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Introduction

The aim of this Bachelor Thesis is to present an elementary proof due to Greenberg |Gre74] of
the following theorem.

Theorem (Kronecker-Weber). FEvery finite abelian extension K|Q is cyclotomic.

In other words, this means that if a Galois extension K| Q has a finite abelian Galois group, then
K is contained in some cyclotomic field.

The Theorem was first stated by Leopold Kronecker in 1853, but his proof was incomplete.
In 1886, Heinrich Weber presented a new proof that was still incomplete. David Hilbert finally
proved it in 1896 using different techniques, and considered the generalization of this theorem
concerning abelian Galois extension of general number fields instead of Q. This generalization is
known as Hilbert’s 12th problem.

In modern literature, the proofs of the Kronecker-Weber Theorem are usually based on class
field theory. The proof that we present in section 5 uses more elementary concepts from algebraic
number theory, which will be introduced in sections [I] to[d] Standard results from Algebra, and
in particular from Galois Theory will be assumed. However, the Fundamental Theorem of Galois
Theory is stated in the appendix since we use it several times. The classical results that
can be found in most books about algebraic number theory will usually be stated without proof,
whereas the results that are more specific to the proof of the Kronecker-Weber Theorem will be
proven.

I would like to thank my supervisors, Professor Richard Pink and Alexandre Puttick, for
their helpful comments on drafts of this paper.
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Notation and terminology

The rings we consider are always commutative with unity, and the fields are always number
fields. When we say "abelian/cyclic extensions” we mean "Galois extension with abelian/cyclic
Galois group". Several proofs are divided into claims. In this case the end of the proof of a claim
is indicated by B whereas the end of the whole proof is indicated by [J.

R Multiplicative group of units of a ring R
U(n) The multiplicative group (Z /nZ)*

[L: K] Degree of a field extension L|K

(G:H) Index of a subgroup H in G

H<LG H is a subgroup of G

HJLG H is a normal subgroup of G

Quot(R) The field of fraction of R

Gk Galois group Gal(K|Q)
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1 Ramification Theory

1.1 The ring of integers and factorization of primes

Let R C S be a ring extension. An element s € S is integral over R if it is a root of a monic
polynomial with coefficients in R, i.e. there exist n > 1 and elements r1,...,r, € R such that

ST s s+ = 0.

We will assume the following Proposition:

Proposition 1.1. Let R C S be a ring extension and si,...,S,m, € S. The following are
equivalent:
1. s1,...,8m are integral over R,

2. R[s1,...,Sm] is a finitely generated R-module.

Proof. See [AM69, Proposition 5.1]. O

Corollary 1.2. Let R := {s € S | s is integral over R}. Then R is a subring of S containing R.

Proof. Every element r € R is integral over R, since it is a root of the monic polynomial x — r.
It follows that R C R. Let z,y € R. Then R|x,y] is finitely generated as an R-module by
Proposition On the other hand, we know that R[z,y,xy] = R[z,y]. Thus 2y € R according
to the same Proposition. Similarly for = + y. O

The rin&ﬁ is called the integral closure of R in S. If R = R we say that R is integrally closed
in §. If R =S we say that S is integral over R.

Definition 1.3. Let K be a number field, i.e. a finite degree extension of Q. The integral closure
of Z in K is called the ring of integers of K and is denoted by Ok . Equivalently, an element x
is in O if there exist n > 1 and ag,...,an,_1 € Z such that

"+ ap_ 12" - 4 a4 a9 =0.

If K = Q, the ring of integers is Og = Z. A very useful property of Z is that it is a unique
factorization domain, that allows us to decompose any nonzero integer into a product of primes
in a unique way. Unfortunately, this property does not hold for an arbitrary ring of integers.
For example, one can show that the ring of integers of Q(v/—5) is Z[v/—5] which is not a unique
factorization domain, since we have

2.3=6=(1+v=5)(1—V=5).
Remark 1.4. Note that in general it is not true that the ring of integers of Q(«) is Z[a].

Definition 1.5. A Dedekind domain D is an integral domain satisfying the following properties:

1. D is noetherian,

2. D is integrally closed,
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3. every nonzero prime ideal in D is maximal.

The fundamental property of Dedekind Domains is that they allow a unique factorization of non
zero ideals into prime ideals.

Theorem 1.6. Let D be a Dedekind domain and a be a nonzero proper ideal of D. Then we
have a unique decomposition

€ €r
a=py'---pt

where py,- -+ ,p, are distinct nonzero prime ideals and ey, - - , e are positive integers.

Proof. See [Neu99, Theorem 3.3 in Chapter 1]. O

Theorem 1.7. For any number field K, the ring of integers Ok is a Dedekind domain.
Proof. See |Neu99, Theorem 3.1 in Chapter 1]. O

By Theorem every nonzero ideal of Ok can be factored into prime ideals. This is a the
generalization of the factorization into prime numbers that we have in Z. The field of rationals
Q is constructed by taking all the fractions of the integers Z, hence Q is the field of fractions of
Z. The following Proposition shows that this is also true for an arbitrary number field.

Proposition 1.8. Let K be a number field. Then K is the field of fractions of Ok .

Proof. Let y € K, then y is algebraic, i.e. it satisfies a relation a,y" +a,_1y" "' +---a1y+ag = 0,
where a; € Z and a,, # 0. Let = := ya,. Multiplying both sides by a”~!, we get

n

2Vt an 2" 4 alazf% + aoazfl =0.

Thus z € Ok an = = € Quot(Og). On the other hand, we have Ox C K. Thus

dy
Quot(Og) C Quot(K) = K, since K is a field. O

1.2 Ramification of primes

Let K be a number field and n = [K : Q]. Let p be a nonzero prime ideal in Ok. Then pNZ
is a prime ideal in Z, generated by some prime p. So (p) = pNZ and we say that p lies over p
or that p lies under p. Let p Ok be the ideal generated by p in Ok. Although the ideal (p) is
prime in Z, the ideal p O is not necessarily prime in O

Example 1.9. Consider K = Q(v/—5), with ring of integers Z[v/—5|. In Z the ideal generated
by p = 29 is prime, but in Z[/—5] we have the decomposition

29 = (34 2v/=5) - (3 — 2/=5),
hence the ideal generated by 29 is not prime in Z[/—5].

Since Of is a Dedekind domain, we know from Theorem [I.6] that we have a unique factorization
into prime ideals p O = p{* --- py?, where the prime ideals p, are exactly the ideals lying over
p. We will also say that p, divides p and use the notation p, | p.

Definition 1.10. The exponent e; is called the ramification index of p; over p.
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We also write e;(p, |p) for the ramification index if it is not clear which ideals are concerned. Since
Ok is a Dedekind Domain, every prime ideal is maximal. Thus the quotients x(p,;) = Ok/p;
and k(p) =Z /pZ = F), are fields, called the residue fields. Hence x(p;)|x(p) is a field extension
of finite degree.

Definition 1.11. The degree f; == f;(p,; |p) of the extension x(p;)|x(p) is called the inertial
degree of p; over p.

The residue field x(p) contains the residue field F,,, thus x(p) is isomorphic to a finite field s
where f is the inertial degree of p over p.

Proposition 1.12. The ramification and inertial degrees satisfy the following equality

g
n= Z € fi-
i=1
Proof. See [Neu99, Proposition 8.2 in Chapter 1]. O

Let L be a number field containing K, such that [L : K] is finite. In a similar way as before, the

prime ideal p of Ok has a decomposition p Oy = P7* ._.ng in Oy, where the B,’s are prime
ideals of Op,. In the same way we can also define the ramification index e(, | p) and the inertial

degree f(B; [ p)-

Proposition 1.13. Let L|K|Q be a tower of number fields. Let p be a prime in Z, let p be
a prime ideal of Ok lying over p and P a prime ideal of O lying over p. Then we have

e(Blp) = e(Blp)-elplp) and f(Blp) = f(¥|p) - f(pIp)-

Proof. See |Moll1|, Theorem 5.1]. O

Finally, it is natural to ask about the number of primes that ramify in a finite extension of
number fields.

Theorem 1.14 (Minkowski). Let K|Q be a non trivial extension. Then there is at least one
ramified prime and the number of ramified primes is finite.

Proof. See [Neu99, Proposition 8.4 in Chapter 1] and [Neu99, Theorem 2.18 in Chapter 3]. O

Remark 1.15. For general number fields K|L it is still true that the number of prime ideals of
Ok that ramify in O, is finite. However it is not necessarily true that there is a least one such
prime.

1.3 Ramification of primes in Galois extensions

If K|Q is normal, the extension is Galois, since every number field is separable over Q. Let G
denote its Galois group, and p, a prime ideal lying over p.

First we note that for any ¢ € Gx we have 0(Og) = Ok. Indeed, if a € Ok, it is the root
of some polynomial " + a,_12" " + - -- + a1 + ag, where the a; € Z. Since Z is contained in
Q, the coeflicients a; are fixed by o and o(«) is also a root of the polynomial. Thus o(«a) € Ok.

Since o € Gk fixes Q and o(p;,) NZ C Q, we have o(p;,) NZ =o(p; NZ) = p,NZ = (p). Thus
o(p;) is also a prime ideal lying over p. So Gk acts on the set of prime ideals p, lying over p.
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Proposition 1.16. The group Gk acts transitively on the set of prime ideals lying over p.

Proof. See [Neu99, Proposition 9.1 in Chapter 1]. O

Proposition 1.17. Let K|Q be a finite Galois extension and py,...,p, be the prime ideals lying
over p. Then the ramification indices e; = e(p, |p) and inertial degrees f; = fi(p; |p) are both
independant of i. Thus

e1=--=¢€; and fi=--=f,

Proof. Let p; be a prime lying over p. By Proposition we have p;, = 0;(p;) for some 0, € Gg.
Since o; fixes p C Q and Ok, we have

POk =0i(pOk) = 0i(p7 p5* -+ py?)
=0i(p1) 1 oi(pa)® - 0i(py)
=p; 0i(pa)? - oi(py) .

Thus for any ¢ we have e; = e;. Moreover, the automorphism o; induces an isomorphism
k(py) — K(p;), = mod py — oi(z) mod oi(py).

This implies that f; = f1 for any 1. O

From now on, let e :=e; = --- = ¢4 and f = f; = --- = f;. Thus the factorization of p becomes
pOk = (p1 .- ~pg)e . Using Proposition we deduce the following result.

Corollary 1.18. If K| Q is a Galois extension of degree n, then we have
n=cefgq.

Definition 1.19. If pOgx = (p1 .- ~pg)e is the factorization of p in Ok we say that

1. pis ramified if e > 1,
2. p is totally ramified if e = n,
3. pis unramified if e = 1,

4. p splits completely if g = n.

1.4 Decomposition and Inertia groups

Let K|Q be a Galois extension of degree n with Galois group G and pOx = (p;---p,)¢ be
the factorization of p in Og. We saw in Proposition that Gk acts transitively on the set
of prime ideals {p;,...,p,} lying over p. Let p := p; be one of these ideals. The stabilizer of p
under the action of Gk is called the decomposition group of p and is denoted by

Dy :={o € Gk |alp) =p}.
Its fixed field KP¥ is called the decomposition field of p.

Remark 1.20. The decomposition group fixes p as an ideal but not elementwise. This means
that for 0 € D, and € p we have o(x) € p but not necessarly o(x) = .
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Since every element ¢ € D, sends p to itself by definition, it induces an automorphism of the
residue fields

o: K(p) — w(p)
z mod pr— o(x) mod p.

Furthermore, the automorphism & fixes k(p) since o fixes Q, and hence ¢ is an automorphism
of k(p) fixing k(p).

Proposition 1.21. The extension (p)|k(p) is normal and the map

Dy — Gal(k(p)[x(p))
o——0

s a surjective homorphism.
Proof. See [Neu99, Proposition 9.4 in Chapter 1]. O

The kernel of this homomorphism is called the inertia group of p and denoted by I,. Since the
homomorphism is surjective, we have the following isomorphism:

Dy /1y = Gal(r(p)|x(p))-

The fixed field K!v of the inertia group is called the inertia field of p. An element o € D, lies
in I, if its image is the identity in Gal(k(p)|<(p)), hence the inertia group is exactly

I,={0c €D, |Vr €Ok o(x) =z mod p}.

We saw in Subsection [1.2]that the residue fields are finite fields of characteristic p. Moreover, the
degree of the extension x(p)|x(p) is the inertial degree f = f(p |p). Thus we have an isomorphism

Gal(r(p)|r(p)) = Gal(Fps [Fy).

The Galois group of F,s |, is cyclic, generated by the automorphism o : x +— 2P, which is
called the Frobenius automorphism. A proof of this fact can for example be found in [DSD03|
Section 14.3].

Corollary 1.22. The quotient D, /I, is cyclic, generated by the coset of o € Dy, such that
o(x)=2P mod p.

In other words, the image & in Dy /I, is the Frobenius automorphism.

Proposition 1.23. We have

1. |Dy| =ef and (Gk : Dy) =g,

2. |I| =eand (Dy: 1) = f.

Hence p is totally ramified in K if and only if I, = Gg, and unramified if and only if I, = {e}.
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Proof. 1. Since the action of G is transitive, the orbit is exactly the set of prime ideals lying
over p. Using the orbit stabilizer theorem and the fundamental equality from Corollary we
obtain g - |Dy| = |Gk| = n = efg. This implies that |D,| = ef and (Gg : D) = |‘%’;|| =g.

2. From the definition of the inertial degree, we know that f = [k(p) : k(p)] = |Gal(x(p)|x(p))
Moreover, the quotient D, /I, is isomorphic to Gal(k(p)|k(p)). Thus |Gal(k(p)|x(p))| = l‘?:‘l

This implies that (D, : I,) = f. Since |Dy| = ef, we conclude that |I,| = e. O

From the previous Proposition and the Fundamental Theorem of Galois theory, we deduce the
following Corollary.

Corollary 1.24. We have

1. [K:Klr]=e,
2. [KTv i KPr] = f,
3. [KP» :Q] =g.

Let F' be a subfield of K containing Q and py := pNF be a prime of Op lying under p and over
p. Everything we did before for the extension K|Q can also be done for K|F. In this case, the
Galois group Gal(K |F) acts transitively on the set of primes of O lying over p, and we denote
the decomposition group by Dy |,,.. Then, we get a surjective homormphism

Dyp, — Gal(k(p)lr(pr)),
with kernel I, |, = I, N Gal(K|F). Moreover, we have [I,|, | =e(p|pg).

Proposition 1.25. Let K|Q be a finite Galois extension and p a prime of Okg. Let F be a
subfield of K and pp = pNF. Then I, is isomorphic to I /I,

Proof. Let o € I,,i.e. o(x)—x € p for every € Og. Restricting to F', we have o [p (z)—2 € pp
for every x € Op, since pr = pNF and Op = Og NF. Thus o [p€ I,,. Consider the group
homomorphism
¢ Iy — I,
o +— olp’
The kernel of ¢ is I, N Gal(K|F) = I,|,,, thus I,/I,|, = Im¢ < I, . Since the ramification
indices are multiplicative by Proposition it follows that [1,/1, .| = @lp) . — o(p, lp) =

e(plpr)
|Ip.|. Hence we have I, = I,/I,,. O

From this Proposition we can deduce two important corollaries.

Corollary 1.26. The prime p is unramified in the inertia field K'v.

Proof. Let p C Ok lying over p and p; == pNK’». We know that Gal(K|K%») = I, from Galois
theory. Moreover, we have I,|, = I, N Gal(K|K') = I,. By Proposition it follows that
I,, = {e} and thus p is unramified in K’v. O

Corollary 1.27. Let K| Q be a finite Galois extension and F a subfield of K cointaining Q. If
p s totally ramified in K, then p is totally ramified in F.
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Proof. Since p is totally ramified in K, we have I, = Gi. This implies that
Iyip, =1, NGal(K|F) = Gk N Gal(K|F) = Gal(K|F).

From Galois theory we know that G = Gk / Gal(K|F'). According to Proposition we have
I, = G and thus p is totally ramified in F. O

1.5 Compositum of fields

Definition 1.28 (Compositum). Let K and K3 be two subfields of a field L. The compositum
K, K5 is the smallest subfield of L that contains both K7 and K.

Remark 1.29. From now on we will assume that the number fields are contained in C. Thus,
the compositum of such number fields can be defined inside C.

Proposition 1.30. Let K1, K3| Q be two finite Galois extensions. Then

(K : QK2 : Q)

(KK : Q) = [KiNKy:Q

Proof. See |[DSDO03, Corollary 20 in Section 14.4]. O

Proposition 1.31. Let K1|Q and K3|Q be two finite Galois extensions. Then Ky N Ky and
K1 Ky are Galois over Q. Moreover, the Galois group G, i, s isomorphic to the subgroup H
of Gk, x Gk, given by

H:={(0,7) | 0 lkink:=T K10k } -

Proof. Let f(z) be an irreducible polynomial in Q[z] with a root in K7 N Ks. This root lies in
K; and in K5. Since Kj is a normal extension, all the roots of f are in K;. The same holds for
Ko, thus all the roots of f are in K7 N Ky and K7 N K3|Q is a normal extension. Since every
extension of Q is separable, it follows that K7 N Ko|Q is Galois.

Let fi(xz) and fa(z) be separable polynomials such that K; and K» are their respective
splitting fields. Let ayq, ..., a, be the common roots of f; and fo. Then g(x) = %
is separable and K7 K> is its splitting field. Thus K; K>|Q is Galois.

Consider the group homomorphism

¢ : GKle — GKl X GK2
o — (0 IKk,0 [K,)
Let 0 € ker ¢. Then o [g,= 0 [k,= e. The field fixed by ¢ must contain K; and Ko, hence it

must contain the compositum K1Ks5. So 0 = e in Gk, i, and ¢ is injective. Clearly we have
Im(¢) < H.

Let 0 € Gk,. The restriction o [k,nk, lies in G nk, = G,/ Gal(K3|K; N Ks). Hence there
are exactly | Gal(K2|K; N K3)| elements of G, such that their restriction on K N K> is equal
to o [k, nk,- Thus we have

G| [Ki:QJ[K,: Q)
|Gy | [K1N K> : Q]

where the last equality follows from Proposition [[.31} On the other hand, we also have
[ Im(¢)| = |G i, | = [K1 K2 : Q.
This implies that |Im(¢)| = |H|, thus Im(¢) = H. O

[H| = |Gk, |- | Gal(Ks| Ky N Ka)| = |G, | -

= [K1 K, : Q)
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Proposition 1.32 (|Rib01, Lemma 3 Chapter 15]). Let K7, K3| Q be two finite Galois extensions,
and p a prime in Z. Let B be a prime of K1 Ky lying over p, and let p; be the prime of K; with
B | p; | p. Then Iy is isomorphic to a subgroup of I, X I, .

Proof. Let ¢ be the homormorphism defined in[I.3T} and consider the restriction ¢ [r,,. If o € Iy
then o [k, € Iy, and o [k, € Ip,. Thus we have a group homomorphism

¢l = Iy — Ly, x L,
o (U [Kl O er)
The restriction ¢ [, is still injective and this implies that Iy £ Im ¢ < I, x I;y,. O

From this Proposition we can immediately deduce the following Corollary.

Corollary 1.33. Let K1, K2|Q be two finite Galois extensions, and p a prime in Z. If p is
unramified both in K1 and Ko, then p is unramified in K1 Ks.
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2 Valuations

2.1 Localization

The process of localization generalizes the construction of the fraction field of an integral domain
R. Recall that we can define the following equivalence relation on R x R\ {0}:

(r,s) ~ (r',s") if and only if (rs’ —sr’) =0.

The set of equivalence classes is called the field of fractions of R or fraction field of R and is
denoted by Quot(R). The equivalence class of a pair (r,s) is denoted by .

Let R be any ring. A multiplicatively closed subset S C R\ {0} is a subset containing 1 and
closed under multiplication. Similarly to the fraction field, we define the following relation on
RxS:

(r,s) ~ (r',s") if and only if (rs’ — sr’)u =0 for some u € S,

which is clearly an equivalence relation. The set of equivalence classes is called the ring of
fractions with respect to S and is denoted by S~!R. The equivalence class of an element (r, s) of

the ring of fractions is written as a fraction Z. The ring structure is defined by the rules

r v rs4r's

s &

b)
ss’

ror o

s s ss
Let a be an ideal of R and S™'a={% |a € a, s € S}, which is clearly an ideal of S™'R.

Proposition 2.1. The maps p — S~ 'p and q — qNR are inverse to each other and give a 1—1
inclusion preserving correspondance between prime ideals p C R\ S and prime ideals q of S™'R.

Proof. See [Neu99, Proposition 11.1 in Chapter 1]. O
Proposition 2.2. If a and b are two ideals of R, then S~1(ab) = (S~ 'a)(S~1b).

Proof. See |[AMG69| Proposition 3.11]. O

If p is a prime ideal of R, then S = R\ p is a multiplicatively closed subset of R. The ring of
fractions ST'R is called the localization at p and is denoted by Ry.

Definition 2.3. A ring R is called a local ring if it has a unique maximal ideal.

Proposition 2.4. The ring Ry is a local ring with unique mazimal ideal my, :== S~'p.

Proof. This follows directly from Proposition with § = R\ p, since R\ S = p. O
Proposition 2.5. If p is a mazimal ideal of R, then R,/ m, = R/p.

Proof. See |Neu99, Corollary 11.2 in Chapter 1]. O
Proposition 2.6. If R is an integral domain, then Quot(S™'R) = Quot(R).

Proof. Let £ € S™'R. Then r,s € R and £ € Quot(R). Thus S~'R C Quot(R) and this implies
that Quot(S™1R) C Quot(R). On the other hand, if 7L € Quot(R), then for any s € S we have

o=n (3)71 € Quot(S™'R). Thus Quot(R) C Quot(S~1R). O

T2 S S2
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2.2 Localization of ring of integers

Proposition 2.7. Let D be a Dedekind domain and S a multiplicatively closed subset of D.
Then S™1D is a Dedekind domain.

Proof. See [Neu99, Proposition 11.4 in Chapter 1] O

Let K be a number field. Let p be a nonzero prime ideal of Ok and O ; the localization of
Ok at p. According to Proposition @ the localization O p is a local ring with maximal ideal
my,. Moreover, in a Dedekind domain every nonzero prime ideal is maximal, thus m, is also the
unique nonzero prime ideal. By Proposition the ring Ok p is also a Dedekind domain, hence
every nonzero ideal is the product of nonzero prime ideals. We immediately get the following
result.

Corollary 2.8. Let a be a nonzero ideal of Ok . Then a = m’; for some integer k > 0.

Proposition 2.9. For every nonzero prime ideal p of Ok, the localization Ok, s a principal
ideal domain.

Proof. Let m be any element in m, \mg. By Corollary we have (7) = m’g for some integer
k> 1. Since m ¢ m?, we have k = 1. Hence for every integer k > 1, we have m¥ = (7*). Using
Corollary [2.§ again this proves that Oy is a principal ideal domain. O

Remark 2.10. A ring that is a principal ideal domain and a local ring is called a discrete
valuation ring.

Definition 2.11. A generator of the unique prime ideal my, is called a uniformizer.

Remark 2.12. The unifomizer 7 is unique up to associates, i.e. if p is another uniformizer then
p = um for some unit u € OF .

Let a be a nonzero element of Ok ,. The nonzero ideal (a) is a power of m, = (7) for some
uniformizer 7, say (a) = (7). Then we can be write

a=ur, UEO;(F,, i1 eN.

This can be extended to K, which is the ring of fraction of Ok , by Propositions and If
xr € K*, then x can be written as a fraction ¢ with a,b € Ok, \{0}. Hence it can be written:

T = un’, u€ O, €L,

and we have v, (z) = vp(a) — vy (b). The integer 7 is called the valuation of x and will be denoted
by vy(z). We use the convention v,(0) = co. Furthermore, the valuation does not depend on
. If p is an another uniformizer, then it generates the same ideal, thus it does not change the
power i. It is straightforward computation to show the following Proposition.

Proposition 2.13. The valuation vy (z) is a surjective map from K* onto Z and satisfies for
every x,y € K*:

1. vp(xy) = ’Up(x) + Up(y);

2. vy(z +y) > min{v,(x), vp(y)}, with equality if vy(x) # vy (y).
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Remark 2.14. Let = be a nonzero element of O and (z) = 2 Og = pi* ---p,* be the factor-
ization of the ideal (x), where p, is a prime ideal in Ok and n; a positive integer. By Proposition
for any two ideals a and b we have (ab),. = ap b, . Moreover, since O . is a local ring, the
only prime ideal that does not vanish in the localization is the ideal p;, which becomes m,, . If we
localize at p;, we have t Ok , = m;“ Thus the exponent n; is exactly the valuation vy, (x), and

we have (z) = p;"* ---p,"*, where v, = v, (z). This gives us a relation between the valuation
and the factorization.

Let n be a nonzero integer in Z and n = prm its factorization, where p 4 m. Let p be a prime of
Ok lying over p and pOg = (ppy---p,)¢ its factorization, where e = e(p|p) is the ramification
index. Then, in Ok the factorization becomes

n OK = pevp a,

where a is an ideal not divisible by p. Thus for every integer n we get vy(n) = e(p|p) - vp(n).
Since vy (75) = vp(n) — vp(m) we can deduce the following.

Proposition 2.15. For any x € Q, we have vy(x) = e(p [p) - vp(x).

2.3 Higher ramification groups

Let K| Q be a finite Galois extension with Galois group G . Let p be a prime of Z and p a prime
of Ok lying over p, with residue fields x(p) and x(p).

Let o be in the decomposition group D, and ¢ > 0 be an integer. Since o sends p to itself, it
also sends p**! C p to itself, for every integer i > 0. Thus it induces an automorphism

7o Ok/p O/
r mod p*t! +—— o(x) mod pt! -

Note that for ¢ > 0, this is a ring automorphism and not a field automorphism. The group of
ring automorphisms of O /p**?t is denoted by Aut(Ox /p*tl).

Proposition 2.16. The map
h; : Dy — Aut(Og /p'*)
o0y
is a group homomorphism.

Proof. Let 0,7 € Dy and & € Ok. Moreover, let T denote the residue z mod p*! for simplicity.
Then, we have

a.i(T) = oymi(x) =77 7 (x) = 7; 7(T),
and thus ;7; = ; 7;, since x was arbitrary.. O
The kernel of the map h; is V; == {o € Dy | Vo € O o(x) =2 mod p**'}, which is called
the i-th ramification group of p. Note that Vj is precisely the inertia group I;.

Proposition 2.17. The groups V; are normal subgroups of D, and they form a descending chain
of subgroups
I,=beWNi>Kh>.. ..
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Proof. The ramification group V; is a normal subgroup of Dy, because it is the kernel of a group
homomorphism. If o € Viy1, then o(z) — x € p'** for every x € Of. Since p'*! C p’, this
implies that o(z) — x € p* for every z € O. Thus o € V. O

Lemma 2.18. If a is a proper ideal of O, then

m a’ = (0).

Proof. See |Sch07), Proposition 6.4.10]. O

Proposition 2.19. There exists an integer ig > 0 such that
Vie = Vigr1 = Vigra = -+ = {e},

where e s the identity automorphism.

Proof. First we claim that (,», Vi = {e}. Let 0 € ()5 Vi, i.e. o € V; for every ¢ > 0. This
means that - -

o(x) -z e ()pt!
=0

for every @ € Of. Since this intersection is trivial by Lemma [2.18] this proves that o is the
identity. Since I, is finite (it is a subgroup of the Galois group which is finite), it only has a
finite number of distinct subgroups. This implies that there exists an integer ig > 0, such that
Vie = Vie+1 = Vig+2 = .... But since the intersection N;>oV; is trivial, the subgroups V; for
i > 19 must be trivial. O

When we work with ramification groups, we restrict our attention to a particular prime ideal
in the ring of integers. Consider the localization of O, with unique maximal ideal m, and
let m be a uniformizer. The two following Propositions extend the ramification groups and the
decomposition groups to the localization of the ring of integers.

Proposition 2.20. Let 0 € Gx. Then o(p) =p if and only if o(m,) = m,,.

Proof. Let « € Og. If o satisfy o(m,) = m,, then 0(Ox Nm,) = Oxg Nm,. According to
Proposition we have Oxg Nm, = p and thus o(p) = p.

Conversely, let y € m, and consider ¢ satisfying the condition o(p) = p i.e. o € D,. We
can write y = * for some r € p and s € O \p. Since 0 € Dy, it sends Ok \p to itself, so

o(s) € Ok \p and o(r) € p. Hence we have o (L) = Zgg € my, so o(my) =m,. O

Proposition 2.21. Let 0 € Gg and 7 be a uniformizer. The following are equivalent:
1. o(z) —2 =0 mod pi*tt for every x € Ok,

2. o(y) —y=0 mod mjt! for every y € Ok,

3. o(r) —m =0 mod mjtt.

Proof. The equivalence of (1.) and (2.) can be proved in a very similar way as done in the
proof of Proposition A proof of the equivalence of (1.) and (3.) can be found in [Rib01}
Proposition G in Section 14.2]. O
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Proposition 2.22. Let 0 € Gi. Then o € V; if and only if vy(o(m) —m) > i+ 1.

Proof. By the previous Proposition, we know that o € V; if and only if o(7) —7 =0 mod m
This is equivalent to o(7) — 7 = an’™! for some a € Ok p. Since vy(a) > 0, we have

i+1
p -

V(o (m) = 1) = vy(a) + vp (7 TY) > v (7 T) =i + 1.
Conversely, if vy(o(m) —7) > i+ 1, then o(7r) — 7 € mfﬁ‘l. .

Let o be an element of the decomposition group. Since ¢ sends m, = (7) to itself, we can write
o(m) = com for some ¢, € Ok p.

Remark 2.23. If p and 7 are two uniformizers, then p = wur for some unit u € (’)Ix(p. For
o € I,, we write () = ¢,m and o(n) = ¢, w, for some ¢,,c, € Ok,,. We have

cur=c p=oc(p)=oc(ur) =o(u)c,m.

Since o € Iy, it follows that o(u) = v mod m,. Because u is invertible, the residue class u
mod m,, is also invertible. Hence after dividing both sides by 7, we get ¢, = ¢, mod m,, .

Lemma 2.24. Let o0 € Dy, and 7 be a uniformizer. Then c, #0 mod m,.

Proof. We have m = o(0~ (7)) = o(c,-17) = mc,0(c,—1), and after dividing both sides by ,
we get 1 = c,0(c,-1). Thus the element ¢, is a unit in Ok , and ¢, ¢ my,, otherwise m, would
be the whole ring. O

Recall that the residue field «(p) is a finite field of characteristic p. Moreover, the multiplicative
group of nonzero elements of a finite field is cyclic. A proof of this fact can be found in [DSDO03|
Proposition 18 in Section 9.5].

Proposition 2.25. The group I,/Vi is isomorphic to a subgroup of the multiplicative group
k(p)*. Thus it is a cyclic group.

Proof. According to Remark [2:23] the residue ¢, is independant of the choice of the uniformizer.
Furthermore, the residue ¢, is nonzero by Lemma [2.24] Thus the map

o [

is well-defined. Recall that the fields Ok, /m, and k(p) are isomorphic by Proposition
Consequently, it suffices to show that fy is a group homorphism and that the kernel is V;.

Let 0,7 € I,. Then we have ¢,.m = o7(7) = 0(c,;m) = o(¢,)o(m) = o(¢r)com. Dividing by
we obtain the equality ¢, = o(¢,)co. Reducing both sides modulo m, we get ¢,; = ¢,¢;, since
o(c;) = ¢; mod my. It follows that fj is a group homomorphism.

Let 0 € ker(fo) i.e. ¢ =1 mod my. Then ¢, = 1+t for some t € Ok, and we get

o(n)—m=(14tnr)t —7T=tr* =0 mod mi.

Conversely, if o € Vi, then o(m) = 7 + dr? = (14 dr)w for some d € Ok . Thus ¢, = dr € m,
and o € ker(fy). So ker(fy) = V1 and the result follows. O

Corollary 2.26. If D, is abelian, then I,/V; is cyclic of order dividing p — 1.
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Proof. According to Proposition the quotient I,/Vy is cyclic. Let 7 € I, such that its
image 7 in I,/V is a generator. Let o € D, be such that its image 7 : z — Z” is the Frobenius
automorphism, which generates D, /I, by Corollary As for the proof of Proposition [2.25
we can write

o(m) = com, T(T) =crm, o070 HT) = Corop1T.

Since 7 € I,, we have 7(¢,-1) = ¢,—1 + brr for some b € Ok ,. Furthermore, we know from the
proof of Lemma that o(cy-1) - ¢, = 1. Using this, it is a straightforward computation to
show

oro (7)) = o(cr)m + b2 o(co ).

Dividing by 7 and reducing modulo my,, we get ¢,,,—1 = o(c,) = 7(¢;) = ¢;°. The last equality
comes from the fact that & is the Frobenius automorphism. On the other hand, if D, is abelian
we have ¢,,,-1 = ¢,. This shows that ¢; = ¢? and concludes the proof. O

Proposition 2.27. For i > 1, the quotient V;/Vii1 is isomorphic to a subgroup of the additive
group K(p).

Proof. The proof is very similar to the proof of Proposition [2:25] Let o be an element of V; and
7 a uniformizer. By Proposition we can write o(m) = 7 + a,m' ! for some a, € Ok,,p.
Then we can define the map

o +— [ '

It can be verified that this map is also independent of the uniformizer, but we omit the proof.
We show that f; is an additive group homorphism with kernel V;, .

Let 0,7 be in V; and o7(7) = 7 + a7 1. We have
or(m) =0 (m+a;n't)
=o(n) + U(aT)or(ﬂ')iJrl
=7+ a,m M +o(ar)(1 + agn?) T ai
Since a, € Ok and o € V;, we can write o(a,) = ar + w1 for some z € Ok,p. Moreover,
using the biomial formula we can write (1+a,7%)""! = 1+ 2'7 for some 2’ € O . Putting this
together we get

or(m) =7+ agm ™ + (ar + 2z (1 + 2'7)rt
=7+ (a5 + ar + 2’7 + 2T + 227 T2
Since z'm + 't + z2'7*T2 = 0 mod my, we have @,r = @5 + @, and thus f; is an additive
group homomorphism.

Let o lie in the kernel of f;, i.e. a, =0 mod my. Then a, = ¢ for some t € Ok, and we
have o(m) — 7 = tn't? =0 mod m}2. Conversely, if o € V11, then o () = m + dr'*? for some
d € Ok,p. Thus a, = dm = 0m,, and it follows that ker(f;) = Vi41. O
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3 Cyclotomic fields

3.1 Recollections

We start by recalling some facts about cyclotomic fields. Let n > 1 be an integer and let U(n)
denote the group of units of Z /nZ.

Definition 3.1 (Root of unity). A complex number ¢, is called n-th root of unity if it is a root
of the polynomial ™ — 1.

Let ¢, and ¢/, be n-th roots of unity, i.e. a™ =1 and b™ = 1. Then ab is also a n-th root of unity
since (ab)" = a™b"™ = 1. Moreover, we have (a=!)" = (a”)~! = 1. Hence a~! is also an n-th
root of unity. Obviously 1 is also an n-th root unity. Thus the n-th roots of unity form a group
under multplication that will be denoted by f,.

Proposition 3.2. The group u., is cyclic.

Proof. The group p, is a finite subgroup of the multplicative group C*, thus it is cyclic (see for
example [DSD03| Proposition 18 in Section 9.5]). O

Definition 3.3 (Primitive root of unity). A generator of the cyclic group pu,, is called a primitive
n-th root of unity.

Proposition 3.4. Let {, be a primitive n-th root of unity. The map

Z/nZ — py
av— Cy

is an tsomorphism.

Let ¢, be an n-th primitive root of unity. Then ¢* is a primitive n-th root of unity if and only
if k € U(n). Hence there are exactly ¢(n) distinct primitive roots of unity, where p(n) is the
Euler ¢-function.

Remark 3.5. The Euler p-function gives the number of integers that are coprime to n. Equiv-

alently, it is the order of the group of units, i.e. ¢(n) = |U(n)|. For a prime power p™, we

have p(p™) = p™~(p —1). If n = p{"'py*? - p is the prime factorization of n, then we have

p(n) = @Pi™) - P
The splitting field of the polynomial ™ — 1 is Q({,) and is called the n-th cyclotomic field.

Definition 3.6. The n-th cyclotomic polynomial ®,(x) is defined as the polynomial

() = [ (@—ch).

keU(n)
whose roots are the n-th primitive roots of unity.

Theorem 3.7. The polynomial ®,,(x) is a monic irreducible polynomial in Z[x] of degree p(n).

Proof. See [DSD03], Theorem 41 in Section 13.6]. O
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Theorem implies that ®,(z) is the minimal polynomial for (,,. Hence we have the following.

Corollary 3.8. The cyclotomic field Q((,) has degree p(n) over Q.

In particular, if p is a prime and m > 0 an integer, we get [Q({pm) : Q] = p™ (p — 1).

Proposition 3.9. Let n,m > 1 be integers. Then

Q(Cn) Q(Cm) = Q(Clcm(m,n))'

Proof. Let f :=lem(m,n) and d := ged(m,n). Since n|f and m|f, we have ¢/ = ¢/ = 1. Thus
Cns Gm € Q(Cr) and Q(Cn) Q(Gn) € Q(Cy)-

27

Let (; := e™* for k > 1, then (i is a primitive k-th root of unity. By the Chinese Remainder
Theorem, there exist integers a,b € Z, such that am +bn =d = % Dividing both sides by

mn, we get = + % = % Thus we have:

2mia 2mib ra b 2mi
cach = B — 2mils+h) o ¢

Hence (5 € Q(¢n) Q(Gm) and Q(¢r) € Q(¢n) Q(Gm)- N

3.2 The Galois group of cyclotomic field extensions

Let ¢, be a primitive root of unity. We have seen that the n-th cyclotomic field Q({,) is the
splitting field of the polynomial ™ — 1. The roots are exactly the roots of unity. Since they are
all distinct (in C), the polynomial 2™ —1 is separable and hence the extension Q(¢,)| Q is Galois.

Let o be an element of Gal(Q(¢,)| Q). The automorphism o permutes the roots of the
cyclotomic polynomial @, (x), i.e. o((,) = (2 for some a € U(n). The image of ¢, uniquely
determines an element of Gal(Q(({,)|Q). We denote by o, the automorphism that sends ¢, to

a
n*

Theorem 3.10. The map

U(n) — Gal(Q(¢n)| Q)

a+— o,

is an isomorphism.

In the proof of the Kronecker-Weber Theorem we restrict ourselves to the case where n = p™ is

a prime power. Hence we state the following:

Corollary 3.11. Let p be a prime and m > 0 an integer. Then Gal(Q((pm)| Q) is a cyclic group
of degree p™~1(p —1).
3.3 Ramification in cyclotomic fields

In order to understand the ramification of primes in a cyclotomic field, we need to know the
structure of its ring of integers. This is given by the following:
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Theorem 3.12. Let n > 1 be an integer. Let K := Q((,) and let Ok be the ring of integers.
Then we have

Ok = Z[Cn]
Proof. See [Neu99, Theorem 10.2 in Chapter 1]. O
In the following Propositions, we will only consider ramification in the case where n = p™ is a

prime power.

Proposition 3.13. The prime p is totally ramified in Q((pm).

Proof. Let ¢ :== (pm and ®(x) = $pm () the p™-th cyclotomic polynomial, the minimal polyno-
mial of . Recall that we have

m

i P -1 m—1 m—1 _{y,m—1
‘I’(ﬂf):'n ('I*C):W:1+xp + 2" g
ieU(p™)
For z =1, we get:
=1 (-¢). (1)
i€U (p™)
Let & = 1=¢' _ 14+ ¢+ + (7L e Z[(], for i € U(p™). Since i € U(p™), there exists an integer

1-¢
k, such that ik =1 mod p™. Thus we have

A A
Hence &; is a unit in Z[(], Equation becomes p = & - (1 — ¢)?®™) | where ¢ == HiGU(pm) & is

also a unit. Hence in Z[¢] we have (p) = p#®") where p = (1 — (). Since [Q(¢m) : Q] = p(p™),
the ideal p = (1 — (,) must be prime, and consequently p is totally ramified. O

L+ + -+ (CH ezl

Proposition 3.14. The prime p is the only ramified prime in Q((pm), except in the case where
p=2andm=1.

Proof. See [Neu99, Corollary 10.4 in Chapter 1]. O
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4 The quadratic Gauss sum

In order to prove the Kronecker-Weber Theorem, we need the notion of Gauss sums. A Gauss
sum is a particular type of finite sum of roots of unity.

Definition 4.1 (Quadratic residue). Let n > 1 and a be integers such that ged(a,n) = 1. We
say that a is a quadratic residue modulo n, if there exists an integer x, such that 22 = a (mod n).
Otherwise, we say that it is a quadratic nonresidue.

Definition 4.2 (Legendre symbol). Let a be an integer and ¢ be an odd prime. The Legendre
symbol is defined as:

1 if a is a quadratic residue modulo ¢
a . . . .
(> =4 —1 if aisa quadratic nonresidue modulo ¢
q 0 if a=0 (mod q)

Proposition 4.3 (Euler’s Criterion). If a 20 (mod q), then (%) =o' (mod q).

Proof. See |[Rib01}, Proposition G in Section 4.1]. O

Proposition 4.4 (Properties of the Legendre symbol). The Legendre symbol satisfies the fol-
lowing properties:

1. Ifa=b (mod q), then (%) = (Z) ;

o2 1 if a#0 (mod q)
2 (7) 0 4 a=0 (mod q)

s ()= (2) (2)

Proof. If a = 0 (mod q), then all the statements are trivial. So assume a Z 0 (mod ¢). The
statements (1.) and (2.) follow directly from the definition of the Legendre symbol.

b

From Euler’s Criterion, we know that (ab)% = (“—b) (mod ¢). On the other hand, we also

have (ab)*T = (a)*z (b)) (g) (g) (mod q), thus (%) (g) = (%b) (mod q). Since q is
odd, this implies (%b) - (g) (g) 0

Proposition 4.5. There are as many quadratic residues as quadratic nonresidues, i.e.

1

>(2)-o

v
Proof. Consider the group homomorphism

¢+ Ulg — Ul
T — oz

Clearly a is a quadratic residue if and only if a € Im(¢). Moreover, we have ker(¢) = {£1} and
[Tm(¢)| = |Lzr(gq)5|)| = q%l. Thus there are exactly qg—l quadratic residues and g — 1 — ’15—1 = ‘12;1

quadratic nonresidues. O
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Definition 4.6 (Quadratic Gauss sum). Let ¢ be a an odd prime and ¢ := (; a g-th root of
unity. For a € Z, the quadratic Gauss sum is defined as:

=5 (5)e

u=1
Remark 4.7. Obviously 7(a) € Z[(,].
Proposition 4.8. We have 7(1)% = (—1)% -q.

Proof. The sum 7(1)? can be written as:

where the last equation follows from Proposition Since u and ¢ are elements of the mult-
plicative group U(q), there exists a unique element v in this group, such that ¢ = uv for every u

and t. Moreover, by Proposition we have (%) = (“72) (%) = (%) Hence, it follows that

qg—1lg—1

>

7N
=[5
N~~~
I
<

+
Nt

I
5
—
5
—
RS
‘@
L) ¥
4
~_
et
e

joy

+
&

u=1t=1 u=1v=1
qg—1qg—1
_ Z (’U) Cu(l+v)
u=1v=1 q
g—1 v g—1
v=1 q u=1
If v = ¢ — 1, then for the inner sum we get
q—1 q—1 q—1
I N
u=1 u=1 u=1

Ifv#qg—1,then v+ 1% 0in U(q). Hence, for every u € U(q) there is a unique x € U(q) such
that u(v + 1) = x. This means that the inner sum is equal to

q—1 q—1

Do =N =+ P T = -

u=1 =1
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Substituing this into equation and using Propositions and it follows that

= (0)(5e)-(5) o5 0)

v=1 u=1

24
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5 Proof of the Kronecker-Weber Theorem

In this last section, we present a proof of the Kronecker-Weber Theorem. We say that an
extension K|Q is a p-power extension if the degree [K : Q] is a power of a prime p. We say that
an extension is unramified outside p if p is the only prime that is ramified in K.

5.1 A few Lemmas

We begin by stating a sequence of Lemmas that will be needed in the proof. They are separated
from the main Propositions to make the structure of the proof of the Kronecker-Weber Theorem
more apparent.

Lemma 5.1. Let K|Q be a finite Galois extension and let p be a rational prime. If p is the only
ramified prime, then p is totally ramified in K.

Proof. Let p be a prime ideal of Ok lying over p and K’» the inertia field. By Corollary
the extension K’r|Q is unramified at p. Furthermore, this extension is also unramified outside
p, since any prime that ramifies in K Iy must ramify in K. According to Minkowski’s Theorem

(1.14), we have K'» = Q. Since e(p|p) = [K : K™»] by Corollary [1.24} we get e(p|p) = [K : Q]
and p is totally ramified. O

Lemma 5.2. Let K|Q be a p-power Galois extension unramified outside p and p a prime of Ok
lying over p. Then, for the ramification groups we get:

1. Vi/Viyq is trivial or cyclic of order p,

2. I, = Vi = Gk.

Proof. Let p be a prime lying above p. By Lemma the prime p is totally ramified, hence
the inertial degree f(p|p) is equal to 1 and I, = Gg. This means that the residue field x(p) is
isomorphic to Z /p Z. By Proposition[2.27] we conclude that V;/V; 4 is either trivial or isomorphic
to Z /pZ.

Furthermore, we know from Proposition m that I, /V1 is a subgroup of x(p)*. Thus the
order of I,,/V; divides |k(p)*| = p—1. On the other hand, the order of I, /V; must be a power of
p since it is a quotient of subgroups of the p-group Gx. This is only possible if I, /V; is trivial,
i.e. V1 = Ip = GK O

Lemma 5.3. Let p be an odd prime and K|Q be an extension of degree p unramified outside p.
Then the second ramification group Vs is trivial.

Proof. Let p be the prime of Ok lying above p. Consider the localization Ok, and let 7 be a
uniformizer. Finally, let m(z) := 2P + a,—12P~! + - - 4+ ag be the minimal polynomial of 7 over
Q, and m/(x) = pzP~t + (p — 1)ap,—12P~2 + - - - + a; its formal derivative.

We know from Proposition that the ramification groups eventually become trivial. Let
Vi+1 be the first trivial ramification group. By Lemma the quotient V;/V;41 must be cyclic
of order p since V; # V11 = {e}. Hence, the group V; has to be cyclic of order p i.e. it is the
whole Galois group Gg.

Claim _1: We have v, (m/(7)) = (p — 1)(i +1).
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Proof of Claim 1: The factorization of m(x) is given by [[,cq, (z — o(m)). Using the product
rule, it is a straightforward computation to show that

m'(m)= [[ (r—o(m),

o€Gk\{e}

where e is the identity of Gi. Since V; = G and V; is trivial, we can write G \{e} = V;\Viy1.
By Proposition for every o € V; \ Viy1 we have

vp(o(m) —m) =i+ 1.
Since there are p — 1 elements in G \ {e} and vy (ab) = vy(a) + v, (b), it follows that

vp(m'(m)) = (p— 1)(i + 1).
|
Claim 2: We have 2p — 1 > v, (m/(m)).

Proof of Claim 2: According to Proposition for any z € Q we have v,(z) = e(p [p)vy(x).
Since p is totally ramified, we know that e(p |p) = p. Thus v,(p) = p and vy(ax) =0 mod p, for
1 < k < p. By the properties of the valuation, if aj, # 0 it follows that

vp(kapm™ ™) = vy (k) +vp(ag) +k—1=k—1 mod p.
In particular, all these valuations are different and by Proposition [2.13| we get
vp(m' () = vp(pr? ' 4+ a1) = 11<11k11<1 {vp(karm™ 1)} < vp(pa,m?1).
<k<p
ak;éO

Since m(z) is a minimal polynomial, it is monic. Thus a, =1 and we can conclude that
vp(m/ (1)) < wp(prP ™) = vp(p) + V(7P ™) = 2p — 1.

From Claims [1] and [2[ follows the inequality 2p — 1 > (p — 1)( + 1), which is equivalent to
1+ zﬁ > 4. Since p > 2, we have 2 > 1+ ﬁ. The only possible solutions are ¢ = 0 and 7 = 1.
If 4 = 0, then V; would be the first trivial ramification group and this would contradict Lemma
Hence i = 1 and V4 is the first trivial ramification group. O

Lemma 5.4. Let G be an abelian p-group with a unique subgroup H of index p. Then G is
cyclic.

Proof. See for example [Rib01, Lemma 1 in Chapter 15]. O

Lemma 5.5. Let p be an odd prime and K|Q be an abelian p-power extension unramified outside
p. Then K|Q is cyclic.

Proof. Since K|Q is a p-power extension, we have [K : Q] = p™ for some integer m > 1. If
m = 1, then [K : Q] = p. Hence G must be isomorphic to Z /pZ, which is cyclic. So we can
assume m > 1. Let p be the prime ideal of O lying over p and V; be the i-th ramification group
of K. Recall that o € V; if and only if o(z) =z mod p**! for every z € Ok.

Claim 1: Let H < Gk be a subgroup of index p. Then V5, < H.
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Proof of Claim 1: Let H be a subgroup of index p and K’ := K its fixed field with Galois
group G+ = Gg/H. Let p’ := pNK’ be the prime ideal of Ok lying over p and V; the i-th
ramification group of K’. This means that o € V/ if and only if o(z) = 2 mod p’**! for every
z € Ok

P p
Q K’ K

Let o € V,. If we consider the restriction to K’, then o [/ is in Vj since p’ = pNK’ and O =
Ok NK'. As K'|Q has degree p and is unramified outside p (since K is), we can apply Lemma
Thus V3 is trivial. This means that every element o € V3 fixes K', i.e 0 € Gal(K|K') = H.
Hence V5, < H. ]

Claim 2: Let H < Gk be a subgroup of index p. Then H = V5.

Proof of Claim 2: Let V; be the first ramification group that is not the entire Galois group. By
Lemma [5.2] we have I, = Vi = Gk, thus ¢ > 2. Since V; # V;_; = Gk, Lemma [5.2] implies
that V;_1/V; = Gk /V; is isomorphic to Z /pZ. Thus V; is a subgroup of index p. By Claim |1} it
follows that Vo < V;. On the other hand, V; is a subgroup of V5 for i > 2, hence V; = V5 and V5
has index p. We have p = (Gg : Vo) = (Gg : H) - (H : Vo) = p(H : Vo), and thus (H : V5) =1

ie. H=1V,. |
These two claims prove that V5 is the unique subgroup of index p and by Lemma [5.4] this
conludes the proof. O

Lemma 5.6. Let K| Q be an abelian p-power extension. Let q # p be a prime number and q be
a prime ideal of Ok lying over q. Then the inertia group I is cyclic and its order divides ¢ —1.

Proof. Let p™ be the degree of the extension, where m > 0 is some integer. By Proposition [2.2
for i > 1 the quotient V;/V;41 is isomorphic to a subgroup of the additive group of k(q) = Ok / g.
Recall that |k(q)| = ¢/ where f = f(q]q) is the inertial degree. So on the one hand, the order of
V;/Viy1 has to divide ¢f.

On the other hand, we have V; < Gk for every i > 0. Since G has order p™, the order
of V;/Vi41 must divide p™. Since ¢ # p, the quotients V;/V;; must be trivial for ¢ > 1. By
Proposition [2.19] there exists an integer o such that V;, = {e}. Thus all the higher ramification
groups are trivial for ¢ > 1. In particular V; is trivial.

Moreover, the decomposition group Dy is abelian, since it is a subgroup of G . By Corollary
we know that if Dy is trivial, then I, /V; is cyclic of order dividing ¢ —1. Since V; is trivial,
this concludes the proof. O

5.2 Proof for cyclic p-power extensions unramified outside p
5.2.1 The case p =2
Proposition 5.7. If K|Q is a quadratic extension, then K is cyclotomic.

Proof. Let K := Q(\/E), where d is a squarefree integer. If d = +2"¢; - - - g with r = 0,1 is the
prime factorization of d, then

Q(WVd) € QW=1,V2, /a1, .-, Vx)-
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Thus we can reduce the proof to the case Q(y/£q) where ¢ is a prime.

Let (s == e’ and = e’ . Since (3 = —1 and ¢ = (4, we have

G+ =G+ +2=GHEG+D+2=2 and C(G+GY) =-2

Thus v+£2 € Q(Cg)
If ¢ is an odd prime, then from Proposition it follows that either 7(1)2 = g or 7(1)? = —q.
Since ¢ = —1, we have either 7(1)> = ¢ or C4T( )2 = q. Since 7(1) € Q(¢,), we get that

\/E S Q(Céla Cq)

AH thlS together ShOWS that Q(\/&) g Q(C‘b <8a CQU ERE ] CQk) = Q(C& Cihv R} CQk) g Q(CSQI"‘Qk)7
hence Q(v/d) is cyclotomic.

O

Proposition 5.8. Let m > 0 be an integer. If K|Q is a cyclic extension of degree 2™ and 2 is
the only ramified prime, then K is cyclotomic.

Proof. We will prove this by induction on m.

Induction basis: If m = 1, then K|Q is a quadratic extension and is cyclotomic by Proposition

oy

Induction step: Let m > 1 and let K|Q be a cyclic extension of degree 2™ where 2 is the
only ramified prime. Let ¢ == (om+2.

Recall that Gal(Q(¢)|Q) = (Z /272 Z) " = (Z /2Z) x (Z /2™ Z) , where the (Z /2Z) part is
the complex conjugation o: ¢ — (~!. Hence the fixed field of (o) is given by L = Q(¢ + ¢~ 1)
and is cyclic of degree 2™ over Q. Fix an embedding of K into C. The complex conjugation
restricted to K has order dividing 2. This means that the real subfield of K fixed by complex
conjugation has degree 2! or 2™ depending on whether K is real or not, and hence

[KNR:Q] >2m"%

Because m > 1, the unique quadratic subfield of K is real and of the form Q(v/d) where d
is a positive squarefree integer. Since it is unramified outside 2, we must have d = 2 [Rib01}
Proposition K in Section 11.2]. Analogously, since L is unramified outside 2, the field Q(v/2) is
also a quadratic subfield of L and hence

[KNL:Q>[Q(V2):Q]=2.

From Proposition we know that Gxr =2 {(0,7) | 0 lkn=7 [knr} < Gg x Gr.
Claim 1: There exist generators o and 7 of the cyclic groups Gx and G, agreeing on K N L.

Proof of Claim 1: Let (x) be a cyclic non-trivial 2-group, i.e. its order is a power of 2. Then
from group theory we know that z* is a generator of G if and only if k is odd.

Let o be a generator of Gg. Then since Gxny, = G/ Gal(K|K N L), the restriction o [xnr,
is a generator of Gxnr. Moreover, since we also have Gxnr = G/ Gal(L|K N L), there exists
7 € Gp, such that 7 [gnr= 0 [knr. Let ¢ be a generator of G, then 7 = ¢* for some k € Z.
Now 9 [knr is also a generator of Gxnr and we have (v FKQL)’“ = YF kar= 0 [knr. This
implies that k is odd because G gny is a nontrivial cyclic 2-group. Thus 7 = ¥* generates G,
since k is odd. |
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Let H = {(0,7)) and F := (KL)¥ be its fixed field. The group H has order 2™ and
22m > [KL : Q] because K N L # Q. Hence we have [F : Q] < 2™, since

22" > [KL:Q]=[KL:F]-[F:Q]=|H|-[F:Q=2"[F:Q.

KL
2m
F K <2m L
<2m KNL
> 2
Q

Claim 2: We have FFL = KL.

Proof of Claim 2: We know that FFL C KL, since both F' and L are in KL. Let ¢ be an
automorphism of KL fixing F'L. The subfields F' and L of F'L are also fixed by ¢. Since ¢ fixes
F, we have ¢ € H = {(0,7)) so ¢ = (¢, 7%) for some integer i. As the only automorphism fixing
L is the identity, we get 78 = e. But ¢ and 7 have the same order, thus o' = e. This implies
that ¢ is the identity and hence FL = K L. |
By our induction hypothesis, F' is cyclotomic, and thus F'L is also cyclotomic.

O

5.2.2 The case p > 2

Proposition 5.9. Let p be an odd prime and m > 1 an integer. If K|Q is a cyclic extension of
degree p™ and p is the only ramified prime, then K is cyclotomic.

Proof. Recall that Gal(Q((,m+1)| Q) is isomorphic to (Z /p™** Z) " Since this is a cyclic group
of order p™(p — 1), it has a unique cyclic subgroup of index p™. Let K’ be the subfield of
Q(¢pm+1) corresponding to this subgroup. Thus we have

G 27 /p" 7= G,

Let KK’ be the compositum of K and K’. We have the following diagram:
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KK’ Q(¢pm+1)

The compositum KK’ is a p-power extension of Q, since

poop . ECQIK:Q] . pPm
KK Q= "o al ~ Knk

By Corollary the compositum of two extensions unramified outside p is also unramified
outside p. So KK’ is unramified outside p. Hence K K'| Q is cyclic by Lemma This implies
that [KK': Q] = |Grk'| < p™, since Ggk is a cyclic subgroup of (Z /p™ Z) x (Z [p™ Z).
On the other hand, we also have p™ = [K : Q] = [K' : Q] < [KK': Q]. Thus K = K' = KK’,
since [KK': Q] =[K:Q]=[K':Q] =p™.
O

5.3 Proof for cyclic p-power extensions
Proposition 5.10. Let K|Q be a cyclic p-power extension. Then K is cyclotomic.

Proof. Let N be the number of rational primes ¢ # p that ramify in K; this number is finite by
Minkowski’s Theorem. We will prove this Proposition by induction on N.

Induction basis: If N = 0 and p is ramified, then K|Q is a cyclic p-power extension where
p is the only ramified prime. This is exactly the content of Propositions [5.9 and 5.8 If p is
unramified, then every prime is unramified in K. By Minkowski’s Theorem, we have K = Q
which is (trivially) cyclotomic.

Induction hypothesis If K|Q is a cyclic p-power extension where N primes different from p
ramify, then K is cyclotomic.

Induction step: Let K|Q be a cyclic p-power extension where N + 1 primes different from p
ramify. Let p™ be the degree of this extension, for some integer m > 0. Let g # p be one of the
primes that ramify and q an ideal of Ok lying over q.

By Lemma [5.6] we know that the inertia group I, is cyclic of order dividing ¢ — 1. We also
know that the order of I, divides p™, since the inertia group is a subgroup of Gk, which has
order p™. Hence we have |I4| = p” for some r < m, such that p” divides ¢ — 1.

Consider the cyclotomic field extension Q((,;)| Q, which is cyclic of degree ¢ — 1. Since p”
divides g — 1, there exists a unique subfield L of Q(¢,) such that

[L:Q]=1p".
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Because ¢ is totally ramified in Q((,), it is totally ramified in L by Corollary Let £ be the
prime ideal of Of, lying over q.

Finally, let KL be the compositum of K and L and let Q be an ideal of Ok, lying over q.
Let I be its inertia group and F := (K L)’2. The setup is summarized in the following diagram.

KL Q(¢q)

Claim 1: The extension K L|F is cyclic of order p”.
Proof of Claim 1: Applying Lemma to the p-power extension K'L|Q, we can conclude that
I is a cyclic group. Hence K L|F is a cyclic extension, since Gal(KL|F) & Iq.

By Proposition [I.32] the inertia group Iq is a subgroup of I; x Ig¢, which is isomorphic to
(Z ]p"Z) x (Z /p" Z) and has no element of order greater than p”. Hence we have |Iq| < p",
otherwise there would be an element of order greater than p”.

Furthermore, we know that e(£|q) = [L : Q] = p” because ¢ is totally ramified in L. Since
the ramification degree is multiplicative for tower of fields by Proposition [I.13] we get
Lol =e(Qlq) = e(Q[L) - e(Llg) = e(Q|L) - p" = p,

thus Iq =p". |
Claim 2: We have FNL =Q.

Proof of Claim 2: Let Q' := qNF N L be a prime ideal of Opny, lying over g. On the one hand,
the prime ¢ is totally ramified in F'N L; it is a subfield of L and q is totally ramified in L. This
means that e(Q’ |¢) = [FNL : Q]. On the other hand, the prime ¢ is unramified in N L because
it is a subfield of the inertia field . This means that e(Q'|¢q) = 1. Thus we have [FNL: Q] =1
and hence FNL = Q. [ ]

Claim 3: We have KL = FL.
Proof of Claim 3: We have FL C KL, because F,L C KL. From Claim[I] we can conclude that
[KL: F|=p" =[L:Q)]. Using this in addition to Claim [2[and Proposition we get

L:Q]-[F:Qf
[FNL:Q]
Thus, it follows that FFIL = K L. |

Claim 4: The prime ¢ is unramified in F' and there are no primes that are ramified in F' and
unramified in K.

Proof of Claim 4: Since F is the inertia field in KL, it follows directly from Corollary that
q is unramified in F'. Now suppose that A\ # ¢ is a prime that is ramified in F' and unramified in

[FL:Q] = —[L:Q)-[F:Q = [KL:F]-[F:Q] = [KL: Q.
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K. On the one hand, the prime A is unramified in L, because ¢ is the only ramified prime in L
by Proposition[3.14} Since A is unramified in K and L, it must be unramified in the compositum
KL by Corollary [[.33] On the other hand, the prime X is ramified in F'L since it is ramified in
F. This leads to a contradiction, since KL = FL by Claim [3 |

From Claim [I} we know that F' is a cyclic p-power extension; from Claim [ we know that
there are (at most) N primes different from p that ramify in F. Thus by our induction hypothesis
F is cyclotomic i.e. F C Q(¢;) for some [. Using Claim |3 we get

K g KL=FL g Q(Cl) Q(Cp) = @(Clcm(l,p))a

where the last equality follows from Proposition [3.9] Hence K is cyclotomic and this proves that
the proposition holds for N + 1.

O

5.4 Proof for any abelian extension
Theorem 5.11. If K| Q is a finite abelian extension, then K is cyclotomic.

Proof. Let K|Q be a finite abelian extension, which means that Gk is a finite abelian group. By
the fundamental theorem of finite abelian groups, we can write G as a direct product of cyclic

groups of prime power order:
Gg =Gy x--- XGZ,

where each subgroup G; is isomorphic to Z /p.** Z, for some prime p;. Let K; be the field fixed
by the subgroup H; = Hj# Gj. We see that K is exactly the compositum of the K;’s. Since
Gk is abelian, each subgroup H; is normal in G, so each extension K;|Q is a Galois extension
of degree p;**. According to Proposition these extensions are cyclotomic, i.e. K; C Q((y,)
for some integer n;. Hence, we have

K= Kl ce Kl - Q(Cnl) o Q(C’m) = Q(Clcm(nl,...,nl))a

where the last equality follows from Proposition [3.9] This concludes the proof of the Kronecker-
Weber Theorem. O
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A Fundamental Theorem of Galois Theory

Theorem A.1 (Fundamental Theorem of Galois Theory). Let L|K be a Galois extension and
G = Gal(L|K). There is a bijective correspondence between subgroups H of G and subfields F
of L containing K. This correspondence associates to a subgroup H the fized field F :== LY, and
to a subfield F of K the subgroup Gal(L|F'). Furthermore, we have

1. the bijection is inclusion reversing, i.e. if F1 and Fy correspond to subgroups Hy and Hy then
Fy C Fs if and only if Hy < Hy,

2. if F corresponds to H, then [L: F] = |H| and [F : K] = (G : H),

3. if F corresponds to H, then F is Galois over K if and only if H is a normal subgroup of G.
In this case, we have Gal(F|K) =G/H.

Proof. See for example [Art11, Section. 16.7]. O
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