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3.2 Computing Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Quotients of Ideals 14

5 Radicals 16

5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Ideals of finite codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Primary Decomposition 24

6.1 Ideals of finite codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Complexity 34

8 Conclusion 35

References 36



1 Introduction

Polynomial rings over fields arise in many areas of mathematics, for instance in algebraic

geometry. It is natural to ask to which extent explicit computation in such polynomial

rings are possible. Today, computer algebra systems like MAPLE or MATHEMATICA are

very useful tools to test conjectures in special cases before trying to prove them. There is

a lot of computational theory for algorithms used to compute even the simplest objects in

a polynomial ring. Computations in one variable are fairly simple, due to the fact that a

polynomial ring in one variable over a field is a principal ideal domain and hence the very

powerful Euclidean algorithm can be used. However, computations become more complicated

when dealing with multivariate polynomial rings. Some of the computational theory will be

presented and explained in this thesis. Certain objects, for example the radical of an ideal,

can be computed using different characterisations, which result in different algorithms. There

will be a short discussion of this fact and a comparison between algorithms at the end.

A key concept in this setting of computational algebra is the one of Gröbner bases. Presented

in section 3, this concept will be used throughout the whole thesis. We lay our focus on

three objects associated to polynomial ideals: quotients of ideals, the radical of an ideal and

a primary decomposition of an ideal. We develop algorithms to compute these objects. There

are also several other tasks that we will be able to do computationally. The main algorithms

are marked as “Algorithm” and are written in pseudo-code, whereas the simpler tasks such

as testing for prime ideals are marked as “Task” and have no special syntactical structure.

In the end we will be able to do almost every computation that a standard computer algebra

system can do in the area of polynomial ideals.

The prerequisites for this thesis are a standard algebra course and some basic knowledge of

commutative algebra, mainly radical ideals and primary decompositions. Everything needed

can be found in the first few chapters of Atiyah and Macdonald’s standard introduction [1].
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2 Notation

We will always consider a field K and denote by K its algebraic closure. Let X1, . . . , Xn be

n independent variables and define X := {X1, . . . , Xn}. We denote the polynomial ring in n

variables over K by K[X ]. Later on, we will invert some of the variables to form a rational

function field. In doing so, we will write X = Y t Z and mean that Y and Z are disjoint

subsets of X and their union is X. We can then, for instance, form the ring K(Y )[Z ] of

polynomials in Z over the rational function field K(Y ). The integer n > 0 is arbitrary but

will always denote the total number of variables.

For computations with an ideal, we need a finite generating set of the ideal. Thus, in the

algorithms and tasks we tacitly assume that a finite generating set of I is given. For a finite

subset F ⊂ K[X ] we denote by 〈F 〉 ⊂ K[X ] the ideal generated by F . If the ring in which

the ideal is generated is not clear from the context, we indicate the ring as a subscript. For

instance, we will write 〈F 〉K(Y )[Z ]. For elements f1, . . . , fm ∈ K[X ] we write 〈f1, . . . , fm〉
instead of 〈{f1, . . . , fm}〉.

Let R and S be two rings and ϕ : R → S be a ring homomorphism. Let I ⊂ R and J ⊂ S

be ideals. We use Atiyah and Macdonald’s ([1]) notation and write Ie := 〈ϕ(I)〉 for the

extension ideal of I and Jc := ϕ−1(J) for the contraction ideal of J . We will not state the

homomorphism explicitly if it is clear from the context. We also use the notation Iec := (Ie)c

and Jce := (Ic)e.
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3 Gröbner Bases

This section follows the book of Cox, Little and O’Shea [3].

3.1 Basic definitions

We will generalize the concept of degree and the Euclidean algorithm for polynomial rings in

one variable to an algorithm for a ring of multivariate polynomials K[X ].

Definition 3.1. A monomial ordering � on K[X ] is a binary relation � on Zn≥0 with the

following properties:

(i) The relation � is a total ordering on Zn≥0.

(ii) For all α, β, γ ∈ Zn≥0 such that α � β it follows that α+ γ � β + γ.

(iii) Every non-empty subset has a smallest element, i.e. � is a well-ordering on Zn≥0.

Example 3.2. The standard ordering relation ≥ on Z≥0 is a total ordering and a well-

ordering. Furthermore, for all α, β, γ ∈ Z≥0 such that α ≥ β we have α + γ ≥ β + γ.

Therefore ≥ is a monomial ordering on K[X1].

Example 3.3. We define the monomial ordering �lex on K[X ] such that for all α :=

(α1, . . . , αn), β := (β1, . . . , βn) ∈ Zn≥0 we have α �lex β if and only if the leftmost non-

zero entry in (α1 − β1, . . . , αn − βn) is positive. This is called the lexicographical order-

ing. For instance, in the lexicographical ordering we have (0, 1, 5, 2) �lex (0, 1, 2, 4) since

(0, 1, 5, 2)− (0, 1, 2, 4) = (0, 0, 3,−2) and the leftmost non-zero entry 3 is positive. Using the

result of Example 3.2 we deduce that �lex is a monomial ordering.

Definition 3.4. Let f =
∑

α aαX
α ∈ K[X ] with multi-index notation and let � be a

monomial ordering on K[X ].

(i) The degree of f with respect to � is deg(f) := max{α ∈ Zn≥0 | aα 6= 0} if f is non-zero

and deg(0) := −∞. Here, the maximum is taken with respect to �.

(ii) The leading coefficient of f is LC(f) := adeg(f) ∈ K if f is non-zero, and LC(0) := 0.

(iii) The leading monomial of f is LM(f) := Xdeg(f) if f is non-zero, and LM(0) := 1.

(iv) The leading term of f is LT(f) := LC(f) · LM(f).

Remark 3.5. Later on, we will need to distinguish leading terms in different rings. For this

purpose, if X = Y t Z and f ∈ K[X ] we write LTZ(f) for the leading term of f in the ring

K(Y )[Z ] and LTX(f) for the leading term in K[X ]. We denote LC(f) analogously.

Definition 3.6. For any subset F ⊂ K[X ] we define the set of leading terms

LT(F ) := {LT(f) | f ∈ F} and the set of leading monomials LM(F ) := {LM(f) | f ∈ F}.

Now we can define Gröbner bases. There are several equivalent definitions and the one below

is not the most intuitive one. However, this technical property is easier to use:
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Section 3 3.1 Basic definitions

Definition 3.7. Let � be a monomial ordering on K[X ] and let I ⊂ K[X ] be an ideal. A

Gröbner basis of I is a finite subset G ⊂ I such that 〈LT(G)〉 = 〈LT(I)〉.

Remark 3.8. From now on, we will always assume that some monomial ordering � has been

chosen and that all Gröbner bases and leading terms are taken with respect to this ordering

unless stated otherwise.

In order to use Gröbner bases we need some basic statements.

Lemma 3.9. Let I ⊂ K[X ] be an ideal and let f, g1, . . . , gm ∈ I. If LT(f) lies in the ideal

〈LT(g1), . . . ,LT(gm)〉, then f = 0 or there is some 1 ≤ k ≤ m such that LT(gk) divides LT(f).

Proof. By assumption, there exist h1, . . . , hm ∈ K[X ] such that LT(f) =
∑m

i=1 hiLT(gi).

For each 1 ≤ i ≤ m write hi =
∑

α a
i
αX

α with aiα ∈ K for all α. Then LT(f) =∑m
i=1

∑
α a

i
αX

αLT(gi). If f is non-zero, then LT(f) is a non-zero monomial. It follows

that, on the right hand side, there is only one non-zero monomial. Thus there is a constant

β ∈ K such that LT(f) = βakαX
αLT(gk) for some 1 ≤ k ≤ m and some α. Hence LT(f) is

divisible by LT(gk) or f = 0.

Proposition 3.10. Every ideal I ⊂ K[X ] has a Gröbner basis. Furthermore, every Gröbner

basis of I is a generating set of I.

Proof. (i) Let M := {〈LT(F )〉 | F ⊂ I is a finite subset}. Since K[X ] is a Noetherian

ring, the ideal 〈LT(I)〉 is Noetherian as a module over K[X ]. Therefore M has a

maximal element 〈LT(G)〉 ∈ M , where G ⊂ I is a finite subset. Let f ∈ I. Since

〈LT(G)〉 is a maximal element of M , we have that 〈LT(G)〉 = 〈LT(G ∪ {f})〉. Hence

LT(f) ∈ 〈LT(G)〉 and G is thus a Gröbner basis of I.

(ii) If I = 〈0〉, the only possible Gröbner bases are ∅ and {0}. Both of them generate I.

Let G be a Gröbner basis of I 6= 〈0〉. We prove that I = 〈G〉 by transfinite induction on

the degree of elements in I. If f = 0 ∈ I then f ∈ 〈G〉. So let f ∈ I be non-zero. Assume

that for all f ′ ∈ I the condition deg(f) � deg(f ′) implies that f ′ ∈ 〈G〉. By definition

of a Gröbner basis, we have LT(f) ∈ 〈LT(G)〉. By Lemma 3.9 there exists an element

g ∈ G such that LT(g) divides LT(f). Thus LT(f) = hLT(g) for some h ∈ K[X ].

Since LT(f) and LT(g) consist of only one term and are both non-zero, the polynomial

h has the same property. Hence h = LT(h) and LT(f) = LT(h)LT(g) = LT(hg). We

have deg(f) � deg(f − hg) by definition of the leading term. By induction hypothesis

f − hg ∈ 〈G〉 and hence f ∈ 〈G〉. The claim follows with transfinite induction.

We turn to the generalization of the Euclidean algorithm.

Definition 3.11. Let f1, . . . , fm ∈ K[X ] and define F := {f1, . . . , fm}. Let f ∈ K[X ]. A

remainder on division of f with respect to F is an element f
F ∈ K[X ] such that there

exist h1, . . . , hm ∈ K[X ] with the following properties:

(i) The polynomial f can be written as f =
∑m

i=1 hifi + f
F

.

(ii) No term of f
F

is divisible by any of (LT(fi))
m
i=1.
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Section 3 3.1 Basic definitions

(iii) For all 1 ≤ i ≤ m we have deg(hifi) � deg(f).

Algorithm 3.12. Let f1, . . . , fm ∈ K[X ] and define F := {f1, . . . , fm}. Let f ∈ K[X ]. The

following algorithm computes a remainder on division f
F

and elements h1, . . . , hm ∈ K[X ]

as in Definition 3.11.

Input: F = (f1, ..., fm), f ∈ K[X ]

Output: r = f
F

, some remainder on division; h1, . . . , hm
begin

hi := 0 for all 1 ≤ i ≤ m
r := 0
p := f
while p 6= 0 do

i := 1
divisionoccured := false
while i ≤ m and divisionoccured = false do

if LT(fi) divides LT(p) then
hi := hi + LT(p)/LT(fi)
p := p− (LT(p)/LT(fi))fi
divisionoccured := true

else
i := i+ 1

end

end
if divisionoccured = false then

r := r + LT(p)
p := p− LT(p)

end

end

end

Proof. We first show that the algorithm terminates after finitely many steps. Note that the

inner while-loop has at most m steps and thus terminates in every step of the outer while-

loop. So the only possibility that the algorithm does not terminate is if p is non-zero at all

times. If LT(fi) divides LT(p) for some 1 ≤ i ≤ m, then in the next step p is reduced to

p − (LT(p)/LT(fi))fi. Then deg(p − (LT(p)/LT(fi))fi) ≺ deg(p). If on the other hand no

LT(fi) divides LT(p), then the inner while-loop terminates with divisionoccured = false.

This implies that p is reduced to p − LT(p) for the next step, due to the if-statement at

the bottom. Then deg(p − LT(p)) ≺ deg(p). So in each step of the outer while-loop, the

degree of p strictly decreases. If the loop did not terminate, we would have an infinitely

decreasing sequence. This cannot exist because of the well-ordering condition of monomial

orderings. Thus the algorithm terminates after finitely many steps. For later use, note that

deg(p) � deg(f) during the whole algorithm.

We now show that after every step of the outer while-loop we have f =
∑m

i=1 hifi + r + p

with deg(hifi) � deg(f) for all 1 ≤ i ≤ m. This is true before the first step. Now fix a
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Section 3 3.2 Computing Gröbner Bases

step of the outer while-loop. Let r, p, (hi)
m
i=1 denote the elements before the step which have

the desired property and let r′, p′, (h′i)
m
i=1 denote the elements after the step. If no LT(fi)

divides LT(p) then h′i = hi for all 1 ≤ i ≤ m. Also r′ = r + LT(p) and p′ = p − LT(p). It

follows that f =
∑m

i=1 h
′
ifi + r′ + p′ and deg(h′ifi) � deg(f) for all 1 ≤ i ≤ m. If, on the

other hand, some LT(fi) divides LT(p), then h′j = hj for all j 6= i and r′ = r. Furthermore

h′i = hi + LT(p)/LT(fi) and p′ = p − (LT(p)/LT(fi))fi, so h′ifi + p′ = hifi + p. Thus

f =
∑m

i=1 h
′
ifi + r′ + p′ and deg(h′ifi) � max{deg(hifi),deg(p)} � deg(f) for all 1 ≤ i ≤ m.

Because the property holds after each step, it also holds for the output.

It remains to show that the output r is not divisible by any of (LT(fi))
m
i=1. At the beginning

r = 0, and the only place where a term is added to r is in the if-statement at the bottom.

But the term is only added if it was not divisible by any of (LT(fi))
m
i=1. So r has the desired

property and is thus a remainder on division.

Remark 3.13. Algorithm 3.12 shows that for all finite subsets F ⊂ K[X ] and elements

f ∈ K[X ] there is a remainder on division of f with respect to F . However, in general

it need not be unique. Whenever we use a remainder on division f
F

, we assume that some

choice has been made. This choice will only affect the explicit calculations and not the general

statements.

Proposition 3.14. Let G = {g1, . . . , gm} be a Gröbner basis of an ideal I ⊂ K[X ]. For all

f ∈ K[X ], there is a unique remainder on division of f with respect to G.

Proof. Let f ∈ K[X ] and let r, r′ ∈ K[X ] be two polynomials both satisfying the properties

of a remainder on division of f with respect to G. Then we have r−r′ = (f−r′)−(f−r) ∈ I.

Assume that r − r′ 6= 0. By Lemma 3.9, there exists an element gi ∈ G such that LT(gi)

divides LT(r− r′). Since r− r′ 6= 0, this implies that some term of r or of r′ must be divisible

by LT(gi), which is not true. So r − r′ = 0.

The following proposition was, historically, the motivation to introduce Gröbner bases. In

fact, it is one of the equivalent definitions of a Gröbner basis.

Proposition 3.15. Let I ⊂ K[X ] be an ideal and G = {g1, . . . , gm} ⊂ I a Gröbner basis of

I. Then a polynomial f ∈ K[X ] lies in I if and only if f
G

= 0.

Proof. Let f ∈ I. Then f
G ∈ I by definition of a remainder on division, and no term of f

G
is

divisible by any element of LT(G). But G is a Gröbner basis, so LT(f
G

) ∈ 〈LT(I)〉 = 〈LT(G)〉.
It follows by Lemma 3.9 that f

G
= 0.

Conversely, if f
G

= 0, then f is a linear combination of elements of G, so f ∈ I.

3.2 Computing Gröbner Bases

The key to an algorithm which computes a Gröbner basis is a technical criterion for Gröbner

bases developed by Buchberger.
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Section 3 3.2 Computing Gröbner Bases

Definition 3.16. Let f, g ∈ K[X ] be non-zero and let α := deg(f) and β := deg(g). Set

γ := (γ1, . . . , γn) where γi := max(αi, βi) for each 1 ≤ i ≤ n. The S-polynomial of f and g

is defined by

S(f, g) :=
Xγ

LT(f)
f − Xγ

LT(g)
g,

using multi-index notation.

Lemma 3.17. Let f1, . . . , fs ∈ K[X ] be all non-zero with δ := deg(f1) = · · · = deg(fs).

For all i 6= j we have deg(S(fi, fj)) ≺ deg(fi). Let c1, . . . , cs ∈ K satisfy deg(
∑s

i=1 cifi) ≺ δ.
Then there are coefficients dij ∈ K for all 1 ≤ i, j ≤ s such that

∑s
i=1 cifi =

∑
i 6=j dijS(fi, fj).

Proof. For all 1 ≤ i ≤ s define pi := fi
LC(fi)

and di := ciLC(fi). Then for all i 6= j we have

S(fi, fj) = Xδ

LT(fi)
fi − Xδ

LT(fj)
fj = pi − pj . Since every pi has leading coefficient 1 and they

all have the same degree we find that deg(pi − pj) ≺ deg(pi) = deg(fi), proving the first

statement of the lemma. Now consider the following sum:

s∑
i=1

cifi =

s∑
i=1

dipi =

s∑
i=1

di(pi − p1) +

(
s∑
i=1

di

)
p1(1)

Since deg(
∑s

i=1 cifi) ≺ δ we know that
∑s

j=1 dj = 0, so the second sum of the right hand

side of equation (1) vanishes. Thus
∑s

i=1 cifi =
∑s

i=1 diS(fi, f1).

Theorem 3.18 (Buchberger’s Criterion).

Let I ⊂ K[X ] be an ideal and let G = {g1, . . . , gm} ⊂ I be a generating set of I not containing

0. Then G is a Gröbner basis of I if and only if ∀i 6= j : S(gi, gj)
G

= 0.

Proof. Assume that G is a Gröbner basis. Then by definition of the S-polynomial, we have

S(gi, gj) ∈ I for all i 6= j. Thus S(gi, gj)
G

= 0 by Proposition 3.15. This proves one direction

of the equivalence.

Conversely, assume that S(gi, gj)
G

= 0 for all i 6= j. Using Definition 3.7 of a Gröbner

basis, we need to show that LT(f) ∈ 〈LT(G)〉 for all f ∈ I. If f is zero, this is true,

so let f ∈ I be non-zero. Since G generates I, there exist h1, . . . , hm ∈ K[X ] such that

f =
∑m

i=1 higi. Since a monomial ordering is a well-ordering, we can choose the hi such that

δ := max{deg(h1g1), . . . ,deg(hmgm)} is minimal. Set d(i) := deg(higi) for all 1 ≤ i ≤ m and

write

f =
∑
d(i)=δ

LT(hi)gi +
∑
d(i)=δ

(hi − LT(hi))gi +
∑
d(i)≺δ

higi(2)

Note that only the first sum has terms of degree equal to δ. We claim that deg(f) = δ.

Suppose deg(f) ≺ δ. By Lemma 3.17, there exist coefficients cij ∈ K for i 6= j such

that
∑

d(i)=δ LT(hi)gi =
∑

i 6=j cijS(LT(hi)gi,LT(hj)gj), where cij = 0 whenever d(i) ≺ δ

9



Section 3 3.2 Computing Gröbner Bases

or d(j) ≺ δ. For all i 6= j with d(i) = d(j) = δ we have

S(LT(hi)gi,LT(hj)gj) =
Xδ

LT(higi)
LT(hi)gi −

Xδ

LT(hjgj)
LT(hj)gj = Xδ−γijS(gi, gj)

for some γij ∈ Zn≥0. By assumption S(gi, gj)
G

= 0 for all i 6= j. Hence there exist rij` ∈ K[X ]

for all 1 ≤ ` ≤ m and i 6= j such that deg(rij` g`) � deg(S(gi, gj)) and S(gi, gj) =
∑m

`=1 r
ij
` g`.

We thus find:

∑
d(i)=δ

LT(hi)gi =
∑
i 6=j

cijS(LT(hi)gi,LT(hj)gj) =
∑
i 6=j

m∑
`=1

cijX
δ−γijrij` g`(3)

Furthermore, for all 1 ≤ ` ≤ m and i 6= j we have

deg(Xδ−γijrij` g`) � deg(Xδ−γijS(gi, gj)) = deg(S(LT(hi)gi,LT(hj)gj)) ≺ deg(higi)

where the last inequality follows from Lemma 3.17. Combining equation (2) and (3) yields f

as a linear combination of (gi)
m
i=1 such that every term has degree strictly less than δ. This

contradicts the minimality of δ, and thus the degree of f must equal δ. So LT(gk) divides

LT(f) for some 1 ≤ k ≤ m and therefore LT(f) ∈ 〈LT(G)〉.

Using Buchberger’s criterion, we can now check whether a given generating set of an ideal is

a Gröbner basis. More importantly, we have an algorithm which computes a Gröbner basis

of a given ideal.

Algorithm 3.19 (Buchberger). Let I ⊂ K[X ] be an ideal and � a monomial ordering on

K[X ]. The following algorithm computes a Gröbner basis of I with respect to �.

Input: F = (f1, ..., fm), a generating set of I

Output: G = a Gröbner basis of I w.r.t. �
begin

G := F

repeat

G′ := G

foreach pair p, q ∈ G′ with p 6= q do

S := S(p, q)
G′

with respect to � (Algorithm 3.12)

if S 6= 0 then

G := G′ ∪ {S}
end

end

until G = G′

end

Proof. Assume that the algorithm never terminates. This is only possible if G and G′

never coincide in the outer loop. This implies S = S(p, q)
G′
6= 0 for some p, q ∈ G′ with
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Section 3 3.2 Computing Gröbner Bases

p 6= q. By definition of a remainder on division and Lemma 3.9, we have LT(S) /∈ 〈LT(G′)〉.
But LT(S) ∈ 〈LT(G)〉 and G′ ⊂ G. Thus 〈LT(G′)〉 ( 〈LT(G)〉. So if the algorithm never

terminates, there is a strictly increasing sequence of ideals in K[X ]. But this contradicts

K[X ] being Noetherian. So the algorithm must terminate after finitely many steps.

Now consider the output G of the algorithm. The algorithm has terminated, so G′ = G in the

outer loop. If S := S(p, q)
G′
6= 0 for some p, q ∈ G′, then S /∈ G′ by definition of a remainder

on division. Thus G′ ( G = G′ ∪ {S}. This is a contradiction. So when the algorithm

terminates, we have S(p, q)
G

= 0 for all p, q ∈ G. Note also that F ⊂ G ⊂ I at all times,

so G is always a generating set of I. It follows by Theorem 3.18 that G is a Gröbner basis

of I.

Task 3.20 (Ideal Membership). Let I ⊂ K[X ] be an ideal and let f ∈ K[X ]. Is f an

element of I?

Solution. Compute a Gröbner basis G of I using Algorithm 3.19. Compute f
G

using Algo-

rithm 3.12. Then f ∈ I ⇐⇒ f
G

= 0 by Proposition 3.15.

By requiring more structure on a Gröbner basis we obtain even stronger statements.

Definition 3.21. A Gröbner basis is called reduced if

(i) Every element g ∈ G is monic, i.e. LC(g) = 1.

(ii) For all g ∈ G, no term of g lies in 〈LT(G \ {g})〉.

Algorithm 3.22. Let I ⊂ K[X ] be an ideal and G a Gröbner basis of I. Then the following

algorithm computes a reduced Gröbner basis G′ of I.

Input: G, a Gröbner basis of I

Output: G′, a reduced Gröbner basis of I

begin

G′ := G

foreach g ∈ G do

if LT(g) ∈ 〈LT(G \ {g})〉 then

G′ := G′ \ {g}
else

g′ := gG\{g} (Algorithm 3.12)

G′ := (G′ \ {g}) ∪ { g′

LC(g′)}
end

end

end

Proof. For all g ∈ G the condition LT(g) ∈ 〈LT(G \ {g})〉 is equivalent to LT(g′) dividing

LT(g) for some g′ ∈ G \ {g}, by Lemma 3.9. This can be checked algorithmically.

Let G = {g1, . . . , gm} be the input Gröbner basis of I. Then the algorithm terminates after

m steps. We need to show that the output G′ is indeed a reduced Gröbner basis of I.
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Section 3 3.2 Computing Gröbner Bases

Note that for any g ∈ G with LT(g) ∈ 〈LT(G \ {g})〉 the set G \ {g} is still a Gröbner basis

of I.

Let 1 ≤ k ≤ m with LT(gk) /∈ 〈LT(G \ {gk})〉 and define g′ := gk
G\{gk}. Then there exist

hi ∈ K[X ] for all i 6= k such that gk =
∑

i 6=k higi + g′ and deg(higi) � deg(gk) for all i 6= k.

Since LT(gk) /∈ 〈LT(G \ {gk})〉 we find that deg(higi) is even strictly smaller than deg(gk) for

all i 6= k and hence LT(gk) = LT(g′). Then LT
(

(G \ {gk}) ∪ { g′

LC(g′)}
)

= LT(G) and thus

(G \ {gk}) ∪ { g′

LC(g′)} is still a Gröbner basis of I.

Hence G′ is a Gröbner basis of I at all times in the algorithm. Furthermore, the above

argument shows that no term of g lies in 〈LT(G′ \ {g})〉 for all g ∈ G′. Also, every element

of G′ has leading coefficient 1. Hence G′ is a reduced Gröbner basis of I.

Proposition 3.23. Let I ⊂ K[X ] be an ideal. For every monomial ordering, there is a

unique reduced Gröbner basis of I.

Proof. The existence follows from the existence of a Gröbner basis and Algorithm 3.22. Let

G and G′ be two reduced Gröbner bases of I and let g ∈ G. In particular g is a non-zero

element of I. Since G′ is a Gröbner basis of I, we have LT(g) ∈ 〈LT(G′)〉. By Lemma 3.9,

there exists an element g′ ∈ G′ such that LT(g′) divides LT(g). Using the same argument for

g′ and G we obtain an element g̃ ∈ G such that LT(g̃) divides LT(g′). Hence LT(g̃) divides

LT(g) and thus g = g̃ since G is a reduced Gröbner basis. We deduce that LT(g) = LT(g′).

We will show that g = g′.

Note that g−g′ ∈ I and deg(g−g′) ≺ deg(g) = deg(g′). Assume that g−g′ is non-zero. By the

same argument as before, there exists an element f ∈ G such that LT(f) divides LT(g − g′).
Then deg(f) � deg(g−g′). This implies that LT(f) divides some term of g or some term of g′.

The first case is not possible, because G is reduced and deg(f) ≺ deg(g), so f 6= g. Therefore,

LT(f) divides some term of g′. Repeating once again the above argument, we obtain f ′ ∈ G′

such that LT(f ′) divides LT(f). Then LT(f ′) divides some term of g′. This implies that

f ′ = g′ because G′ is reduced. But this is impossible since deg(f ′) � deg(f) ≺ deg(g′).

Therefore the assumption that g − g′ is non-zero was false. Hence G ⊂ G′ and analogously

G′ ⊂ G.

Task 3.24 (Ideal Equality). Let I, J be two ideals of K[X ]. Do I and J coincide?

Solution. Compute reduced Gröbner bases G and G′ of I and J , respectively, by means of

Algorithm 3.19 and Algorithm 3.22. Then I = J ⇐⇒ G = G′ by Proposition 3.23.

Task 3.25 (Subideal). Let I, J ⊂ K[X ] be two ideals. Is I a subideal of J?

Solution. For every generator f of I check whether f ∈ J using Task 3.20.

Lemma 3.26. Let X = Y tZ and let I ⊂ K[Y ][Z ] be an ideal. Let r denote the cardinality of

Y . Let � be the lexicographical ordering on K[Y ][Z ] such that deg(Zn−r) � · · · � deg(Z1) �
deg(Yr) � · · · � deg(Y1). Let G ⊂ I be a Gröbner basis of I with respect to �. Then G∩K[Y ]

is a Gröbner basis of I ∩K[Y ].

12



Section 3 3.2 Computing Gröbner Bases

Proof. Set G′ := G ∩K[Y ]. Note that G′ ⊂ I ∩K[Y ] and G′ is finite. Let f ∈ I ∩K[Y ]

be non-zero. Since G is a Gröbner basis LT(f) is an element of 〈LT(G)〉. By Lemma 3.9,

there exists an element g ∈ G such that LT(g) divides LT(f). In particular, this implies that

LT(g) ∈ K[Y ]. But by our choice of lexicographical ordering this implies that no term of g

contains any variable of Z. Thus g ∈ G′ and LT(f) ∈ 〈LT(G′)〉. Hence G′ is a Gröbner basis

of I ∩K[Y ].

Task 3.27. Let X = Y t Z and let I ⊂ K[Y ][Z ] be an ideal. Compute a Gröbner basis G

of I ∩K[Y ] with respect to a monomial ordering �′.

Solution. Let r denote the cardinality of Y . Let� be the lexicographical ordering onK[Y ][Z ]

as in Lemma 3.26. Compute a Gröbner basis G′ ⊂ I of I with respect to � using Algorithm

3.19. Compute G̃ := G′ ∩K[Y ] by ignoring every polynomial of G′ with a term containing

any variable of Z. Then G̃ is a Gröbner basis of I ∩ K[Y ], by Lemma 3.26, and thus a

generating set of I ∩K[Y ]. Compute a Gröbner basis G of I ∩K[Y ] with respect to �′ using

Algorithm 3.19.

Lemma 3.28. Let I = 〈f1, . . . , fm〉 and J = 〈h1, . . . , h`〉 be two ideals of K[X ]. Define

L := 〈tf1, . . . , tfm, (1− t)h1, . . . , (1− t)h`〉 ⊂ K[X ][t]. Then I ∩ J = L ∩K[X ].

Proof. “⊂”: Let f ∈ I ∩ J . Then tf ∈ L and (1 − t)f ∈ L, so f ∈ L. Since I ⊂ K[X ] we

have f ∈ L ∩K[X ].

“⊃”: For each c ∈ K consider the homomorphism ϕc : K[X ][t] → K[X ], f(t) 7→ f(c).

Let f ∈ L ∩K[X ]. Then there exist polynomials a1, . . . , am, b1, . . . , b` ∈ K[X ][t] such that

f =
∑m

i=1 aitfi +
∑`

j=1 bj(1− t)hj . Note that ϕ0(f) = f = ϕ1(f) since f is independent of t.

Then ϕ0(f) =
∑`

j=1 bjhj ∈ J and similarly ϕ1(f) ∈ I. Hence f ∈ I ∩ J .

Task 3.29 (Intersection). Let I1, . . . , Im ⊂ K[X ] be ideals with given generators. Compute

a Gröbner basis of
⋂m
i=1 Ii.

Solution. By induction we only need to consider the casem = 2. Assume that I1 = 〈f1, . . . , fk〉
and I2 = 〈h1, . . . , h`〉. Set L := 〈tf1, . . . , tfk, (1− t)h1, . . . , (1− t)h`〉 ⊂ K[X ][t]. Compute

a Gröbner basis G of L ∩ K[X ] using Task 3.27. Then G is a Gröbner basis of I1 ∩ I2 by

Lemma 3.28.

13



4 Quotients of Ideals

The following section was inspired by the book of Cox, Little and O’Shea [3].

Definition 4.1. Let I, J ⊂ K[X ] be two ideals. The ideal quotient of I with respect to J

is (I : J) := {a ∈ K[X ] | aJ ⊂ I}. For f ∈ K[X ] we write (I : f) instead of (I : 〈f〉).

Remark 4.2. For two ideals I, J ⊂ K[X ] their ideal quotient (I : J) is an ideal of K[X ].

Lemma 4.3. Let I, J ⊂ K[X ] be two ideals with J = 〈f1, . . . , fm〉. Then (I : J) =⋂m
i=1(I : fi).

Proof. “⊂”: Let g ∈ (I : J). Then gJ ⊂ I, so in particular gfi ∈ I for all 1 ≤ i ≤ m. Hence

g ∈
⋂m
i=1(I : fi).

“⊃”: Let g ∈
⋂m
i=1(I : fi). Then gfi ∈ I for all 1 ≤ i ≤ m. Since every h ∈ J is of the form

h =
∑m

i=1 αifi for polynomials α1, . . . , αm ∈ K[X ], we have gh ∈ I for all h ∈ J . Hence

gJ ⊂ I.

Lemma 4.4. Let f ∈ K[X ] be a non-zero polynomial and let I ⊂ K[X ] be an ideal. Let

g1, . . . , gm ∈ I ∩ 〈f〉 be generators of I ∩ 〈f〉. Then 〈g1/f, . . . , gm/f〉 = (I : f).

Proof. “⊂”: First, we note that each gi is divisible by f since g1, . . . , gm ∈ 〈f〉. Hence

g1/f, . . . , gm/f are indeed polynomials in K[X ]. Furthermore, for all 1 ≤ i ≤ m we have

(gi/f) 〈f〉 = 〈gi〉 ⊂ I, so (gi/f) ∈ (I : f).

“⊃”: Let h ∈ (I : f). Then hf ∈ I ∩ 〈f〉 and we can write hf =
∑m

i=1 αigi for some

α1, . . . , αm ∈ K[X ]. Dividing by f yields h =
∑m

i=1 αigi/f and thus h ∈ 〈g1/f, . . . , gm/f〉.

Algorithm 4.5. Let I and J be two ideals of K[X ]. The following algorithm computes a

Gröbner basis G of (I : J).

Input: a generating set (f1, . . . , fm) of I and a generating set (g1, . . . , gr) of J not

containing zero

Output: G, a generating set of (I : J)

begin

for 1 ≤ i ≤ r do

Hi := generating set of I ∩ 〈gi〉 (Task 3.29)

Gi := {g/gi | g ∈ Hi} (Division Algorithm 3.12)

end

G := Gröbner basis of
⋂r
i=1 〈Gi〉 (Task 3.29)

end

Proof. The for-loop has r steps, so the algorithm terminates after finitely many steps. By

Lemma 4.4, the set Gi is a generating set of (I : gi) for all 1 ≤ i ≤ r. By lemma 4.3, the

14
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intersection
⋂r
i=1 〈Gi〉 =

⋂r
i=1(I : gi) is precisely the ideal quotient (I : J). Hence G is a

Gröbner basis of (I : J).

The following task will be useful later.

Task 4.6. Let I ⊂ K[X ] be an ideal and f ∈ K[X ]. Compute an integer s such that

(I : fs) =
⋃
i≥1(I : f i).

Solution. For all i ≤ j we have the inclusion (I : f i) ⊂ (I : f j). Furthermore, if (I : fk) =

(I : fk+1) for some k ≥ 1, then (I : fk+1) = (I : fk+2). To see this, let a ∈ (I : fk+2). Then

fa ∈ (I : fk+1) = (I : fk), so fk+1a ∈ I. Hence a ∈ (I : fk+1).

Compute ideals (I : f), (I : f2), . . . using Algorithm 4.5 until (I : fs) = (I : fs+1) for some

s ≥ 1. This must occur eventually, since K[X ] is Noetherian. The argument above then

yields
⋃
i≥1(I : f i) =

⋃s
i=1(I : f i) = (I : fs).
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5 Radicals

The ideas in this section are mainly found in the book of Becker and Weispfenning [2]. Some

ideas around Seidenberg’s Lemma were inspired by the book of Kreuzer and Robbiano [5].

In all of this section K is a field of characteristic zero.

5.1 Basics

Proposition 5.1. Let I = 〈f1, . . . , fm〉 ⊂ K[X ] be an ideal and let f ∈ K[X ]. Then

f ∈ Rad(I) if and only if 〈f1, . . . , fm, 1− Zf〉K[X ][Z] = K[X ][Z].

Proof. “⇒”: Assume that f ∈ Rad(I). Then there exists n > 0 such that fn ∈ I. Then

fn−1 = Zfn + (1 − Zf)fn−1 ∈ 〈f1, . . . , fm, 1− Zf〉K[X ][Z]. Inductively this yields f0 = 1 ∈
〈f1, . . . , fm, 1− Zf〉K[X ][Z].

“⇐”: If f = 0, then f ∈ Rad(I). So assume that f is non-zero. Let h(Z), h1(Z), . . . , hm(Z) ∈
K[X ][Z] be such that 1 =

∑m
i=1 fi · hi(Z) + (1−Zf) · h(Z) and set Z := 1/f in the rational

function field K(X). Since f1, . . . , fm are independent of Z, we have 1 =
∑m

i=1 fi · hi(1/f) ∈
K(X). Let k := max{degZ(hi) | 1 ≤ i ≤ m}. Then h̃i := fk · hi(1/f) ∈ K[X ] for all

1 ≤ i ≤ m and thus fk =
∑m

i=1 h̃ifi ∈ I.

Task 5.2 (Radical Membership). Let I = 〈f1, . . . , fm〉 ⊂ K[X ] be an ideal and let f ∈ K[X ].

Is f an element of Rad(I)?

Solution. Compute a Gröbner basis of L := 〈f1, . . . , fm, 1− Zf〉K[X ][Z] ⊂ K[X ][Z] us-

ing Algorithm 3.19. Then check if 1 ∈ L with Task 3.20. By Proposition 5.1, we have

f ∈ Rad(I) ⇐⇒ 1 ∈ L.

We will see that the key to computing the radical of an ideal is the square-free part of a

polynomial:

Definition 5.3. Let f ∈ K[Z] be a non-zero univariate polynomial. Let f = a
∏`
i=1 g

ri
i

be the unique factorization of f into monic pairwise non-equivalent irreducible polynomials

g1, . . . , g` ∈ K[Z] and a ∈ K×. The square-free part of f is defined as
∏`
i=1 gi.

A polynomial f ∈ K[Z] is said to be square-free if it is non-zero and equal to its square-free

part.

Lemma 5.4. Let f ∈ K[Z] be non-constant. Let f ′ denote the formal derivative of f . Then

f is square-free if and only if gcd(f, f ′) = 1.

Proof. “⇐”: Assume that gcd(f, f ′) = 1 and that f is not square-free. Then f = f21 f2 for

some f1, f2 ∈ K[Z], where f1 /∈ K. Then f ′ = 2f1f
′
1f2 + f21 f

′
2, so f1| gcd(f, f ′). This is a

contradiction to gcd(f, f ′) = 1.

“⇒”: Assume that gcd(f, f ′) 6= 1 and let h ∈ K[Z] be an irreducible divisor of gcd(f, f ′).

Then there exists a polynomial a ∈ K[Z] such that ah = f and thus a′h+ ah′ = f ′. Since h
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divides f ′ it follows that h must divide ah′. Note that h does not divide h′ since char(K) = 0

and h is irreducible, so deg(h′) = deg(h) − 1 ≥ 0. This implies that h divides a. Hence h2

divides f and f is not square-free.

Claim 5.5. Let f ∈ K[Z] be non-constant and monic. Then g := f
gcd(f,f ′) is the square-free

part of f.

Proof. Note that since f is not constant, it is non-zero. Hence gcd(f, f ′) 6= 0 and g is thus

well-defined. First we will show that g is square-free. Due to Lemma 5.4 we only need to

show that gcd(g, g′) = 1. We know that f = g gcd(f, f ′) and thus gcd(g, f ′) = 1. Hence

f ′ = g′ gcd(f, f ′) + g(gcd(f, f ′))′ implies that gcd(g, g′) = 1.

Let p ∈ K[Z] be an irreducible divisor of f . Then f = bp` for some b ∈ K[Z] with gcd(b, p) = 1

and some ` > 0. We thus have f ′ = b′p` + `bp`−1p′. Since p is irreducible, it follows that p`

does not divide gcd(f, f ′). We deduce that gcd(f, f ′) divides bp`−1. Hence p divides g. This

shows that the square-free part of f divides g. Furthermore g is square-free by the above.

Since f and g are both monic, the square-free part of f must be equal to g.

Task 5.6. Let f ∈ K[Z] be non-zero. Compute the square-free part of f .

Solution. If f ∈ K, then the square-free part of f is 1. So assume that f is not constant.

Then gcd(f, f ′) is non-zero. Define g := f
LC(f) gcd(f,f ′) . The square-free part of f and f

LC(f)

are equal. Thus, it follows by Claim 5.5 that g is the square-free part of f .

5.2 Ideals of finite codimension

In order to compute the radical of an arbitrary ideal we start with a special case.

Proposition 5.7. An ideal I ⊂ K[X ] has finite codimension (as a vector space over K) if

and only if I ∩K[Xi] 6= {0} for all 1 ≤ i ≤ n.

Proof. “⇐”: For each 1 ≤ i ≤ n choose non-zero polynomials fi ∈ I ∩ K[Xi]. Let

d := max{deg(fi) | 1 ≤ i ≤ n}. Then K[X ] = K[X ]deg≤(d,...,d) + I by the division algorithm.

The vector space K[X ]deg≤(d,...,d) is finite dimensional. Hence I has finite codimension.

“⇒”: Assume that n := dimK(K[X ]/I) < ∞. Let 1 ≤ i ≤ n. The elements (Xj
i )n+1
j=1 are

linearly dependent in this quotient space. This yields a non-trivial K-linear combination of

(Xj
i )n+1
j=1 , i.e. a non-zero polynomial f ∈ K[Xi], which maps to zero in the quotient space.

Thus f is a non-zero element of I ∩K[Xi].

Lemma 5.8. Let I ⊂ K[X ] be an ideal such that there is a non-constant square-free

g ∈ I ∩K[X1]. Let g =
∏m
i=1 hi be the factorization into pairwise non-equivalent irreducible

h1, . . . , hm ∈ K[X1]. Then I =
⋂m
i=1(I + 〈hi〉).

Proof. Clearly I ⊂
⋂m
i=1(I + 〈hi〉). For the other inclusion, let f ∈

⋂m
i=1(I + 〈hi〉). There

exist r1, . . . , rm ∈ I and q1, . . . , qm ∈ K[X ] such that f = ri + qihi for all 1 ≤ i ≤ m.

It follows that f
∏
j 6=i hi ∈ I for all 1 ≤ i ≤ m, because g =

∏m
i=1 hi ∈ I. Note that
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gcd(
∏
j 6=1 hj , . . . ,

∏
j 6=m hj) = 1 and K[X1] is a principal ideal domain. Therefore,

there exist p1, . . . , pm ∈ K[X1] such that
∑m

i=1 pi
∏
j 6=i hj = 1. Together this yields

f =
∑m

i=1 pif
∏
j 6=i hj ∈ I. Hence I ⊃

⋂m
i=1(I + 〈hi〉).

Lemma 5.9 (Seidenberg). Let I ⊂ K[X ] be an ideal of finite codimension. Then I is a

radical ideal if and only if for each 1 ≤ i ≤ n there is a non-constant square-free gi ∈ I∩K[Xi].

Proof. “⇒” Let 1 ≤ i ≤ n and let f ∈ I ∩K[Xi] be a monic non-constant polynomial. Let

f =
∏`
j=1 h

αj
j be the unique factorization of f into pairwise non-equivalent monic irreducible

polynomials h1, . . . , h` ∈ K[Xi]. Set α := max{αj | 1 ≤ j ≤ `}. Then
∏`
j=1 h

α
j ∈ I ∩K[Xi].

With I being radical it follows that gi :=
∏`
j=1 hj ∈ I ∩K[Xi], which is square-free.

“⇐” For the converse we proceed by induction on the number of variables n for arbitrary

fields K. For n = 1 the ideal I is a principal ideal, so there is a generator h ∈ I. Then there

is some a ∈ K[X1] such that g1 = ah. Since g1 is square-free h must also be square-free, by

uniqueness of factorization. Now for every f ∈ K[X ] with fk ∈ I we know that h divides

fk. Since h is square-free this implies that h divides f . Hence f ∈ I and I is a radical ideal.

Now let n > 1. Since g1 is square-free, there are pairwise non-equivalent irreducible polyno-

mials h1, . . . , hm ∈ K[X1] such that g1 =
∏m
i=1 hi. Let 1 ≤ k ≤ m. We claim that the ideal

J := I + 〈hk〉 is radical. Since hk is irreducible L := K[X1]/ 〈hk〉 is a finite field extension

of K. Let ϕ : K[X ] → L[X2, . . . , Xn] be the canonical homomorphism. We know that ϕ

is surjective and that kerϕ = 〈hk〉 ⊂ J . Hence L[X2, . . . , Xn]/(Je) ∼= K[X ]/J where Je is

the extension of J with respect to ϕ. Thus Je is again of finite codimension. Furthermore

ϕ(gi) ∈ Je ∩ L[Xi] for all 2 ≤ i ≤ n. Each gi is square-free, thus gcd(gi, g
′
i) = 1 by Lemma

5.4. This is still true for the image in L[X2, . . . , Xn], so again by Lemma 5.4, the gi are all

square-free in L[Xi]. By induction hypothesis, it follows that Je is radical. This implies that

L[X2, . . . , Xn]/(Je) ∼= K[X ]/J has no nilpotent elements. Therefore, the ideal J = I + 〈hk〉
is radical. Since k was arbitrary, the statement holds for all 1 ≤ k ≤ m.

Lemma 5.8 yields a decomposition I =
⋂m
i=1(I+〈hi〉). Taking the radical of an ideal commutes

with intersections, so Rad(I) =
⋂m
i=1 Rad(I+ 〈hi〉) =

⋂m
i=1(I+ 〈hi〉) = I. Hence I is a radical

ideal.

Seidenberg’s Lemma provides a nice method to compute the radical of an ideal of finite

codimension:
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Algorithm 5.10. Let I ⊂ K[X ] be an ideal of finite codimension. Then the following

algorithm computes a generating set G of Rad(I).

Input: (f1, . . . , fm), a generating set of I

Output: G, a finite generating set of Rad(I)

begin

G := {f1, . . . , fm}
for 1 ≤ i ≤ n do

G̃i := reduced Gröbner basis of I ∩K[Xi] (Task 3.27, Algorithm 3.22)

hi := the only element of G̃i

gi := square-free part of hi (Task 5.6)

end

G := {f1, . . . , fm, g1, . . . , gn}
end

Proof. Note that the algorithm terminates after n steps.

Let 1 ≤ i ≤ n. Since K[Xi] is a principal ideal domain there is monic polynomial h ∈ K[Xi]

generating I ∩K[Xi]. Furthermore h is non-zero by Proposition 5.7. Then {h} is a reduced

Gröbner basis of I∩K[Xi]. Proposition 3.23 implies that this is necessarily the one computed

by the algorithm. Thus the Gröbner basis contains only one element, so hi in the algorithm

is well-defined.

We have f1, . . . , fm ∈ Rad(I). Let 1 ≤ i ≤ m and let hi = a
∏`
i=1 p

ri
i be the unique factoriza-

tion of hi into monic pairwise non-equivalent irreducible polynomials p1, . . . , p` ∈ K[X ]. By

definition, the square-free part of hi is gi =
∏`
i=1 pi. For r := max{ri | 1 ≤ i ≤ `} we have

that hi divides gri =
∏`
i=1 p

r
i , so gri ∈ I. Hence gi ∈ Rad(I). This shows that G ⊂ Rad(I) at

all times in the algorithm.

Now assume that the algorithm has terminated. If I = 〈1〉, then Rad(I) = I = 〈G〉. If

not, then by construction of the algorithm, the ideal J := 〈G〉 has the property that for all

1 ≤ i ≤ n we have gi ∈ J ∩ K[Xi] and gi is square-free and non-constant. In particular J

is of finite codimension and we can apply Lemma 5.9. It follows that J is radical. Since

I ⊂ J ⊂ Rad(I) we conclude that J = Rad(I).

Remark 5.11. Algorithm 5.10 also works for perfect fields of positive characteristic, provided

there is an algorithm to compute the square-free part of any polynomial in K[Z]. However,

for non-perfect fields the algorithm might fail. To see this, let p > 0 be a prime num-

ber. Consider the ideal I := 〈Xp − t, Y p − t〉 ⊂ Fp(t)[X,Y ]. Algorithm 5.10 would give us

G = {Xp − t, Y p − t} as Gröbner basis for Rad(I), because both elements are square-free.

Note that (X − Y )p = Xp − Y p ∈ I and thus X − Y ∈ Rad(I). But LT(X − Y ) is not an

element of 〈LT(G)〉 = 〈Xp, Y p〉. Hence G is not a Gröbner basis of Rad(I).
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5.3 The general case

Having solved the problem for ideals of finite codimension, we are closer to our goal of com-

puting radicals. However, more theory is needed in order to write an algorithm for the general

case.

Lemma 5.12. Let H ⊂ K[X ] be a subset and f ∈ K[X ] be a non-zero polynomial. Then

〈H ∪ {1− Zf}〉K[X ][Z] ∩K[X ] =
⋃
i≥0

(〈H〉 : f i)

Proof. “⊂”: Let g ∈ 〈H ∪ {1− Zf}〉K[X ][Z] ∩K[X ]. There exist α1(Z), . . . , α`(Z), β(Z) ∈
K[X ][Z] and h1, . . . , h` ∈ H such that g(Z) =

∑`
i=1 hi · αi(Z) + (1 − Zf) · β(Z). Set

Z := 1/f in the field of fractions K(X). Since g, h1, . . . , h` are polynomials, we have

g = g(1/f) =
∑`

i=1 hi · αi(1/f). Then there exists a k > 0 such that fk · αi(1/f) is a

polynomial for all 1 ≤ i ≤ `. Hence gfk ∈ 〈H〉, so g ∈ (〈H〉 : fk).

“⊃”: Let g ∈
⋃
i≥0(〈H〉 : f i). Let k > 0 such that gfk ∈ 〈H〉. Then gfk−1 = Zgfk +

gfk−1(1− Zf) ∈ 〈H ∪ {1− Zf}〉K[X ][Z]. Inductively, we obtain g ∈ 〈H ∪ {1− Zf}〉K[X ][Z].

Since g is a polynomial, we have g ∈ 〈H ∪ {1− Zf}〉K[X ][Z] ∩K[X ].

Algorithm 5.13. Let X = Y tZ and let F ⊂ K(Y )[Z ] be a finite subset. Then the following

algorithm computes a Gröbner basis of the contraction ideal 〈F 〉c ⊂ K[X ].

Input: F ⊂ K(Y )[Z ], a finite subset

Output: G, a Gröbner basis of 〈F 〉c

begin

H := Gröbner basis of 〈F 〉 ⊂ K(Y )[Z ] (Algorithm 3.19)

foreach h ∈ H do

q := multiple of all denominators of coefficients in K(Y ) of h

h := qh ∈ K[X ]

end

f := lcm{LCZ(h) | h ∈ H}
G := Gröbner basis of 〈H ∪ {1− Uf}〉K[X ][U ] ∩K[X ] (Task 3.27)

end

Proof. The algorithm terminates after finitely many steps. Assume that the algorithm has

terminated. During the algorithm, the set H is only changed by multiplying its elements with

some units of K(Y ). Therefore, at the end H is still a Gröbner basis of 〈F 〉 ⊂ K(Y )[Z ]. Let

J :=
⋃
i≥0(〈H〉K[X ] : f i). We will show that J = 〈F 〉c.

Let g ∈ J . Then there exists a k > 0 such that gfk ∈ 〈H〉K[X ] ⊂ 〈F 〉
c. But f is a unit in

K(Y )[Z ] since f ∈ K[Y ] \ {0}. Thus g = gfkf−k ∈ 〈F 〉 and hence g ∈ 〈F 〉c. This implies

that J ⊂ 〈F 〉c.

We will show that p ∈ J for all p ∈ 〈F 〉c by transfinite induction on degZ(p). Since H is
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a Gröbner basis of 〈F 〉, there is an element h ∈ H such that LTZ(h) divides LTZ(p). This

implies that there exists a monomial α ∈ K[Z ] and an element s ∈ K(Y ) such that LTZ(p) =

sαLTZ(h). The left hand side LTZ(p) lies in K[X ] and so must the right hand side. Therefore

sLCZ(h) ∈ K[Y ]. Since f is the lcm of all leading coefficients of elements in H, in particular

sf ∈ K[Y ]. Define p′ := pf − sαhf ∈ K[X ]. Then p′ ∈ 〈F 〉c. Furthermore, by construction

degZ(p′) ≺ degZ(p), since f is a unit in K(Y )[Z ]. If degZ(p) is minimal (as for the base case)

then p′ = 0 ∈ J . Otherwise, by induction hypothesis, we deduce that p′ ∈ J . Either way

there exists a k > 0 such that p′fk ∈ 〈H〉K[X ]. Thus pfk+1 = p′fk + sαhfk+1 ∈ 〈H〉K[X ], so

p ∈ J . Hence J = 〈F 〉c.

It follows by Lemma 5.12 that J = 〈H ∪ {1− Uf}〉K[X ][U ] ∩K[X ]. Hence G is a Gröbner

basis of 〈F 〉c.

Definition 5.14. Let X = Y t Z. Let �Y be a monomial ordering on K[Y ] and �Z
a monomial ordering on K[Z ]. The block ordering � on K[X ] with respect to Z is the

monomial ordering defined as follows: for monomials a, c ∈ K[Y ] and b, d ∈ K[Z ] let ab � cd
if and only if b �Z d or (b = d and a �Y c).

Lemma 5.15. Let X = Y tZ and consider a block ordering on K[X ] with respect to Z. Let

g, h ∈ K[X ] such that LTX(g) divides LTX(h). Then LTZ(g) divides LTZ(h) in K(Y )[Z ].

Proof. Since LTX(g) and LTX(h) are monomials, there are monomials p, q ∈ K[Y ] and

m,m′ ∈ K[Z ] such that LTX(g) = pm and LTX(h) = qm′. Since LTX(g) divides LTX(h),

it follows that m divides m′. Looking at the definition of a block ordering we see that there

must be polynomials a, b ∈ K[Y ] such that LTZ(g) = am and LTZ(h) = bm′. Since a and b

are units in K(Y )[Z ] we conclude that LTZ(g) divides LTZ(h).

Algorithm 5.16. Let I ⊂ K[X ] be an ideal and let X = Y t Z. Consider extensions of

ideals to K(Y )[Z ]. Then the following algorithm computes a non-zero polynomial f ∈ K[Y ]

such that I = (I + 〈f〉) ∩ Iec.

Input: f1, . . . , fm ∈ I, generators of I

Output: f ∈ K[Y ] with I = (I + 〈f〉) ∩ Iec

begin

�:= some block ordering on K[X ] with respect to Z

�′:= restriction of � to K[Z ]

H := Gröbner basis of I with respect to � (Algorithm 3.19)

g := lcm{LCZ(h) | h ∈ H}, where LCZ is with respect to �′

s := an integer such that (I : gs) =
⋃
i≥1(I : gi) (Task 4.6)

f := gs

end

Proof. Clearly the algorithm terminates and we therefore will only have to prove correctness.

Let f be the output of the algorithm and g, s as in the algorithm such that f = gs. We will

prove that H ⊂ K[X ] is not only a Gröbner basis of I but H ⊂ K(Y )[Z ] is also a Gröbner
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basis of Ie. Let p ∈ Ie. Then there exist a1, . . . , am ∈ K(Y )[Z ] and g1, . . . , gm ∈ I such that

p =
∑m

i=1 aigi. Let r ∈ K[Y ] be the least common multiple of all denominators of (ai)
m
i=1.

Then rp =
∑m

i=1 raigi ∈ I. Since H is a Gröbner basis of I, there is an element h ∈ H such

that LTX(h) divides LTX(rp). Hence LTZ(h) divides LTZ(rp) by Lemma 5.15. Since r is a

unit in K(Y )[Z ] it follows that LTZ(h) divides LTZ(p). Thus H ⊂ K(Y )[Z ] is a Gröbner

basis of Ie.

We will next prove that Iec = (I : f). We show that p ∈ (I : f) for all p ∈ Iec by transfinite

induction on the degree degZ(p). Since H is a Gröbner basis of Ie, there is an element h ∈ H
such that LTZ(h) divides LTZ(p) in K(Y )[Z ]. Thus there exists α ∈ K(Y )[Z ] such that

LTZ(p) = αLTZ(h). Since LTZ(p) is a polynomial in K[X ] the denominator in K[Y ] of

α has to divide LCZ(h) and thus has to divide g. Hence αg ∈ K[X ] and gp − gαh ∈ Iec.
Furthermore degZ(gp − gαh) ≺ degZ(p). If degZ(p) is minimal (as in the base case) then

gp− gαh = 0 ∈ (I : gs). Otherwise, the induction hypothesis implies that gp− gαh ∈ (I : gs).

So either way gs(gp − gαh) = gs+1p − gs+1αh ∈ I. Hence gs+1p ∈ I. This implies that

p ∈
⋃
i≥1(I : gi) = (I : gs) = (I : f). Thus Iec ⊂ (I : f).

For the other inclusion, let p ∈ (I : f). Then fp ∈ I. Since f is a non-zero polynomial

in K[Y ], it is a unit in K(Y )[Z ]. It follows that p = pff−1 ∈ Ie, so p ∈ Iec. Hence

Iec = (I : f).

We now only need to prove that I = (I + 〈f〉) ∩ (I : f). The inclusion ⊂ is clearly true. Let

p ∈ (I + 〈f〉) ∩ (I : f). Then there exists h ∈ I and α ∈ K[X ] such that p = h + αf .

Furthermore fp = fh + f2α ∈ I and thus f2α ∈ I. Since (I : f2) = (I : g2s) ⊂⋂∞
i=1(I : gi) = (I : gs) = (I : f) we have fα ∈ I. Hence p ∈ I. This concludes the

proof.

Claim 5.17. Let I ⊂ K[X ] be an ideal. Let Y ⊂ X be a maximal set of variables whose

image in K[X ]/I is algebraically independent. Let Z := X \ Y . Then the extension ideal

Ie ⊂ K(Y )[Z ] is of finite codimension.

Proof. Let ` denote the cardinality of Z. By choice of Y , for each 1 ≤ i ≤ ` there exists a

non-zero polynomial f ∈ K[Y ][Zi] such that f ∈ I. Then f ∈ Ie∩K(Y )[Zi] for all 1 ≤ i ≤ `.
It follows the claim by Proposition 5.7.

Finally we are able to formulate an algorithm to compute the radical of an ideal:
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Algorithm 5.18. Let I ⊂ K[X ] be an ideal. Then the following algorithm computes a finite

generating set of Rad(I).

Input: f1, . . . , fm ∈ I, generators of I

Output: G ⊂ Rad(I), finite generating set of Rad(I)

begin

G := {1}
if 1 /∈ I then

Y ⊂ X maximal algebraically independent variables mod I

Z := X \ Y
F := generating set of Rad(Ie) ⊂ K(Y )[Z ] (Algorithm 5.10)

J := generating set of 〈F 〉c ⊂ K[X ] (Algorithm 5.13)

f := an element in K[Y ] such that I = (I + 〈f〉) ∩ Iec (Algorithm 5.16)

G′ := generating set of Rad(〈f1, . . . , fm, f〉) (recursively)

G := Gröbner basis of 〈G′〉 ∩ 〈J〉 (Algorithm 3.19)

end

end

Proof. We first prove that the algorithm terminates. We do not have any loops in the

algorithm, but there is a recursion. For any i ≥ 1 denote fi+m for the f in the algorithm

constructed in the ith recursion. Let I1 := I. Then Ii+1 = Ii + 〈fi+m〉 is the input of the

(i + 1)th recursion step for all i ≥ 1. Let Y i be the maximal algebraically independent

variables mod I in the ith recursion step. Then we have fi+m ∈ K[ Y i ]. Thus Y i being

algebraically independent implies that fi+m /∈ Ii. Therefore, we have a strictly ascending

chain Im+1 ⊂ Im+2 ⊂ . . . of ideals. But we know that K[X ] is Noetherian. Hence there

exists a k ≥ 1 such that Ik = K[X ]. Then in the kth recursion step we have 1 ∈ Ik and thus

the step terminates. This implies that the algorithm terminates.

We now show correctness. The algorithm works if 1 ∈ I. So by induction we can assume

that 〈G′〉 = Rad(I + 〈f〉). Let G be the output of the algorithm. We have Rad(Iec) =

Rad(Ie)c = 〈F 〉c = 〈J〉. By construction of f it follows that Rad(I) = Rad((I + 〈f〉)∩ Iec) =

Rad(I + 〈f〉) ∩ Rad(Iec) = 〈G′〉 ∩ 〈J〉 = 〈G〉. Hence the algorithm is correct.

Remark 5.19. In general, Algorithm 5.18 does not work for fields K of strictly positive

characteristic. The requirement that we need for the algorithm would be that every rational

function field over K is perfect. This restriction comes from the fact that we use Algorithm

5.10 in such a rational function field. This requirement, however, is equivalent to char(K) = 0.

As of late we do not have to give up on fields of characteristic non-zero. In 2001 Ryutaroh

Matsumoto published an algorithm to compute radicals in the polynomial ring over a finite

field extension of a perfect field of positive characteristic (see [7]). It uses a - very interesting

- totally different approach that does not need computations for ideals of finite codimension.
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6 Primary Decomposition

The ideas contained in this section are mainly taken from the book of Becker and Weispfenning

[2].

Let K be a field of characteristic zero. Furthermore, assume that we know an algorithm to

compute a factorization of any polynomial f ∈ K[Z] into irreducible polynomials.

6.1 Ideals of finite codimension

Lemma 6.1. Let I ⊂ K[X ] be a radical ideal and let c1, . . . , cn ∈ K. Define J :=

〈I, Z −
∑n

i=1 ciXi〉 ⊂ K[X ][Z]. Then

(i) We have J ∩K[X ] = I.

(ii) The ideal J is radical.

(iii) If I is of finite codimension, then so is J .

Proof. Define g := Z −
∑n

i=1 ciXi.

(i) The inclusion I ⊂ J ∩ K[X ] is given by definition of J . For the other inclusion, let

f ∈ J ∩ K[X ]. Then there exist h1(Z), h2(Z) ∈ K[X ][Z] and p ∈ I such that f =

p·h1(Z)+g ·h2(Z). Set Z =
∑n

i=1 ciXi. Then f = f(
∑n

i=1 ciXi) = p·h1(
∑n

i=1 ciXi) ∈ I,

since f is a polynomial in K[X ]. Hence J ∩K[X ] ⊂ I.

(ii) Let f(Z) ∈ Rad(J). Then there exists an m > 0 such that fm ∈ J . Define

h := f(
∑n

i=1 ciXi) ∈ K[X ]. Then h ≡ f mod 〈g〉 and thus hm ≡ fm mod 〈g〉.
Hence hm ∈ (fm + 〈g〉) ∩ K[X ] ⊂ J ∩ K[X ] = I by (i). Since I is radical h is an

element of I. Hence f ∈ (h+ 〈g〉) ⊂ J . Therefore Rad(J) = J .

(iii) Let f(Z) ∈ K[X ][Z]. Then f(Z) ≡ f(
∑n

j=1 ciXi) mod J and thus the homomorphism

ϕ : K[X ] → K[X ][Z]/J is surjective. It follows by (i) that ker(ϕ) = J ∩K[X ] = I.

Hence K[X ]/I ∼= K[X ][Z]/J and in particular J is of finite codimension, provided

that I is of finite codimension.

Claim 6.2. Let I ⊂ K[X ] be an ideal and G ⊂ I be a Gröbner basis of I. Let M be the set

of all monomials in K[X ] which are not divisible by any element of LM(G). Then the set M

maps bijectively to a basis of the K-vector space K[X ]/I.

Proof. First, we prove that the image of M generates K[X ]/I as K-vector space. Let

f ∈ K[X ]/I. Then f − f
G ∈ I by definition of a remainder on division. Thus f ≡ f

G

mod I. No term of f
G

is divisible by any element of LT(G). So, in particular, no term of f
G

is divisible by any element of LM(G). Hence f
G

is a K-linear combination of monomials in

M .

On the other hand, the elements of M are linearly independent. To see this let f ∈ K[X ] be a

linear combination of finitely many elements of M such that f ≡ 0 mod I. This implies that

f ∈ I and no term of f is divisible by any element of LT(G). It follows by Lemma 3.9 that
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f = 0 ∈ K[X ]. Hence the elements of M are linearly independent. A linearly independent

generating set of a vector space is a basis. This concludes the proof.

Proposition 6.3. Let I ⊂ K[X ] be a radical ideal of finite codimension. Denote by m the

number of zeroes of I in K
n

. Then dimK(K[X ]/I) = m.

Proof. Let G ⊂ I be a Gröbner basis of I. We will work in the ring K[X ]. For all

g1, g2 ∈ G the S-polynomial S(g1, g2) in K[X ] is the same as in K[X ]. Also, a remainder

on division with respect to G in K[X ] is also a remainder on division with respect to G in

K[X ]. It follows by Theorem 3.18 that G is a Gröbner basis of J := 〈G〉. The number of

zeroes of an ideal only depend on its generating set and thus m is also the number of zeroes

of J . Furthermore, the set of monomials in K[X ] is independent of the field K. Hence

dimK(K[X ]/I) = dimK(K[X ]/J) by Claim 6.2. In particular J is of finite codimension.

We need to show that dimK(K[X ]/J) = m.

The image in K[X ] of a square-free polynomial f ∈ K[X ] is square-free by Lemma 5.4 and

the fact that the gcd is invariant under the extension. It follows by Lemma 5.9 and the fact

that I is radical, that J is also a radical ideal. Let (ai1, . . . , a
i
n) ∈ Kn

for 1 ≤ i ≤ m be the

zeroes of J . For each 1 ≤ i ≤ m define the maximal ideal Mi :=
〈
X1 − ai1, . . . , Xn − ain

〉
⊂

K[X ]. Consider the homomorphism

ϕ : K[X ]→
m∏
j=1

K[X ]/Mj

f 7→ (f +M1, . . . , f +Mm)

Note that (Mj)
m
j=1 are pairwise coprime. Thus there exist u2, . . . , um ∈ M1 and vj ∈ Mj for

all 2 ≤ j ≤ m such that ui + vi = 1 for all 2 ≤ i ≤ m. Let f :=
∏m
j=2(1− uj) ∈ K[X ]. Then

ϕ(f) = (1, 0, . . . , 0). Repeating this argument for all (Mj)
m
j=2, we obtain that ϕ is surjective.

On the other hand ker(ϕ) =
⋂m
j=1Mj ⊃ J . Every element h ∈

⋂m
j=1Mj has the m zeroes

(ai1, . . . , a
i
n)mi=1. By Hilbert’s Nullstellensatz and the fact that J is radical it follows that

h ∈ J . Thus ker(ϕ) = J .

Hence we have an isomorphism K[X ]/J ∼=
∏m
j=1K[X ]/Mj which is in particular K-linear.

Since K is algebraically closed, we have K[X ]/Mj
∼= K. Hence K[X ]/J ∼= K

m
. This yields

dimK(K[X ]/J) = m and thus concludes the proof.

Lemma 6.4. Let I ⊂ K[X ] be a proper radical ideal of finite codimension and let c1, . . . , cn ∈
K. Assume that for each pair of two different zeroes (z1, x), (z2, y) ∈ Kn+1 of J :=

〈I, Z −
∑n

i=1 ciXi〉 we have z1 6= z2. Let � be a monomial ordering such that deg(Xi) �
deg(Z) for all 1 ≤ i ≤ n. Then there exist g, g1, . . . , gn ∈ K[Z] such that {g,X1−g1, . . . , Xn−
gn} is the reduced Gröbner basis of J with respect to �. Moreover g is square-free.

Proof. It follows by Lemma 6.1 that J is radical and of finite codimension. Let m be the

number of zeroes of J in K
n+1

. Then dimK(K[X ][Z]/J) = m by Proposition 6.3. Let

g ∈ J ∩K[Z] be the monic generator of J ∩K[Z]. Lemma 5.9 implies that g is square-free.
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By assumptions on J there are m pairwise different Z-components of zeroes of J . All of those

must be a zero of g. Thus m ≤ deg(g) =: d. On the other hand, there is no polynomial

in J ∩ K[Z] with lower degree than g. This implies that (Zi)d−1i=0 are linearly independent

mod J . Hence d ≤ dimK(K[X ][Z]/J) = m ≤ d, so (Zi)d−1i=0 is a basis of K[X ][Z]/J . Thus

there exist ai0, . . . , a
i
d−1 ∈ K for all 1 ≤ i ≤ n such that Xi − gi ∈ J , where gi :=

∑d−1
j=0 a

i
jZ

j .

Let G := {g,X1− g1, . . . , Xn− gn}. Let f ∈ J . If f ∈ K[Z], then g divides f and thus LT(g)

divides LT(f), where we take LT with respect to �. Otherwise LT(f) is divisible by Xi for

an index 1 ≤ i ≤ n. This follows by choice of �. Hence G is indeed a Gröbner basis of J .

But we can see that G is even a reduced Gröbner basis. This concludes the proof.

Lemma 6.5. Let I ⊂ K[X ] be an ideal. Let m1, . . . ,mn ∈ Z>0. For each 1 ≤ i ≤ n let

Ai ⊂ K with |Ai| ≤ mi and ki :=
∏i
j=1mj. For each 1 ≤ i ≤ n let Ci := {1, 2, . . . ,

(
ki+1
2

)
}.

Then there exists (c1, . . . , cn) ∈ C := C1 × · · · × Cn such that
∑n

i=1 cixi 6=
∑n

i=1 ciyi for all

x, y ∈ A1 × · · · ×An with x 6= y.

Proof. We proceed by induction on n. If n = 1 the statement follows directly.

Let n > 1 and assume that the statement is true for n. Thus we can choose (c1, . . . , cn) ∈
C such that for each choice of two different x, y ∈ A1 × · · · × An we have

∑n
i=1 cixi 6=∑n

i=1 ciyi. Every cn+1 ∈ Cn+1 not satisfying the statement is a solution of the linear equation∑n
i=1 ciai +Y an+1 =

∑n
i=1 cibi +Y bn+1 for two different a, b ∈ A1× · · · ×An+1. It follows by

choice of (ci)
n
i=1 that an+1 6= bn+1. The unique solution to this equation is Y =

∑n
i=1 ci(ai−bi)
bn+1−an+1

.

There are as many such equations as we can choose two different a, b ∈ A1×· · ·×An+1. This

yields a total of l :=
(∏n+1

i=1 |Ai|
2

)
=
(
kn+1

2

)
such equations. Since |Cn+1| > l we can choose an

element cn+1 ∈ Cn+1 which is not a solution to such an equation. Then (c1, . . . , cn+1) satisfies

the statement.
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Algorithm 6.6. Let I ⊂ K[X ] be a proper radical ideal of finite codimension. The following

algorithm computes a finite set G = {g,X1−g1, . . . , Xn−gn} ⊂ K[X ][Z] with g, g1, . . . , gn ∈
K[Z] such that 〈G〉 ∩K[X ] = I. Furthermore g is square-free.

Input: f1, . . . , fm, generators of I

Output: G, as above

begin

m := 1

for 1 ≤ i ≤ n do

Fi := the reduced Gröbner basis of I ∩K[Xi] (Task 3.27, Algorithm 3.22)

fi := the only element of Fi

mi := deg(fi)

m := m ·mi

Ci := {1, 2, . . . ,
(
m+1
2

)
}

end

C := C1 × · · · × Cn
repeat

select c := (c1, . . . , cn) ∈ C
C := C \ {c}
�, a monomial ordering such that Xi � Z for all i

G := the reduced Gröbner basis of 〈I, Z −
∑n

i=1 ciXi〉 w.r.t. � (Algorithms

3.19 and 3.22)

until G is of the form {g,X1 − g1, . . . , Xn − gn}
end

Proof. Note that m ≥ 1 at all times in the algorithm, since I is a proper ideal. Therefore,

the sets Ci are well-defined. We first show that the algorithm terminates. For all 1 ≤ i ≤ n

let Ai := {x ∈ K | x is zero of I ∩ K[Xi]}. Note that if (z, x1, . . . , xn) ∈ Kn+1 is a zero

of 〈I, Z −
∑n

i=1 ciXi〉 then xi ∈ Ai for all i. Furthermore |Ai| ≤ mi for all 1 ≤ i ≤ n

and for mi defined in the algorithm, since mi is the degree of the generator of I ∩ K[Xi].

It follows by Lemma 6.5 that there is (c1, . . . , cn) ∈ C such that for two different zeroes

(z1, x), (z2, y) ∈ Kn+1 of 〈I, Z −
∑n

i=1 ciXi〉 we have
∑n

i=1 cixi 6=
∑n

i=1 ciyi. This implies that

z1 6= z2. By Lemma 6.4, the reduced Gröbner basis G of 〈I, Z −
∑n

i=1 ciXi〉 has the desired

form. Thus the algorithm must terminate. Moreover, it follows by Lemma 6.4 that the only

element g of G∩K[Z] is square-free. Furthermore, Lemma 6.1 implies that 〈G〉 ∩K[X ] = I.

Hence the algorithm is correct.

Definition 6.7. Let I ⊂ K[X ] be an ideal of finite codimension. For each 1 ≤ i ≤ n

let fi ∈ I ∩ K[Xi] be the unique monic generator of I ∩ K[Xi]. For all 1 ≤ i ≤ n define

µi := max{` ∈ Z>0 | p` divides fi for some irreducible p ∈ K[Xi]}. Then the integer

µ := 1 +
∑n

i=1(µi − 1) is called univariate exponent of I.

From commutative algebra we know that in a Noetherian ring every ideal contains a power

of its radical. In this special case we can determine such a (not necessarily minimal) power:

27



Section 6 6.1 Ideals of finite codimension

Claim 6.8. Let I ⊂ K[X ] be an ideal of finite codimension. Let µ be the univariate exponent

of I. Then 〈(Rad(I))µ〉 ⊂ I.

Proof. For each 1 ≤ i ≤ n let fi ∈ K[Xi] be the monic generator of I∩K[Xi] with square-free

part gi. Let µi be as in the definition of the univariate exponent, Definition 6.7. Then fi

divides gµii . Define the ideal J := 〈I, g1, . . . , gn〉. We claim that J = Rad(I). To see this note

that J ⊂ Rad(I), since every gi ∈ Rad(I). It follows by Lemma 5.9 that J is radical. Hence

J = Rad(I).

Let f ∈ Jµ. Then there exist s1, . . . , sµ ∈ I and hij ∈ K[X ] for all 1 ≤ i ≤ µ and 1 ≤ j ≤ n

such that

f =

µ∏
i=1

si +

n∑
j=1

hijgj


Expanding this product there exists s ∈ I such that

f = s+

µ∏
i=1

n∑
j=1

hijgj

Again expanding the product every resulting term is of the form

h

n∏
i=1

gνii(4)

for a polynomial h ∈ K[X ] and ν1, . . . , νn ∈ Z≥0 with
∑n

i=1 νi = µ. Since µ = 1+
∑n

i=1(µi−1)

there is an index k such that νk ≥ µk. Then fk divides gνkk and thus gνkk ∈ I. Hence the whole

term (4) lies in I. We have shown that every term of f in the expansion lies in I. Thus f ∈ I.

We conclude that Jµ ⊂ I.

Task 6.9. (Univariate Exponent) Let I ⊂ K[X ] be an ideal of finite codimension. Compute

the univariate exponent of I.

Solution. Compute the monic generator fi ∈ I ∩ K[Xi] for all 1 ≤ i ≤ n using Task 3.27.

By assumption on the field K we can factorize each fi into irreducible factors. For each

1 ≤ i ≤ n define µi to be the maximal multiplicity of such an irreducible factor. Then define

µ := 1 +
∑n

i=1(µi − 1). By definition µ is the univariate exponent of I.

Proposition 6.10. Let P ⊂ K[X ] be an ideal. Then P is a maximal ideal if and only if P is

prime and of finite codimension. In particular, if I ⊂ K[X ] is an ideal of finite codimension

and I is contained in a prime ideal P ⊂ K[X ], then P is maximal.

Proof. “⇒”: Let J ⊂ K[X ] be a prime ideal of infinite codimension. Since J is prime it

is in particular proper. Therefore there exists a zero (z1, . . . , zn) ∈ Kn
of J . Since J is of

infinite codimension, there is a k > 0 such that J ∩ K[Xk] = {0}. Let f ∈ K[Xk] be such

that f(zk) = 0. Since K is algebraic over K such an f must exist. The ideal 〈J, f〉 is proper

since (z1, . . . , zn) is a zero. Furthermore, it extends J non-trivially. Thus J is not maximal.

Hence every maximal ideal is prime and of finite codimension.
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Section 6 6.1 Ideals of finite codimension

“⇐”: Let P ⊂ K[X ] be a prime ideal of finite codimension. Let f ∈ K[X ]/P be non-zero.

Consider the K-linear map K[X ]/P → K[X ]/P, g 7→ fg. Since P is a prime ideal, the

ring K[X ]/P is an integral domain. Thus the map is injective. Since K[X ]/P is finite

dimensional, we know from linear algebra that the map is therefore also surjective. Thus

there is some g ∈ K[X ]/P with fg = 1. This implies that K[X ]/P is a field. Hence P is a

maximal ideal.

To show the last statement, note that if I ⊂ K[X ] is of finite codimension and P ⊃ I is a

prime ideal, then P is also of finite codimension, hence by the above statement maximal.

Lemma 6.11. Let I ⊂ K[X ] be an ideal of finite codimension. Let µ be the univariate

exponent of I. For every associated prime ideal P of I the P -primary component of I is

Q = I + 〈Pµ〉.

Proof. Let (Pi)
m
i=1 be the associated prime ideals of I. Proposition 6.10 tells us that they

are all maximal. Therefore they are isolated associated prime ideals and thus their primary

components are unique. Define Qi := I + 〈Pµi 〉 for all 1 ≤ i ≤ m. Let 1 ≤ i ≤ m. From

commutative algebra we know that if Rad(Qi) is maximal, then Qi is Rad(Qi)-primary. We

indeed have Rad(Qi) = Rad(Rad(I) + Rad(〈Pµi 〉)) = Rad(Pi) = Pi. Thus Qi is Pi-primary.

It remains to show that
⋂m
i=1Qi = I. The inclusion “⊃” holds by definition. For the other

inclusion, let 1 ≤ i ≤ m and let Q′i be the Pi-primary component of I. Let νi be the univariate

exponent of Q′i. By definition of the univariate exponent νi ≤ µ, since I ⊂ Q′i. Note that

Rad(Q′i) = Pi. It follows by Claim 6.8 that 〈Pµi 〉 ⊂ 〈P
νi
i 〉 ⊂ Q′i. Thus Qi ⊂ Q′i. Hence

I ⊂
⋂m
i=1Qi ⊂

⋂m
i=1Q

′
i = I proves the lemma.

Now we have gathered enough statements to write and prove an algorithm that computes a

primary decomposition of an ideal of finite codimension:
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Algorithm 6.12. Let I ⊂ K[X ] be a proper ideal of finite codimension. The following

algorithm computes the associated prime ideals of I together with their primary components.

Input: f1, . . . , fm, generators of I

Output: D = {(Q,P ) | Q,P ⊂ K[X ] finite subsets such that

〈P 〉 is an associated prime ideal of I and 〈Q〉 is the 〈P 〉 -primary component}
begin

R := a finite generating set of Rad(I) (Algorithm 5.10)

G := the output of Algorithm 6.6 with input R

A := ∅
g := the only element of G ∩K[Z]

while g is not constant do

p := an irreducible divisor of g (assumed factorization algorithm)

g := g/p

A := A ∪ {G ∪ {p}}
end

D := ∅
µ := the univariate exponent of I (Task 6.9)

while A 6= ∅ do

select C ∈ A
A := A \ {C}
P := a generating set of 〈C〉K[X ][Z] ∩K[X ] (Task 3.27)

Q := {f1, . . . , fm} ∪ Pµ

D := D ∪ {(Q,P )}
end

end

Proof. There are two while-loops where the algorithm could possibly not terminate. In the

first one, we loop as long as the polynomial g is not constant. In each step we divide g by some

irreducible factor. So the degree of g decreases strictly in every step of the loop. Thus the

first loop must terminate. In the second while-loop we loop as long as the set A is non-empty.

By construction of A, it is finite before the while-loop. In every step we take one element out

of A decreasing strictly its cardinality. Thus the second while-loop terminates. Hence the

algorithm terminates after finitely many steps.

The output of Algorithm 6.6 is G = {g,X1 − g1, . . . , Xn − gn}, where g, g1, . . . , gn ∈ K[Z].

Indeed, g is the only element of G ∩K[Z]. Moreover g is square-free and 〈G〉 ∩K[X ] = I.

We will show that every 〈P 〉 constructed in the second while-loop is a maximal ideal. By

construction P is a generating set of 〈C〉 ∩ K[X ], where C = G ∪ {p} for an irreducible

divisor p of g. We show that 〈G ∪ {p}〉 ⊂ K[X ][Z] is a maximal ideal. Let f ∈ K[X ][Z].

The remainder on division of f with respect to G is an element of K[Z]. This follows from

the fact that no term of f
G

is divisible by any element of LT(G) = {LT(g), X1, . . . , Xn}. If

f
G

and p are not coprime, then f ∈ 〈G ∪ {p}〉. Otherwise gcd(f
G
, p) = 1 ∈ 〈G ∪ {p} ∪ {f}〉,
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Section 6 6.1 Ideals of finite codimension

since f
G ∈ 〈G ∪ {p} ∪ {f}〉. Hence 〈G ∪ {p}〉 is a maximal ideal and in particular prime.

Note that P is the contraction of 〈G ∪ {p}〉 with respect to the embedding homomorphism

K[X ] ↪→ K[X ][Z] and the contraction of a prime ideal is prime. Thus P is a prime ideal.

By construction it is also true that I ⊂ P . It follows by Proposition 6.10 that P is a maximal

ideal.

Now we show that each pair of two such 〈P 〉 is distinct. Let P1, P2 be two such P constructed

in the algorithm. For i = 1, 2 the set Pi is a generating set of 〈G ∪ {pi}〉 ∩ K[X ], where

p1, p2 ∈ K[Z] are irreducible divisors of g. Since g is square-free p1 and p2 are coprime.

Then 〈G ∪ {p1}〉 and 〈G ∪ {p2}〉 are distinct and both maximal. Therefore we can find

h1 ∈ 〈G ∪ {p1}〉 and h2 ∈ 〈G ∪ {p2}〉 such that h1 + h2 = 1. Set Z =
∑n

i=1 ciXi where

c1, . . . , cn ∈ K are such that 〈G〉 = 〈I, Z −
∑n

i=1 ciXi〉. We obtain the equation ĥ1 + ĥ2 = 1

with ĥ1 ∈ (h1 + 〈Z −
∑n

i=1 ciXi〉) ∩ K[X ] ⊂ 〈G ∪ {p1}〉 ∩ K[X ] = P1 and analogously

ĥ2 ∈ P2. Hence P1 and P2 are distinct.

By Proposition 6.10, every associated prime ideal is maximal. Note that a maximal ideal that

contains an intersection of other maximal ideals must be equal to one of the other ideals. We

can deduce that the constructed ideals 〈P 〉 must be associated prime ideals of I.

Therefore, it remains to prove that we have constructed all associated prime ideals of I. Let

P ′ ⊂ K[X ][Z] be an associated prime ideal of 〈G〉. In particular we have g ∈ P ′. Since P ′

is prime, we deduce that there is an irreducible factor p of g such that p ∈ P ′. Therefore

〈G ∪ {p}〉 ⊂ P ′ and since the first one is maximal we even have equality. So the associated

prime ideals of 〈G〉 are all of the form 〈G ∪ {p}〉 for an irreducible factor p of g. Hence we

can choose a primary decomposition
⋂`
i=1Q

′
i = 〈G〉 of 〈G〉 such that Rad(Q′i) = 〈G ∪ {pi}〉

for (pi)
`
i=1 the irreducible factors of g. Then

⋂̀
i=1

〈G ∪ {pi}〉 ∩K[X ] = Rad

(⋂̀
i=1

(Q′i ∩K[X ])

)
= Rad(〈G〉 ∩K[X ]) = Rad(I)

This implies that the associated prime ideals of I are all of the form 〈G ∪ {p}〉 ∩K[X ] for

an irreducible factor p of g. In the algorithm we have constructed every such prime ideal.

Hence, the algorithm has constructed every associated prime ideal of I.

By Lemma 6.11, for every associated prime 〈P 〉 of I the primary component is Q = I + 〈Pµ〉.
This concludes the proof of the correctness of the algorithm.
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6.2 The general case

The general case is a direct consequence of the finite codimension case:

Algorithm 6.13. Let I ⊂ K[X ] be an ideal. The following algorithm computes a primary

decomposition of I.

Input: f1, . . . , fm, generators of I

Output: D = {(Q,P ) | Q,P ⊂ K[X ] finite subsets such that

〈Q〉 runs through all primary ideals of a primary decomposition of I and

〈P 〉 = Rad(〈Q〉)}
begin

D := ∅
if 1 /∈ I then

Y ⊂ X, maximal algebraically independent variables mod I

Z := X \ Y
C := the output of Algorithm 6.12 with input {f1, . . . , fm} ⊂ K(Y )[Z ]

A := ∅
while C 6= ∅ do

select (G,H) ∈ C
C := C \ {(G,H)}
Q := a generating set of 〈G〉c ⊂ K[X ] (Algorithm 5.13)

P := a generating set of 〈H〉c ⊂ K[X ] (Algorithm 5.13)

A := A ∪ {(Q,P )}
end

f := an element in K[Y ] such that I = (I + 〈f〉) ∩ Iec (Algorithm 5.16)

D′ := the output of Algorithm 6.13 with input {f1, . . . , fm, f} (recursively)

D := A ∪D′

end

end

Proof. First, we prove that the algorithm terminates. The while-loop terminates since C is

a finite set and in each step we decrease its cardinality strictly. We also use the algorithm

recursively and need to show that the recursion stops. For every i ≥ 1 denote f̄i for the f

in the algorithm constructed in the ith recursion step. Let I1 := I. Then Ii+1 = Ii +
〈
f̄i
〉

is the input of the (i + 1)th recursion step for i ≥ 1. Let Y i be the maximal algebraically

independent variables mod Ii in the ith recursion step. Then we have f̄i ∈ K[ Y i ] and

Y i being algebraically independent mod Ii implies that f̄i /∈ Ii. Hence, we have a strictly

ascending chain I1 ⊂ I2 ⊂ . . . of ideals as long as the algorithm does not terminate. But we

know that K[X ] is Noetherian and thus there is a k ≥ 1 with Ik = K[X ]. Then 1 ∈ Ik in the

kth recursion step and thus the recursion stops. This implies that the algorithm terminates.

Next we prove correctness. We note that the elements of C form a primary decomposition

of Ie. Let (G1, H1), . . . , (Gk, Hk) ∈ C be all the elements of C. Then 〈Hi〉c is prime for all

32



Section 6 6.2 The general case

1 ≤ i ≤ k, since the contraction of a prime ideal is prime. The contraction of a primary ideal

is a primary ideal and Rad(〈Gi〉c) = Rad(〈Gi〉)c = 〈Hi〉c for all 1 ≤ i ≤ k. Thus 〈Gi〉c is

〈Hi〉c-primary for all 1 ≤ i ≤ k. Also
⋂k
i=1 〈Gi〉

c = (
⋂k
i=1 〈Gi〉)c = Iec. Let Qi be a generating

set of 〈Gi〉c and Pi a generating set of 〈Hi〉c. Then this argument shows that the elements of

{(Qci , P ci ) | 1 ≤ i ≤ k} = A form a primary decomposition of Iec.

Let (Q′1, P
′
1), . . . , (Q

′
`, P

′
`) ∈ D′ be all the elements of D′. Then

⋂`
i=1 〈Q′i〉 = I + 〈f〉. Thus⋂k

i=1 〈Qi〉
c ∩
⋂`
j=1

〈
Q′j

〉
= Iec ∩ (I + 〈f〉) = I. So indeed the elements of D = A ∪D′ form a

primary decomposition of I.

Task 6.14 (Associated Prime Ideals). Let I ⊂ K[X ] be an ideal. Compute the associated

prime ideals of I together with their primary components of a primary decomposition of I.

Solution. By definition, the associated prime ideals are the prime ideals of a minimal primary

decomposition. Use Algorithm 6.13 to compute a primary decomposition
⋂m
i=1Qi = I of I

with prime ideals Pi := Rad(Qi) for all 1 ≤ i ≤ m. If Pk = P` for any k 6= `, then define

Q̃ := Qk ∩ Q`. This can be checked using Task 3.24. Then Q̃ is again Pk-primary. So⋂
i 6=k,`Qi ∩ Q̃ = I is again a primary decomposition. Inductively we can thus construct a

primary decomposition
⋂r
i=1 Q̃i = I such that Rad(Q̃i) 6= Rad(Q̃j) for all i 6= j. Check for

each 1 ≤ k ≤ r if Q̃k ⊃
⋂
i 6=k Q̃i using Tasks 3.25 and 3.29 and if yes, then omit Q̃k. Finally,

we arrive at a minimal primary decomposition which gives us the associated prime ideals of

I and their primary components of a primary decomposition.

Task 6.15 (Primary). Let I ⊂ K[X ] be an ideal. Is I a primary ideal?

Solution. Compute the associated prime ideals of I using Task 6.14. Use the fact that an

ideal I is primary if and only if it has only one associated prime ideal.

Task 6.16 (Prime). Let I ⊂ K[X ] be an ideal. Is I a prime ideal?

Solution. Compute the associated prime ideals of I together with their primary components

using Task 6.14. Use that an ideal I is prime if and only if there is only one associated prime

ideal and its primary component is equal to this associated prime ideal.

Task 6.17 (Maximal). Let I ⊂ K[X ] be an ideal. Is I a maximal ideal?

Solution. Check if I is a prime ideal using Task 6.16. Compute every intersection I ∩K[Xi]

for all 1 ≤ i ≤ n using Task 3.27. Then Proposition 6.10 implies that I is maximal if and

only if I is prime and every computed intersection is non-trivial.
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7 Complexity

We have proven that the algorithms given in this thesis are correct. However, we never men-

tioned the efficiency. This would be very important if we were to implement those algorithms

in a computer program. In the following section we give a brief overview of the complexity

of the algorithms without claiming to treat it rigorously.

The Division Algorithm 3.12 has polynomial complexity: Let r be the number of terms of

f ∈ K[X ] and let m denote the cardinality of F for F ⊂ K[X ]. Then, in the worst case,

the algorithm computes in m · r steps a remainder on division of f with respect to F . Thus

using Task 3.20, if we have a Gröbner basis, the ideal membership problem can be solved

in polynomial time. Interestingly enough, the ideal membership problem, as treated in Task

3.20, is NP-hard as shown by Huynh [4]. Hence computing a Gröbner basis is also NP-

hard. But if we are given a finite subset of K[X ], we can check, in polynomial time, if it

is a Gröbner basis or not by Theorem 3.18. So computing a Gröbner basis is NP-complete.

Therefore, finding an efficient algorithm (in polynomial time) is equivalent to the problem P

= NP, which is still open. Hence, we cannot hope to find such an algorithm. The same holds

for most of the other algorithms deduced in this thesis, as they use Buchberger’s Algorithm

3.19.

However, we can still try to improve our algorithms a bit. For instance in Buchberger’s Algo-

rithm 3.19 we repeatedly compute S(p, q)
G′

for the same pair p, q ∈ G′. But if S(p, q)
G′
6= 0

in some step of the while-loop, then in every further step we will have S(p, q)
G′

= 0. So in

principle, we only need to compute this remainder on division for the newly added elements

of G′. Also, the S-polynomial is anti-symmetric, so we only need to consider ordered pairs

of G′. But there are also more improvements that can be done. Cox, Little and O’Shea

give a discussion about some improvements in §9 of Chapter 2 in their book [3]. With such

improvements the algorithm gets efficient enough to be used in computer algebra systems.

We can also improve our algorithm for computing the radical of an ideal. Some improvements

that lead to a slightly different algorithm were suggested by Laplagne [6]. He does a criti-

cal analysis of the complexity of his algorithm and arrives at a doubly exponential bound.

Nevertheless, his algorithm can be used to compute radicals in practice, as his performance

evaluation shows.

Another thing to keep in mind when designing an algorithm are the prerequisites. For in-

stance, the radical of an ideal can also be computed using a primary decomposition. But

for a primary decomposition, we need to be able to factorize a polynomial in one variable

into irreducible polynomials. This is a stronger assumption on the field than is needed for

computing the radical directly. In some cases, such an indirect approach may be possible

and more efficient. Therefore, we need different algorithms for different cases. But often, one

cannot decide a priori whether one or the other is better.
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8 Conclusion

Using the algorithms and tasks of this thesis we can do most of the calculations a contemporary

computer algebra system can do in the area of polynomial ideals. With the improvements

mentioned in section 7 we can directly implement them. We have seen that the results of

the standard theory of commutative algebra are not enough to do explicit calculations. We

need a theory that is tailored to computation. This computational theory is part of an active

research area. From time to time new algorithms are designed to either improve existing ones

or provide a totally different approach that is more efficient in some cases.

To give a final overview of our achievements in this thesis we provide a list of the most useful

algorithms and tasks that we have seen:

• Algorithm 3.12: Division algorithm; computes a remainder on division.

• Algorithm 3.19: Buchberger algorithm; computes a Gröbner basis of an ideal.

• Task 3.20: ideal membership; decides whether a polynomial lies in the given ideal.

• Algorithm 3.22: computes a reduced Gröbner basis of an ideal.

• Task 3.24: ideal equality; decides whether two given ideals are equal.

• Task 3.25: subideal; decides for two ideals whether one is a subideal of the other.

• Task 3.29: computes the intersection of ideals.

• Algorithm 4.5: computes the quotient of two ideals.

• Task 5.2: radical membership; decides whether a polynomial lies in the radical of a

given ideal.

• Task 5.6: computes the square-free part of a polynomial.

• Algorithm 5.10: computes the radical of an ideal of finite codimension.

• Algorithm 5.18: computes the radical of an ideal.

• Algorithm 6.12: computes a primary decomposition of an ideal of finite codimen-

sion.

• Algorithm 6.13: computes a primary decomposition of an ideal.

• Task 6.14: computes the associated prime ideals of a given ideal.

• Task 6.15: decides whether a given ideal is primary.

• Task 6.16: decides whether a given ideal is prime.

• Task 6.17: decides whether a given ideal is maximal.
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