕ(Q),M ′,M, ϕ̃) be the
algebraic zip datum from 3.4. Then:

(a) The algebraic zip datum Z JẇI is nice with respect to T and L′ ∩B.

(b) The type of Q′ is K
JwI

.

(c) The elements w ∈ WJ
JwIWI ∩W I are exactly the elements of the form

w = wJ
JwI for some wJ ∈WJ having minimal length in wJW (M ′). For

such w,wJ and JwI we have `(w) = `(wJ) + `( JwI).

Proof. First we show:

Claim. (i) L ∩ ( JẇI)−1

B = L ∩B.

11



(ii) L′ ∩
JẇI

B = L′ ∩B.

Proof. By assumption on JwI we have JwIΦ+
L ⊂ Φ+. This implies JwIΦ+

L =
JwIΦL∩Φ+ or equivalently Φ+

L = ΦL∩( JwI)−1Φ+. Since Φ+
L is the root system

of L ∩ B and ΦL ∩ ( JwI)−1Φ+ is the root system of L ∩ ( JẇI)−1

B, we get (i).
The second part can be shown similarly.

Now (i) shows L′ ∩ B = ϕ(L ∩ B) = ϕ(L ∩ ( JẇI)−1

B) ⊂ ϕ(Q) and from (ii)

we get L′ ∩B = L′ ∩
JẇI

B ⊂ Q′.
Using (i) again we get

ϕ̃(M ′ ∩B) = ϕ((
JẇI)−1

B ∩M) ⊂ ϕ(M) ∩B.

Because both ϕ̃(M ′∩B) and ϕ(M)∩B are Borel subgroups of ϕ(M), they must
be equal. Since ϕ̃(T ) = T this shows (a).

Theorem 4.1 implies WK
JwI

= W (M ′), which shows (b). Then (c) is just a
restatement of Lemma 4.3.

Definition 5.5. Let w ∈ W . For any collection of subsets of I which are
mapped into themselves under the homomorphism int(w−1) ◦ ϕ : WI →W , the
union of these sets is also mapped into itself under int(w−1) ◦ ϕ. Hence there
exists a unique maximal subset of I having this property, which we denote by
Iw.

Lemma 5.6. For w ∈W , the map int(w−1) ◦ ϕ : Iw → Iw is a bijection.

Proof. Since int(w−1) : W → W and ϕ : WI → WJ are bijective, the composite
int(w−1) ◦ ϕ is injective. Since Iw is finite, this implies the claim.

We give an inductive description of Iw for w ∈W I :

Lemma 5.7. Let w ∈W I and w = wJ
JwI the decomposition from Lemma 5.4

and Z JẇI = (L′, Q′, ϕ(Q),M ′,M, ϕ̃) be the algebraic zip datum from 3.4. Let

K
JwI

wj
be the largest subset of K

JwI

invariant under int(w−1J ) ◦ ϕ̃. Then

K
JwI

wj
=

JwI

Iw.

Proof. The definition of K
JwI

wJ
implies

( JwI)−1

[(int(wJ)−1 ◦ ϕ ◦ int( JwI)−1)(K
JwI

wj
)] ⊂

( JwI)−1

[K
JwI

wj
].

This shows that the subset
( JwI)−1

K
JwI

wj
of I is invariant under int(w−1) ◦ϕ, so

that
( JwI)−1

K
JwI

wj
⊂ Iw.

12



Lemma 5.6 implies

JwI

Iw =
w−1

J ϕ(Iw) =
w−1

J
ϕ̃(

JwI

Iw),

hence
JwI

Iw is contained in K
JwI

= J ∩
JwI

I and invariant under int(w−1J ) ◦ ϕ̃.

This shows
JwI

Iw ⊂ K
JwI

wj
.

For any set of simple reflections R, there exists a unique parabolic subgroup
of type R of G containing B, which is called the standard parabolic subgroup of
type R. This pararabolic subgroup has a unique Levi factor containing T , which
is called the standard Levi subgroup of type R.

Definition 5.8. For w ∈ W , let Lw be the standard Levi subgroup of G of
type Iw.

Lemma 5.9. For w ∈ W , the morphism int(ẇ−1) ◦ ϕ : L → G maps Lw into
itself.

Proof. Since the group Lw is generated by T and the Uα for α ∈ ΦIw , it is
sufficient to show that these subgroups are mapped into Lw by int(ẇ−1) ◦ ϕ.
For T this is clear and for the Uα it follows from the definition of Iw.

We give an inductive description of Lw for w ∈W I :

Lemma 5.10. Let w ∈ W I and w = wJ
JwI the decomposition from Lemma

5.4 and Z JẇI = (L′, Q′, ϕ(Q),M ′,M, ϕ̃) be the algebraic zip datum from 3.4.

Let M ′wJ
be the standard Levi subgroup of Q′ of type K

JwI

wJ
. Then

M ′wJ
=

JẇI

Lw.

Proof. This follows directly from Lemma 5.7.

Remark 5.11. Using the inductive description of Lw in the preceding Lemma,
one can show that Lw is the unique maximal subgroup of L which is mapped
into itself by int(ẇ−1) ◦ ϕ : L→ G. But we shall not need this.

For any X ⊂ G, we denote the union of the orbits of all elements of X by
o(X).

Lemma 5.12. If X is a constructible subset of G, then o(X) is constructible.

Proof. This follows from the fact that o(X) is the image of the constructible
subset ((RuP ×RuP ′) o L)×X of ((RuP ×RuP ′) o L)×G under the mult-
plication morphism to G.

Definition 5.13. For w ∈W I , let Gẇ := o(ẇLw).

Lemma 5.14. For w ∈ W I , the Z-stable piece Gẇ does not depend on the
choice of representative ẇ.

13



Proof. By definition the group Lw contains T . Hence ẇLw does not depend on
the choice of ẇ, which implies the claim.

This justifies the following definition:

Definition 5.15. For w ∈W I , let Gw = Gẇ.

Remark 5.16. A priori the Gw for w ∈W I are only constructible subsets of G.
However we shall see later (Corollary 6.15) that they are in fact locally closed
in G.

Definition 5.17. For w ∈W I let jẇ be the continuous map

Lw → Gw

` 7→ ẇ`

Lemma 5.18. Let w ∈ W I and w = wJ
JwI the decomposition from Lemma

5.4. Let Z JẇI = (L′, Q′, ϕ(Q),M ′,M, ϕ̃) be the algebraic zip datum from 3.4.
Assume ẇ = ẇJ

JẇI .

(i) We have M ′ẇJ
=

JẇI

Lẇ and the diagram

Lw
jẇ // P ′ẇP

M ′ẇJ

int( JẇI)−1

OO

jẇJ // L′

i JẇI

OO

commutes.

(ii) The morphism i JẇI maps (L′)wJ into Gw and induces a bijection between
the Z JẇI -orbits in (L′)wJ and the Z-orbits in Gw. In particular

(L′)wJ JẇI = Gw ∩ L′ JẇI .

Proof. The first part of (i) follows from Lemma 5.10, and the second statement
in (i) can be directly verified. Then (ii) follows from (i), the definition of (L′)wJ

and Gw and Lemma 3.7.

Theorem 5.19. (i) The Gw for w ∈ W I form a disjoint decomposition of
G.

(ii) For all w ∈ W I , the continuous map jẇ : Lw → Gw induces a bijection
between the orbits on Lw of the action of Lw on itself by

(`, g) 7→ (
ẇ−1

ϕ(`))g`−1

and the orbits of Z in Gw.

14



Proof. We prove everything by induction on dimG. If L′ = G, we haveW I = {1}
and L = L1 = L′. Since in this case the action of Z is just the action of L on
itself given in (ii), both claims are true.

Assume dimL′ < dimG. For JwI ∈ JW I it follows from Lemmas 3.7, 5.4
and 5.18 and the induction hypothesis applied to the nice algebraic zip datum
Z JẇI that P ′ JẇIP is the disjoint union of the Gw for the w ∈ W I of the form
w = wJ

JwI with wJ ∈WJ . Since G =
∐

JẇI∈JW I P ′
JẇIP this proves (i).

The induction step for (ii) follows from Lemma 5.18.

6 Closure

In this section, we will show that for w ∈W I , the closure of Gw is the union of
other Z-stable pieces Gw

′
for certain w′ ∈W I .

We shall need the following lemma (see [8, Lemma 7.3]):

Lemma 6.1. Let G be a connected linear algebraic group and ϕ a surjective
endomorphism of G which leaves a Borel subgroup B of G invariant. Then the
morphism G×B → G, (x, b) 7→ ϕ(x)bx−1 is surjective.

Proposition 6.2. For w ∈W I , we have Gw = o(BẇB).

Proof. We proceed by induction on dimG. In the base case we have G = L′,
and the claim follows from Lemma 6.1.

Assume dimL′ < dimG and let b, b′ ∈ B. We can decompose b and b′ as
b = `u and b′ = u′`′ with ` ∈ B ∩ L, `′ ∈ B ∩ L′, u ∈ RuP and u′ ∈ RuP ′.
Since o(b′ẇb) = o(ϕ(`)`′ẇ) with ϕ(`)`′ ∈ L′ ∩B we get

o(BẇB) = o((B ∩ L′)ẇ).

Hence it will be sufficient to prove that Gw = o((B ∩ L′)ẇ).
Let w = wJ

JwI ∈ JW I be the decomposition given by Lemma 5.4. The
morphism i JẇI : L′ → P ′ẇP maps (L′∩B)ẇJ onto (L′∩B)ẇ. Since by Lemma
5.4 the zip datum Z JẇI is nice with respect to T and B ∩ L′, the claim now
follows from the induction hypothesis applied to Z JwI and Lemma 3.7.

Corollary 6.3. If P is a Borel subgroup of G, then Gw = BwB for all w ∈W .

The group B × B acts on G by (b′, b) · g = b′gb−1. The set {ẇ | w ∈ W} is
a set of representatives for this action, and for w,w′ ∈W

w ≤ w′ if and only if BẇB ⊂ Bẇ′B.

Proposition 6.2 will allow us to use the closure order of this action to determine
the closure order of the action of Z. For this, we shall need the following lemma
(see [9, 5.3]):

Lemma 6.4. Let H be any algebraic group acting on a variety Z and let P ⊂ H
be an algebraic subgroup such that H/P is proper. Then for any P -invariant
subvariety Y ⊂ Z we have

H · Y = H · Y .
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Lemma 6.5. For w ∈W I , we have

Gw =
⋃
x∈W
x≤w

o(Bẋ).

Proof. We let L act on G by `∗ g = ϕ(`)g`−1. Since BẇB = RuP ′(BẇB)RuP ,
it follows from Proposition 6.2 that

Gw = L ∗BẇB.

This together with Lemma 6.4, applied to H = L, P = L ∩ B, Z = G and
Y = BẇB yields

Gw = L ∗BẇB =
⋃
x≤w

L ∗BẋB.

Because again for each such x we have RuP ′(BẋB)RuP = BẋB, this implies
the lemma.

Lemma 6.6. For all x, z ∈ W and b ∈ B there exists v ∈ W such that v ≤ z
and

żbẋ ∈ Bv̇ẋB.

Proof. We prove the statement by induction on `(z). If z = 1, we may take
v = 1. For the induction step write z = sz′ for some simple reflection s such
that `(z′) = `(z)− 1. By the induction hypothesis there exists v′ ≤ z′ such that
ż′bẋ ∈ Bv̇′ẋB. Hence żbẇ ∈ ṡBv̇′ẋB ⊂ Bṡv̇′ẋB ∪ Bv̇′ẋB, so either v = sv′ or
v = v′ will have the required property.

Lemma 6.7. Let w ∈ W I , b, b′ ∈ B and x ∈ W such that o(bẇ) = o(b′ẋ).
Then there exists y ∈WI such that ϕ(y)wy−1 ≤ x.

Proof. We proceed by induction on dimG. In the base case we have G = L, so
w must be 1 and we may take y = 1.

So assume that dimL′ < dimG. We also may and do assume that b, b′ ∈
L∩B. Let x = xJ

JxIxI be the decomposition of x given by Proposition 4.2, so
we have xJ ∈ WJ , xI ∈ WI and JxI ∈ JW I . It follows from Lemma 4.3 that
xI := xJ

JxI ∈W I .
By Lemma 6.6, there exists v ∈ W such that v ≤ ϕ(xI) and ϕ(ẋI)b

′ẇI ∈
Bv̇ẋIB. Hence there exists b′′ ∈ L′ ∩ B such that ϕ(ẋI)b

′ẇI lies in the same
orbit as b′′v̇ẋI . Altogether we get

o(bẇ) = o(b′ẋI ẋI) = o(ϕ(ẋI)b
′ẋI) = o(b′′v̇ẋI) = o(b′′v̇ẋJ

JẋI).

Let Z JẋI = (L′, Q′, ϕ(Q),M ′, ϕ(M), ϕ̃). By Lemma 5.4 we can decompose
w = wJ

JwI with wJ ∈ WJ minimal in wJW (M ′) and JwI ∈ JW I . From
o(bẇ) = o(b′ẋ) we get

PJ
JẇIPI = PJbẇPI = PJb

′ẋPI = PJ
JẋIPI ,
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which implies JxI = JwI .
Now Lemma 5.4 implies that bẇJ and b′′v̇ẋJ lie in the same orbit under

the action of Z JẋI on L′. Hence, by the induction hypothesis, there exists a
y′ ∈W (M ′) such that

ϕ̃(y′)wJy
′−1 ≤ vxJ .

Since both sides lie in WJ and since JxI ∈ JW , this implies

z := ϕ̃(y′)wJy
′−1 JxI ≤ vxJ JxI = vxI .

Since ϕ̃ = ϕ ◦ int(( JẇI)−1), if we let ỹ = ( JwI)−1y′ JwI ∈WI we can write z as
ϕ(ỹ)wỹ−1.

Because of the Bruhat relation z ≤ vxI we can write z = v′x′ for certain
v′, x′ ∈W with v′ ≤ v and x′ ≤ xI . Since ϕ(I) = J , we get ϕ−1(v′) ≤ ϕ−1(v) ≤
xI , where ϕ−1 is the inverse of the isomorphism ϕ : WI → WJ induced by ϕ.
Since xI ∈W I , we get

v′−1zϕ−1(v′) = x′ϕ−1(v′) ≤ xIϕ−1(v) ≤ xIxI = x.

So y := ϕ−1(v′)−1ỹ has the required property.

For w ∈ W , the set Tẇ is independent of the choice of representative ẇ.
This justifies the following definition:

Definition 6.8. For w ∈W I let G̃w := o(Tẇ) ⊂ Gw.

We shall show that G̃w is dense in Gw. The crucial case is the following
lemma. The proof we give is a slight modification of the proof of Lemma 6.1
given in [8].

Lemma 6.9. Let G be a reductive algebraic group and ϕ a surjective endomor-
phism of G leaving invariant a Borel subgroup B of G and a maximal torus T
of B. Then the morphism α : G× T → G, (g, t) 7→ ϕ(g)tg−1 has dense image.

Proof. Equivalently we may show that for some t0 ∈ T , the image of the mor-
phism α̃ : G × T → G, (g, t) 7→ t0ϕ(g)t−10 t−1g−1 is dense. It will be enough to
show that the differential of α̃ at 1 is surjective. This differential is the linear
map

L(G)× L(T )→ L(G)

(X,Y ) 7→ T + L(int(t0) ◦ ϕ)(X)−X.

This linear map has image

Lie(T ) + (L(int(t0) ◦ ϕ)− 1) Lie(G).

Let ϕt0 = int(t0) ◦ϕ. Let B− be the Borel subgroup opposite to B with respect
to T . Since ϕ(B) = B, the differential of ϕt0 at 1 preserves L(RuB) and
L(RuB−). If we find a t0 such that L(ϕt0) has no fixed points on L(RuB) and
L(RuB−) we will be done.
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For each α ∈ Φ, let xα be a basis vector of L(Uα). The isogeny ϕ induces
a bijection ϕ̃ : Φ → Φ such that ϕ(Uα) = Uϕ(α). For each α ∈ Φ there ex-
ists a c(α) ∈ k such that L(ϕ)(xα) = c(α)xϕ̃(α). This implies L(ϕt0)(xα) =
α(t0)c(α)xϕ̃(α). Since ϕt0 fixes RuB and RuB−, its differential permutes Φ+

and Φ−. Hence L(ϕt0) can only have a fixed point in L(RuB) or L(RuB−) if
there exists a cycle (α1, · · · , αn) of the permutation ϕ̃ in Φ+ or Φ− such that

n∏
i=1

αi(t0)c(αi) = 1.

This shows that for t0 in some non-empty open subset of T , the differential
L(ϕt0) has no fixed points on L(RuB) and L(RuB−).

Lemma 6.10. For each w ∈W I , the set G̃w is dense in Gw.

Proof. By Theorem 5.19, the continuous map jẇ : Lẇ → Gw gives a bijection
between the orbits in Lẇ under the action of L′ẇ on itself by twisted conjugation
and the orbits of Z in Gw. By Lemma 6.9, the orbit of T is dense in Lẇ. Since
jẇ is continous we get

L′ẇẇ = jẇ(o(T )) ⊂ jẇ(o(T )) ⊂ G̃w.

Since G̃w is Z-invariant, this implies G̃w = Gw.

Definition 6.11. For w and w′ in W I we let w 4 w′ if and only if there exists
y ∈WI such that ϕ(y)wy−1 ≤ w′.

Theorem 6.12. For w ∈W I

Gw =
∐

w′∈W I

w′4w

Gw
′
.

Proof. First, consider w′ ∈W I such that Gw
′

intersects Gw. Then by Proposi-
tion 6.2 and Lemma 6.5 there exist b, b′ ∈ B and x ∈ W such that x ≤ w and
o(bw′) = o(b′x). Hence Lemma 6.7 implies w′ 4 w and this shows ” ⊂ ”.

For ” ⊃ ” let w′ ∈W I with w′ 4 w. By definition there exists y ∈W I such
that ϕ(y)w′y−1 ≤ w. Since by Lemma 6.10 the orbit of Tẇ′ is dense in Gẇ

′
, in

order to show Gw
′ ⊂ Gw it is sufficient to show Tẇ′ ⊂ Gw. For t ∈ T

o(tẇ′) = o(ϕ(ẏ)tẇ′ẏ−1) = o((ϕ(ẏ)tϕ(ẏ−1))(ϕ(ẏ)ẇ′ẏ−1)).

Hence, since ϕ(ẏ)tϕ(ẏ−1) ∈ T and ϕ(y)w′y−1 ≤ w, Lemma 6.5 shows tẇ′ ∈
Gw.

Remark 6.13. This theorem was motivated by a similar result of Wedhorn in
a different setting in [9]. Also, the proof we give here was inspired by Wedhorn’s
proof in [9].
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Corollary 6.14. The relation 4 is a partial order on W I .

This was previously proved by Wedhorn directly for arbitrary isomorphisms

of Coxeter groups ϕ : (WI , I)
'→ (WJ , J) in [9, section 4].

Corollary 6.15. For w ∈W I , the set Gw is a locally closed subset of G.

Proof. It follows from Theorem 6.12 that the boundary of Gw in G is∐
w′

Gw
′
,

where the disjoint union ranges over all w′ ∈W I such that w 6= w′ and w′ 4 w.
It follows from Theorem 6.12 that the boundary contains the closure of each
such Gw

′
, hence it is closed.

In particular, each Gw now has the structure of a variety.

Lemma 6.16. For w ∈ JW I ,

`(w) = dim(L′ ∩ ẇP ) + dim(RuP ′)− dim(P ′ ∩ ẇP ).

Proof. Denote the right hand side by m. Let P̃ = (P ′ ∩ ẇP )RuP ′. By Lemma
2.1 this is a parabolic subgroup of G. We can write P̃ as (L′ ∩ ẇP )RuP ′ and
the decomposition P ′ = L′ nRuP ′ implies

P̃ = (L′ ∩ ẇP )RuP ′ = (L′ ∩ ẇP ) nRuP ′.

From this we find that the product morphism

(P ′ ∩ ẇP )××
α

Uα → P̃

is a bijection, where the product ranges over the set

{α ∈ Φ+ \ ΦL′ | w−1α 6∈ ΦP }

taken in any fixed order. Hence m is the cardinality of this set. Since w ∈ JW ,
by (2)

w−1Φ+
L′ ⊂ Φ+ ⊂ ΦP ,

hence the above set can be written as

{α ∈ Φ+ | w−1α 6∈ ΦP }.

Since w ∈W I , by (2) we have wΦ−L ⊂ Φ−, so m is the cardinality of the set

{α ∈ Φ+ | w−1α ∈ Φ−}.

By (3), this is `(w), so we are done.

Theorem 6.17. For w ∈W I , the dimension of Gw is dimP + `(w).
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Proof. We proceed by induction on dimG. If G = L we have w = 1 and
Gw = G = P , so the claim is true.

Assume dimL < dimG. Let w = wJ
JwI be the decomposition from Lemma

5.4. The induction hypothesis applied to the algebraic zip datum Z JẇI yields

dim(L′)wJ = dim(L′ ∩
JẇI

P ) + `(wJ),

where (L′)wJ is the Z JẇI -stable piece of L′ associated to wJ . By Lemma 5.18

(L′)wJ JẇI = Gw ∩ L′ JẇI .

The set of nonsingular points of Gw is Z-invariant, hence there exists a non-
singular point x of Gw in (L′)wJ JẇI . Since o(x) ⊂ Gw, Lemma 3.9 im-
plies Tx(P ′ JẇIP ) = Tx(Gw) + Tx(L′ JẇI). Hence x is a nonsingular point
of (L′)wJ JẇI and

dimTx((L′)wJ JẇI) = dim(Gw) + dim(L′ JẇI)− dim(P ′ JẇIP ).

Because (L′)wJ is irreducible, this is also the dimension of (L′)wJ . By Lemma
3.5

dim(P ′ JẇIP ) = dimP ′ + dimP − dim(P ′ ∩
JẇI

P ).

Altogether we get

dim(Gw) = dim(L′ ∩
JẇI

P ) + `(wJ) + dimP + dim(RuP ′)− dim(P ′ ∩
JẇI

P ).

Since `(w) = `(wJ) + `( JwI), the claim now follows from Lemma 6.16.

7 Stabilizers

In this section we consider the stabilizers of the action of an algebraic zip datum.
For an element g ∈ G we denote the stabilizer of g by StabZ(g).

First we give an inductive description of the stabilizer of an element of G.

Lemma 7.1. Let Z be any algebraic zip datum. Let n ∈ N and `′ ∈ L′. Let
Zn = (L′, Q′, ϕ(Q),M ′, ϕ(M), ϕ̃) as in 3.4. Then for

(u, u′, `) ∈ (RuP ×RuP ′) o L

the following are equivalent:

(i) (u, u′, `) ∈ StabZ(`′n).

(ii) There exist m′ ∈ M ′, v ∈ RuQ, v′ ∈ RuQ′ and ũ ∈ RuP ∩ nRuP ′ such
that

(v′, ϕ(v),m′) ∈ StabZn
(`′)

` = v(
n−1

m′)

u = (
n−1

v′)ũ

u′ =
`′v′n

(ũv).
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Proof. Let (u, u′, `) ∈ StabZ(`′). Then

u′ϕ(`)`′n`−1u−1 = `′n. (4)

Hence (`′−1u′ϕ(`)`′, u`) ∈ StabP ′×P (n), where we let P ′ × P act on G as in
Section 3. This implies (`′−1ϕ(`)`′, `) ∈ Hn, so Lemma 3.6 shows that there
exist m′ ∈M ′, v ∈ RuQ and v′ ∈ RuQ′ such that

` = v
n−1

m′ (5)

and
`′−1ϕ(`)`′ = v′m′. (6)

Plugging (5) into (6) yields

ϕ(v)ϕ(
n−1

m′)`′m′−1v′−1 = `′,

so we get (v′, ϕ(v),m′) ∈ StabZn
(`′).

Plugging (5) and (6) into (4) yields

u′(`′v′m′`′−1)`′n(n−1m′−1n)v−1u−1 = `′n,

which simplifies to
u′ = `′(

n
(uv)v′−1)`′−1. (7)

We can decompose u as u = u1u2 with u1 ∈ RuP∩n
−1

L′ and u2 ∈ RuP ∩ n
−1

RuP ′.
Since v ∈ RuQ = L ∩ n

−1

RuP ′ and v′ ∈ RuQ′ = L′ ∩ nRuP ′, decomposing the
right side of (7) into it components in L′ and RuP ′ yields

u1 =
n−1

v′

and
u′ = `′v′nu2.

Hence, if we let ũ = u2, we have shown that (i) implies (ii). That (ii) also
implies (i) can be directly verified.

Now let Z be an algebraic zip datum which is nice with respect to T and B.

Definition 7.2. For w ∈W I , let Pw be the standard parabolic subgroup of G
of type Iw.

By definition Lw is a Levi factor of Pw. For p ∈ Pw, if p = u` with u ∈ RuPw
and ` ∈ Lw is its Levi decomposition, we call ` the component of p in Lw.

Definition 7.3. For w ∈W I , let Lfw be the set of fixed points of the endomor-
phism int(ẇ−1) ◦ ϕ of Lw. This is a closed subgroup of Lw.

Lemma 7.4. Let w ∈W I and (u, u′, `) ∈ StabZ(ẇ). Then ` ∈ L ∩ Pw and the
component of ` in Lw lies in Lfw.
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Proof. We proceed by induction on dimG. If G = L′, we have w = 1 and

L = G = P1, so ` ∈ L ∩ Pw. Since
ẇ−1

ϕ(`) = ` is equivalent to ϕ(`)ẇ`−1 = ẇ

we have StabZ(1) = Lf1 . Hence in this case the claim is true.
Assume dimL′ < dimG. Decompose w = wJ

JwI as in Lemma 5.4. We
may and do choose the representative ẇJ so that ẇ = ẇJ

JẇI . Let (`, u, u′) ∈
StabZ(ẇ). Let Z JẇI = (L′, Q′, ϕ(Q),M ′, ϕ(M), ϕ̃). Applying Lemma 7.1 to
n = JẇI and `′ = ẇJ shows that there exist m′ ∈M ′, v ∈ RuQ, v′ ∈ RuQ′ and

ũ ∈ RuP ∩
JẇI

RuP ′ such that

(v′, ϕ(v),m′) ∈ StabZ JẇI
(ẇJ)

` = v( JẇI)−1m′ JẇI

u = ( JẇI)−1v′ JẇI ũ

u′ =
ẇJv

′ JẇI

(ũv).

By Lemma 5.4 WK JwI = W (M ′). Let K
JwI

wJ
be the largest subset of K

JwI

invariant under int(w−1J ) ◦ ϕ̃ and let Q′wJ
be the standard parabolic subgroup

of L′ of type K
JwI

wj
. Since Z JẇI is nice with respect to T and L′ ∩ B, the

induction hypothesis applied to Z JẇI shows that m′ can be written as m′ = ṽm̃

with m̃ ∈ M ′wJ
such that

ẇ−1
J
ϕ((

JẇI)−1

m̃) = m̃ and ṽ ∈ M ′ ∩ RuQ′wJ
. By

Lemma 5.10 we have M ′wJ
=

JẇI

Lw. Hence ˜̀ = ( JẇI)−1

m̃ lies in Lw and since
ẇ−1

ϕ(˜̀) = ˜̀ we find m̃ ∈ Lfw. From Lemma 5.7 we get K
JwI

wJ
=

JwI

Iw, which

implies
( JẇI)−1

RuQ′ẇJ
⊂ RuPẇ. Hence the identity

` = v(
JẇI)−1

ṽ ˜̀

shows that ` ∈ Pw and that ˜̀∈ Lfw is its component in Lw.

The preceding lemma yields a morphism π : StabZ(ẇ) → Lfw which sends
(u, u′, `) ∈ StabZ(ẇ) to the component of ` in Lw. We denote the kernel of π
by Kw. Then we get:

Theorem 7.5. There is a split short exact sequence

1 // Kw
� � // StabZ(ẇ)

π // // Lfw
// 1 ,

where Kw is a connected unipotent group.

Proof. The morphism Lfw → StabZ(ẇ) : ` 7→ (0, 0, `) is section of π, which shows
that π is onto and that the sequence is split. It remains to show that Kw is
unipotent and connected.

Because of Lemma 7.4 we have a homomorphism

Kw → RuPw
(u, u′, `) 7→ u`,
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which is injective. This shows that Kw is unipotent.
Let (u, u′, `) ∈ StabZ(ẇ). Then ` ∈ L∩RuPw ⊂ L∩RuB, hence ϕ(`) ∈ RuB

and, since w ∈ W I , also
ẇ
`−1 ∈ RuB. This shows that ẇu = u′ϕ(`)

ẇ
`−1 ∈

RuB. Hence we have a morphism

pr2 : Kw → RuP ∩ ẇ
−1

B

(u, u′, `) 7→ u.

To show that Kw is connected it will be sufficient to prove that pr2 is bijective.
We prove this by induction on dimG. If G = L′ both Kw and RuP are trivial,
so the claim is true.

Assume dimL′ < dimG. We decompose w = wJ
JwI as in Lemma 5.4.

Let (u, u′, `), (u, û′, ˆ̀) ∈ StabZ(ẇ). Let Z JẇI = (L′, Q′, ϕ(Q),M ′, ϕ(M), ϕ̃).
Applying Lemma 7.1 to n = JẇI and `′ = ẇJ shows that there exist m′, m̂′ ∈
M ′, v, v̂ ∈ RuQ, v′, v̂′ ∈ RuQ′ and ũ, ˆ̃u ∈ RuP ∩

JẇI

RuP ′ such that

(v′, ϕ(v),m′) ∈ StabZ JẇI
(ẇJ)

` = v( JẇI)−1m′ JẇI

u = ( JẇI)−1v′ JẇI ũ

u′ =
ẇJv

′ JẇI

(ũv)

and

(v̂′, ϕ(v̂), m̂′) ∈ StabZ JẇI
(ẇJ)

ˆ̀= v̂( JẇI)−1m̂′ JẇI

u = ( JẇI)−1v̂′ JẇI ˆ̃u

û′ =
ẇJ v̂

′ JẇI

(ˆ̃uv̂).

Since v′, v̂′ ∈ L′ and
JẇI

ũ,
JẇI

ˆ̃u ∈ RuP ′ the identity

( JẇI)−1v′ JẇI ũ = ( JẇI)−1v̂′ JẇI ˆ̃u

implies v′ = v̂′ and ũ = ˆ̃u. Hence the induction hypothesis applied to the nice
algebraic zip datum Z JẇI shows that m′ = m̂′ and ϕ(v) = ϕ(v̂). Since the
kernel of the isogeny ϕ must be contained in T , we also get v = v̂. Hence we
have ` = ˆ̀. This also implies u′ = û′, which shows that pr2 is injective.

Now let u ∈ RuP ∩ ẇ
−1

B. Then we have
JẇI

u ∈ P ′, so we can decompose

u = u1ũ for certain u1 ∈ RuP ∩ ( JẇI)−1

L′ and ũ ∈ RuP ∩ ( JẇI)−1

RuP ′. Let

v′ =
JẇI

u1 ∈ L′ ∩
JẇI

RuP = RuQ′ so that u =
( JẇI)−1

v′ũ. By the induction
hypothesis there exist m′ ∈M ′ and v ∈ RuQ such that

(v′, ϕ(v),m′) ∈ StabZ JẇI
(ẇJ).

Hence, if we let ` = v( JẇI)−1m′ JẇI and u′ =
ẇJv

′ JẇI

(ũv), by Lemma 7.1 we
have (u, u′, `) ∈ StabZ(ẇ). After multpliying ` by the inverse of its component
in Lw we may assume that (u, u′, `) ∈ Kw. This shows that pr2 is surjective.
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Remark 7.6. If one considers the scheme-theoretic stabilizer and not just the
associated variety, the group Kw may be nonreduced.

8 Frobenius Zip Data

Let Z be nice with respect to T and B. In Theorem 5.19 we showed that we
have a decomposition of G into Z-stable pieces Gw such that the orbits in each
piece Gw correspond to the orbits in the reductive group Lw under the action
of that group on itself by twisted conjugation. The Lang-Steinberg Theorem
gives a good criterion for such an action to be transitive:

Theorem 8.1 ([8], Theorem 10.1). Let G be a connected linear group and ϕ
a surjective endomorphism of G with a finite number of fixed points. Then the
morphism

G→ G

g 7→ ϕ(g)g−1

is surjective.

Definition 8.2. A Frobenius zip datum is a nice algebraic zip datum such that
for every w ∈W I , the endomorphism int(ẇ−1)◦ϕ of Lw has finitely many fixed
points.

Example 8.3. If the differential of ϕ at 1 vanishes, then Z is a Frobenius zip
datum.

Proof. If the differential of ϕ vanishes, then so does the differential of

int(ẇ−1) ◦ ϕ : Lw → Lw

for all w ∈W I . Hence it suffices to show that an endomorphism ϕ of an algebraic
group H with vanishing differential has only finitely many fixed points. Let Hf

be set set of fixed points of ϕ, this is a closed subgroup of H. The restriction of
ϕ to Hf is the identity, but by assumption its differential is zero. This is only
possible if Hf has dimension zero, i.e. if Hf is finite.

Proposition 8.4. For a nice algebraic zip datum Z the following are equivalent:

(i) The algebraic zip datum Z is a Frobenius zip datum.

(ii) There are only finitely many orbits under the action of Z on G.

(iii) Each Z-stable piece Gw for w ∈W I is a single orbit.

Proof. (i) =⇒ (iii) follows from Theorems 5.19 and 8.1. (iii) =⇒ (ii) is
trivial.

Assume (ii) holds. Let w ∈W I . Since are finitely many orbits in Gw, there
exists a dense orbit in Lw, where Lw acts on itself by conjugation twisted with
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int(ẇ−1) ◦ ϕ. Let ` be an element of the dense orbit. Then the stabilizer of `
must be finite, which is equivalent to saying that int(`′−1) ◦ int(ẇ−1) ◦ ϕ has
finitely many fixed points. Hence the Lang-Steinberg Theorem implies that the
orbit of ` is all of Lw. But then the stabilizer of 1 ∈ Lw must also be finite,
which shows that Z is Frobenius.

Let Z be a Frobenius zip datum. Since then the Z-stable pieces Gw are just
the orbits of w, Theorems 5.19, 6.12, 6.17 and 7.5 can be rephrased as follows:

Theorem 8.5. The set {ẇ | w ∈W I} is a set of representatives for the action
of Z on G.

Theorem 8.6. For w,w′ ∈W I the following are equivalent:

(i) o(w′) ⊂ o(w).

(ii) w′ 4 w.

Theorem 8.7. For w ∈W I the dimension of o(w) is dimP + `(w).

Theorem 8.8. For w ∈W I , the stabilizer of ẇ is the semidirect product of Lfw
and a connected unipotent algebraic group. In particular, the group of connected
components of StabZ(ẇ) is isomorphic to Lfw.

Furthermore, Lemma 5.14 implies

Lemma 8.9. For w ∈ W , the orbit of ẇ does not depend on the choice of
representative ẇ ∈ N .

Let W = W (G), X = W (L) and X ′ = W (L′) and ψ : X → X ′ the homo-
morphism induced by ϕ. By Lemma 8.9 the orbits in G induce a well-defined
equivalence relation on W which, by Lemma 3.7 and Theorem 8.1, can be char-
acterized as follows:

Two elements w and w′ of W are equivalent if and only if: Either X = W ,
or there exist x ∈ X and x′ ∈ X ′ such that w′ = x′wx and ψ(x)x′ ∼ 1 under the
equivalence relation on X ′ obtained analogously from the algebraic zip datum
Zẇ as in Lemma 3.7. In the following section, we shall consider such equivalence
relations in a more general context.

9 Abstract Zip Data

Definition 9.1. An abstract zip datum is a tuple (W,X,X ′, ψ), where W is a
group with subgroups X and X ′ and ψ : X → X ′ is a group homomorphism.

Fix such an abstract zip datum A.

Definition 9.2. Let w ∈ W . If two subgroups of X are left invariant by the
homomorphism int(w−1) ◦ψ : X →W so is the subgroup they generate. Hence
there exists a unique maximal subgroup with this property, which we denote by
Xw.
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Definition 9.3. To each abstract zip datum we associate a relation on W as
follows: For w and w′ in W we let w ∼ w′ if and only if there exist x ∈ X and
u ∈ Xw such that w′ = ψ(x)wux−1.

Lemma 9.4. This is an equivalence relation.

Proof. Reflexivity is clear. To prove symmetry, let w′ = ψ(x)wux−1 as above.
From int(w′−1) ◦ ψ = int(xu−1w−1) ◦ ψ ◦ int(x−1) we get Xw′ = xXw. Hence
the identity

w = ψ(x−1)w′(xu−1x−1)x

shows w′ ∼ w.
Now let w ∼ w′ and w′ ∼ w′′, that is w′ = ψ(x)wux−1 and w′′ = ψ(x̃)w′ũx̃−1

for some x, x̃ ∈ X, u ∈ Xw and ũ ∈ Xw′ . Since again Xw′ = xXw, we get
w ∼ w′′ from

w′′ = ψ(x̃x)wu(x−1ũx)(x̃x)−1.

Construction 9.5. Analogously to 3.4, we define a new abstract zip datum
Aw for each w ∈W as

Aw := (X ′, X ′ ∩ wX,ψ(
w−1

X ′ ∩X), ψ ◦ int(w−1)).

Theorem 9.6. The equivalence relation is uniquely characterized by the follow-
ing property:

Two elements w and w′ of W are equivalent if and only if:
Either W = X or there exist x ∈ X and x′ ∈ X ′ such that w′ = x′wx and

ψ(x)x′ ∈ X ′ is equivalent to 1 under the equivalence relation on X ′ defined by
Aw.

Proof. Since this property allows to determine wheter any two elements w,w′ of
W are equivalent, it characterizes the equivalence relation uniquely if it holds.
It remains to show that the equivalence relation has this property.

If W = X, we have Xw = W for all w ∈ W , so all elements of W are
equivalent and the claim is true. So we may assume that X is not equal to
W . Let w′ ∼ w, that is w′ = ψ(x̃)wux̃−1 for some x̃ ∈ X and u ∈ Xw. Let
x = ux̃−1 ∈ X and x′ = ψ(x) ∈ X ′. To show ψ(x)x′ = ψ(u) ∼ 1 under the
equivalence relation defined by Aw, it is enough to show that ψ(Xw) is contained
in (X ′ ∩ wX)1. But this follows from the fact that ψ(Xw) is a subgroup of
X ′ ∩ wX which is mapped to itself by ψ ◦ int(w−1). This proves the “only if”
part of the claim.

For the other direction, let w′ = x′wx as above. Since ψ(x)x′ ∼ 1 in X ′ we

can write ψ(x)x′ = ψ(w
−1

y)uy−1 for some y ∈ X ′ ∩ wX and u ∈ (X ′ ∩ wX)1.

Since the subgroup
w−1

(X ′ ∩ wX)1 of X is mapped to itself by int(w−1) ◦ ψ, it
lies in Xw. Hence the identity

w′ = x′wx = ψ(x−1w
−1

y)ww
−1

u(x−1w
−1

y)−1

shows w′ ∼ w.
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Proposition 9.7. Assume that X is finite. Each equivalence class in W has
cardinality |X|. In particular, there are [W : X] equivalence classes.

Proof. Let H0 = X and define inductively Hi = {x ∈ X | w
−1

ψ(x) ∈ Hi−1} for
i ≥ 1. Then Xw = ∩i≥0Hi.

Pick w ∈ W and let o be the equivalence class of w. Then we have a
surjective map

Ψ : X ×Xw → o

(x, u) 7→ ψ(x)wux−1.

Let (x, u) and (x̃, ũ) ∈ X ×Xw have the same image z under ψ, that is

z = ψ(x)wux−1 = ψ(x̃)wũx̃−1.

If we let y = x−1x̃, we get

w−1

ψ(y) = uyũ−1.

From this it follows inductively that y ∈ Hi for all i ≥ 0, hence y ∈ Xw. This
implies

Ψ−1(z) = {(xy,w
−1

ψ(y−1)uy) | y ∈ Xw}.

Hence each fiber of Ψ has cardinality |Xw|, so the image of Ψ must have cardi-
nality |X|.

Definition 9.8. An abstract zip datum (W,X,X ′, ψ) is of Coxeter type if W
is a finite Coxeter group with set of simple reflections S such that X = WI and
X ′ = WJ for certain I, J ⊂ S and ψ : (WI , I) → (WJ , J) is an isomorphism of
Coxeter groups.

Example 9.9. Any algebraic zip datum Z = (G,P, P ′, L, L′, ϕ) for which there
exists a maximal torus T of G which is left invariant by ϕ gives rise to an
abstract zip datum (W,W (L),W (L′), ϕ). If Z is nice with respect to T and a
Borel subgroup B of G, this abstract zip datum is of Coxeter type.

In case an abstract zip datum (W,X,X ′, ψ) arises from a nice algebraic zip
datum, Theorem 8.5 implies that W I is a system of representatives for the
equivalence relation on W . In fact this holds for any abstract zip datum of
Coxeter type:

Proposition 9.10. Let (W,X,X ′, ψ) be of Coxeter type. Then the set W I is
a set of representatives for the equivalence relation on W .

Proof. We prove this by induction on |W |. The base case is the case W = X ′.
In this case W I = {1} and there is exactly one equivalence class in W , so the
claim is true.

Assume |X ′| < |W |. Since |W I | = [W : WI ] it follows from Proposition
9.7 that it is enough to show that if w ∈ W I and ŵ ∈ W I are equivalent

27



they are equal. Decompose w = wJ
JwI and ŵ = ŵJ

JŵI as in Lemma 4.3.
Since the equivalence class of any w ∈ W is contained in X ′wX, we must have
JwI = JŵI . Hence, by Theorem 9.6, the elements wJ and ŵJ are equivalent
under the equivalence relation defined on X ′ by A JwI .

Let K = J∩
JwI

I and K̃ = ( JwI)−1

K. Theorem 4.1 implies X ′∩
JwI

X = WK

and
( JwI)−1

X ′ ∩X = WK̃ . Since ψ is an isomorphism of Coxeter groups, this

also implies ψ(
( JwI)−1

X ′ ∩X) = Wψ(K̃). Hence A JwI is of Coxeter type. Since

wJ , ŵJ ∈ WK , the induction hypothesis applied to Z JwI implies wJ = ŵJ , so
we get w = ŵ.

10 F -Zips

We define the notion of an F -zip as in [4]. Let p be a prime number and q a
power of p. Let S be a scheme over Fq. We denote by FS : S → S the morphism
which is the identity on the underlying topological space and the homomorphism
x 7→ xq on the structure sheaf. For an OS-module M , we set M (q) = F ∗SM .

Let S be a scheme and M a locally free OS-module sheaf of finite rank.

Definition 10.1. A descending filtration C• of M is a sequence of (Ci)i∈Z of
OS-submodules of M such that Ci is locally on S a direct summand of Ci−1

and such that Ci = M for i� 0 and Ci = 0 for i� 0. We set griC = Ci/Ci+1.
We have an analogous definition of an ascending filtration D• with associated
graded modules grDi = Di/Di−1.

Let C• be a descending filtration of M . If there exists a function τ : Z→ Z≥0
such that τ(i) = dimk(s)(griC ⊗k(s)) for all s ∈ S we say that C• is of type τ .
There is a similar definition for an ascending filtration.

Definition 10.2. Let S be a scheme over Fq. An F -zip over S is a tuple
M = (M,C•, D•, ϕ•), where

(i) M is a locally free OS-module of finite rank,

(ii) C• is a descending filtration of M ,

(iii) D• is an ascending filtration of M ,

(iv) ϕ• is a family of OS-linear isomorphisms

ϕi : (griC)(q)
'→ grDi

for i ∈ Z.

An F -zip is of type τ if C• is of type τ .

Definition 10.3. An isomorphism between two F -zips (M,C•, D•, ϕ•) and
(M̃, C̃•, D̃•, ϕ̃•) is an isomorphism between the OS-modules M and M̃ which is
compatible with the filtrations and the ϕi and ϕ̃i.
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Let S and S′ be two schemes over Fq and f : S → S′ a morphism over
Fq. For an F -zip M = (M,C•, D•, ϕ•) on S′, we get an F -zip f∗M on S by
f∗M = (f∗M,f∗C•, f∗D•, f

∗ϕ•).
Let τ : Z → Z≥0 be a function with finite support and let n =

∑
i∈Z τ(i).

Let V be an n-dimensional vector space over Fq. For a scheme S over Fq, let
VS = V ⊗OS . Let XV

τ be the scheme over Fq whose S-valued points are F -zips
(VS , C

•, D•, ϕ•) of type τ and such that for two schemes S and S′ over Fq and
for any f : S → S′ the induced map Xτ (S′)→ Xτ (S) is f∗.

The group G = GL(V ) acts on XV
τ as follows: For a scheme S over Fq, the

action of G(S) on S-valued points is given by

g · (VS , C•, D•, ϕ•) = (VS , gC
•, gD•, ψ•),

where ψi is the composition

(g(Ci)/g(Ci+1))(q)
(g(q))−1

'→ (Ci/Ci+1)(q)

ϕi
'→ Di/Di−1

g
'→ g(Di)/g(Di−1).

The F -zips corresponding to two points of XV
τ are isomorphic if and only if

they are conjugate under the G-action. Any F -zip of type τ is Zariski-locally
isomorphic to the F -zip corresponding to a point of XV

τ . Hence in order to
classify F -zips, we need to classify the orbits in XV

τ .
Let V = ⊕i∈ZVi be a decomposition into subspaces Vi of V such that

dimVi = τ(i). Such a decomposition defines a descending filtration C•V of type

τ on V by CjV = ⊕k≥jVk, and an ascending filtration DV
• of type τ by DV

j =

⊕k≤jVk. For a scheme S over Fq let C•V,S = C•V ⊗ OS and DV,S
• = DV

• ⊗ OS .

Let P+ ⊂ G and P− ⊂ G be the stabilizers of C•V and DV
• respectively. They

are parabolic subgroups of G, whose intersection L, which is the stabilizer of the
grading (Vi)i∈Z, is a common Levi factor. The submodules Vi⊗OS map isomor-

phically onto the graded pieces griCV,S
and grD

V,S

i under the projections. This

gives rise to a bijective correspondence between elements of L(S) and families

of isomorphisms (griCV,S
)(q)

'→ gr
DV,S

i .
Let T be a maximal torus of L and B a parabolic subgroup of G contained

in P+. This defines a set of simple reflections. Let I and J be the types of P+

and P− respectively.

Lemma 10.4. Let S be scheme over Fq and C• any descending filtration of
type τ on VS. Then the stabilizer StabG(C•) of C• is a parabolic subgroup of
GS of type I.

Proof. It suffices to show that this is true locally on S. Hence we may assume
that S = Spec(A) for some Fq-algebra A. By localizing further, we may assume
that each Ci is a free summand of VS . Then there exists a basis (v1, . . . , vn)
of V ⊗ A such that for all i ∈ Z the module Ci has basis (v1, . . . , vdi) for
suitable di ∈ Z. Similarly there exists a basis (w1, . . . , wn) of V ⊗ A such that
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(w1, . . . , wdi) is a basis of CiV,S for all i ∈ Z. Then the linear map V ⊗A→ V ⊗A
sending vi to wi defines an element g ∈ G(S) such that gC• = C•V,S . Hence

StabG(C•) and StabG(C•V,S) =
g
StabG(C•) have the same type.

We call I the parabolic type associated to τ . Let w0 be the unique element
of W of maximal length and let J = w0I. Since P− is opposite to P+ it has
type J . Hence by an argument similar to Lemma 10.4, the set J is the type
of StabG(D•) for any ascending filtration D• of type τ . For any set of simple
reflections K we denote by PK the variety classifying the parabolic subgroups
of G of type K.

By the arguments in the preceding paragraph, there is a G-equivariant mor-
phism

π : XV
τ → PI × PJ

(VS , C
•, D•, ϕ•) 7→ (StabG(C•),StabG(D•)).

Let X̃V
τ be the fiber over P+ of the G-equivariant morphism XV

τ → PI obtained
by composing π with the projection PI×PJ → PI . This is the closed subscheme
of XV

τ whose S-valued points are the F -zips (VS , C
•, D•, ϕ•) with C• = C•V,S .

The group P+ stabilizes X̃V
τ and we shall see that determining the orbits of G

on XV
τ is the same as determining the orbits of P+ on X̃V

τ .
For a scheme S over Fq and g ∈ G(S), let

Mg := (VS , C
•
V,S , gD

V,S
• , ϕg•) ∈ XV

τ (S)

be the F -zip defined by

ϕg• : (gr•CV,S
)(q)

'→ grD
V,S

•
g→ grgD

V,S

• ,

where the first maps form the family of isomorphisms (gr•CV,S
)(q)

'→ gr
DV,S
•

corresponding to 1 ∈ L(S). This defines a morphism f : G→ X̃V
τ .

Let k be an algebraic closure of Fq. From now on we return to the language

of varieties, so we consider G as variety over k and we replace XV
τ and X̃V

τ by
the varieties over k corresponding to the associated reduced schemes. We also
consider f to be a morphism of these varieties.

For any algebraic group G, any subgroup H of G and any H-variety X we
denote by G ×H X the quotient of G × X by the left action of H defined by
h · (g, x) = (gh−1, h ·x). It exists for example if the variety X is quasi-projective
(see [5], Section 3.2). The action of G on G×X by multplication on the left on
the first factor induces a left action of G on G×H X.

Lemma 10.5. Let G,H and X be as above and assume that G ×H X exists.
Then the morphism q : X → G ×H X which sends x ∈ X to the class of (x, 1)
induces a bijection between the orbits of H in X and the orbits of G in G×H X
which preserves the closure order.

30



Proof. The morphism q is the composite of the inclusion

i : X → G×X
x 7→ (1, x)

and the projection pr : G ×X → G ×H X. We let G ×H act on G ×X from
the left by

(g, h) : (g′, x) 7→ (gg′h−1, h · x).

Then the G×H-orbits in G×X are of the subvarieties G× o for all H-orbits o
in X. Hence i induces a bijection between the orbits of H in X and the orbits
of G ×H in G ×X preserving the closure order. Furthermore, it follows from
the definition of G×H X and the properties of the quotient morphism pr that
pr induces a bijection between the orbits of G×H in G×X and the orbits of G
in G×H X preserving the closure order. Altogether this proves the claim about
q.

Lemma 10.6 (see [6], Lemma 3.7.4). Let G be an algebraic group and H a
subgroup. Let X be a variety with a left action of G. Let Φ: X → G/H be a G-
equivariant morphism from X to the homogenous space G/H, and let E ⊂ X be
the fiber Φ−1(H). Then E is stabilized by H, and the map G×HE → X sending
the equivalence class of (g, e) to g · e defines an isomorphism of G-varieties.

Applying this to H = P+ and the morphism XV
τ → PI from above shows:

Proposition 10.7. XV
τ = G×P+

X̃V
τ .

In particular, the inclusion X̃V
τ → XV

τ induces a bijection between the orbits
of P+ in X̃V

τ and the orbits of G in XV
τ which preserves the closure order.

Lemma 10.8. The morphism f is surjective. The fibers of f are the left cosets
of RuP−.

Proof. Let (Vk, C
•
V,k, D•, ϕ•) ∈ X̃V

τ . There exists g ∈ G such that D• = gDV,k
• .

By composing the inverse of the family of isomorphisms (gr•CV,k
)(q)

'→ gr
DV,k
•

corresponding to 1 ∈ L with ϕ• we obtain a family of isomorphisms

ϕ̃• : gr
DV,k
• → gr

gDV,k
•

After multiplying g with a suitable element of L, we may assume that this is
the same as the family of isomorphisms

gr
DV,k
•

g→ gr
gDV,k
•

used to define ϕg•. Then we have Mg = (Vk, C
•
V,k, D•, ϕ•) which shows surjec-

tivity.
Now let g, g′ ∈ G such that Mg = Mg′ . Then gDV,k

• = g′DV,k
• implies

that there exists λ ∈ P− such that g′ = gλ. Furthermore, since ϕg• = ϕg
′

• , the

family of automorphisms of grD
V,k

• induced by λ must be trivial. This implies
λ ∈ RuP−.

On the other hand, if λ ∈ RuP−, then reading the preceding paragraph in
reverse shows that Mg = Mgλ for all g ∈ G.
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Let P+ act on G as follows: For p ∈ P+, let p = u` with ` ∈ L and u ∈ RuP+

be its Levi decomposition. Then for g ∈ G

p · g = u`g(`(q))−1.

Lemma 10.9. The morphism f is P+-equivariant.

Proof. Let p ∈ P+ and p = u` its Levi decomposition. Let g ∈ G. Let

p ·Mg = p · (Vk, C•V,k, gDV,k
• , ϕg•) = (Vk, C

•
V,k, pgD

V,k
• , ψ•).

Since L ⊂ Stab(DV,k
• ), we have pgDV,k

• = u`g(`(q))−1DV,k
• . By definition, the

family ψ• is the composite

(gr•CV,k
)(q)

(p−1)(q)→ (gr•CV,k
)(q)

'→ grD
V,k

•
g→ grgD

V,k

•
p→ grpgD

V,k

• .

Since the map induced by p on the graded pieces are the same as the maps

induced by `, we get ψ• = ϕ
pg(`(q))−1

• . This shows p ·Mg = Mp·g.

Consider the algebraic group (RuP+ × RuP−) o L, where ` ∈ L acts on
RuP+ by conjugation and on RuP− by conjugation with `(q). We have an
action of RuP− on G by multiplication on the right and an action of P+ on G.
These fit together to a left action of (RuP+ ×RuP−) o L on G which is given
by

(u, u′, `) · g = u`g(`(q))−1u′−1.

Proposition 10.10. The morphism f induces a bijection between the orbits of
(RuP+×RuP−)oL on G and the orbits of P+ on X̃V

τ . This bijection preserves
the closure order.

Proof. By Lemma 10.9, the morphism f induces a map between the orbits in
G and the orbits in X ′τ . Lemma 10.8 implies that this map is surjective. Let
g, g′ ∈ G such that f(g) and f(g′) lie in the same orbit under P+. Then
there exists p ∈ P+ such that Mg = p ·Mg′ = Mp·g′ . Then, by Lemma 10.8

there exists u′ ∈ RuP− such that (p · g′)u′−1 = g. Let p = u` be the Levi
decomposition of p. Then u`g′(`(q))−1u′−1 = g. This shows that the map
induced by f is injective.

Lemma 10.8 implies that f factors through a morphism f̄ : G/RuP− → X̃V
τ

which must be bijective and hence a homeomorphism. Hence X̃V
τ carries the

quotient topology induced by f . This implies that the bijection preserves the
closure order.

Together, Propositions 10.7 and 10.10 show that the composite

G
f
� X̃V

τ ↪→ XV
τ
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induces a bijection between the orbits of the action of (RuP+ ×RuP−)oL on
G and the orbits of G on XV

τ which preserves the closure order.
Let Z(Vi) be the algebraic zip datum (G,P+, P−, L, L, ϕ), where ϕ : ` 7→ `(q)

is the Frobenius homomorphism. The isomorphism of varieties G→ G, g 7→ g−1

is equivariant with respect to the action of Z(Vi) on the domain and the action
of (RuP+ × RuP−) o L defined above on the codomain. This, together with
Propositions 10.7 and 10.10 shows

Theorem 10.11. The morphism ψ(Vi) sending g ∈ G to Mg−1 ∈ XV
τ induces

a bijective correspondence between the orbits of Z(Vi) on G and the orbits of G
on XV

τ which preserves the closure order.

Corollary 10.12. (i) Every F -zip over k is isomorphic to Mg for some g ∈
G.

(ii) For g, g′ ∈ G, the F -zips Mg and Mg′ are isomorphic if and only if there

exist u+ ∈ RuP+, u− ∈ RuP− and ` ∈ L such that g′ = u+`g(`−1)(q)u−.

Theorem 10.11 allows us to apply our results about the orbits of the action
of an algebraic zip datum to the classification of F -zips. Let V = Fnq and
(e1, . . . , en) the standard basis of V . For i ∈ Z let di =

∑
j≥i τ(i) and Vi the

span of (edi−1+1, . . . , edi). Then dimVi = τ(i) and V is the direct sum of the

Vi. We get an algebraic zip datum Z := Z(Vi) = (G,P+, P−, L, L, ϕ). In order
to apply our results to classify the orbits of the action of Z, we use Proposition
5.2 to find a nice algebraic zip datum Z̃ having isomorphic orbit structure.

Let B be the group of upper triangular matrices and T be the group of
diagonal matrices in G = GLn. Then B is a Borel subgroup of P+. Let
i1 > . . . > ir be the support of τ and let nj = τ(ij) for 1 ≤ j ≤ r. The Weyl
group W can be identified with Sn such that W (L) corresponds to Sn1

×· · ·Snr
.

For w ∈W , let ẇ ∈ GLn(k) be the representative of w having only entries 0 and
1. Let w0,I be the longest element in WI = W (L). Let w = w0 and z = w0,I .
Then

w
ϕ(
z
(L ∩B)) = L ∩B

and

w
ϕ(zT ) = T,

so by Proposition 5.2 the algebraic zip datum

Z̃ := (G,P+,
w0P−, L,w0L, int(w0w0,I) ◦ ϕ)

is nice with respect to T and B and the morphism ψ : G → G, g 7→ w0gw0,I

maps the orbits of Z bijectively to the orbits of Z̃. Since ϕ is a Frobenius
morphism, the algebraic zip datum Z̃ is Frobenius.

Let x = w0w0,I .
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Theorem 10.13. (i) The set

{M ẇ0,I ẇẇ0
| w ∈ IW}

is a set of representatives for the action of G on Xτ .

(ii) For w,w′ ∈ IW , the orbit of M ẇ0,I ẇ′ẇ0
is contained in the closure of the

orbit of M ẇ0,I ẇẇ0
if and only if there exists u ∈WI such that

uw′xϕ(u−1)x−1 ≤ w.

Proof. By Theorem 8.5, the set

{ẇ | w ∈W I}

is a set of representatives for the action of Z̃ on G. Both w0 and w0,I are
idempotent. Hence applying ψ shows that the set

{ẇ0ẇẇ0,I | w ∈W I}

is a set of representatives for the action of Z. Hence by Theorem 10.11 the set

{M ẇ0,I ẇ−1ẇ0
| w ∈W I}

is a set of representatives for the action of G on XV
τ . Now (i) follows from

(W I)−1 = IW.

Since ψ is an isomorphism of varieties, it preserves the closure order. Hence,
by Theorem 10.11, for w,w′ ∈ IW , the orbit of M ẇ0,I ẇ′ẇ0

is contained in the

closure of the orbit of M ẇ0,I ẇẇ0
if and only if the orbit of ẇ′−1 under Z̃ is

contained in the closure of the orbit of w−1 under Z̃. By Theorem 8.6 this is
the case if and only if there exists u ∈WI such that

xϕ(u)x−1w′−1u−1 ≤ w−1.

Since the Bruhat order satisfies

y ≤ y′ if and only if y−1 ≤ y′−1

for all y and y′ in W , this proves (ii).

Remark 10.14. (i) was proven by Moonen and Wedhorn in [4] and (ii) was
proven by Wedhorn in [9].

The automorphism group of a zip datum M ∈ XV
τ is its stabilizer in G.

Hence we can get a description of this group using Theorem 8.8. For this, we
need the following lemma.
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Lemma 10.15. For g ∈ G, the homomorphism

γ : (RuP+ ×RuP−) o L→ G

(u, u′, `) 7→ u`

restricts to an isomorphism

Stab(RuP+×RuP−)oL(g)→ StabG(Mg).

Proof. That γ restricts to a morphism

γg : Stab(RuP+×RuP−)oL(g)→ StabG(Mg)

follows from Lemma 10.9 and the definition of the action of (RuP+×RuP−)oL.
If (u, u′, `) ∈ Stab(RuP+×RuP−)oL(g) and (u, ũ′, `) ∈ Stab(RuP+×RuP−)oL(g),
then u′ = ũ′. This implies the injectivity of γg.

Let p ∈ StabG(Mg). Since pC•V,k = C•V,k, the element p must be in P+.

Since Mp·g = p ·Mg = Mg, Lemma 10.8 shows that there exists u′ ∈ RuP−
such that (p · g)u′−1 = g. If p = u` is the Levi decomposition of p, this shows

(u, u′, `) ∈ Stab(RuP+×RuP−)oL(g).

Hence γg is surjective.

Theorem 10.16. Let w ∈ IW . Let Nw be the unique maximal subgroup of
L invariant under ϕw := int(ẇẇ0ẇ0,I) ◦ ϕ and let Nf

w be the group of fixed
points of ϕw, which is finite. Then the automorphism group of M ẇ0,I ẇẇ0

is the

semidirect product of Nf
w and a connected unipotent group.

Proof. Since w ∈ IW , its inverse w−1 is in W I and by definition Nw = Lw−1

and Nf
w = Lfw−1 . It follows from Proposition 5.2 that there is an isomorphism

StabZ(ẇ0ẇ
−1ẇ0,I) → StabZ̃(ẇ−1). This, together with the preceding Lemma

shows that the automorphism group of M ẇ0,I ẇẇ0
is isomorphic to StabZ̃(ẇ−1).

Hence the claim follows from Theorem 8.8.

Remark 10.17. That a result like Theorem 10.16 should hold was conjectured
by Wedhorn in a conversation with the author.

Now we describe certain universal constructions for F -zips, and how these
universal constructions can be realized as morphisms of the algebraic zip data
which classify the F -zips of a certain type.

Definition 10.18. Let S be a scheme over Fq and M = (M,C•, D•, ϕ•) and

M̃ = (M̃, C̃•, D̃•, ϕ̃•) two F -zips over S. Then we get filtrations (C ⊕ C̃)• and
(D⊕ D̃)• on M ⊕ M̃ by (C ⊕ C̃)i = Ci⊕ C̃i and (D⊕ D̃)i = Di⊕ D̃i for i ∈ Z.

There are natural isomorphisms gr•
C⊕C̃

∼= gr•C ⊕ gr•
C̃

and grD⊕D̃•
∼= grD• ⊕ grD̃• .

This allows to define an F -zip M⊕M̃ = (M⊕M̃, (C⊕ C̃)•, (D⊕D̃)•, (ϕ⊕ ϕ̃)•),
which we call the direct sum of M and M̃ .
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Definition 10.19. For two algebraic zip data Z = (G,P, P ′, L, L′, ϕ) and Z̃ =
(G̃, P̃ , P̃ ′, L̃, L̃′, ϕ̃) we define their direct product to be the algebraic zip datum

Z × Z̃ := (G× G̃, P × P̃ , P ′ × P̃ ′, L× L̃, L′ × L̃′, ϕ× ϕ̃).

Now let τ and τ̃ be two function Z → Z≥0 with finite support and let

n = |τ | and ñ = |τ̃ |. Let V and Ṽ be two vector spaces of dimension n and
ñ respectively and let V = ⊕i∈ZVi and Ṽ = ⊕i∈ZṼi be decompositions of V
and Ṽ such that dimVi = τ(i) and dim Ṽi = τ̃(i) for i ∈ Z. Then as above

we get algebraic zip data Z(Vi) and Z(Ṽi) and morphisms ψ(Vi) : GL(V )→ XV
τ

and ψ(Ṽi) : GL(Ṽ ) → X Ṽ
τ̃ inducing bijections on the sets of orbits under the

respective actions.
Since for two filtrations C• and C̃• of Vk of type τ and τ̃ respectively, the

type of (C ⊕ C̃)• is τ + τ̃ , the formation of direct sums gives a morphism

⊕ : XV
τ ×X Ṽ

τ̃ → XV⊕Ṽ
τ+τ̃ .

The decompositions of V and Ṽ choosen above induce a decomposition of
V ⊕ Ṽ as V ⊕ Ṽ = ⊕i∈Z(Vi ⊕ Ṽi), from which we get an algebraic zip datum

Z(Vi⊕Ṽi) and a morphism ψ(Vi⊕Ṽi) : GL(V ⊕ Ṽ )→ Xτ+τ̃ which induces a bijec-

tion between the orbits of Z(Vi⊕Ṽi) on GL(V ⊕ Ṽ ) and the orbits of GL(V ⊕ Ṽ )

on XV⊕Ṽ
τ+τ̃ .

There is also the morphism ⊕ : GL(V )×GL(Ṽ )→ GL(V ⊕ Ṽ ), which sends
(g, g̃) to the automorphism g ⊕ g̃ of V ⊕ Ṽ which maps (v, ṽ) to (gv, g̃ṽ). From

C•V ⊕ C•Ṽ = C•
V⊕Ṽ and DV

• ⊕DṼ
• = DV⊕Ṽ

• it follows that ⊕ is a morphism of

zip data Z(Vi) × Z(Ṽi) → Z(Vi⊕Ṽi) and that for g ∈ GL(V ) and g̃ ∈ GL(Ṽ )

Mg ⊕M g̃ = Mg⊕g̃,

that is the diagram

GL(V )×GL(G̃)
⊕

//

ψ(Vi)×ψ(Ṽi)

��

GL(V ⊕ Ṽ )

ψ(Vi⊕Ṽi)

��

XV
τ ×X Ṽ

τ̃

⊕
// XV⊕Ṽ

τ+τ̃

commutes.

Definition 10.20. Let S be a scheme over Fq and M = (M,C•, D•, ϕ•) and

M̃ = (M̃, C̃•, D̃•, ϕ̃•) two F -zips over S. The tensor product of C• and C̃• is
defined to be the descending filtration on M ⊗ M̃ given by

(C ⊗ C̃)i =
∑

n+n′=i

Cn ⊗ C̃n
′
.

The ascending filtration (D ⊗ D̃)• is defined similarly. There are natural iso-
morphisms

gri
C⊗C̃

'→ ⊕n+n′=i grnC ⊗ grn
′

C̃
,
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and similarly for (D ⊗ D̃)•. Hence if we let

(ϕ⊗ ϕ̃)i = ⊕n+n′=iϕn ⊗ ϕ̃n′ : (gri
C⊗C̃)(q)

'→ grD⊗D̃i ,

we get an F -zip

M ⊗ M̃ := (M ⊗ M̃, (C ⊗ C̃)•, (D ⊗ D̃)•, (ϕ⊗ ϕ̃)•),

which we call the tensor product of M and M̃ .

Let V = ⊕i∈ZVi and Ṽ = ⊕i∈ZṼi as above. Then we get a grading on V ⊗ Ṽ
by V ⊗ Ṽ = ⊕i∈ZWi with

Wi := ⊕n+n′=iVn ⊗ Ṽn′ .

Let τ ⊗ τ̃ : Z → Z≥0, i 7→ dimWi. Then analogously to the construction for
direct sums above we get a morphism

⊗ : XV
τ ×X Ṽ

τ̃ → XV⊗Ṽ
τ⊗τ̃

which sends two F -zips to their tensor product and a morphism of zip data

⊗ : Z(Vi) × Z(Ṽi) → Z(Wi)

such that the diagram

GL(V )×GL(G̃)
⊗

//

ψ(Vi)×ψ(Ṽi)

��

GL(V ⊗ Ṽ )

ψ(Wi)

��

XV
τ ×X Ṽ

τ̃

⊗
// XV⊗Ṽ

τ+τ̃

commutes.
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1998.

[8] Robert Steinberg. Endomorphisms of Linear Algebraic Groups, volume 80
of Memoirs of the American Mathematical Society. American Mathematical
Society, 1968.

[9] Torsten Wedhorn. Specialization of F -Zips. arXiv:math/0507175v1, 2005.

38


