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Abstract

We consider quadratic morphisms of smooth curves of genus zero over the

field of fractions of a discrete valuation ring. We focus on the case of good

reduction, where we study the postcritical orbit over the residue field.

Introduction

Consider a rational map f ∈ K(x) over a field K as a morphism of the projective

line P1
K . The forward orbit of a point P ∈ P1

K is the set of iterates fn(P ) of

P under f for n > 0. In one-dimensional complex dynamics, the orbits of the

critical points of a rational map P1
C → P1

C play a fundamental role as they

determine the dynamics of the map to a large extent. One source of examples

are postcritically finite (pcf) morphisms, where the forward orbit of each critical

point is a finite set. In the context of arithmetic dynamics, these maps display

certain analogies to elliptic curves with complex multiplication, which is one of

the motivations to study pcf morphisms.

Over a field with a valuation, one can further obtain information on the dy-

namics of the rational map f when it has good reduction. In this case, the

dynamics of the reduction over the residue field carry considerable information

on the dynamics of f .

In this light, there is an active interest both in criteria for good reduction and

in the behaviour of the postcritical orbit after reduction. We hope to provide

a contribution to this in the case of quadratic pcf maps, that is, pcf maps of

degree two. An example of the overlap of these angles is the following: If a

critical point of a quadratic pcf map f is a fixed point, or maps to the other

critical point, then the map has good reduction (see Claim 2.1), and if f has

good reduction, then a critical point which is not fixed by f cannot reduce to a

fixed point of the reduction (see Proposition 10.8).
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In this master’s thesis, using the terminology of algebraic geometry, we study

the postcritical orbits of quadratic pcf morphisms from a smooth curve of genus

zero to itself. Focusing on those with a postcritical orbit of cardinality at least

three, which we refer to as stable, our main result, Theorem 7.7, states that these

morphisms reduce to stable quadratic pcf morphisms whenever they have good

reduction. We prove this making use of a combinatorial description in terms of

stable marked curves and their associated dual trees. This description was used

by Pink in [7] to prove that over any algebraically closed field of characteristic

6= 2, there are at most finitely many isomorphism classes of quadratic rational

maps of the projective line with a postcritical orbit of size n for any integer n.

We will utilise several properties established in that paper.

In Section 1, we endow quadratic morphisms with marked critical points. We

define good reduction of a quadratic morphism over the field of fractions of a

discrete valuation ring in terms of a smooth model over the ring. The critical

marking ensures uniqueness of the smooth model up to unique isomorphism and

thus allows us to identify a quadratic morphism of an arbitrary smooth curve

of genus zero to itself with a quadratic morphism of P1.

Following these basic definitions and facts are some examples of pcf morphisms

with good reduction in Section 2. In Sections 3-5, we introduce postcritical

markings and review the necessary material on stable marked curves and their

dual trees, which we use to study the combinatorial properties of the reduction.

This is all incorporated in a worked example in Section 6.

We then focus on good reduction of stable quadratic pcf morphisms. Section

7 comprises the proof of Theorem 7.7. As a consequence of this statement,

good reduction of a quadratic pcf morphism is equivalent to the existence of a

certain unique fixed point of a map describing the combinatorial effect of the

morphism on the respective dual tree. This is shown in Section 8. In Section 9

we study good reduction of strictly preperiodic postcritical points in search of a

criterion for preperiodicity after reduction. In Section 10 we analyse and give an

overview of the dual trees for good reduction, making use of the fixed point from

Section 8. The types of trees which arise are in a certain sense well-behaved and

reflect the dynamics of the associated morphism, which is not necessarily the

case for morphisms with bad reduction, as we demonstrate in several examples

in Section 11.
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1 Basic Notions

Let S be a scheme over SpecZ[ 1
2 ].

Definition 1.1. A critically marked quadratic morphism over a scheme S is a

quadruple (C, f, ω1, ω2) consisting of a smooth curve C of genus zero over S, an

S-morphism f : C → C which is fibrewise of degree 2 and sections ω1, ω2 ∈ C(S)

whose images are the ordered critical points of f .

In the special case S = Spec(C), Milnor [6] refers to these as ‘critically marked

quadratic rational maps’.

To ease notation, we will often denote a critically marked quadratic morphism

by f if the data C,ω1, ω2 is clear or not explicitly used, and speak simply of a

quadratic morphism. We denote the nontrivial covering automorphism of f by

σ, and for a section s ∈ C(S) we write f(s) := f ◦ s.

Definition 1.2. An isomorphism α : (C, f, ω1, ω2)
∼−→ (C ′, g, ω′1, ω

′
2) of quad-

ratic morphisms over S is an isomorphism α : C
∼−→ C ′ over S such that

α ◦ f = g ◦ α and α(ω1) = ω′1 and α(ω2) = ω′2.

Let R be a discrete valuation ring with field of fractions K, uniformiser π and

residue field k := R/Rπ of characteristic 6= 2. Further, let S := SpecR.

Definition 1.3. A smooth model for a quadratic morphism (C, f, ω1, ω2) over

K is a quadratic morphism (C, ϕ, ω1, ω2) over R where the generic fibre of C is C

and ϕ is an R-morphism extending the K-morphism f to C and ω1, ω2 : S → C
are sections extending the K-valued points ω1, ω2.

We will make use of the following assertions in order to prove uniqueness of a

smooth model up to unique isomorphism.

Fact 1.4. Every smooth curve C of genus zero over S together with two disjoint

sections P,Q ∈ C(S) is isomorphic to (P1
S , 0,∞) and the isomorphism is unique

up to units in OS.

Claim 1.5. Let (P1
K , f : x 7→ ax2+b

cx2+d , 0,∞) be a quadratic morphism over K

with A :=
(
a b

c d

)
∈ PGL2(K). Then A may be represented by a matrix with

coefficients in R with at least one in R× and this representation is unique up to

multiplication by a unit in R.

Proof. Choose a matrix representing A and for simplicity denote it again by A.

Define µ(A) := min{ordπ(t) | t is a coefficient of A} and set s := π−µ(A). Then
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Section 1 Basic Notions

sA is of the desired form. Further, we have µ(rA) = ordπ(r) + µ(A) for every

nonzero r ∈ R. Thus, any other choice s′ ∈ K× yields such a form if and only

if s′ = rs for some r ∈ R×.

This and the next lemma can be found in slightly different terms in Silverman

[8, Section 2]. With a representation as in Claim 1.5, we say f (or the matrix

A) is in normalised form.

Lemma 1.6. A quadratic morphism (P1
K , f : x 7→ ax2+b

cx2+d , 0,∞) in normalised

form extends to a quadratic morphism over R if and only if
(
a b

c d

)
∈ GL2(R).

Proof. In normalised form, f extends to a rational map fR : P1
R 99K P1

R again

given by x 7→ ax2+b
cx2+d . We need to show that the induced map fk on the closed

fibre P1
k is a quadratic morphism over k. Set p(x) := ax2 +b and q(x) := cx2 +d

as well as p̄ := p mod π and q̄ := q mod π. Then fk is a quadratic k-morphism

precisely when p̄ and q̄ have no common zeros in k̄. This is true if and only if

their resultant Res(p̄, q̄) = Res(p, q) is nonzero in k and equivalently, if Res(p, q)

is a unit in R. Since Res(p, q) = (ad− bc)2, we have Res(p, q) ∈ R× if and only

if det(A) ∈ R×.

Proposition 1.7. If there exists a smooth model (C, ϕ, ω1, ω2) for (C, f, ω1, ω2)

over S, then this model is unique up to unique isomorphism.

Proof. By Fact 1.4, we can choose a coordinate x such that ψ : C
∼−→ P1

K sends

(ω1, ω2) to (0,∞). In this coordinate, the covering involution of f is given

by σ(x) = −x and f is of the form f(x) = ax2+b
cx2+d with

(
a b

c d

)
∈ PGL2(K),

where the coefficients are determined by the choice of ψ. Conjugation by an

automorphism x 7→ ux for u ∈ K× changes this into f(x) = aux2+bu3

cx2+du2 with

Au :=
(
au bu3

c du2

)
∈ PGL2(K).

By Claim 1.5, we may represent Au by a matrix in normalised form, again

denoted by Au and unique up a scalar in R×. By Lemma 1.6, the rational

map fR induced by f is a quadratic R-morphism - and hence a smooth model

for f - if and only if det(Au) is a unit in R. This condition determines u and

thus ψ up to units in R: If both det(Au) and det(A1) are units in R, then

det(A1)−1 det(Au) = u3 is a unit in R and thus, so is u.

Suppose (C, ϕ, ω1, ω2) is another smooth model for f . The choice of ψ from above

for the generic fibre (C, f, ω1, ω2)
∼−→ (P1

K , x 7→ ax2+b
cx2+d , 0,∞) is an isomorphism

on a dense subset and thus extends to a unique isomorphism of quadratic R-

morphisms α : (C, f, ω1, ω2)
∼−→ (P1

R, x 7→ ax2+b
cx2+d , 0,∞).
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Section 2 Three Examples of Good Reduction

Definition 1.8. We say f has good reduction if a smooth model for f exists.

Since the smooth model is then unique up to unique isomorphism, combined

with Fact 1.4, we may identify this model with (P1
R, fR : x 7→ ax2+b

cx2+d , 0,∞).

The restriction of fR to the closed fibre P1
k is denoted by f̄ and is given by the

reduction of the coefficients of f modulo π. We call f̄ the reduction of f .

Definition 1.9. A quadratic morphism f over a field is postcritically finite if

the (strictly) postcritical orbit {fn(ω1), fn(ω2) | n ≥ 1} is finite. We refer to

such morphisms as pcf morphisms.

A quadratic morphism f over S is stable if in every fibre the postcritical orbit

has cardinality at least three.

Remark 1.10. Let (C, f, ω1, ω2) be a smooth model for f . An isomorphism of

quadratic morphisms α : (C, f, ω1, ω2)
∼−→ (C ′, g, ω′1, ω

′
2) maps the postcritical

orbit of f to the postcritical orbit of g: For i = 1, 2 and n > 0, we have

α(fn(ωi)) = gn(α(ωi)) = gn(ω′i). Thus, the identification in Definition 1.7 does

not affect the combinatorial type of the postcritical orbit of the morphism.

Two more facts we will need are the following:

Fact 1.11. A quadratic morphism over a field K is stable if and only if it is

not isomorphic to (P1
K , x 7→ ax±2, 0,∞) for any sign and any a ∈ K×, see for

example Pink [7, Prop. 1.4].

Fact 1.12. For any point P ∈ C(K) let P̄ ∈ C(k) denote the corresponding point

in the closed fibre. Then f̄(P̄ ) = f(P ) and f̄n = fn for all n > 0. In particular,

the reduction of the postcritical orbit of f coincides with the postcritical orbit of

the reduction of f when f has good reduction.

For a proof of Fact 1.12, see Silverman [8, Thm. 2.18], or Hutz [3, Thm. 8] for

a version in the language of schemes.

2 Three Examples of Good Reduction

For quadratic morphisms with postcritical orbit of certain types, one can use

pedestrian methods to show that these morphisms have good reduction, as the

following proof shows.

Claim 2.1. For any pcf morphism f given by x 7→ (ax2 + 1)±1 or x 7→ x2+a
x2−a

for some sign and some a ∈ K×, both a and a−1 are integral over Z[ 1
2 ] and f

thus has good reduction.
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Section 2 Three Examples of Good Reduction

Proof. In all three cases, f has good reduction if a does not reduce to 0 or ∞
in any residue field. So for the reduction assertion it is indeed sufficient to show

that a and a−1 are integral over Z[ 1
2 ]. The postcritical orbit of f is determined

by two equations. If one of these is fn(0) = −fm(0) for some n > m ≥ 0,

then we can recursively define certain polynomials pk, qk ∈ Z[ 1
2 , α], where α is

an indeterminate, so that fk(0) = pk
qk

for all k ≥ 0. Then fn(0) = −fm(0)

is equivalent to pnqm + pmqn = 0 and the coefficient a of f is a root of an

irreducible factor P = Pf ∈ Z[ 1
2 , α] of the polynomial pnqm + pmqn. We claim

that both the leading coefficient `c(P ) and the constant coefficient cc(P ) of P

are units in Z[ 1
2 ].

Case 1. f(x) = ax2 + 1: In this case ∞ is a fixed point of f (we will see in

Lemma 8.3 that this implies that f has good reduction). The second equation

is fn(0) = −fm(0) for some n > m ≥ 0. Set p0 := 0 and pk+1 := αp2
k + 1 for

k ≥ 0. Then pn = fn(0) = −fm(0) = −pm and P is a factor of the polynomial

pn + pm. By induction arguments, the following holds:

(i) ordπ(pk) = 0 for all k ≥ 1,

(ii) degα(pk) = 2k−1 − 1 for all k ≥ 1,

(iii) `c(pk) = 1 and cc(pk) = 1 for all k ≥ 1.

By (ii), we have degα(pk) > degα(pk′) for all k > k′. This, together with (iii)

implies that `c(pm + pn) = `c(pn) = 1. Furthermore, the constant coefficient of

pm + pn is given by cc(pm + pn) = cc(pm) + cc(pn) = 2 by (iii).

Case 2. f(x) = (ax2 + 1)−1: Here we have f(∞) = 0 and the second equation

is either fn(0) = ∞ for n > 1, or fn(0) = −fm(0) for some n > m ≥ 0. Set

p0 := 0, q0 := 1 and pk+1 := q2
k, qk+1 := αp2

k + q2
k for k ≥ 0. Then P is a factor

of either qn or pnqm + pmqn. By induction we find that

(i) ordπ(pk) = 0 = ordπ(qk) for all k ≥ 1,

(ii) degα(q2k−1) = degα(p2k−1) and degα(q2k) = degα(p2k) + 1 for all k ≥ 1,

(iii) `c(pk) = 1 = `c(qk−1) and cc(pk) = 1 = cc(qk−1) for all k ≥ 1.

From this we can calculate that `c(pmqn + pnqm) is 2 if m ≡ n mod (2) and

n > 2 and is 1 otherwise, and cc(pmqn + pnqm) is 2 for all m > n > 0 and is 1

if n = 0.

Case 3. f(x) = x2+a
x2−a : In this case f(∞) = −f(0) and the second equation is

fn(0) = −fm(0) for some n > m ≥ 0. Define p0 := 0, q0 := 1 and for k ≥ 0 set

pk+1 := p2
k +αq2

k, qk+1 := p2
k−αq2

k. Then P is a factor of pnqm + pmqn. Again,

by induction

4



Section 3 Postcritical Marking

(i) ordπ(pk) = 2k−1 = ordπ(Qk) for all k ≥ 1,

(ii) degα(qk) = 2k − 1 = degα(pk) for all k ≥ 1,

(iii) `c(pk) = (−1)2k−2 = 1, `c(qk−1) = (−1)2k−1 = −1 and

cc(α−2k−1

pk) = 1 = `c(α−2k

qk+1) for all k ≥ 1.

From this we can derive that `c(pmqn + pnqm) = −2 for all m > n ≥ 1, and

for the constant coefficient we find cc((pmqn + pnqm)α−(2m−1+2n−1)) = 2 for all

m > n ≥ 2. For n = 1, the polynomial (pmq1 + qmp1)α−(2m−1+1) is divisible by

α. However, this polynomial corresponds to the equation fm(0) = −f(0) and

since f(∞) = −f(0), this is equivalent to fm−1(0) = ∞, which corresponds to

qm with cc(qmα
−2m−1

) = 1.

In all of the above cases, P is a factor of a polynomial with leading and constant

coefficients 1 or 2, which are units in Z[ 1
2 ]. Therefore, in all three cases `c(P )

and cc(P ) are also units, so P is (associated to) a monic polynomial and any

root a of P thus integral over Z[ 1
2 ]. Moreover, since cc(P ) is a unit, the inverse

a−1 is also integral over Z[ 1
2 ].

Integrality of the coefficient a and its inverse a−1 is, however, not sufficient for

good reduction of a large collection of quadratic morphisms, e.g. for morphisms

given by x 7→ x2+a
x2+h(a) for any polynomial h(a) 6= −a with a nonzero constant

term. For this reason, we will be using additional machinery to analyse good

reduction of stable quadratic pcf morphisms on a more general level.

3 Postcritical Marking

To start with, we will add a kind of level structure by marking the postcritical

orbit of a stable quadratic pcf morphism following Pink [7, Sections 2 and 7].

Definition 3.1. A finite mapping scheme is a quadruple (Γ, τ, i1, j1) consisting

of a finite set Γ, a map τ : Γ→ Γ and two distinct elements i1, j1 ∈ Γ such that

with in := τn−1(i1) and jn := τn−1(j1) for all integers n ≥ 2, the following is

satisfied:

(i) Γ = {in, jn | n ≥ 1}.

(ii) Any element γ of Γ has at most two preimages under τ .

(iii) The distinguished elements i1 and j1 have at most one preimage under τ .

For brevity we will denote a finite mapping scheme by Γ if the data τ, i1, j1 is

understood.
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Section 3 Postcritical Marking

Remark 3.2. For any quadratic morphism f over a field and ω one of the

critical points of f , we have f−1(f(ω)) = {ω}, which implies f(ω1) 6= f(ω2). For

any noncritical point P ∈ C(K) the preimage f−1(f(ω)) is the set {P, σ(P )}.
Thus, the postcritical orbit of f with the map induced by f and the distinguished

elements i1 := f(ω1) and j1 := f(ω2) is a finite mapping scheme in the sense of

the above definition whenever f is postcritically finite.

Example 3.3. The postcritical orbits of the morphisms discussed in Claim 2.1

are the following mapping schemes:

x 7→ ax2 + 1 and n > m ≥ 1

i1 . . .
im . . .

in

j1

x 7→ x2+a
x2−a

and n > m ≥ 1,m 6= 2

i1

i2 . . .
im . . .

in

j1

x 7→ (ax2 + 1)−1 and n > m ≥ 2

i1 . . .
im . . .

in

j1

or
i1 . . .

im

j1

Definition 3.4. Let f be a quadratic pcf morphism over K, and let Γ denote

the postcritical orbit of f , with a natural map s : Γ ↪→ C(K) which sends in to

s(in) := fn(ω1) and jn to s(jn) := fn(ω2). We call the quintuple (C, f, ω1, ω2, s)

a postcritically marked quadratic morphism and refer to the map s as the post-

critical marking for f .

For the next section, we extend the postcritical marking s : Γ → C(K) to all

points in the non-strictly postcritical orbit and their σ-conjugates.

By definition of the abstract mapping scheme, the elements i1, j1 ∈ Γ each have

at most one preimage in Γ under τ and every other element has at most two

preimages in Γ under τ . If i1 has a preimage, denote it by i0. If such an element

does not exist in Γ, choose a new symbol i0 /∈ Γ. Repeat this for j1. For each

γ ∈ Γ \ {i0, j0} such that γ is the only preimage of τ(γ), choose a new symbol

σ(γ) /∈ Γ ∪ {i0, j0}. Set Γ̃ := Γ ∪ {i0, j0, σ(γ) | γ ∈ Γ \ {i0, j0}, |τ−1(τ(γ))| = 1}
and define an automorphism σ : Γ̃→ Γ̃ of order two as follows:

γ 7→ γ, γ ∈ {i0, j0},

γ 7→ γ′ 7→ γ, γ 6= γ′ and {γ, γ′} = τ−1(τ(γ)),

γ 7→ σ(γ) 7→ γ otherwise.
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Section 4 Stable marked models

We then extend τ to a surjective map τ̃ : Γ̃→ Γ satisfying
i0 7→ i1

j0 7→ j1

σ(γ) 7→ τ(γ), σ(γ) ∈ Γ̃ \ Γ

γ 7→ τ(γ) otherwise.

Since the fixed points of σ : Γ̃ → Γ̃ are precisely i0 and j0, and for each γ ∈ Γ

the preimage τ̃−1(γ) is the set {γ, σ(γ)} ⊂ Γ̃, this map induces an isomorphism

τ̃ : Γ̃/〈σ〉 ∼−→ Γ. Moreover, if i0 ∈ Γ, we have f(ω1) = s(i1) = s(τ(i0)) = f(s(i0))

and thus s(i0) = ω1. Similarly, if j0 ∈ Γ, then s(j0) = ω2. So the following

extension of s to an injective map s̃ : Γ̃→ C(K) is welldefined:
i0 7→ ω1

j0 7→ ω2

σ(γ) 7→ σ(s(γ)), σ(γ) ∈ Γ̃ \ Γ

γ 7→ s(γ) otherwise.

The image of s̃ is precisely the set of points in the non-strictly postcritical orbit

and their σ-conjugates. The set s̃(Γ ∪ {i0, j0}) is the non-strictly postcritical

orbit {fn(ω1), fn(ω2) | n ≥ 0} of f . We call s̃ : Γ̃ → C(K) the extended

postcritical marking for f .

4 Stable marked models

We will use the additional level structure to obtain certain stable marked curves,

which we introduce only as far as necessary in this context. The content of this

section is derived from Knudsen [5], Keel [4] and Pink [7]. See also Deligne-

Mumford [1] for more on stable curves and their moduli, or Gerritzen et al. [2]

on stable marked trees of projective lines.

Definition 4.1. A stable marked curve (C, s) of genus zero over a scheme S is

a flat proper morphism C → S together with an injective map s : I ↪→ C(S),

i 7→ s(i) from a finite set I, and such that

(i) each geometric fibre Cx is a reduced connected curve with at worst ordinary

double points, each irreducible component of which is isomorphic to P1,

(ii) for all i ∈ I, the sections s(i) are fibrewise distinct and land in the smooth

locus of C,

7



Section 4 Stable marked models

(iii) (stability condition) each irreducible component of Cx contains at least

three points which are either singular or the image of a section s(i), and

(iv) dimH1(Cx,OCx) = 0.

Conditions (i) and (iv) imply that each geometric fibre is a tree of copies of P1.

In the following, we abbreviate the expression ‘stable marked curve of genus

zero’ by stable marked curve.

One can obtain one stable marked curve from another by removing a marking:

Definition 4.2 (Contraction, Part I). Let (C, s) be a stable marked curve over

a scheme S and I ′ a subset of I with |I ′| = |I| − 1 > 3. Let (C′, s′) be a stable

marked curve with marking s′ : I ′ ↪→ C′. Then (C′, s′) over S is a contraction

of (C, s) if there exists an S-morphism κ : C � C′ such that κ ◦ s|I′ = s′ and on

every geometric fibre Cx the following happens:

If the irreducible component Y of Cx containing the image P := s(i)(x), i ∈ I \I ′

has at least three points other than P which are either singular or the image

of a section, then the induced morphism κx is an isomorphism. Otherwise, κx

contracts Y to a point and the restriction of κx to Cx \ Y is an isomorphism.

Proposition 4.3 ([5, Prop. 2.1]). For any stable marked curve with n + 1

markings, with n > 3, there exists up to unique isomorphism precisely one

contraction to a stable marked curve with n markings.

This process can be extended to the removal of several markings:

Definition 4.4 (Contraction, Part II). Let (C, s) be a stable marked curve over

S with marking s : I ↪→ C(S), and (C′, s′) a stable marked curve over S with

marking s′ : I ′ ↪→ C′(S) such that I ′ ⊂ I. We call (C′, s′) a contraction of (C, s)
if (C′, s′) can be obtained from (C, s) as follows:

Consider a sequence of subsets I := In ⊃ In−1 ⊃ · · · ⊃ In−k := I ′, where

|I`| = ` for each n > ` > n − k > 3. Set (Cn, sn) := (C, s) and for each subset,

let (C`−1, s`−1) denote the contraction of (C`, s`) together with the S-morphism

κ` : C` � C`−1, in the sense of Definition 4.2. Then (C′, s′) is (Cn−k, sn−k) given

by k successive contraction morphisms κn−k ◦ · · · ◦ κn : C � C′.

As a consequence of Proposition 4.3, given a stable marked curve, a contraction

in the sense of Definition 4.4 is unique up to unique isomorphism.

Example 4.5. Let (C, f, ω1, ω2, s) be a postcritically marked quadratic mor-

phism over K with extended postcritical marking s̃. If f is stable, then the

postcritical orbit Γ contains at least three elements and (C, s) is the contraction
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Section 4 Stable marked models

of (C, s̃) as stable marked curves over K. In this case C comprises one irre-

ducible component and the morphism κ : C � C induced by ‘forgetting’ the

markings for Γ̃ \ Γ is an isomorphism.

There is also an inverse to contraction, namely stabilisation: Given a stable

marked curve (C, s) with n − 1 markings and an arbitrary additional section

ξ ∈ C(S), there exists up to unique isomorphism precisely one stable marked

curve (C′, s′) with n markings such that (C, s) is the contraction of (C′, s′) and

such that the nth section is mapped to ξ. This can be extended inductively to

any number of additional markings, and the stabilisation is obtained (uniquely

up to unique isomorphism) by a series of blowups described explicitly in Knudsen

[5, Def. 2.3 & Thm. 2.4].

The stable marked curves (C, s) and (C, s̃) associated to a postcritically marked

stable quadratic morphism f over K possess extensions to stable marked curves

(C, s) and (C̃, s̃) over R, which are unique up to unique isomorphism and which

we now construct according to Pink [7, Section 6].

Construction of stable models

As in Section 1, choose a coordinate such that C
∼−→ P1

K sends (ω1, ω2) to (0,∞),

and f is in normalised form f(x) = ax2+b
cx2+d . In this coordinate, the non-trivial

covering automorphism of f is σ : x 7→ −x with fixed points 0 and ∞.

Starting with the extended marking (C, s̃), we have s̃(i0) = 0 and s̃(j0) = ∞.

For all γ ∈ Γ̃ \ {i0, j0}, let ∞ > n1 > · · · > nr > −∞ denote the possible orders

ordπ(s̃(γ)). Define U0 := SpecR[x/πn1 ], Ur := SpecR[πnr/x] and for 0 < ` < r

set U` := SpecR[x/πn`+1 , πn`/x]. The points s̃(i0) and s̃(j0) extend to sections

of U1 and Ur respectively, again denoted by s̃(i0) and s̃(j0).

For each 0 < ` 6 r, the schemes U`−1 and U` have a common open subscheme

U`−1 ∩ U` = SpecR[x/πn` , πn`/x] along which we glue U`−1 and U`, thus ob-

taining a projective flat curve Z over S with generic fibre C. The closed fibre

(U`−1 ∩ U`)0 of these subschemes is SpecR[x/πn` , πn`/x]/(π), which is isomor-

phic to P1
k \ {0,∞}. For each 0 < ` 6 r let Y` denote the closure in Z of

(U`−1 ∩ U`)0. Then Y` is isomorphic to P1
k and these are precisely the irre-

ducible components of the closed fibre Z0 of Z. These components are arranged

in sequence such that any two consecutive components meet precisely in an ordi-

nary double point. The automorphism σ induces an automorphism y 7→ −y on

each Y` ∼= P1
k and thus has precisely two fixed points on each Y`. These comprise

the singular points of Z0 together with the reductions of the points s̃(i0) = 0

and s̃(j0) =∞ on Y1 and Yr respectively. Furthermore, for each K-valued point

s̃(γ), γ ∈ Γ̃ \ {i0, j0} there is a unique n` such that ordπ(s̃(γ)) = n` and thus

s̃(γ)/π−n` can be extended to a section s̃(γ) : S → U`−1 ∩ U` which meets Y`

9



Section 4 Stable marked models

in the closed fibre. Since s̃(γ)/π−n` mod (π) /∈ {0,∞}, the section lands in the

smooth locus of Z, is distinct from s̃(i0), s̃(j0) and is thus not fixed by σ.

The marked curve (Z, s) is ‘almost stable’: the only condition on a stable marked

curve which is not ensured is that some of the sections may collide in the closed

fibre. The stable extension (C̃, s̃) of (C, s̃) is now obtained from (Z, s̃) by stabili-

sation as in Knudsen [5], i.e. by blowing up an ideal centered at the (finite) set of

points in Z0 where sections s̃(γ), γ ∈ Γ̃ meet in the closed fibre, and (C̃, s̃) is thus

a stable marked curve, unique up to unique isomorphism. The blowup moves

these colliding sections to new irreducible components in the exceptional fibres

which are each disjoint from their σ-conjugate. Each irreducible component Y

in the closed fibre C̃0 of C̃ is a smooth curve of genus zero over k. Furthermore,

the automorphism σ on C extends to an automorphism σ on C̃ which remains

compatible with the marking, ie. σ◦ s̃ = s̃◦σ. The sections s̃(γ) : S → C̃ are now

pairwise disjoint and thus induce an injection s̃0 : Γ̃ ↪→ C̃0(k). The data (C̃, s̃)
is stable in the sense that each irreducible component Y contains at least three

points which are either singular or marked points. This construction satisfies

the following:

Proposition 4.6 ([7, Prop. 6.1]).

(i) The fixed points of σ in the closed fibre C̃0 of C̃ are precisely the reductions

of the sections s̃(i0) and s̃(j0) and the double points of C̃0 which separate

them.

(ii) Any irreducible component Y of C̃0 is either equal to σ(Y ) or disjoint from

σ(Y ).

(iii) An irreducible component Y of C̃0 is equal to σ(Y ) if and only if it contains

a fixed point of σ. The automorphism induced by σ on it is then non-trivial.

We call the irreducible components satisfying (iii) components on the spine of

C̃. In the notation of the construction, these are precisely the components

Y1, . . . , Yr. From the construction we also see that each of these corresponds to

an integer n`.

Since s = s̃|Γ, and |Γ| > 3, the stable extension (C, s) of (C, s) can be obtained

from (C̃, s̃) as the contraction in the sense of Definition 4.4.

An irreducible component of C0 whose proper transform in C̃0 is a component Y`

on the spine of C̃ is again denoted by Y` and is called a component on the spine

of C. We refer to (C, s) as the stable model for f and to (C̃, s̃) as the extended

stable model for f .

Remark 4.7. Take the postcritical marking s : Γ ↪→ C(K) and let Γ′ denote

a maximal subset of Γ such that for the marking s′ := s|Γ′ : Γ′ ↪→ C(K), the

10
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reductions s′(γ) of the K-valued points s′(γ) are pairwise distinct. If |Γ′| ≥ 3,

then the stable extension (C′, s′) is a smooth stable marked curve with a single

irreducible component in the closed fibre C′0. Furthermore, by uniqueness of

stabilisation and the above construction, we see that any stable marked curve

(C, s) over R with the same generic fibre C is a stabilisation of (C′, s′), unique

up to unique isomorphism.

As the last ingredient in this section, consider the quotient C̄ := C̃/〈σ〉. The

projection morphism p : C̃ � C̄ induces a marking s̄ : Γ̃/〈σ〉 ↪→ C̄(R) sending

γ̄ := {γ, σ(γ)} to s̄(γ̄) := p ◦ s(γ).

Proposition 4.8 ([7, Prop. 7.7, 6.2]).

(i) The morphism f extends to a unique morphism f : C̃ → C and induces an

isomorphism C̄ = C̃/〈σ〉 ∼−→ C.

(ii) The pair (C̄, s̄) is a stable marked curve over S.

(iii) For any double point x0 of C̃0 which is fixed by σ and where C̃ is étale

locally isomorphic to SpecR[y, z]/(yz− πr) for some r > 0, the quotient C̄
is étale locally isomorphic to SpecR[u, v]/(uv − π2r) at p(x0).

5 Dual Trees

Let (C, s) be the stable extension of a smooth marked curve (C, s) over K as in

the previous section. We continue to follow [7, Sections 5-7].

Definition 5.1. The dual tree of the closed fibre C0 of C is a finite graph

T = (VT , ET ) where each vertex t ∈ VT corresponds to a unique irreducible

component of C0 and each edge (t, t′) ∈ ET corresponds to the unique singular

point where the two components represented by t and t′ intersect. The dual

tree is in fact a tree because C has genus zero.

The marking s0 : Γ ↪→ C0(k) induces a map s : Γ → VT where γ is sent to

the vertex corresponding to the unique irreducible component Y in C0 with

s0(γ) ∈ Y (k). This map is not injective because the corresponding irreducible

components can (and some must) each contain more than one marked point.

Remark 5.2. The stability condition 4.1.(iii) on (C, s) translates to a stability

condition on T : at each vertex t ∈ VT there are at least three objects which are

either markings s(γ) for γ ∈ Γ or edges (t, t′) ∈ ET .

Let f be a stable quadratic pcf morphism over K. Let (C, s) and (C̃, s̃) be the

stable model and the extended stable model for f , and let T and T̃ denote

11
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their respective dual trees. Mapping each irreducible component of C0 to its

proper transform in C̃0 defines an injection VT ↪→ VT̃ of the corresponding

vertices in the dual trees. Identify VT with its image in VT̃ and call it the set

of vertices which survive in T . This induces a map s : Γ→ VT ⊂ VT̃ described

below. Furthermore, the automorphism σ on C̃ induces an involution σ on T̃

which is again compatible with the markings in the sense that σ ◦ s̃ = s̃ ◦ σ.

Let t1, . . . , tr ∈ VT̃ denote the vertices representing the irreducible components

Y1, . . . , Yr on the spine of C̃.

Proposition 5.3 ([7, Prop. 5.5 (a),(c) and Prop. 6.3 (a)-(d)]).

(i) A vertex t ∈ VT̃ survives in T if and only if there are at least three objects

which are either markings s̃(γ) with γ ∈ Γ at t or connected components

of T̃ \ {t} containing such markings.

(ii) The map s : Γ → VT ⊂ VT̃ is given as follows: For any γ ∈ Γ the s(γ) is

the unique vertex in VT with minimal distance to s̃(γ) in T̃ . In particular,

if s̃(γ) survives in T , then s(γ) coincides with s̃(γ).

(iii) The fixed points of σ on VT̃ are precisely the vertices t1, . . . , tr.

(iv) The vertices t1, . . . , tr are distinct, connected in the given order by a string

of edges, and satisfy s̃(i0) = t1 and s̃(j0) = tr.

(v) All other vertices and edges come in pairs of two σ-conjugates.

(vi) Let T̃ /〈σ〉 denote the graph whose set of vertices is VT̃ /〈σ〉, and where two

vertices {t, σ(t)} and {t′, σ(t′)} are joined by an edge if and only if t is

joined by an edge to t′ or to σ(t′). Then the dual tree of C̃/〈σ〉 is naturally

isomorphic to T̃ /〈σ〉.

In analogy to the irreducible components, we call t1, . . . tr the vertices on the

spine of T̃ and those vertices among t1, . . . , tr which survive in T are called

vertices on the spine of T .

Recall from the previous section the quotient C̄ := C̃/〈σ〉 and the map τ̃ : Γ̃→ Γ

which induces an isomorphism Γ̃/〈σ〉 ∼−→ Γ. Combining this with Propositions

4.8 (i) and 5.3 (vi) and the map s : Γ → VT ⊂ VT̃ described in Proposition

5.3 (ii), we obtain a surjective map τ̃ : VT̃ � VT̃ /〈σ〉
∼−→ VT which sends s̃(γ)

to s(τ̃(γ)), and a composite map ν : VT ↪→ VT̃ � VT . All in all, we have the

following diagram which commutes everywhere except for the leftmost square,

where the rule is given by Proposition 5.3 (ii)
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VT VT̃ VT̃ VT̃ /〈σ〉 VT

Γ Γ̃ Γ̃ Γ̃/〈σ〉 Γ

ν

σ ∼

s s̃ s̃ s̄ s

σ ∼

τ

Abbreviate the marked vertices on T as Pn := s(in) and Qn := s(jn) for n ≥ 1

and on T̃ as P̃n := s̃(in) and Q̃n := s̃(jn) for n ≥ 0. The vertices Pn and Qn

can be constructed from P̃n and Q̃n by the rule for s : Γ → VT ⊂ VT̃ from

Proposition 5.3, and the map τ̃ : VT̃ � VT sends P̃n to Pn+1 and Q̃n to Qn+1.

The marked vertices P̃0 and Q̃0 are precisely the first and last vertices t1 and

tr respectively, on the spine of T̃ .

Lemma 5.4 ([7, Lemma 7.10]).

(a) Any vertex strictly between P̃0 and Q̃0 survives in T .

(b) If P̃0 6= Q̃0, then P̃0 survives in T unless one of the following happens in T̃ :

(i) there is only one edge at t1 and the only other markings at t1 are s(γ)

and s(σ(γ)) with γ ∈ Γ and σ(γ) /∈ Γ or

(ii) there are no other markings at t1 and the connected components of

T̃ \ {t1} are precisely that containing Q̃0 and two others S and σ(S)

where s−1(σ(S)) ∩ Γ = ∅.

6 Worked Example

Consider the mapping scheme Γ

i1 i2 i3 j1 j2

For the extended mapping scheme, the construction from Section 3 produces

Γ̃ = {i0, i1, i2, i3, σ(i1), j0, j1, j2} with the additional elements i0, j0 and σ(i1).

Consider a quadratic morphism (P1
K , x 7→ x2+a

x2−(a+2) , 0,∞) over K := Q(a),

where a is a root of the polynomial P (α) = α4 + 9α3 + 40α2 + 96α + 128.

This morphism has postcritical orbit Γ and the extended postcritical marking

s̃ : Γ̃ ↪→ P1
K is given by
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s̃(i0) = 0 s̃(j0) =∞

s̃(i1) = − 1
20 (a3 + 7a2 + 26a+ 64) s̃(j1) = 1

s̃(i2) = 1
8a(a2 + 5a+ 12) s̃(j2) = −1

s̃(i3) = −s̃(i2)

s̃(σ(i1)) = −s̃(i1)

The polynomial P reduces to P̄ (α) = (α+2)(α3+2α2+α−1) in characteristic 5.

Thus, in the ring of integers OK of K, the ideal (5) factors into two prime ideals,

one of which yields a discrete valuation ring R with uniformiser π = a+2. Over

the residue field, the morphism has good reduction to x 7→ 1− 2
x2 . The distinct

orders of the points s̃(γ) ∈ P1(K) are n1 := ordπ(s̃(γ)) = 0 for γ 6= i1 and

n2 := ordπ(s̃(i1)) = −1. Thus, there are two irreducible components Y1 and Y2

on the spine of the extended stable model C̃ over R. Further s̃(j1) and s̃(i2) are

both congruent to 1 modulo π, and s̃(j2) and s̃(i3) are congruent to −1 modulo

π. Replacing s̃(i1) by s̃(i1)/πn2 , the image of i1 in the closed fibre meets Y2. The

stable extension C̃ is obtained by blowing up Y1 in the two points ±1, and then

the closed fibre C̃0 comprises four irreducible components arranged as below.

The stable model C is obtained from C̃ by removing the sections s̃(i0), s̃(σ(i1))

and s̃(j0) and contracting Y2, which is the only irreducible component that

becomes unstable. Thus C0 is of the form below, and C is indeed isomorphic to

the quotient C̄ = C̃/〈σ〉.

C0

C̃0

C̄0

Y1 Y2

Y1

Ȳ2

Ȳ1

s0(j2)

s0(i3)

s0(j1)

s0(i2)

s0(i1)

s̃0(i0)

s̃0(j2)

s̃0(i3)

s̃0(j1)

s̃0(i2) s̃0(i1)

s̃0(σ(i1)) s̃(j0)
s̄0({i0})

s̄0({j1, j2})

s̄0({i2, i3})
s̄0({i1, σ(i1)})

s̄0({j0})

The associated dual trees, their markings and the maps between them are given

as follows:

P1 P̃0 P1

P2 = Q1 P3 = Q2 P̃2 = Q̃1 P̃3 = Q̃2
P2 = Q1 P3 = Q2

Q̃0 = P̃1 = σ(P̃1)
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Note that the vertex Q̃0 on the spine of T̃ does not survive in T as it satisfies

Case (i) of Lemma 5.4 (b). Also, the composite map ν : VT ↪→ VT̃ � VT maps

the vertex P1 on the spine to itself.

A maximal marking for f as in Remark 4.7 would, for example, be given by the

subset Γ′ = {i1, j1, j2}. Obtaining (C′, s′) from (C, s) by removing the sections

s(i2) and s(i3) and contracting thus unstable irreducible components, we see

that (C′, s′) is indeed a smooth stable marked curve with a single irreducible

component in the closed fibre.

7 Good Reduction and Stable Quadratic pcf

Morphisms

In this section we will show that a stable quadratic pcf morphism f over K with

good reduction reduces to a stable quadratic pcf morphism. By Fact 1.11, this

is equivalent to saying that if there exists a smooth model for f , then there is no

choice of coordinate x such that the reduction of f is of the form f̄(x) = ax±2

for any a ∈ k× and any sign.

Let (C, f, ω1, ω2, s) be a postcritically marked stable quadratic pcf morphism

over K with good reduction. Let (P1
R, fR : x 7→ ax2+b

cx2+d , 0,∞) be the smooth

model. Further, let (C, s) and (C̃, s̃) denote the stable model and the extended

stable model for f .

Suppose the reduction f̄ of f is of the form f̄(x) = ax±2 for some a ∈ k× and

some sign. Since f is stable, there are at least three elements in the postcritical

orbit Γ. Denote by s(γ) the reduction modulo π of the K-valued points s(γ),

for γ ∈ Γ, in the smooth model. Recall from Fact 1.12 that, since f has good

reduction, the reduction of the postcritical orbit of f coincides with the post-

critical orbit of f̄ . Moreover, the postcritical orbit of f̄ consists precisely of the

two critical points 0 and ∞. Therefore, the possible orders ordπ(s(γ)) for all

γ ∈ Γ \ {i0, j0} of points in the postcritical orbit of f are all nonzero. Recall

from the construction in Section 4 that the distinct components in the spine

of C̃ arise from the distinct orders of these points, and thus, so do the distinct

vertices on the spine of the dual tree T̃ of C̃. For these vertices, let the order of

the vertex be the corresponding order and the sign of the vertex be the sign of

its order.

Claim 7.1. If f̄(x) = ax2, then there exist at least two vertices on the spine of

T̃ with different signs.

Proof. Suppose contrapositively that all vertices on the spine of T̃ have the

same sign. Then either all noncritical points in the postcritical orbit reduce to

0 in the smooth model, or they all reduce to ∞. It suffices to consider only one
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of these two cases, otherwise interchange the roles of the critical points. Since

f̄(x) = ax2, we have s(in) = f̄n(0) = 0 and s(jn) = f̄n(∞) = ∞ for all n ≥ 1.

Therefore, if all noncritical points reduce to 0, then ∞ must be a fixed point of

f . In this case, we can assume that f is of the form a′x2 + 1 for some a′ ∈ K×.

By Claim 2.1, both the coefficient a′ and its inverse are integral over Z[ 1
2 ] and

thus units in R. In particular, the reduction of f , which in this coordinate is

given by the reduction of the coefficients of f , is not of the form f̄(x) = ax2.

Claim 7.2. If f̄(x) = a/x2, then there exist at least two vertices on the spine

of T̃ with different signs.

Proof. If all vertices on the spine of T̃ have the same sign (in particular, if there

is only one vertex on the spine), then again, either all noncritical points in the

postcritical orbit reduce to 0 in the smooth model, or they all reduce to ∞.

As before, by symmetry we need only consider one of these two cases. Since

f̄(x) = a/x2, we have s(i2n) = f̄2n(0) = 0 = f̄2n+1(∞) = s(j2n+1) and

s(i2n+1) = f̄2n+1(0) = ∞ = f̄2n(∞) = s(j2n) for all n ≥ 0. Therefore, if

all noncritical points reduce to 0, then the postcritical orbit of f must be the

set {0,∞, f(∞)} with 0 a fixed point of f . But this is impossible because then

0 = f(0) = f̄(0) = ∞. Thus, at least one noncritical point in the postcritical

orbit reduces to ∞ and T̃ has at least two vertices on the spine with different

signs.

In both cases f̄(x) = ax2 and f̄(x) = a/x2, let t1 and t2 denote the neighbouring

vertices on the spine of T̃ with sgn(t1) = 1 and sgn(t2) = −1.

Claim 7.3. If f̄(x) = ax2, then both t1 and t2 survive in T .

Proof. It suffices to show that t1 survives in T because the argument for t2 is

analogous interchanging the roles of P̃0 and Q̃0. All markings on the connected

component of T̃ \ {t1} containing Q̃0 correspond to points in the postcritical

orbit of strictly negative order and all markings on the connected component of

T̃ \ {t2} containing P̃0 to those of strictly positive order. Suppose that t1 does

not survive in T . By Lemma 5.4, this implies that t1 is the first vertex P̃0 on

the spine, that i0 /∈ Γ and t1 satisfies one of the cases in Lemma 5.4 (b).

Suppose Case (i) occurs. Since all markings on T̃ \ {t1} represent points of

strictly negative order, the unique marking s̃(γ) at t1 with γ ∈ Γ and σ(γ) /∈ Γ

must represent the only point in the forward orbit of 0. But then s̃(γ) marks a

fixed point s(i1) in the postcritical orbit and thus s(i1) = s(i0), contradicting

the assumption that i0 /∈ Γ.

Suppose Case (ii) occurs. Then the two connected components S and σ(S)
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contain all markings for the forward orbit of 0, again because all markings on

the connected component of T̃ \ {t1} containing Q̃0 represent points of strictly

negative order. Since f̄(x) = ax2, the postcritical orbit of f̄ comprises disjoint

forward orbits for 0 and ∞. Therefore f must be determined by equations

fm(0) = −fn(0) and fk(∞) = −f `(∞) for some m > n ≥ 0, k > ` ≥ 0 and in

particular, both in and σ(in) lie in Γ (as do j` and σ(j`)). The corresponding

markings Pn and σ(Pn) lie on S∪{t1}∪σ(S). Since there are no markings at t1,

and Pn and σ(Pn) are σ-conjugate, they must lie on the σ-conjugate components

S and σ(S), ie. Pn ∈ S and σ(Pn) ∈ σ(S) or vice versa, contradicting the

assumption that σ(S) contains no markings s(γ) for γ ∈ Γ. Hence t1 must

survive in T .

In order to prove the analogous statement for the case f̄(x) = a/x2, we make

use of an additional model:

Construction of fixed point models

Let f̄(x) = ax±2 for some sign. First, we construct a fixed point ξ of fR:

The scheme of fixed points of a quadratic morphism is finite and flat over the

base. After possibly enlarging the base field k, there exists a fixed point in the

closed fibre which is not a critical point and after possibly extending the base

ring R, this fixed point can be lifted to a fixed point ξ of the whole scheme by

flatness. The image ξK of ξ in the generic fibre has order zero with respect to

the uniformiser π because in the closed fibre ξ does not meet a critical point. In

particular ξK cannot lie in the postcritical orbit of f , since all such points have

nonzero order. Furthermore ξ and σ(ξ) are fibrewise distinct because the only

fixed points of σ are the critical points.

In the smooth model, the reduction of at least two of the points s(i1), s(i2), s(j1),

s(j2) ∈ C′(K) must be distinct, namely s(i1) and s(j1) for f̄(x) = ax2 and s(i1)

and s(j2) for f̄(x) = a/x2. Let i and j denote the corresponding indices in Γ

and choose new symbols k1 and σ(k1) corresponding to ξ and σ(ξ) respectively.

Set Γ′ := {i, j, k1} and Γ̃′ := Γ′ ∪ {σ(k1)} and let (C′, s′) and (C̃′, s̃′) denote the

smooth stable Γ′-marked curves extending (C, s′) and (C, s̃′). Further, define

Γ′′ := Γ ∪ {k1} and Γ̃′′ := Γ̃ ∪ {k1, σ(k1)} and let (C′′, s′′) and (C̃′′, s̃′′) be

the stable extensions of (C, s′′) and (C, s̃′′) respectively. Then the fixed point

models (C′, s′) and (C̃′, s̃′) can be obtained as the contractions of (C′′, s′′|Γ′) and

(C̃′′, s̃′|Γ̃′), and the closed fibres of both C′ and C̃′ each comprise one irreducible

component C̃′0 ∼= C′0. This yields the following commutative diagram, where all

unmarked arrows are contractions:
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C′ C̃′ C′

C′′ C̃′′ C′′

C C̃ C

f

f

f

Remark 7.4. Since ξ does not collide with the two critical points after reduc-

tion, the sections s(σ(k1)) and s(k1) have ordπ(s(k1)) = 0 = ordπ(s(σ(k1)))

unequal to ordπ(s(γ)) for all γ ∈ Γ̃. Thus, the (extended) fixed point model C̃′′

contains precisely one more irreducible component Y ∼= C̃′0 on the spine and Y

lies strictly between two irreducible components Y1 and Y2 represented by the

neighbouring vertices t1 and t2 on the spine of T̃ with different signs. Since the

only markings at the vertex representing Y in T̃ ′′ are s̃′′(k1) and s̃′′(σ(k1)), and

k1 and σ(k1) are not in Γ̃, this vertex does not survive in T̃ or in T , and C̃ is

obtained from C̃′′ by contracting precisely Y .

Claim 7.5. If f̄(x) = a/x2, then both t1 and t2 survive in T .

Proof. Let t denote the vertex in T̃ ′′ representing the additional irreducible

component Y in the fixed point model. By the above remark t lies precisely

between t1 and t2 in T̃ ′′ and thus, in particular, survives in T ′′ by Lemma 5.4

(a). Since the fixed point and its σ-conjugate do not collide with each other or

any point in the postcritical orbit after reduction, they are not moved away from

Y and thus at t there are precisely the two markings k1, σ(k1) and two edges

(t, t2) and (t1, t). Suppose first that precisely one of t1, t2 survives in T ′′, say

t2 (otherwise interchange the roles of P̃0 and Q̃0). Lemma 5.4 (b) then implies

that t1 is the first vertex on the spine, that i0 /∈ Γ and T̃ ′′ is of the form

σ(S̃)
t1

S̃

k1 = σ(k1) = t

t2

. . .

ã ≥ 0 ã ≥ 0

1

1

where either ã = 0 and S̃ = σ(S̃) comprises the vertex t1 with markings

s(γ), s(σ(γ)) according to Case (i), or ã > 0 and S̃, σ(S̃) are connected com-

ponenents as in Case (ii). The rest of the tree at t2 is not depicted.
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Section 7 Good Reduction and Stable Quadratic pcf Morphisms

Since f(s(k1)) = s(k1), the vertex t is mapped to itself under the composite

T̃ ′′ � T̃ ′′/〈σ〉 ∼−→ T ′′. All markings on the northern hemitree (with respect to t)

arise from points with strictly positive order and all markings on the southern

hemitree from points with strictly negative order. Further, the orders of the

points in the postcritical orbit have alternating sign since f̄(x) = a/x2. Thus,

the northern and southern hemitrees are switched under T̃ ′′ � T̃ ′′/〈σ〉 ∼−→ T ′′.

It follows that T ′′ is isomorphic to

t̄2

t

t̄1 S̄
ã

1

1

On the other hand, T ′′ can be obtained from T̃ ′′ by stabilisation, where t and

t2 survive, the components σ(S) and t1 are contracted, and S̃ is moved to t

(possibly contracted). Thus T ′′ is of the form

t S

t2

a ≥ 0

1

Comparing these two, we deduce that T ′′ is of the form

t · S′

t2 S

a′ ≥ 01

1

ã

and T̃ ′′ is then

σ(S̃′)
t1

S̃′

t

σ(S̃)
t2

S̃

ã′ 1 1 ã′

1

1

ã ã
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Section 7 Good Reduction and Stable Quadratic pcf Morphisms

This implies that T ′′ isomorphic to

t̄2 S̄

t

t̄1 S̄′

ã

1

1

1 ã′

and thus T ′′ equal to

t S

t2 S′

ã1

1
1 ã′

Repeating these arguments, by induction T ′′ contains a subtree of the form

t
r1 r2 rn−1 rn

t2
r′1 r′2 r′n−1 r′n

1 1 1

1

1 1 1

for every n ≥ 1, which is impossible for large enough n because f is postcritically

finite. Therefore t1 must survive in T ′′ and thus in T .

Suppose neither of t1, t2 survives in T ′′. Then an analogous argument shows

that T ′′ contains a subtree of the form

r1 r2 rn−1 rn

t

r′1 r′2 r′n−1 r′n

1
1 1

1

1 1

for every n ≥ 1, which is also impossible for large enough n, finishing the

proof.

Claim 7.6. In either case f̄(x) = ax2 and f̄(x) = a/x2, the vertices t1 and t2

cannot both survive in T .

Proof. Let x0 denote the singular point in C represented by the edge (t1, t2) in

T and where the irreducible components Y1 and Y2 intersect, and let x̃0 denote

the corresponding point in C̃ represented by (t1, t2) in T̃ . By construction of the

fixed point models C̃′′ and C′′, the additional component Y in C′′ is contracted

to x0 via C′′ � C and in C̃′′ to x̃0 via C̃′′ � C̃, so x̃0 is mapped to x0 via C̃ � C
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and this contraction is a local isomorphism at x0 and x̃0. On the other hand,

since Y is mapped to itself via C′′ ↪→ C̃′′ � C′′, the point x0 is mapped to itself

via C ↪→ C̃ � C and thus the projection C̃ � C̃/〈σ〉 ∼−→ C also maps x̃0 to x0. By

Proposition 4.8 (iii), this implies that C̃ is given locally at x̃0 by the equation

xy = πr for some r > 0 and C by the equation uv = π2r at x0. But this is

impossible because locally at these two points C̃ and C are isomorphic and these

equations are not equivalent for r > 0. Therefore, the vertices t1 and t2 cannot

both survive in T .

Theorem 7.7. A quadratic pcf morphism f over K with good reduction is stable

if and only if the reduction of f is stable.

Proof. If the reduction of a quadratic pcf morphism f is stable, then clearly so

is f . Conversely, if f reduces to x 7→ ax±2 for some sign, then the vertices t1

and t2 both survive in T by Claims 7.3 and 7.5, which is impossible for these

models by Claim 7.6.

8 Good Reduction and the Composite Map ν

Let f be a stable quadratic pcf morphism over K with stable model C, extended

stable model C̃ and dual trees T and T̃ . Let ν : VT ↪→ VT̃ � VT be the composite

map introduced in Section 5.

Proposition 8.1. The composite map ν has a fixed point on the spine of T if

and only if f has good reduction.

Proof. Suppose t is a vertex on the spine which is mapped to itself via ν. Then

t corresponds to an irreducible component Y on the spine of the closed fibre C0,

on which σ induces a non-trivial automorphism. Since f : C̃ → C is quasifinite,

the induced rational map f : C 99K C has degree one or two on each irreducible

component of the closed fibre. Since t is mapped to itself under ν, so is Y via

the corresponding map C ↪→ C̃ � C and thus f restricts to a morphism on Y .

Since σ is non-trivial on Y , this morphism has degree two, and (C′, fR) with

generic fibre C and closed fibre Y is a smooth model for f .

Conversely, if f has good reduction, then by Theorem 7.7, the reduction is

stable and thus, in the smooth model (C′, fR) for f at least three points in

the postcritical orbit remain distinct after reduction. Thus, we may choose a

maximal marking s′ : Γ′ ↪→ C′ as in Remark 4.7 such that (C′, s′) is a smooth

stable marked curve. Since C′ and C have the same generic fibre C, the stable

model (C, s) is the stabilisation of (C′, s) by Remark 4.7 and so the following

diagram commutes:
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Section 8 Good Reduction and the Composite Map ν

C C̃ C

C′ C̃′ C′
κ f

κ f

Since fR extends f to C′, the restriction of fR to the closed fibre C′0 ∼= Y coincides

with the restriction of the rational map f : C 99K C to Y in the sense of the

diagram above. Therefore, Y is mapped to itself via the composite C ↪→ C̃ � C
and equivalently, the vertex t representing Y in the dual tree T is mapped to

itself via ν. Moreover, fR has degree two on Y and thus, the vertex t must lie

on the spine of T .

We refer to a fixed point of ν on the spine as a vertex of good reduction.

Lemma 8.2. If there exists a vertex of good reduction, then it is unique.

Proof. As shown in the proof of Proposition 8.1, a vertex of good reduction

represents the smooth model, which is unique up to units in R. A change of

vertices however, corresponds to a change of coordinates by some power of the

uniformiser π. Thus, if a vertex of good reduction exists, then it is unique.

Lemma 8.3. If f has a fixed point in the postcritical orbit which is marked at

a vertex t on the spine of T̃ , then t is a vertex of good reduction.

Proof. Let ω be a critical point of f and let n ≥ 1 be minimal such that fn(ω) is

a fixed point of f with marking at t. Without loss of generality suppose ω = ω1.

If n = 1, then f(f(ω1)) = f(ω1) implies that ω1 is a fixed point, thus t = P̃0 and

i0 ∈ Γ. If n > 1, then fn−1(ω1) = σ(fn(ω1)) 6= fn(ω1) is also in the postcritical

orbit of f and in T̃ , there are at least two markings at t indexed by in, in−1 ∈ Γ.

In both cases, the vertex t must survive in T by Lemma 5.4. Since t lies on the

spine of T̃ by assumption, it also lies on the spine in T . On the other hand,

f(fn(ω)) = fn(ω) implies that t is mapped to itself via VT̃ � VT̃ /〈σ〉
∼−→ VT

and thus, also by the composite map ν. Therefore f has good reduction by

Proposition 8.1.

Remark 8.4. As a special case of Lemma 8.3, if one of the critical points is a

fixed point, then f has good reduction.

Lemma 8.5. If for some n > 0, the nth iterate νn has a fixed point on the

spine, then fn reduces to a morphism of degree 2k for some 0 < k 6 n.
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Proof. If νn has a fixed point on the spine, then the corresponding irreducible

component Y is mapped to itself by the nth composite of C ↪→ C̃ � C, which

is a composite of maps of degree 1 or 2, since C̃ � C̃/〈σ〉 ∼−→ C has degree 1 or

2 on each irreducible component. Thus, the nth composite is of degree 2k for

some 0 6 k 6 n. Since σ is non-trivial on Y , this map must have even degree

and thus k > 0.

9 Good Reduction and Strictly Preperiodic Points

Has anyone ever noticed that strictly preperiodic points are points of no return?

Let Γ be the postcritical orbit of a stable quadratic pcf morphism over K with

good reduction to f̄ . Since f is stable, the reduction f̄ is also stable by Theorem

7.7. Let Γ̄ denote the postcritical orbit of f̄ , and consider both Γ and Γ̄ as

mapping schemes with the maps τ and τ̄ induced by f and f̄ respectively, and

write Γ = {ik, jk | k > 1} and Γ̄ = {ı̄k, ̄k | k > 1}. The reduction map induces

a map p : Γ→ Γ̄, i 7→ ı̄ and since f has good reduction, we have p ◦ τ = τ̄ ◦ p as

well as p ◦ σ = σ ◦ p.

The isomorphism classes of finite mapping schemes can be classified as follows:

Classification 9.1 ([7, Classification 2.3]).

(a) All relations result from two relations in = σ(in+k) and jm = σ(jm+`) with

k, ` > 1 and n,m > 0.

(b) All relations result from two relations in = σ(jm+`) and jm = σ(in+k) with

k, ` > 1 and n,m > 0.

(c) All relations result from two relations in′ = σ(jm′) and in = σ(in+k) with

0 6 n′ < n and m′ > 0 and k > 1 and (m′, n′) 6= (0, 0).

Definition 9.2. A loop in a postcritical orbit is the set of all periodic points in

the forward orbit of a critical point. A spoke is the set of all strictly preperiodic

points in the forward orbit of a critical point. The length of a spoke is its

cardinality, and we call a spoke trivial if it has length 0.

Type (a) mapping schemes consist of two disjoint loops of respective periods k

and ` with disjoint spokes of respective lengths n and m. Type (b) mapping

schemes consist of one loop of period k+` with two disjoint spokes of respective

lengths n and m. Type (c) mapping schemes consist of one loop of period k and

two disjoint spoke segments of respective lengths n′ and m′ which merge into a

common spoke segment of length n − n′ > 0. In particular, the critical points

are always strictly preperiodic in Type (c) mapping schemes.
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Section 9 Good Reduction and Strictly Preperiodic Points

The reduction map sends periodic points to periodic points. Therefore, if both

critical points are in Γ and thus periodic, then so are their images in Γ̄, and

the period of the reduced points divides the period of the original ones. So

in this case Γ̄ consists of either one loop containing both critical points, or of

two disjoint loops for each critical point. If, however, one of i0, j0 is strictly

preperiodic, it is not immediately clear what the structure of the reduced orbit

Γ̄ is.

Recall that for any point P ∈ C(K) and ω a critical point, we have f(P ) = f(ω)

if and only if P = ω. Thus, a critical point is strictly preperiodic if and only

if its image under f is, and equivalently, if its image is a spoke point. When

necessary, we refer to the spoke and loop comprising the forward orbit of i1 as

the i1-spoke and the i1-loop. Similarly, we speak of the j1-spoke and j1-loop.

Definition 9.3. We call the points in and jm for Types (a), (b) and in, in′ and

jm′ for Type (c) in the defining relations the defining points of Γ. We refer to

all other points as nondefining points.

Remark 9.4. For any mapping scheme Γ, the points whose σ-conjugates also

lie in Γ, ie. the points in the set Γ ∩ σ(Γ), are precisely the defining points and

their σ-conjugates. By definition, each defining point is one of the following

types: (i) the last (strictly preperiodic) point on a spoke, (ii) critical, or (iii)

the last point before a common spoke segment.

In Case (i), the σ-conjugate of the point is periodic and nondefining. In Case

(ii), the point is periodic or Γ is of Type (c) and one spoke is a subset of the

other. In Case (iii), Γ is of Type (c) and the σ-conjugate of the point is also a

defining point of Type (iii).

Moreover, a critical point lies in Γ if and only if it is a defining point, and

defining points lie on loops only if they are critical.

Suppose the i1-spoke has length n > 1, so the defining point in is the last strictly

preperiodic point in the forward orbit of i0.

Claim 9.5. If in does not reduce to either of the critical points, then the length

of the i1-spoke is preserved after reduction.

Proof. Depending on the orbit type, the point in satisfies either σ(in) = in+k,

or σ(in) = jm for some k,m ≥ 1. In either case, in is a Type (i) defining point

and thus, in and σ(in) are distinct points, which both lie in the postcritical

orbit, and σ(in) is periodic. If in does not reduce to either critical point, then

ı̄n is not fixed by σ. Thus ı̄n and σ(̄ın) are also distinct points which both lie in

Γ̄, and σ(̄ın) is periodic because σ(in) is. Since τ̄ is injective on the loops, this

implies that ı̄n is strictly preperiodic, and thus, so are ı̄1, . . . , ı̄n−1.
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Let m > 0 denote the length of the j1-spoke in Γ, so jm+1 is periodic.

Claim 9.6. If in reduces to a noncritical point, then jm cannot reduce to ı̄0.

Proof. If ̄m = ı̄0, then ̄m+1 = ı̄1 is periodic and thus, so is ı̄n. But this is

impossible because ı̄n is strictly preperiodic by Claim 9.5.

Claim 9.7. If in and jm do not both reduce to the same critical point, then

each spoke reduces either to a spoke of the same length, or to a loop.

Proof. If neither of in, jm reduce to a critical point, then both spoke lengths are

preserved by Claim 9.5. If in does not reduce to a critical point but jm does,

then the length of the i1-spoke is preserved by Claim 9.5, the point jm reduces

to ̄0 by Claim 9.6, and ̄0 is periodic, so the j1-spoke reduces to a loop. The

case where ̄m is noncritical and ı̄n is critical is analogous interchanging i1 and

j1. If in reduces to ı̄0 and jm reduces to ̄0, then both critical points are periodic

in Γ̄ and thus both spokes reduce to loops. Similarly, if in reduces to ̄0 and jm

to ı̄0, then the postcritical orbit reduces to a single loop without spokes.

Remark 9.8. If in does not reduce to a critical point but jm does, then ̄0 is

periodic of period ¯̀ dividing both the period ` of the j1-loop and the length

m of the j1-spoke. Furthermore, if previously disjoint loops are identified, then

the period of ̄0 also divides the period k of the i1-loop.

If in reduces to ı̄0 and jm reduces to ̄0, and the loops in Γ̄ are disjoint, then ı̄0

has period k̄ dividing both k and the length n of the i1-spoke, and ̄0 has period
¯̀ dividing both ` and m, and max{k̄, ¯̀} > 1, since |Γ̄| ≥ 3. If there is only one

loop in Γ̄, then for the same reasons, the gcd of k and ` and thus gcd(k, `, n,m)

must be at least 3. Furthermore, in this case both n and m are strictly larger

than 1: if ı̄1 = ı̄0 is a fixed point, it cannot coincide with a loop containing ̄0.

If in reduces to ̄0 and jm to ı̄0, then the loop in Γ̄ has period dividing both k

and ` as well as m and n, and this case can also only occur if gcd(k, `,m, n) ≥ 3.

Claim 9.9. If in and jm both reduce to the same critical point, then both spoke

lengths are shorter after reduction.

Proof. It suffices to consider the case where both reduce to ̄0, otherwise in-

terchange the roles of i0 and j0. In this case, the j1-spoke reduces to a loop.

Since this loop contains the point ̄0 = ı̄n and thus also the images of all points

on the i1-loop, the postcritical orbit in the reduction is Type (b) comprising a

single loop with at most one nontrivial spoke. Further, since ı̄n is periodic, the

ı̄1-spoke has length n̄ < n.
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Remark 9.10. If in and jm both reduce to the same critical point, and the

length n̄ of the ı̄1-spoke is zero, then ı̄0 lies on the unique loop in Γ̄ and thus

ı̄0 = ̄m′ for some m′ > 0. If n̄ > 0, then the defining point ı̄n̄ in the reduction

satisfies ı̄n̄ = σ(̄m′) for some m′ > 0.

The case where two defining points reduce to the same critical point is the only

case where we obtain a defining point ı̄n̄ in the reduction which is not the image

of a defining point of the original orbit. We shall refer to this point as the new

defining point and to the case when the new defining point is noncritical, ie.

when n > n̄ > 0, as the special case.

Combining Claims 9.5 to 9.9, we have proved the following:

Proposition 9.11. The length of a spoke is preserved after reduction if and only

if the last point on the spoke does not reduce to a critical point. If two defining

points reduce to distinct critical points, then both spokes reduce to loops.

Example 9.12. As an application of Proposition 9.11, for each of the pcf

morphisms from Claim 2.1, the lengths of the spokes are preserved:

These morphisms have good reduction and in each of the three cases, in the

notation of Claim 2.1, the relevant points are given by pn
qn

for some n > 0,

with ordπ(pnqn ) = ordπ(pn) − ordπ(qn). However, we showed in each case that

ordπ(pn) = ordπ(qn) for every k > 1. Thus ordπ(pnqn ) = 0 and the defining

points do not collide with critical points after reduction.

10 Good Reduction and Dual Trees

As usual, let f be a stable quadratic pcf morphism over K with good reduction.

In the following, we analyse the dual trees for C and C̃ according to the iso-

morphism class of Γ̄. To determine the dual trees T and T̃ , we will analyse the

preimages in Γ and in Γ̃ \ Γ of points in Γ̄ under the reduction map p : Γ̃� ˜̄Γ.

Consider the dual trees T and T̃ of the stable models C and C̃ for f . Applying

Proposition 8.1 and Lemma 8.2, we know that there is a vertex of good reduc-

tion, namely the vertex t of order zero on the spine of both T and T̃ . We refer

to the connected components of T \ {t} or T̃ \ {t} as branches at t in T or T̃ ,

or simply as branches if the additional data is understood. We say a branch in

T̃ survives in T if at least one vertex on the branch survives in T .

To start with, we make some observations based on what we know about the dual

trees, the inclusion map VT ↪→ VT̃ and the surjection τ̃ : VT̃ � VT̃ /〈σ〉
∼−→ VT :
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Observations.

1. Each branch at t in T̃ contains precisely the markings of all points in Γ̃

which have the same image in ˜̄Γ after reduction. Thus, each branch in T̃

corresponds to a unique point in ˜̄Γ. This is due to the stabilisation in the

construction of the extended stable model in Section 4.

2. The stability condition on T̃ from Remark 5.2 implies that each branch at t

contains at least two markings in Γ̃. Therefore, the point ı̄ in ˜̄Γ corresponding

to a given branch in T̃ must have at least two preimages in Γ̃.

3. Similarly, each branch in T corresponds to a unique point in Γ̄ and each point

in Γ̄ corresponding to a branch in T is the image of at least two points in

Γ. We call a branch in T or T̃ associated to a critical point in Γ̄ a critical

branch, all other branches are noncritical.

4. A branch in T̃ survives in T if and only if the corresponding point in ˜̄Γ is

the image of at least two points in Γ, by definition of the inclusion VT ↪→ VT̃
together with the preceding observations.

5. Given a branch at t in T̃ corresponding to ı̄ ∈ ˜̄Γ, the images of its vertices

under the surjection τ̃ are vertices on a branch in T corresponding to τ̄ (̄ı) ∈ Γ̄.

This is due to the definition of τ̃ , Observations 1 and 3, the fact that t is

fixed under τ̃ , and because the set of points in Γ̃ which reduce to the same

point ı̄ in ˜̄Γ is mapped under f to the set of points in Γ which reduce to τ̄ (̄ı)

in Γ̄.

6. If a branch in T̃ contains no markings for points in Γ̃ \ Γ, then the branch is

isomorphic to the corresponding branch in T . This is due to the fact that the

restriction of the contraction morphism κ : C̃ → C to the intersecting compo-

nents represented by the branch is an isomorphism. Moreover, if the branch

is noncritical and associated to ı̄ ∈ ˜̄Γ, then it is disjoint from its σ-conjugate

by Proposition 5.3 (v) and isomorphic to the branch in T containing the

images of its vertices under τ̃ and thus associated to τ̄ (̄ı). Equivalently, if a

point ı̄ in ˜̄Γ corresponding to a branch in T̃ lies in Γ̄ and has no preimages

in Γ̃ \ Γ, then there is a branch corresponding to ı̄ in T which is isomorphic

to the branch in T corresponding to the point τ̄ (̄ı) in Γ̄.
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Proposition 10.1.

(i) At least two of the defining points in Γ reduce to defining points in Γ̄.

(ii) At most two points in Γ reduce to the same point on a spoke in Γ̄, and

precisely two only if the points lie on distinct spokes before reduction and

Γ̄ is of Type (c).

(iii) The images of points in Γ̃ \ Γ which reduce to points in Γ̄ are defining

points plus, in the special case 9.10, the σ-conjugate of the new defining

point. This σ-conjugate has precisely one preimage in Γ̃ \ Γ.

(iv) The defining point of a spoke has the same number of preimages in Γ̃ \ Γ

as its σ-conjugate does in Γ \ σ(Γ).

Proof. (i) By Classification 9.1, in any postcritical orbit, there are either two

defining points and they are not σ-conjugate, or there are three defining points,

two of which are σ-conjugate. Thus, it suffices to consider one defining point i

and its σ-conjugate and show that at least i reduces to a defining point in Γ̄.

Recall from Remark 9.4 that a critical point lies in the postcritical orbit if and

only if it is a defining point. Thus, if i reduces to ı̄0 or ̄0, then ı̄ is a defining

point. Suppose both i and ı̄ are noncritical. Since both i and σ(i) are in Γ,

both ı̄ and σ(̄ı) are in Γ̄ and thus, at least one of them is a defining point in Γ̄.

If σ(̄ı) is periodic, and thus not a defining point because it is noncritical, then ı̄

is a defining point. If both ı̄ and σ(̄ı) are strictly preperiodic, then Γ̄ is of Type

(c) and both ı̄ and σ(̄ı) are defining points.

(ii) Suppose i and j are two distinct points in Γ with the same strictly preperiodic

image in Γ̄. Then both i and j are also strictly preperiodic and they must lie

on distinct spokes because otherwise, their image would be periodic. Indeed,

if i and j lie on the same spoke, then i = ik and j = ik′ for some k, k′ > 0.

Then ı̄k = ı̄k′ implies that ı̄k and ı̄k′ are periodic, contradicting the assumption.

Furthermore, ı̄ = ̄ implies that τ̄ (̄ı) = τ̄(̄) and therefore, the spoke segments

starting at i and j coincide in Γ̄, which is thus of Type (c).

(iii) Let σ(i) ∈ Γ̃ \ Γ. If σ(i) is critical, then so is its reduction and if σ(̄ı) is

in Γ̄, it is a defining point. If σ(i) is noncritical, then the σ-conjugate i ∈ Γ

is a nondefining point and reduces to ı̄ ∈ Γ̄. Thus, the point σ(̄ı) is in Γ̄ if

and only if ı̄ or σ(̄ı) is a defining point in Γ̄. If both ı̄ and σ(̄ı) are defining

points, then we are done. Otherwise one of ı̄, σ(̄ı) is periodic and the other is

a strictly preperiodic point and thus the image of a strictly preperiodic point

in′ . If ı̄ is periodic, then σ(̄ı) is a defining point and we are done. If ı̄ is strictly

preperiodic, then so is i and since i is nondefining, the spoke must be strictly

shorter, but nontrivial after reduction, which is the special case 9.10. Moreover,

ı̄ has precisely one (nondefining) preimage in Γ by (ii) because the spoke not
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containing i reduces to a loop in the special case 9.10 and hence Γ̄ is not of Type

(c). Thus, σ(̄ı) has precisely one preimage in Γ̃ \ Γ.

(iv) The σ-conjugate σ(̄ı) of this type of defining point is periodic and noncritical

by Remark 9.4. For every point σ(i′) ∈ Γ̃ \ Γ which reduces to ı̄, the point i′

is noncritical, lies in Γ, is nondefining and reduces to σ(̄ı). Conversely, every

point i in Γ \σ(Γ) which reduces to σ(̄ı) is nondefining, and noncritical because

σ(̄ı) is. Thus σ(i) lies in Γ̃ \ Γ and reduces to ı̄.

Consequence 10.2. Combining Proposition 10.1 with Observation 6, the only

type of branch in T̃ which is not necessarily isomorphic to the corresponding

branch in T containing the images of its vertices under τ̃ are the branches

corresponding to defining points and to the σ-conjugate of the new defining

point in the special case 9.10.

Lemma 10.3. If Γ̄ is of Type (a), then

(i) A spoke in Γ is either isomorphic to its image in Γ̄ or reduces to a loop.

(ii) If there is a critical branch in T̃ , then it survives in T .

(iii) The marking for a defining spoke point is moved away from t in T to a

branch in T̃ if and only if every point on the subsequent loop is marked

away from t on a branch in T and thus in T̃ .

Proof. If Γ̄ is of Type (a), then so is Γ.

(i) Since the forward orbits of the critical points are disjoint in Γ̄, the defining

points cannot both reduce to the same critical point. Thus, by Proposition 9.11,

a spoke either reduces to a loop or to a spoke of the same length. In the latter

case, by Proposition 10.1 (ii), each point in the image of the spoke has precisely

one preimage in Γ and thus, the spoke is isomorphic to its image.

(ii) Since the forward orbits of ı̄0 and ̄0 are disjoint, it suffices to analyse just

one of them, say ı̄0. By Observations 2 and 4, we need to show that if ı̄0

has more than one preimage in Γ̃, then at least two points in Γ reduce to ı̄0.

Let n̄ > 0 denote the length of the ı̄1-spoke. By (i), we have n̄ ∈ {0, n}. If

n̄ = n > 0, then ı̄0 is strictly preperiodic and thus lies in ˜̄Γ \ Γ̄ and has precisely

one preimage in Γ̃. Therefore, there is no critical branch corresponding to i0 in

T̃ in this case. If n̄ = n = 0, then i0 is periodic in Γ and ı̄0 has preimages in

Γ̃ \ Γ if and only if the loop period is reduced if and only if ı̄0 has at least two

preimages in Γ. If n̄ = 0 6 n, then in reduces to ı̄0 and the ı̄1-orbit is a loop,

which is the image of both the i1-spoke and the i1-loop. Hence, every point on

the ı̄1-loop, in particular ı̄0, has at least two preimages in Γ, namely a spoke

point and a loop point.
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(iii) From the arguments in (ii) we only need to consider the case n̄ = n > 0.

By Proposition 10.1 (ii), the defining point ı̄n on the spoke has precisely one

preimage in Γ and is thus marked at t in T . Proposition 10.1 (iv) implies that

ı̄n has preimages in Γ̃ \ Γ̄ if and only if σ(̄ın) has at least two preimages in Γ.

In terms of the dual trees, this is equivalent to the assertion by Observations 3,

4 and 5.

Lemma 10.4. If Γ̄ is of Type (c), then

(i) The spoke lengths in Γ are always preserved in Γ̄. If Γ is of Type (a) or

(b), then each point on the disjoint segments of the spoke in Γ̄ is the image

of a unique point in Γ, and each noncritical point on the common segment

of the spoke is the image of precisely two points in Γ. If Γ is of Type (c),

then the spoke in Γ is isomorphic to the spoke in Γ̄.

(ii) If Γ is not isomorphic to Γ̄, then each point on the loop in Γ̄ has at least

two preimages in Γ̄.

(iii) If there is a critical branch at t in T̃ , then it does not survive in T .

Proof. Let Γ̄ be of Type (c). Then both ı̄0 and ̄0 are strictly preperiodic and

thus at least one lies in ˜̄Γ \ Γ̄, say ı̄0. Further Γ can be of any type, with i1, j1

strictly preperiodic.

(i) Since ı̄0 and ̄0 are both strictly preperiodic, the defining points in Γ cannot

reduce to critical points. Thus, by Proposition 9.11, both spoke lengths are

preserved. The assertion for Γ of Type (a) or (b) is immediate from Proposition

10.1 (ii). Let Γ be of Type (c) with defining points in, in′ and jm′ for n > n′ > 0

and m′ > 0 and (m′, n′) 6= (0, 0). Assume n′ > m′, otherwise interchange the

roles of i0 and j0. Since in′ = σ(jm′), the disjoint spoke segments cannot be

further identified: this would only be possible if σ(̄m′) = ı̄n′ = ̄m′ , which

implies that ı̄n′ = ı̄0 or ̄m′ = ̄0. But then we would have a periodic critical

point in Γ̄, which is impossible for Γ̄ of Type (c). Therefore, the defining points

for Γ̄ are ı̄n, ı̄n′ and ̄m, and each spoke point thus has precisely one preimage

in Γ, again by Proposition 10.1 (ii).

(ii) If Γ is Type (a), then the two loops coincide after reduction, if Γ is Type (b),

then the first periodic points in+1 6= jm+1 on the loop collide after reduction

and thus, the period of the loop is strictly reduced. If Γ is of Type (c), then by

(i), the spoke is isomorphic to its image in Γ̄, and thus Γ is isomorphic to Γ̄ if

and only if the period of the loop is preserved after reduction. If the period of

the loop is not preserved, then each point on the loop has at least two preimages

in Γ.

(iii) A critical point, say ̄0 lies in Γ̄ if and only if the ̄1-spoke lies on the ı̄1-

spoke. If Γ is Type (c), then by (i), the spoke in Γ is isomorphic to the spoke
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in Γ̄. Hence ̄0 has precisely one preimage in Γ and thus is marked at t in both

T̃ and T . If Γ is of Type (a) or (b) with defining spoke points in and jm, then

n > m and ̄0 has precisely one preimage in−m in Γ and two in Γ̃ \ Γ, namely

j0 and σ(in−m).

Lemma 10.5. If Γ̄ is of Type (a) or (c), then the branches in T corresponding

to points on a loop in Γ̄ are all isomorphic.

Proof. By Lemma 10.3 (i) and Lemma 10.4 (i), the special case 9.10 cannot

occur. Thus, combining Observation 6 with Proposition 10.1 (iii) shows that

a branch in T corresponding to any nondefining point on a loop in Γ̄ maps

isomorphically to its image, which is a branch corresponding to a point on the

same loop. Recall from Remark 9.4 that a point on a loop is defining if and only

if it is critical. Since Γ̄ is not of Type (b), there is at most one critical point on a

given loop, say ı̄0. If ı̄1 = ı̄0, then we are done because there is only one branch

to consider. Otherwise, starting at ı̄1 and iterating along the loop, we find by

the above argument that each branch corresponding to a point on the loop is

isomorphic to the next, and in particular, so is the critical branch, which is the

image of the branch corresponding to ı̄k for some k > 0 with τ̄ (̄ık) = ı̄0.

Lemma 10.6. If Γ̄ is of Type (b), then

(i) Each spoke point in Γ̄ has precisely one preimage in Γ.

(ii) There is a critical branch at t in T̃ if and only if it survives in T .

Proof. If Γ̄ is of Type (b), then Γ can be of any type, as long as neither critical

point a fixed point before or after reduction. Further, this is the only type of

reduction for which the special case 9.10 can occur.

(i) Two disjoint spokes cannot reduce to a single spoke because Γ̄ has precisely

one nontrivial spoke if and only if the other critical point is periodic. If Γ is of

Type (c), then the defining point of the common spoke segment must reduce

to a periodic critical point and Γ̄ has at most one nontrivial spoke which is the

image of (part of) one of the disjoint spoke segments in Γ. Thus any spoke point

in Γ̄ has precisely one preimage in Γ.

(ii) Suppose ı̄0 lies in Γ̄. Then ı̄0 is periodic. If i0 is strictly preperiodic in Γ,

and periodic in Γ̄, then ı̄0 has at least two preimages in Γ. If i0 is periodic,

then Γ is Type (a) or (b). If Γ is Type (a), then ı̄0 has at least two preimages

because the two disjoint loops must reduce to a single loop. If Γ is Type (b) and

ı̄0 has precisely one preimage, then the defining points in Γ are i0 = jm+` and

jm, the loop length is not reduced, and jm does not reduce to ı̄0. If jm reduces

to ̄0, then ̄` = ̄m+` = ı̄0 and ı̄0 has more than one preimage in Γ. Thus jm
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cannot reduce to a critical point and thus the spoke length in Γ is not reduced.

Therefore, ı̄0 has precisely one preimage in Γ if and only if Γ is Type (b) and

isomorphic to Γ̄, in which case T is trivial. In every other case, whenever ı̄0 lies

in Γ̄, it has at least two preimages in Γ.

Remark 10.7. If Γ̄ is of Type (b) and a spoke only partially coincides with

a loop after reduction (in particular, when the special case 9.10 occurs), say

the ı̄1-spoke, then ̄0 is periodic and ̄0 = ̄m = ı̄n. Let ̄m′ be the σ-conjugate

of the new defining point in the special case 9.10, or ̄m′ = ı̄0. Then by the

same arguments as in the proof of Lemma 10.5, the branches corresponding to

the loop segment given by ̄1, . . . , ̄m′ are isomorphic. Similarly, the branches

corresponding to the loop segment given by ̄m′+1, . . . , ̄m = ̄0 are isomorphic

and they each have precisely one more marking in Γ than those corresponding to

̄1, . . . , ̄m′ . In particular, this also holds for m′ + 1 = m, in which case ı̄1 = ̄0.

In the figures below, we indicate branches in T or T̃ as follows: an edge of strictly

positive length indicates a branch with at least two markings. An edge of length

one indicates a branch with precisely two markings, and which thus comprises

precisely one edge of length one and one vertex with the two markings. An edge

of length zero means that there is only one marking and the indicated branch

thus is actually just the vertex t in disguise. Further, we keep the notation

from above, including indices, for the defining points, with the convention that

a marking of the form ik = · · · = in is an ‘empty’ marking if n < k.

In summary, the above case analysis yields the following trees for each type of

good reduction:

T

a, b > 0

ı̄1 = · · · = ı̄n ̄1 = · · · = ̄m

b

̄m+1

b

̄m+`

a

ı̄n+1
a

ı̄n+k

T̃

ı̄0 = · · · = ı̄n−1 ̄0 = · · · = ̄m−1

b

̄m+1

b

̄m+`

a

ı̄n+1
a

ı̄n+k

b

̄m
b

σ(̄m+1)

a

ı̄n

a

σ(ı̄n+k)

Type (a): These trees have branches corresponding to the two distinct loops in Γ̄

within each of which all associated branches are isomorphic. Any remaining spoke

points are marked at the vertex t. The only possibilities for critical branches are those

corresponding to ı̄n+k or ̄m+`.
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T

a > 0

ı̄1 = · · · = ı̄n
̄1 = · · · = ̄m

a

̄m+`

a ̄m+1

a ı̄n+1

a

ı̄n+k

T̃

ı̄0 = · · · = ı̄n−1 ̄0 = · · · = ̄m−1

a

̄m+`

a ̄m+1

a ı̄n+1

a

ı̄n+k

a

̄m

aσ(̄m+1)

aσ(ı̄n+1)

a

ı̄n

T

a > b > 0

ı̄1 = · · · = ı̄n′

b

̄m′

b ̄1

a ̄0

a

̄m′+1

T̃

ı̄0 = · · · = ı̄n−1

b ̄1

a ̄0

a

̄m′+1

a

̄m′

a

ı̄n′

bσ(̄1)

a

σ(̄m′+1)

Type (b): These trees have branches corresponding to a single loop comprising two

segments: one coincidence segment, which exists if a spoke is only partially identified

with the loop after reduction, and the rest of the loop. Within the segments, all

corresponding branches are isomorphic. Each branch corresponding to a point on the

coincidence segment has precisely one more marking in Γ than each branch associated

to a point on the other segment. Any remaining spoke points are marked at the vertex

t. The only possibilities for a single critical branch are those corresponding to ı̄n+k or

̄m+`. A second critical branch can then be any other branch associated to a point on

the loop.

T

a > 0 and 1 > b > 0

ı̄1 = · · · = ı̄n′ ̄1 = · · · = ̄m′

b

ı̄n = ̄m

b

ı̄n′+1 = ̄m′+1

a ı̄n+k

a

ı̄n+1

T̃

ı̄0 = · · · = ı̄n′−1

̄0 = · · · = ̄m′−1

b

ı̄n′+1

a ı̄n+k

a

ı̄n+1a

ı̄n

b

σ(ı̄n′+1)
a

σ(ı̄n+1)

b

̄m′

b
ı̄n′

Type (c): These trees have branches corresponding to a single loop and a coincidence

segment of the spoke, within each of which all branches are isomorphic. Each branch

associated to points on the spoke segment has at most two markings in Γ. The disjoint

spoke segments are marked at the vertex t. There can be at most one critical branch

in T̃ and then it is that marked either by ı̄n′ = ı̄0 or by ̄m′ = ̄0.
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Proposition 10.8. If f is a stable quadratic pcf morphism with good reduction,

then a critical point reduces to a fixed point if and only if it is a fixed point before

reduction.

Proof. Without loss of generality consider the critical point i0, otherwise inter-

change the roles of i0 and j0. Clearly, if i0 is a fixed point of f , then ı̄0 is a fixed

point of f̄ . For the converse, suppose ı̄0 is fixed and i0 is not. Since critical

values have only one preimage under τ and τ̄ , if ı̄0 = ı̄1 is fixed, the forward

orbits of the two critical points must be disjoint, ie. Γ̄ is of Type (a), and thus Γ

is also of Type (a). Further, since f is stable, Γ̄ comprises at least three points

by Theorem 7.7 and thus, there are at least two points in the forward orbit of

̄1. Each point in the forward orbit of i0 reduces to ı̄0 and since i0 is not a fixed

point, there are at least two such points in Γ. Hence, there is a critical branch in

the associated dual tree T̃ which survives in T and which in both trees contains

all markings for the points in the forward orbit of i1. On the other hand, all

points in the forward orbit of j1 are marked away from the critical branch for ı̄0

because T is Type (a). In particular, the points which reduce to ̄1 are points

of order zero, and thus are marked at, or on a branch at, the vertex t of good

reduction and marked away from j0. Therefore, T̃ contains a subtree of the

form:

P̃0

t′ P̃1

t Q̃1

Q̃0

> 0

> 0

> 0

> 0

> 0

This, however, is impossible by Theorem 8.19 in [7].

Corollary 10.9. Any morphism given by x 7→ ax2+b
cx2+d in normalised form with

0 6= bc ∈ Rπ has bad reduction or is not postcritically finite. In particular, for

ad ∈ R×, the morphism is not postcritically finite.

11 Selected Examples

For the calculations omitted from the following examples, consult the appendix.
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Example 11.1. Consider the Type (a) mapping scheme Γ with defining points

i2 = σ(i6) and j1 = σ(j3)

i1 i2 i3 i4 i5 i6 j1 j2 j3

For the extended mapping scheme, the construction from Section 3 produces

Γ̃ = {i0, i1, σ(i1), i2, σ(i2), i3, i4, σ(i4), i5, σ(i5), i6, j0, j1, j2, σ(j2), j3}.

The quadratic morphism
(
P1
K , fa : x 7→ x2− 1

2 (a2+1)

x2+a , 0,∞
)

over K := Q(a) has

postcritical orbit Γ when a is a root of the factor of degree 36 of the polynomial

derived from the equation f6
α(0) = −f2

α(0). This morphism has good reduction

to x 7→ 1− 1
2x2 over F7, with postcritical orbit Γ̄ of Type (c) with defining points

ı̄2 = σ(̄ı4) and ı̄1 = ̄0

ı̄1 = ̄0 ı̄2 = ̄1

ı̄3 = ̄2 = ı̄5

ı̄4 = ̄3 = ı̄6

All assertions in Proposition 10.1 and Lemmata 10.4 and 10.5 are satisfied, for

example, the spoke lengths are preserved and each point on the loop in Γ̄ has

several preimages in Γ. The critical branch in the dual tree T̃ does not survive

in T , the two branches in T corresponding to the points ı̄2 and ı̄3 on the loop

are isomorphic, and the points on the coinciding spoke segment are marked on

a different branch. Further, the vertex of good reduction on the dual tree is the

one marked by P1 and is indeed mapped to itself under the composite map as

in Proposition 8.1.

T

a = b = 1

P1

b

P2 = Q1

a P4 = P6 = Q3

a

P3 = P5 = Q2

T̃

P̃0

a P̃4 = P̃6 = Q̃3

a

P̃3 = P̃5 = Q̃2

a

σ(P̃4) = P̃2 = Q̃1

a

σ(P̃3) = σ(P̃5) = σ(Q̃2)

b

Q̃0 = P̃1 = σ(P̃1)

T̃ /〈σ〉 ∼= T

P1

a P3 = P5 = Q2

a

P4 = P6 = Q3

b

P2 = Q1
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Example 11.2. The Type (a) mapping scheme Γ with defining points i3 = σ(i7)

and j1 = σ(j3) given below is the postcritical orbit of the quadratic morphism(
P1
K , fa : x 7→ x2− 1

2 (a2+1)

x2+a , 0,∞
)

over K := Q(a) when a is a root of the factor

of degree 73 of the polynomial derived from the equation f7
α(0) = −f3

α(0).

i1 i2 i3 i4 i5 i6 i7 j1 j2 j3

This morphism has good reduction to x 7→ x2+1
x2+ā over F25 generated by ā, with

postcritical orbit Γ̄ of Type (b) with defining points ı̄3 = σ(̄2) and ̄1 = ı̄4

ı̄1 ı̄2 ı̄3 ı̄4 = ı̄6 = ̄3

̄1 ̄2 = ı̄5 = ı̄7

Since neither defining point reduces to a critical point, both spoke lengths are

preserved as stated in Proposition 9.11. As in Lemma 10.6, each point on the

spoke in Γ is marked at the vertex of good reduction, which is mapped to itself

under the composite map and is the vertex of order zero as it should be according

to Lemma 8.2. Since the spokes in Γ are isomorphic to the spokes in Γ̄, there is

only one loop segment and thus, the branches at t are isomorphic.

T

a = 1

P1 = P2

P3 = Q1

a

P4 = P6 = Q3

a

P5 = P7 = Q2

T̃

P̃0 = P̃1 P̃2 = Q̃0

a
P̃4 = P̃6 = Q̃3

a

P̃5 = P̃7 = Q̃2

a

Q̃1 = σ(P̃4) = P̃6

a

P̃3 = σ(P̃5) = σ(Q̃2)

T̃ /〈σ〉 ∼= T

P1 = P2

P3 = Q1

a

P5 = P7 = Q2

a

P4 = P6 = Q3
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Example 11.3. In contrast, consider the Type (c) mapping scheme Γ with

defining points i2 = σ(i3) and j2 = i0

j1 j2 i1 i2 i3

For a root a of the polynomial P (α) = 2α6−6α5 +10α4−8α3 +2α2 +2α−1, the

quadratic morphism
(
P1
K , fa : x 7→ x2−1

x2+a , 0,∞
)

over K := Q(a) has postcritical

orbit Γ. This morphism has bad reduction over F5 with ı̄1 = ı̄3 = ̄1 = σ(̄ı2).

The associated dual trees are as follows (all edges have length one, dotted edges

are those which do not survive in T ):

T̃

P̃0 = Q̃0

P̃2 P̃3

σ(P̃1) = σ(Q̃1) P̃1 = Q̃1

T

P2 = Q2

P3

P1 = Q1

T̃ /〈σ〉 ∼= T

P1 = Q1

P3

P2 = Q2

P2 and Q2 are marked at the vertex t of order zero. The vertex marked by

P3 is a fixed point of the composite map, but does not lie on the spine of T .

The second iterate of the composite maps sends t to itself, and as predicted

in Lemma 8.5, the degree 4 morphism f2 reduces to the quadratic morphism

x 7→ −2(x2 + 2)−1 over F5, with postcritical orbit determined by ı̄1 = σ(̄ı2) and

̄1 = ı̄0. Further, this provides a counterexample to the properties found for

trees of good reduction, as the markings on T are not distributed in a fashion

that reflects the postcritical orbit: the branch at t contains markings both for

the loop point and for two spoke points, and t is marked by non-consecutive

spoke points.
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Example 11.4. Another example for bad reduction is the Type (a) mapping

scheme Γ with defining points i4 = σ(i8) and j0 = j2

i1 i2 i3 i4 i5 i6 i7 i8 j1 j2

For a root a of the factor of degree 60 of the polynomial derived from the

equation f8
α(0) = −f4

α(0), the quadratic morphism
(
P1
K , fa : x 7→ x2+a

x2−1 , 0,∞
)

over K := Q(a) has postcritical orbit Γ. This morphism has bad reduction over

F3. Further, we have ordπ(i3) = 3, ordπ(i6) = 2 and ordπ(ik) = 0 = ordπ(j1)

for k 6= 3, 6, and the following trees:

T̃ P̃0 = P̃3 = σ(P̃3)

P̃6 = σ(P̃6)

P̃8 = σ(P̃1) σ(P̃7) σ(Q̃1)

Q̃2

Q̃1 P̃7 P̃1 = P̃4

P̃2 = P̃5 σ(P̃2) = σ(P̃5)

T

P3 = P6

Q1 P7 P1 = P4

Q2

P8 P2 = P5

T̃ /〈σ〉 ∼= T

P1 = P4

P7

Q1

Q2 P8 P2 = P5

P3 = P6

Here, Q2 is marked at the vertex t of order zero. The composite map has no

fixed vertex at all. However, the second iterate maps t to itself, and again as

in Lemma 8.5, the degree 4 morphism f2 reduces to the quadratic morphism

x 7→ 2x2 + 1 over F3, with postcritical orbit determined by ı̄1 = σ(̄ı2) and

̄0 = ̄1. On the other hand, this is another counterexample to the properties

found for trees of good reduction: each branch at t in T contains markings of

both loop and spoke points, and no two branches are isomorphic. In fact, the

trees do not seem to reflect the dynamics at all.
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Appendix - SageMath Calculations

Example 11.1 x 7→ x2− 1
2 (a2+1)

x2+a with i2 = σ(i6) and j1 = σ(j3)

sage: Qx.<x> = PolynomialRing(QQ,1);

sage: P1Qx.<u,v> = ProjectiveSpace(Qx,1);

sage: EndP1Qx = End(P1Qx);

sage: fx=EndP1Qx([u^2-1/2*(x^2+1)*v^2,u^2+x*v^2]);

sage: (fx.nth_iterate(P1Qx(1,0),1)[1])*(fx.nth_iterate(P1Qx(1,0),3)[0])

== -(fx.nth_iterate(P1Qx(1,0),3)[1])*(fx.nth_iterate(P1Qx(1,0),1)[0])

True

sage: p2 = fx.nth_iterate(P1Qx(0,1),2)[0];

sage: q2 = fx.nth_iterate(P1Qx(0,1),2)[1];

sage: p6 = fx.nth_iterate(P1Qx(0,1),6)[0];

sage: q6 = fx.nth_iterate(P1Qx(0,1),6)[1];

sage: (p2*q6+q2*p6).factor();

(-1/8796093022208) * (x - 1) * x^2 * (x + 1)^37 * (x^2 + 1) * (x^3 +

5*x^2 - x + 3) * (x^7 + 9*x^6 + 15*x^5 - 33*x^4 + 43*x^3 - 29*x^2 +

13*x - 3) * (x^36 + 36*x^35 + 598*x^34 + 5804*x^33 + 34433*x^32 +

116480*x^31 + 150928*x^30 - 202912*x^29 - 140028*x^28 + 2084752*x^27 -

1771960*x^26 - 6163184*x^25 + 23623188*x^24 - 33435968*x^23 -

864336*x^22 + 120029728*x^21 - 336166274*x^20 + 612801016*x^19 -

872157916*x^18 + 1032386632*x^17 - 1047543538*x^16 + 926691456*x^15 -

721763472*x^14 + 497732768*x^13 - 304687820*x^12 + 165609168*x^11 -

79774328*x^10 + 33923472*x^9 - 12657052*x^8 + 4108224*x^7 -

1146800*x^6 + 271328*x^5 - 53431*x^4 + 8580*x^3 -1098*x^2 + 108*x - 7)

sage: K.<a> = NumberField(x^36 + 36*x^35 + 598*x^34 + 5804*x^33 +

34433*x^32 + 116480*x^31 + 150928*x^30 - 202912*x^29 - 140028*x^28 +

2084752*x^27 - 1771960*x^26 - 6163184*x^25 + 23623188*x^24 -

33435968*x^23 - 864336*x^22 + 120029728*x^21 - 336166274*x^20 +

612801016*x^19 - 872157916*x^18 + 1032386632*x^17 - 1047543538*x^16 +

926691456*x^15 - 721763472*x^14 + 497732768*x^13 - 304687820*x^12 +

165609168*x^11 - 79774328*x^10 + 33923472*x^9 - 12657052*x^8 +

4108224*x^7 - 1146800*x^6 + 271328*x^5 - 53431*x^4 + 8580*x^3 -

1098*x^2 + 108*x - 7)

sage: P1K.<x,y> = ProjectiveSpace(K,1); EndP1K = End(P1K);

sage: f=EndP1K([x^2-1/2*(a^2+1)*y^2,x^2+a*y^2]); f.is_morphism()

True

sage: i0 = P1K(0,1); nmax = 6;

sage: Orb0 = [0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

Orb0[k-1] = f.nth_iterate(i0,k)[0]/f.nth_iterate(i0,k)[1];

sage: Orb0[1] == -Orb0[5]

True
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sage: P = K.prime_factors(7);

sage: n=4; K(7).valuation(P[n]);

1

sage: val = [0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

val[k-1] = Orb0[k-1].valuation(P[n]);

sage: val;

[-1, 0, 0, 0, 0, 0]

sage: pi = K.uniformizer(P[n]); pi;

a

sage: R = (P[n]).residue_field(); R.order();

7

sage: imageOrb0 = [0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

imageOrb0[k-1] = R(pi^(-val[k-1])*Orb0[k-1]);

sage: imageOrb0;

[3, 1, 4, 6, 4, 6]

Example 11.2 x 7→ x2− 1
2 (a2+1)

x2+a with i3 = σ(i7) and j1 = σ(j3)

sage: Qx.<x> = PolynomialRing(QQ,1);

sage: P1Qx.<u,v> = ProjectiveSpace(Qx,1);

sage: EndP1Qx = End(P1Qx);

sage: fx=EndP1Qx([u^2-1/2*(x^2+1)*v^2,u^2+x*v^2]);

sage: (fx.nth_iterate(P1Qx(1,0),1)[1])*(fx.nth_iterate(P1Qx(1,0),3)[0])

== -(fx.nth_iterate(P1Qx(1,0),3)[1])*(fx.nth_iterate(P1Qx(1,0),1)[0])

True

sage: p3 = fx.nth_iterate(P1Qx(0,1),3)[0];

sage: q3 = fx.nth_iterate(P1Qx(0,1),3)[1];

sage: p7 = fx.nth_iterate(P1Qx(0,1),7)[0];

sage: q7 = fx.nth_iterate(P1Qx(0,1),7)[1];

sage: (p3*q7+q3*p7).factor();

(-1/309485009821345068724781056) * (x + 1)^76 * (x^2 + 1) * (x^3 +

3*x^2 - x + 1)^2 * (x^6 + 4*x^5 - 7*x^4 + 10*x^3 - 7*x^2 + 4*x - 1) *

(x^16 + 18*x^15 + 128*x^14 + 342*x^13 - 228*x^12 - 838*x^11 +

3568*x^10 - 6290*x^9 + 7622*x^8 - 6730*x^7 + 4576*x^6 - 2366*x^5 +

924*x^4 - 258*x^3 + 48*x^2 - 6*x + 1) * (x^73 + 73*x^72 + 2532*x^71 +

55316*x^70 + 849630*x^69 + 9683038*x^68 + 84061956*x^67 +

560196596*x^66 + 2838609793*x^65 + 10589280857*x^64 + 26962741152*x^63 +

38318897184*x^62 + 9420828368*x^61 + 4827571920*x^60 +

290535565600*x^59 + 422879484832*x^58 - 1226625816140*x^57 -

557015129644*x^56 + 8715198241584*x^55 - 7786173271952*x^54 -

34171450315448*x^53 + 107484566773576*x^52 - 41857454147792*x^51 -

455491395907216*x^50 + 1324988146394340*x^49 - 1258202502594364*x^48 -
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2694719517334304*x^47 + 13339021685860448*x^46 - 28139711725219664*x^45 +

31810402998837424*x^44 + 8849985463597664*x^43 -

141853581723096096*x^42 + 415287253665441070*x^41 -

854139490242326370*x^40 + 1438749202708104344*x^39 -

2097103176313052744*x^38 + 2718137082921459764*x^37 -

3183032632420318924*x^36 + 3402088834357557720*x^35 -

3341685996050000008*x^34 + 3030824424921250142*x^33 -

2546519769833105618*x^32 + 1986340820876757088*x^31 -

1440167357493769248*x^30 + 970970156611241904*x^29 -

608524070452035664*x^28 + 354098608281860320*x^27 -

190917648548574624*x^26 + 95073990908804292*x^25 -

43526468966776220*x^24 + 18196957317762480*x^23 - 6878302058829072*x^22 +

2314879145910856*x^21 - 676065407105976*x^20 + 163168313062064*x^19 -

28914441960208*x^18 + 2201996777044*x^17 + 587245021620*x^16 -

133486421728*x^15 - 111832397408*x^14 +105694642640*x^13 -

52775812656*x^12 + 19495109024*x^11 - 5802748896*x^10 + 1436598361*x^9 -

299127071*x^8 + 52345508*x^7 - 7605036*x^6 + 888926*x^5 - 77346*x^4 +

3908*x^3 + 52*x^2 - 23*x + 1)

sage: K.<a> = NumberField(x^73 + 73*x^72 + 2532*x^71 + 55316*x^70 +

849630*x^69 + 9683038*x^68 + 84061956*x^67 + 560196596*x^66 +

2838609793*x^65 + 10589280857*x^64 + 26962741152*x^63 +

38318897184*x^62 + 9420828368*x^61 + 4827571920*x^60 +

290535565600*x^59 + 422879484832*x^58 - 1226625816140*x^57 -

557015129644*x^56 + 8715198241584*x^55 - 7786173271952*x^54 -

34171450315448*x^53 + 107484566773576*x^52 - 41857454147792*x^51 -

455491395907216*x^50 + 1324988146394340*x^49 - 1258202502594364*x^48 -

2694719517334304*x^47 + 13339021685860448*x^46 - 28139711725219664*x^45 +

31810402998837424*x^44 + 8849985463597664*x^43 -

141853581723096096*x^42 + 415287253665441070*x^41 -

854139490242326370*x^40 + 1438749202708104344*x^39 -

2097103176313052744*x^38 + 2718137082921459764*x^37 -

3183032632420318924*x^36 + 3402088834357557720*x^35 -

3341685996050000008*x^34 + 3030824424921250142*x^33 -

2546519769833105618*x^32 + 1986340820876757088*x^31 -

1440167357493769248*x^30 + 970970156611241904*x^29 -

608524070452035664*x^28 + 354098608281860320*x^27 -

190917648548574624*x^26 + 95073990908804292*x^25 -

43526468966776220*x^24 + 18196957317762480*x^23 -

6878302058829072*x^22 + 2314879145910856*x^21 - 676065407105976*x^20 +

163168313062064*x^19 - 28914441960208*x^18 + 2201996777044*x^17 +

587245021620*x^16 - 133486421728*x^15 - 111832397408*x^14 +

105694642640*x^13 - 52775812656*x^12 + 19495109024*x^11 -

5802748896*x^10 + 1436598361*x^9 - 299127071*x^8 + 52345508*x^7 -

7605036*x^6 + 888926*x^5 - 77346*x^4 + 3908*x^3 + 52*x^2 - 23*x + 1)

sage: P1K.<x,y> = ProjectiveSpace(K,1); EndP1K = End(P1K);
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sage: f=EndP1K([x^2-1/2*(a^2+1)*y^2,x^2+a*y^2]); f.is_morphism()

True

sage: i0 = P1K(0,1); nmax = 7;

sage: Orb0 = [0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

Orb0[k-1] = f.nth_iterate(i0,k)[0]/f.nth_iterate(i0,k)[1];

sage: Orb0[2] == -Orb0[6]

True

sage: P = K.prime_factors(5);

sage: n=5; K(5).valuation(P[n]);

1

sage: val = [0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

val[k-1] = Orb0[k-1].valuation(P[n]);

sage: val;

[0, 0, 0, 0, 0, 0, 0]

sage: pi = K.uniformizer(P[n]); pi;

a^2 - 2

sage: R = (P[n]).residue_field(); R.order();

25

sage: imageOrb0 = [0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

imageOrb0[k-1] = R(pi^(-val[k-1])*Orb0[k-1]);

sage: imageOrb0;

[3*abar, 3*abar + 1, 3*abar + 2, 4, 2*abar + 3, 4, 2*abar + 3]

sage: Rz.<z> = PolynomialRing(R,1); (z^2+R(-1/2*(a^2+1)))/(z^2+R(a))

(z^2 + 1)/(z^2 + (abar))

Example 11.3 x 7→ x2−1
x2+a with i2 = σ(i3) and j2 = i0

sage: Qx.<x> = PolynomialRing(QQ,1);

sage: P1Qx.<u,v> = ProjectiveSpace(Qx,1);

sage: EndP1Qx = End(P1Qx);

sage: fx=EndP1Qx([u^2-v^2,u^2+x*v^2]);

sage: (fx.nth_iterate(P1Qx(0,1),0)[1])*(fx.nth_iterate(P1Qx(1,0),2)[0])

== -(fx.nth_iterate(P1Qx(1,0),2)[1])*(fx.nth_iterate(P1Qx(0,1),0)[0])

True

sage: p2 = fx.nth_iterate(P1Qx(0,1),2)[0];

sage: q2 = fx.nth_iterate(P1Qx(0,1),2)[1];

sage: p3 = fx.nth_iterate(P1Qx(0,1),3)[0];

sage: q3 = fx.nth_iterate(P1Qx(0,1),3)[1];

sage: (p2*q3+q2*p3).factor();

(-1) * (x + 1)^3 * (2*x^6 - 6*x^5 + 10*x^4 - 8*x^3 + 2*x^2 + 2*x - 1)

sage: K.<a> = NumberField(2*x^6-6*x^5+10*x^4-8*x^3+2*x^2+2*x-1);
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sage: P1K.<x,y> = ProjectiveSpace(K,1); EndP1K = End(P1K);

sage: f=EndP1K([x^2-y^2,x^2+a*y^2]); f.is_morphism()

True

sage: i0 = P1K(0,1); nmax = 3;

sage: Orb0 = [0,0,0];

sage: for k in range(1,nmax+1):

Orb0[k-1] = f.nth_iterate(i0,k)[0]/f.nth_iterate(i0,k)[1];

sage: Orb0[1] == -Orb0[2]

True

sage: P = K.prime_factors(5);

sage: n=1; K(5).valuation(P[n]);

1

sage: val = [0,0,0];

sage: for k in range(1,nmax+1):

val[k-1] = Orb0[k-1].valuation(P[n]);

sage: val;

[0, 0, 0]

sage: pi = K.uniformizer(P[n]); pi;

-2*a^5 + 4*a^4 - 6*a^3 + 4*a^2 - 2*a + 2

sage: R = (P[n]).residue_field(); R.order();

5

sage: imageOrb0 = [0,0,0];

sage: for k in range(1,nmax+1):

imageOrb0[k-1] = R(pi^(-val[k-1])*Orb0[k-1]);

sage: imageOrb0;

[1, 4, 1]

Example 11.4 x 7→ x2+a
x2−1 with i4 = σ(i8) and j2 = j0

sage: Qx.<x> = PolynomialRing(QQ,1);

sage: P1Qx.<u,v> = ProjectiveSpace(Qx,1);

sage: EndP1Qx = End(P1Qx);

sage: fx=EndP1Qx([u^2+x*v^2,u^2-v^2]);

sage: (fx.nth_iterate(P1Qx(1,0),0)[1])*(fx.nth_iterate(P1Qx(1,0),2)[0])

== -(fx.nth_iterate(P1Qx(1,0),2)[1])*(fx.nth_iterate(P1Qx(1,0),0)[0])

True

sage: p4 = fx.nth_iterate(P1Qx(0,1),4)[0];

sage: q4 = fx.nth_iterate(P1Qx(0,1),4)[1];

sage: p8 = fx.nth_iterate(P1Qx(0,1),8)[0];

sage: q8 = fx.nth_iterate(P1Qx(0,1),8)[1];

sage: (p4*q8+q4*p8).factor();

x * (x - 1)^2 * (x + 1)^90 * (x^3 - x^2 + 3*x - 1) * (x^4 - 3*x^3 +

6*x^2 - 4*x + 1) * (2*x^5 - 6*x^4 + 12*x^3 - 12*x^2 + 6*x - 1) * (x^15 -

8*x^14 + 36*x^13 - 114*x^12 +286*x^11 - 604*x^10 + 1120*x^9 - 1806*x^8 +
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2460*x^7 - 2712*x^6 + 2300*x^5 - 1426*x^4+ 614*x^3 - 172*x^2 + 28*x - 2) *

(x^60 - 29*x^59 + 435*x^58 - 4477*x^57 + 35434*x^56- 229387*x^55 +

1262336*x^54 - 6062841*x^53 + 25904259*x^52 - 99896366*x^51 +

351673024*x^50 - 1140514867*x^49 + 3433115464*x^48 - 9652048616*x^47 +

25479950988*x^46 - 63445828673*x^45 + 149605065128*x^44 -

335214616106*x^43 + 715880391462*x^42 - 1460959303891*x^41 +

2855580959465*x^40 - 5355800245541*x^39 + 9653111457481*x^38 -

16736747469622*x^37 + 27930251060647*x^36 - 44863923302670*x^35 +

69331772604135*x^34 - 102980562941135*x^33 + 146803936549600*x^32 -

200479385272800*x^31 + 261689608219001*x^30 - 325683896569160*x^29 +

385396674344672*x^28 - 432369975068060*x^27 + 458478473108819*x^26 -

458078701028407*x^25 + 429866479821881*x^24 - 377652656155683*x^23 +

309592145311550*x^22 - 236034665010641*x^21 + 166790438376056*x^20 -

108857643256119*x^19 + 65384044206513*x^18 - 36006141631104*x^17 +

18107343419576*x^16 - 8280889987849*x^15 + 3428240790852*x^14 -

1278441792796*x^13 +427080982024*x^12 - 127014277743*x^11 +

33388270415*x^10 - 7692731893*x^9 + 1537913771*x^8 -

263491822*x^7 + 38087869*x^6 - 4550908*x^5 + 437067*x^4 -

32397*x^3 + 1738*x^2 - 60*x + 1)

sage: K.<a> = NumberField(x^60 - 29*x^59 + 435*x^58 - 4477*x^57 +

35434*x^56 - 229387*x^55 + 1262336*x^54 - 6062841*x^53 + 25904259*x^52 -

99896366*x^51 + 351673024*x^50 - 1140514867*x^49 + 3433115464*x^48 -

9652048616*x^47 + 25479950988*x^46 - 63445828673*x^45 +

149605065128*x^44 - 335214616106*x^43 + 715880391462*x^42 -

1460959303891*x^41 + 2855580959465*x^40 - 5355800245541*x^39 +

9653111457481*x^38 - 16736747469622*x^37 + 27930251060647*x^36 -

44863923302670*x^35 + 69331772604135*x^34 - 102980562941135*x^33 +

146803936549600*x^32 - 200479385272800*x^31 + 261689608219001*x^30 -

325683896569160*x^29 + 385396674344672*x^28 - 432369975068060*x^27 +

458478473108819*x^26 - 458078701028407*x^25 + 429866479821881*x^24 -

377652656155683*x^23 + 309592145311550*x^22 - 236034665010641*x^21 +

166790438376056*x^20 - 108857643256119*x^19 + 65384044206513*x^18 -

36006141631104*x^17 + 18107343419576*x^16 - 8280889987849*x^15 +

3428240790852*x^14 - 1278441792796*x^13 + 427080982024*x^12 -

127014277743*x^11 + 33388270415*x^10 - 7692731893*x^9 + 1537913771*x^8 -

263491822*x^7 + 38087869*x^6 - 4550908*x^5 + 437067*x^4 - 32397*x^3 +

1738*x^2 - 60*x + 1)

sage: P1K.<x,y> = ProjectiveSpace(K,1); EndP1K = End(P1K);

sage: f=EndP1K([x^2+a*y^2,x^2-y^2]); f.is_morphism()

True

sage: i0 = P1K(0,1); nmax = 8;

sage: Orb0 = [0,0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

Orb0[k-1] = f.nth_iterate(i0,k)[0]/f.nth_iterate(i0,k)[1];

sage: Orb0[3] == -Orb0[7]
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True

sage: P = K.prime_factors(3);

sage: n=4; K(3).valuation(P[n]);

7

sage: val = [0,0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

val[k-1] = Orb0[k-1].valuation(P[n]);

sage: val;

[0, 0, 3, 0, 0, 2, 0, 0]

sage: pi = K.uniformizer(P[n]); pi;

104786037292341842328986063059/314592329665919799*a^59 -

109943596569680217095294890759/11651567765404437*a^58 +

14526642543155499708618215118844/104864109888639933*a^57 -

439600678020771197342783651784307/314592329665919799*a^56 +

3413865476013958638657410431481777/314592329665919799*a^55 -

42808952485951296309104652482068/620497691648757*a^54 +

117388784978522570846504182872146198/314592329665919799*a^53 -

554485738251159869884310226403278818/314592329665919799*a^52 +

2331298134232767336071580868520798150/314592329665919799*a^51 -

8851384680827995476543715938569110783/314592329665919799*a^50 +

30692741802684077620829905659450561068/314592329665919799*a^49 -

32695900796268596612058355473477147731/104864109888639933*a^48 +

291062017032148725190670432740705640044/314592329665919799*a^47 -

268987708155806177217751595959080171646/104864109888639933*a^46 +

700472320007862472834720603435608399497/104864109888639933*a^45 -

5163316161649693805857058399115298055984/314592329665919799*a^44 +

12017312956498255931070302441112375838702/314592329665919799*a^43 -

681662048729280387156580101078089941522/8066469991433841*a^42 +

18688893734574380592295510764765728466328/104864109888639933*a^41 -

113017756026553964752366878575884402202542/314592329665919799*a^40 +

72744115001640788129381312692959875338831/104864109888639933*a^39 -

404399113293024568063163550459739655652941/314592329665919799*a^38 +

80016453743623296275501321738375298688363/34954703296213311*a^37 -

1233534601759443671652429449812508980732486/314592329665919799*a^36 +

2033172918884601233633409609227134662739754/314592329665919799*a^35 -

3224283739527865919125661373271530758734139/314592329665919799*a^34 +

4916271438453089045085001626371255407719245/314592329665919799*a^33 -

7198859142667497839089166673631847204377450/314592329665919799*a^32 +

10106247638526397670563375371057128406059069/314592329665919799*a^31 -

13573874901462053689488740938328903958796520/314592329665919799*a^30 +

17399567744790951381832378869684788360987062/314592329665919799*a^29 -

7075840973778171424463541285490538270534663/104864109888639933*a^28 +

24574886929492372745244409952522113208811872/314592329665919799*a^27 -

26911854492043848664291226146530443165882989/314592329665919799*a^26 +

9262018859093357840252115499679364536574967/104864109888639933*a^25 -
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26956874496437371399967028012113062488842710/314592329665919799*a^24 +

2720962245304221651275474778450025177824872/34954703296213311*a^23 -

6919175469176681084409775464343386555049993/104864109888639933*a^22 +

16358019306825674306203766427636391033683206/314592329665919799*a^21 -

11940474026109806170284359142678523043059633/314592329665919799*a^20 +

2680839339417516312492289652277579099941164/104864109888639933*a^19 -

1659606461605193145355116138691762886192513/104864109888639933*a^18 +

940398562699098110939554527866534056468678/104864109888639933*a^17 -

485628441589878038181066953063953489463155/104864109888639933*a^16 +

682486161010260557425545807885779940761681/314592329665919799*a^15 -

32065041183550063359124192102424993516185/34954703296213311*a^14 +

4057322743339567326889772257430128497455/11651567765404437*a^13 -

37107425611833391046359309444193830524370/314592329665919799*a^12 +

11140219832361444745673155513659536065217/314592329665919799*a^11 -

2941122324767570592117068737410104449937/314592329665919799*a^10 +

676631643970479317521119551063527793056/314592329665919799*a^9 -

134173817315622895292382901193387070707/314592329665919799*a^8 +

22628057836241539220022740203475844142/314592329665919799*a^7 -

3191289312551819416440002046234679484/314592329665919799*a^6 +

122730724308080029229592511290977416/104864109888639933*a^5 -

2594345158015277956941471570778228/24199409974301523*a^4 +

2349047373176773266305403039036397/314592329665919799*a^3 -

116236784315528093007296437355182/314592329665919799*a^2 +

3614058343806609352807367913890/314592329665919799*a -

52536393720153604779545747981/314592329665919799

sage: R = (P[n]).residue_field(); R.order();

3

sage: imageOrb0 = [0,0,0,0,0,0,0,0];

sage: for k in range(1,nmax+1):

imageOrb0[k-1] = R(pi^(-val[k-1])*Orb0[k-1]);

sage: imageOrb0;

[1, 2, 2, 1, 2, 1, 1, 2]
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