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1 Introduction

It is assumed that the reader is at ease with the terminology and concepts from Commuta-
tive Algebra, for example prime ideals, noetherian rings, quotient rings, local rings, finitely
generated algebras over a ring and localisation of rings, to name a few. For an orientation,
one might find the lecture notes of Commutative Algebra [1] useful.

For the entire exposition, all rings are commutative and unitary. The aim of this
bachelor thesis is to prove the following two theorems:

Theorem. Any ring that is finitely generated over a field K, or over Z, or over any
Dedekind ring, respectively, is catenary.

Theorem. Any integral domain R that is finitely generated over a field K, or over Z,
satisfies the following:

(i) For all prime ideals p ⊂ R: ht(p) + coht(p) = dim(R).

(ii) For all maximal ideals m ⊂ R: ht(m) = dim(R).

There are two approaches to proving the first statement; one can work with complexes,
namely the Koszul complex, or — as will be pursued here — one uses regular sequences,
depth, Cohen Macaulay rings and catenary rings.

The path we will take is as follows: After introducing and examining regular sequences,
we are able to define the depth of an ideal. Then, we anchor the depth to other con-
cepts such as localisation, the height of an ideal, and the Jacobson radical. Subsequently,
we define Cohen-Macaulay rings and (universally) catenary rings, and show that Cohen-
Macaulay rings are universally catenary. This cumulates in the proof of our first theorem.
For the second theorem, one does not necessarily need to understand the previous chapters
in detail, and can thus skip to Chapter 8. At the end, we look back on our findings and
try to find some meaningful geometric interpretation of them.

Nearly all proofs in this thesis imitate the proofs found in the book by I. Kaplansky [4]
in chapter 3, pages 84-100. Said book is primarily concerned with modules, to which the
notions introduced in this bachelor thesis can be extended. Here, the proofs given by
Kaplansky were adapted to rings in order to fit into the scope of this bachelor thesis.

The proof about polynomial rings over Cohen-Macaulay rings found in Section 6 is
taken from the book by D. Eisenbud [3], as are the proofs of Section 7 and the example
of a ring that is not Cohen-Macaulay. They are taken from chapter 18, pages 448, 449,
451-453 and 466.

I would like to thank my supervisor Professor Pink for his guidance, the careful cor-
rections and his useful comments on structure, content and the mathematical language. I
learnt from him that to the reader, legibility and a good order is as important as correct
proofs. Furthermore, I am grateful to Sebastian Schlegel Mejia for his thorough reading
of one of my drafts and making me aware of some inconsistencies. Also, I am thankful to
Oliver Edtmair for the helpful discussion of the last proof.
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2 Prerequisites

We state a few important theorems here that will later be referenced in this thesis.
Their proofs can be found in standard textbooks on Commutative Algebra, such as in the
book Introduction to Commutative Algebra by M.F. Atiyah and I.G. Macdonald [2], or in
the book by Eisenbud [3]. Other uses of smaller, but useful facts will be mentioned as we
go along.

Definition 2.1. A zero-divisor of a ring R is an element x ∈ R such that there exists an
element y ∈ Rr {0} with xy = 0. We shall treat 0 as a zero-divisor.

Definition 2.2. The height of a prime ideal p ⊂ R is defined as

ht(p) := sup{ r > 0 |There exist prime ideals p0 $ . . . $ pr = p }.

The height of an ideal a ⊂ R is defined as

ht(a) := inf{ ht(p) | a ⊂ p, where p is a prime ideal }.

Definition 2.3. The coheight of an ideal a ⊂ R is defined as

coht(a) := dim(R/a).

Theorem 2.4 (Artin-Tate). Suppose R is noetherian and S a finitely generated R-algebra.
If T ⊂ S is an R-algebra such that S is a finitely generated T -module, then T is a finitely
generated R-algebra.

Theorem 2.5. Let L/K be a field extension which is finitely generated as a ring over K.
Then L/K is finite.

Theorem 2.6 (Hilbert’s Basis Theorem). If R is noetherian, then so is R[X1, . . . , Xn] for
any n ∈ Z>0.

Theorem 2.7 (Krull’s Principal Ideal Theorem). For any noetherian ring R and any
a ∈ R which is not a zero-divisor, any minimal prime ideal p above (a) satisfies ht(p) = 1.

Theorem 2.8 (Krull’s Dimension Theorem). For any noetherian ring R, any ideal a =
(a1, . . . , ar) generated by r > 0 elements and any minimal prime ideal p above a we have
ht(p) 6 r. If a 6= (1) then ht(a) 6 r.

Theorem 2.9. For any noetherian ring R and any n ∈ Z>0, we have dim(R[X1, . . . , Xn]) =
dim(R) + n.
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3 Regular sequences

Definition 3.1. A regular sequence is a sequence a1, . . . , ar ∈ R for which the following
two conditions hold:

(i) For every i = 1, . . . , r, the image of ai in R/(a1, . . . , ai−1) is not a zero-divisor.

(ii) R/(a1, . . . , ar) 6= 0.

If, in addition, a1, . . . , ar all lie in an ideal a, we call it a regular sequence in a.

We see that R = 0 cannot contain a regular sequence. In fact, the empty sequence is
regular if and only if R 6= 0, so we exclude the special case of R = 0 from our discussion.
The reader can convince her- or himself that the statements of this chapter still hold, albeit
vacuously so. As soon as we prove Lemma 4.3 however, the assumption that R 6= 0 must
hold becomes necessary.

Remark 3.2. We assume R 6= 0.

Let us warm up by proving a few direct observations about regular sequences.

Lemma 3.3. For every regular sequence a1, . . . , ar ∈ R, we get the chain of ideals

(a1) $ (a1, a2) $ . . . $ (a1, . . . , ar).

Proof. For i = 2, . . . , r, (a1, . . . , ai−1) ⊂ (a1, . . . , ai) is an equality if and only if
ai ∈ (a1, . . . , ai−1), or equivalently, if ai is zero in R/(a1, . . . , ai−1). This is excluded by
Definition 3.1 and Remark 2.1. �

As the conditions for a regular sequence are stated in terms of factor rings, we prove
the following claim to be able to better deal with them.

Lemma 3.4. Let a, b be ideals of R. Then

R/a

b(R/a)
∼=

R

a + b
,

where b(R/a) =
{∑′ biri | all bi ∈ b, all ri ∈ R/a

}
.

Proof. Consider the composite ring homomorphism

ϕ : R� R/a�
R/a

b(R/a)
.

This homomorphism is surjective, hence R/ ker(ϕ) ∼= R/a
b(R/a)

by the homomorphism theo-
rem. We determine the kernel of ϕ.

r ∈ ker(ϕ)⇔ r + a ∈ b(R/a)⇔ (∃ bi ∈ b∃ ri ∈ R ∃ a ∈ a : r = a+
∑

biri)⇔ r ∈ a + b.

The conclusion follows. �
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Proposition 3.5. Suppose a1, . . . , ar ∈ R is a sequence and let i ∈ {1, . . . , r}. The
sequence a1, . . . , ar is regular if and only if a1, . . . ai−1 is a regular sequence and ai, . . . , ar
is a regular sequence in R/(a1, . . . , ai−1).

Proof. If a1, . . . , ar is a regular sequence, then for any i ∈ {1, . . . , ar}, we see that
a1, . . . , ai−1 is a regular sequence, too. Now assume a1, . . . , ai−1 to be a regular sequence.
Set R := R/(a1, . . . , ai−1). By Lemma 3.4, we get the isomorphism R/(a1, . . . , ar) ∼=
R/(ai, . . . , ar). Hence, for any i 6 j 6 r, the image of aj in R/(a1, . . . , aj−1) is a non-zero-
divisor if and only if the image of aj in R/(ai, . . . , aj−1) is a non-zero-divisor. Furthermore,
we have R/(a1, . . . , ar) 6= 0 if and only if R/(ai, . . . , ar) 6= 0, which concludes the proof.

�

Example 3.6. Consider the polynomial ring Z[X1, X2, X3] and the regular sequence

X2, X1(X2 + 1), X3(X2 + 1).

If we change the order to
X1(X2 + 1), X3(X2 + 1), X2,

we see that X3(X2 + 1) is a zero-divisor of Z[X1, X2, X3]/(X1(X2 + 1)), which implies that
the second sequence is not regular.

We see from the above example that we are not allowed to arbitrarily permute the
elements of a regular sequence. This is the motivation for why we would like to know under
what circumstances the sequence that results from a regular sequence when changing the
order is again a regular sequence.

Lemma 3.7. If a, b ∈ R is a regular sequence then the image of a in R/(b) is not a
zero-divisor.

Proof. Suppose a in R/(b) is a zero-divisor. Then there exists a non-zero z ∈ R/(b) such
that

a z = 0 inR/(b).

So, there exists z ∈ Rr (b) such that az ∈ (b), i.e. ∃ t ∈ R : az = tb.
As a, b is a regular sequence, the image of b in R/(a) is not a zero-divisor. This implies

that t ∈ (a), so t = au for some u ∈ R. Then,

az = tb = aub
⇒ a(z − ub) = 0.

Since a is not a zero-divisor of R we can deduce that z = ub, which implies z = 0 in R/(b),
a contradiction. �

Proposition 3.8. If a1, . . . , ar is a regular sequence, then

a1, . . . , ai−1, ai+1, ai, ai+2, . . . , ar

is one if and only if the image of ai+1 is not a zero-divisor in R/(a1, . . . , ai−1).
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Proof. “⇒”: This follows directly from Defintion 3.1.
“⇐”: By Proposition 3.5, we can replace R by R/(a1, . . . , ai−1) and ai, . . . , ar by

ai, . . . , ar. Hence, we would like to show that for a regular sequence a1, . . . , ar where
a2 is not a zero-divisor of R, the sequence a2, a1, a3, . . . , ar is again a regular sequence.
This is guaranteed by the assumption that a2 is not a zero-divisor of R, by Lemma 3.7 and
by a1, . . . , ar being a regular sequence. �

To finish this section, we look at how regular sequences behave under localisation. The
condition is reminiscent of the condition under which the pushforward of a prime ideal is
again a prime ideal of the localisation.

Proposition 3.9. Let R be a ring and a1, . . . , ar ∈ R a regular sequence. Let S ⊂ R be
a multiplicative subset and suppose that (a1, . . . , ar) ∩ S = ∅. Then a1

1
, . . . , ar

1
is a regular

sequence in S−1R.

Proof. We show that for every i = 1, . . . , r, the image of ai
1

in S−1R/(a1
1
, . . . , ai−1

1
) is not

a zero-divisor.
For simplicity of notation, we consider a1

1
∈ S−1R — for i = 2, . . . , r it follows anal-

ogously. Suppose it is a zero-divisor of S−1R, meaning there exists r
s
∈ S−1R r {0S−1R}

such that ra1
s

= 0S−1R. This holds if and only if:

∃ t ∈ S : tra1 = ts0 = 0.

This, in turn, implies
∃ t ∈ S : tr = 0

as a1 is not a zero-divisor of R by assumption. But then

r

s
=
rt

st
=

0

st
= 0S−1R

contradicting our choice of r
s
.

Denote by ι∗a the pushforward of an ideal a via the map ι : R −→ S−1R, a 7→ a
1
. We

know that for any ideal a ⊂ R we have ι∗a = (1) if and only if a∩ S = ∅. By assumption,
(a1, . . . , ar) ∩ S = ∅, hence (a1

1
, . . . , ar

1
) 6= S−1R. This implies the second property of a

regular sequence, namely S−1R/(a1
1
, . . . , ar

1
) 6= 0.

We see that indeed, a1
1
, . . . , ar

1
is a regular sequence in S−1R. �

4 Depth

For the remainder of the thesis, we assume all rings to be noetherian. In this section, our
strategy is to define the depth of an ideal and work towards proving that any two maximal
regular sequences in a proper ideal have the same length, which means that the depth of
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a proper ideal is determined by the common length of its maximal regular sequences, and
vice versa.

To understand right away why we are interested in this, let us look at the definition of
the depth.

Definition 4.1. For an ideal a ⊂ R define the depth of a as

depth(a) := sup{r > 0 | a1, . . . , ar ∈ a is a regular sequence } ∈ Z>0 ∪ {±∞}.

For the sake of brevity, we define:

Definition 4.2. Let Z(R) denote the set of zero-divisors of R.

First, we will have to prove a more general lemma. It will be used as a stepping stone
for the main finding of this section, Theorem 4.7, and a few more times in Section 5.

Lemma 4.3. Consider an ideal a contained in Z(R). Then there exists an element x ∈
Rr {0} such that xa = 0.

Proof. As mentioned previously, we need the assumption R 6= 0 for this proof, as
otherwise there could not exist such an element x ∈ R r {0}. As R is noetherian, (0) is
decomposable, and hence by [1, 23, Prop.9, Lemma 2, Lemma 3, Thm.3] we obtain a finite
union

Z(R) =
⋃

p∈Ass((0))

p

where p = ((0) : (x)) = Ann(x) for some x ∈ Rr{0}. Here, we use the notation (a : b) for
the quotient ideal of two ideals a, b. As this is a finite union of prime ideals, we know from
[1, 31, Lemma 5] that any ideal lying in this union is contained in one of the associated
prime ideals p of (0).

So as a lies in Z(R), there exists an x ∈ Rr {0} such that a ⊂ p = Ann(x). Using this
x we get xa = 0. �

Definition 4.4. A regular sequence a1, . . . , ar in a is called a maximal regular sequence if
it cannot be extended to a regular sequence a1, . . . , ar+1 in a.

The following lemma assures that maximal regular sequences actually exist.

Lemma 4.5. Every regular sequence a1, . . . , ar in a can be extended to a maximal regular
sequence in a. This holds especially when a = R.

Proof. Suppose there exists an ideal a ⊂ R which contains a regular sequence a1, . . . , ar
that cannot be extended to a maximal regular sequence. Then we can extend the sequence
a1, . . . , ar repeatedly with elements of a. By Lemma 3.3, it follows that we get an ascending
chain of properly included ideals

(a1) $ (a1, a2) $ . . .

which contradicts R being noetherian. �

The main goal of this section is to prove Theorem 4.7 below, for which we will prove a
lemma first.
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Lemma 4.6. Let a $ R be an ideal and let a1, . . . , ar be a regular sequence in a. Then,
a1, . . . , ar is a maximal regular sequence if and only if a/(a1, . . . , ar) ⊂ Z(R/(a1, . . . , ar)).

Proof. The regular sequence a1, . . . , ar ∈ a is a maximal sequence if and only if it can not
be extended to a regular sequence a1, . . . , ar, ar+1 for any ar+1 ∈ a. This holds if and only if
the image of any ar+1 ∈ a in R/(a1, . . . , ar) is a zero-divisor or if R/(a1, . . . , ar, ar+1) = 0.

But R/(a1, . . . , ar, ar+1) 6= 0, since a $ R, which shows the lemma. �

Theorem 4.7. Any two maximal regular sequences in an ideal a $ R have the same length.

Proof. Let a1, . . . , ar ∈ a be a maximal regular sequence and let b1, . . . , br ∈ a be another
regular sequence of the same length. We want to show that b1, . . . , br is also a maximal
regular sequence. We proceed by induction.

The case r = 0 is clear. Consider r = 1.
Let a ∈ a and b ∈ a be two regular sequences, and suppose a is a maximal regular

sequence. By Lemma 4.6, a/(a) only contains zero-divisors, and therefore, we can apply
Lemma 4.3 to find s+ (a) ∈ (R/(a)) r {0} such that

∀x+ (a) ∈ a/(a) : sx+ (a) = 0 inR/(a).

We want to show that a/(b) ⊂ R/(b) only contains zero-divisors, which again by
Lemma 4.6 will imply that b is a maximal regular sequence in a. Let y be an arbitrary
element whose image in R/(b) is non-zero and consider the image of y in R/(a). We get

sy + (a) = 0

sb+ (a) = 0

which means that there exist u, v ∈ R such that

sy = ua,

(4.7) sb = va,

where v 6= 0, because s 6= 0 and b is by assumption not a zero-divisor of R. This implies

bua = bsy = vya.

As a is not a zero-divisor, we obtain

vy = ub.

Suppose that v ∈ (b). Then, by inserting it in (4.7) we obtain

sb = s′ba
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for some s′ ∈ R. By cancelling b on both sides — as b is not a zero-divisor of R — we
obtain

s = s′a

in contradiction to s+ (a) 6= 0.
We have shown that there exists v + (b) 6= 0 such that (v + (b))(y + (b)) = 0 in R/(b).

Thus, we conclude that the image of y in R/(b) is a zero-divisor. Since y was chosen
arbitrarily, b is also a maximal regular sequence.

Suppose that for r > 1, if we have a maximal regular sequence of length r in any proper
ideal a′, then any other regular sequence of the same length in a′ is also maximal.

Consider a1, . . . , ar+1 ∈ a a maximal regular sequence and b1, . . . , br+1 ∈ a some other
regular sequence. Set for every i = 0, . . . , r

Ai := R/(a1, . . . , ai),

Bi := R/(b1, . . . , bi),

D(Ai) := {x ∈ R | the image ofx inAi is a zero-divisor },
D(Bi) := {x ∈ R | the image ofx inBi is a zero-divisor }.

We know that for any Ai or Bi, the set of zero-divisors Z(Ai), Z(Bi), respectively, is a
finite union of prime ideals by [1, 23, Prop.9]. Also, D(Ai)/(a1, . . . , ai) = Z(Ai). Therefore,
D(Ai) can be written as the finite union of the corresponding primes in R that contain
(a1, . . . , ai), and similarly for D(Bi). We obtain

r⋃
i=0

(D(Ai) ∪ D(Bi)) =
⋃

pj prime,
j∈J, |J|<∞

pj.

As both sequences a1, . . . , ar+1 and b1, . . . , br+1 are regular, we see that a 6⊂ D(Ai),D(Bi)
for all i = 0, . . . , r. By [1, 31, Lemma 5] we obtain a 6⊂ pj for all j ∈ J and therefore

a 6⊂
r⋃

i=0

(D(Ai) ∪ D(Bi)). This means that we can choose z ∈ a whose image in all Ai and

Bi is not a zero-divisor.
Now, consider the ring R/(a1, . . . , ar), in which, by assumption, ar+1 is a maximal

regular sequence. As z is not a zero-divisor of R/(a1, . . . , ar), we conclude by the case
r = 1 that z is also a maximal regular sequence, and hence a1, . . . , ar, z is a maximal
sequence of a.

Using Proposition 3.8 repeatedly, and the fact that for all i = 1, . . . , r, the image of
z in R/(a1, . . . , ai) is not a zero-divisor, we can push z to the very front of the sequence
a1, . . . , ar and obtain a regular sequence z, a1, . . . , ar, which stays a maximal sequence of
a. Similarly, push z to the very front of b1, . . . , br to obtain a regular sequence z, b1, . . . , br.

We are ready to use the inductive hypothesis, as we can consider the ring R/(z), in
which a1, . . . , ar and b1, . . . , br are regular sequences in a/(z), the first one even a maximal
one. By the inductive hypothesis, b1, . . . , br is also a maximal regular sequence.

8



Lemma 3.4 implies that R/(b1, . . . , br, z) ∼= R/(z)

(b1,...,br)
. Hence a/(b1, . . . , br, z) only con-

tains zero-divisors, and thus b1, . . . , br, z is a maximal sequence of a. Applying the base
case once more to z and br+1 within R/(b1, . . . , br) implies that the sequence b1, . . . , br+1 is
in fact maximal too, concluding our proof. �

Corollary 4.8. Any maximal regular sequence in a $ R has length equal to depth(a).

To conclude this section, we apply Theorem 4.7 to the next proposition, which provides
us with the useful possibility to reduce to a suitable prime ideals instead of a general ideal.

Proposition 4.9. For every ideal a $ R there exists a prime ideal p containing a such
that depth(a) = depth(p).

Proof. Call a1, . . . , ar a maximal regular sequence in a. By the maximality of the sequence
and because a 6= R, we see using Lemma 4.6 that

a/(a1, . . . , ar) ⊂ Z(R/(a1, . . . , ar)).

We use [1, 23, Prop.9, Lemma 2, Lemma 3, Thm.3] to find

Z(R/(a1, . . . , ar)) =
m⋃
j=1

Ann(xj)

for some m > 1 and suitable xj, where the Ann(xj) are prime. So there exists some
k ∈ {1, . . . ,m} such that a ⊂ Ann(xk). By taking the prime ideal p in R corresponding
to Ann(xk), we obtain a ⊂ p. As p/(a1, . . . , ar) = Ann(xk) only consists of zero-divisors,
we conclude that a1, . . . , ar is a maximal regular sequence in p. By Theorem 4.7 we have
depth(a) = r = depth(p). �

5 Depth in light of height, localisation and the Jacob-

son radical

We branch out more into different directions in this section, and try to understand
the depth in connection with the height, localisation and the Jacobson radical. Since in
Section 6, we will connect the depth and the height and use localisation extensively, the
knowledge we will accumulate in this section will enable us to quickly navigate through
the proofs of that section.

We start off by comparing the depth of an ideal to its height.

Proposition 5.1. For any ideal a we have depth(a) 6 ht(a).
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Proof. We show by induction that for a maximal regular sequence in a of length r, we
have r 6 ht(a). For r = 0, the inequality holds, since we have 0 6 ht(a) for any ideal a.

Assume that a contains a maximal regular sequence a1, . . . , ar+1. Consider R := R/(a1)
and a := a/(a1). The sequence a2, . . . , ar+1 in a is a maximal regular sequence by Propo-
sition 3.5. So by the induction hypothesis it follows that

r 6 ht(a).

This means that for any prime ideal a ⊂ p, we have r 6 ht(p).
Take any prime ideal a ⊂ p. It holds that a ⊂ p/(a1), and hence, by the above,

r 6 ht(p/(a1)).

Take a chain of prime ideals p0 $ . . . $ pn = p/(a1) in p/(a1). The corresponding prime
ideals pi in p also form a chain of prime ideals, and satisfy (a1) ⊂ p0. But a1 is not a
zero-divisor, so by Krull’s Principal Ideal Theorem 2.7, it follows that

ht(p0) > 1.

So there exists a prime ideal p′ $ p0 and we can extend the induced chain of prime ideals
p0 $ . . . $ pn by the prime ideal p′. Hence

r + 1 6 ht(p).

As p above a was arbitrary, we obtain

r + 1 6 ht(a)

by taking the infimum over all such prime ideals. Finally, by taking the supremum over all
maximal regular sequences if a = R or by applying Corollary 4.8 if a $ R, we can deduce
the claim of the proposition. �

Corollary 5.2. For any proper ideal a of R we have depth(a) <∞.

Proof. In a noetherian ring, any ideal is generated by finitely many elements. Using
Krull’s Dimension Theorem 2.8, for any ideal a we have ht(a) < ∞. By Proposition 5.1,
we can deduce depth(a) 6 ht(a) <∞. �

As we are usually interested in localising at a prime, we apply Proposition 3.9 accord-
ingly.

Lemma 5.3. Let S be a multiplicative set of R with 0 6∈ S, and consider an ideal a ⊂ RrS.
Then depthR(a) 6 depthS−1R(aS−1R). As a special case we get depthR(a) 6 depthRp

(ap)
for a prime ideal p with a ⊂ p.
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Proof. Let a1, . . . , ar ∈ a be a regular sequence. The assumptions of Proposition 3.9
are fulfilled, and hence a1

1
, . . . , ar

1
∈ aS−1R is a regular sequence. This means, that for any

regular sequence of a we can find a regular sequence in aS−1R which is at least as long as
the one in a. So by taking supremums, the inequality follows.

For the second claim notice that R r p is a multiplicative set which does not contain
0. �

One might think that the following proposition is just a corollary to Lemma 5.3, however
not every maximal ideal m containing a does the trick.

Proposition 5.4. For any ideal a $ R, there exists a maximal ideal m such that depthR(a) =
depthRm

(am).

Proof. Consider a maximal regular sequence a1, . . . , ar ∈ a. By Lemma 4.6, we get

a/(a1, . . . , ar) ⊂ Z(R/(a1, . . . , ar)).

So this implies by Lemma 4.3 that there exists an element x ∈ (R/(a1, . . . , ar))r {0} such
that

xa/(a1, . . . , ar) = 0.

This, in turn, gives an element x ∈ Rr (a1, . . . , ar) such that

xa ⊂ (a1, . . . , ar).

Now set b := ((a1, . . . , ar) : (x)). By the above, we know that a is contained in b. Choose
a maximal ideal m ⊂ R such that

a ⊂ b ⊂ m.

Notice that by Proposition 3.9 the chosen maximal regular sequence gives us a regular
sequence a1

1
, . . . , ar

1
∈ am. We want to show that am/(

a1
1
, . . . , ar

1
) ⊂ Z(Rm/(

a1
1
, . . . , ar

1
)).

Since for all elements a ∈ a we have xa ∈ (a1, . . . , ar) we see that

∀ a′ ∈ am :
x

1
a′ ∈ (

a1
1
, . . . ,

ar
1

).

Suppose by contradiction that x
1
∈ (a1

1
, . . . , ar

1
), meaning

x

1
=

r∑
i=1

ri
si

ai
1

for some suitable ri ∈ R and si ∈ R r m. This means that there exists some t ∈ R r m
such that

xt

(
r∏

i=1

si

)
= t

(
r∑

i=1

ri
∏
i 6=j

sjai

)
.
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From this, we can see that xt

(
r∏

i=1

si

)
∈ (a1, . . . , ar), meaning t

(
r∏

i=1

si

)
∈ b. But this

contradicts t

(
r∏

i=1

si

)
6∈ m.

So we obtain that x
1

is non-zero in Rm/(
a1
1
, . . . , ar

1
) and that x

1
am = 0. Hence

am ⊂ Z(Rm/(
a1
1
, . . . ,

ar
1

))

which, using Lemma 4.6, implies that for any maximal sequence in a we get an equally
long maximal sequence in am. In conclusion we obtain

depthR(a) = depthRm
(am).

�

We turn our attention to the Jacobson radical.

Definition 5.5. The intersection of all maximal ideals of a ring R is called the Jacobson
radical and is denoted by j(R).

The following two results are rather technical, but Proposition 5.7 will be crucial in two
statements later on. The reason is that if the ring is local, the Jacobson radical is equal to
the only maximal ideal of the ring. We will use this when localising at a prime ideal.

Lemma 5.6. Let x ∈ j(R) r Z(R). If a is an ideal contained in Z(R), then

(x, a)/(x) ⊂ Z(R/(x)).

Proof. Set
b := ((0) : a) = { b ∈ R | ba = 0 }.

By Lemma 4.3, (0) $ b. If b 6⊂ (x) we find non-zero elements of R/(x) which annihilate
the elements of (x, a)/(x). Suppose now by contradiction that b ⊂ (x), which means that

(5.6) ∀b ∈ b∃ r ∈ R : b = rx.

This implies
rxa = ba = 0.

As x is not a zero-divisor, we obtain
ra = 0

which in turn implies that this r in (5.6) was already in b. Thus, we obtain

b = xb

and by Nakayama’s lemma we conclude b = 0, a contradiction. �
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Proposition 5.7. Let a ⊂ R be an ideal, x ∈ R and b := (x, a). If b ⊂ j(R), then

depth(b) 6 depth(a) + 1.

Proof. Consider any maximal regular sequence a1, . . . , ar in a. By Corollary 4.8, we have
depth(a) = r. We know that a ⊂ b ⊂ j(R) $ R. Since a1, . . . , ar is a maximal regular
sequence in a, the image of any element of a will be a zero-divisor in R := R/(a1, . . . , ar) by
Lemma 4.6. Therefore, the only contenders for the non-zero-divisors in b := b/(a1, . . . , ar)
are images of elements of the form yx+ a for y ∈ Rr {0} and a ∈ a.

We distinguish between the cases when b ⊂ Z(R) and when b 6⊂ Z(R)

(i) If b ⊂ Z(R), it follows directly that a1, . . . , ar is also a maximal regular sequence in
b, hence by Corollary 4.8,

depth(b) = depth(a)

and the proposition is shown.

(ii) If b 6⊂ Z(R), then there exist y ∈ Rr {0} and a ∈ a such that yx+ a 6∈ Z(R). This
means that yx + a ∈ j(R) r Z(R). Therefore we can apply Lemma 5.6 to obtain
(yx + a, b)/(yx + a) ⊂ Z(R/(x y + a)). From this we can deduce that yx + a is a
maximal regular sequence in b. Hence, a1, . . . , ar, yx + a ∈ b is a maximal regular
sequence, and therefore

depth(b) = r + 1 = depth(a) + 1.

So in conclusion
depth(b) 6 depth(a) + 1.

�

Remark 5.8. The above theorem shows that if R is a local noetherian ring, then for any
ideal a and for any a ∈ R such that a + (a) 6= (1) we have

depth(a + (a)) 6 depth(a) + 1.

This conclusion can be reached by recalling as mentioned before that in a local ring, j(R) =
m for the only maximal ideal m. If a + (a) 6= (1), then a + (a) ⊂ m = j(R), and therefore
the conclusion holds.

6 Cohen-Macaulay rings

In this section we bring the concept of depth and height together, namely in the fol-
lowing definition:
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Definition 6.1. A ring R is called Cohen-Macaulay if it is noetherian and if for all
maximal ideals m ⊂ R the equality depth(m) = ht(m) holds.

Which of our frequently-used rings are Cohen-Macaulay?

Example 6.2. Let K be a field. The ideal (0) is the unique prime — and hence maximal
— ideal of K, which implies dim(K) = ht((0)) = 0. Any element of K is either zero or a
unit, and can thus not belong to a regular sequence. Therefore, as any regular sequence in
K must have length 0, it follows that K is a Cohen-Macaulay ring.

Example 6.3. Consider the ring Z. All maximal ideals of Z are of the form (p) for a
prime number p ∈ Z. They do not contain any further prime ideals apart from (0), and
hence we have

ht((p)) = 1.

To calculate the depth of a prime ideal (p) we observe that any regular sequence in (p) can
have length at most one by Proposition 5.1. Also, this length is attained by any non-zero
element of (p). This implies that Z is Cohen-Macaulay.

Example 6.4. A Dedekind ring is a noetherian integral domain of Krull dimension 1.
Consider any maximal ideal m. Since the Krull dimension is 1, we find that ht(m) = 1.
By Proposition 5.1, we always have depth(m) 6 ht(m), so we want to show that

depth(m) = 1

is attained. For this, it suffices that any maximal ideal m contains a non-zero-divisor. But
this is surely satisfied, as R is an integral domain and not a field. Hence, any Dedekind
ring is a Cohen-Macaulay ring.

Example 6.5. Consider a regular local ring R and its unique maximal ideal m. Since
the ring is local, we have ht(m) = dim(R). Any minimal set of generators of m form
a regular sequence in m because of the minimality. As the ring is regular, we obtain
dim(R) 6 depth(m). By Proposition 5.1, we also have the inequality depth(m) 6 ht(m),
which implies equality, and therefore that R is Cohen-Macaulay.

In this section, we would like to simplify our definition of a Cohen-Macaulay ring to
extend the equality to any proper ideal instead of only maximal ideals. Afterwards, we
are interested in what transformations of a Cohen-Macaulay ring results again in a Cohen-
Macaulay ring, namely passing to a localisation or a factor ring, or considering a polynomial
ring over it.

Before we can show the equality of depth and height for any proper ideal, we need to
prove the following lemma.

Lemma 6.6. Let R be a Cohen-Macaulay ring and consider a maximal ideal m ⊂ R. Then
Rm is also Cohen-Macaulay.
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Proof. The localisation Rm is noetherian. The only maximal ideal of Rm is mm and
therefore we want to show

htRm(mm) = depthRm
(mm).

We always have
htRm(mm) = htR(m)

and by Proposition 5.4 we find that

depthRm
(mm) = depthR(m).

As R is a Cohen-Macaulay ring, we have htR(m) = depthR(m) and the conclusion follows.
�

Counterexample 6.7. Consider R := K[X4, X3Y,XY 3, Y 4] for some field K. It has
the maximal ideal m = (X4, X3Y,XY 3, Y 4), and we want to show that Rm is not Cohen-
Macaulay. For this, observe that X4, Y 4 is a system of parameters, and hence ht(mm) =
ht(m) > ht((X4, Y 4)) > 2. We claim that X4 is a maximal regular sequence in m.

The images of the generators X3Y,XY 3, Y 4 of m are each zero-divisors in R/(X4). To
see this, multiply each by (X3Y )2, which is not zero in R/(X4), since (X3Y )2 = X4 ·X2Y 2,
but X2Y 2 6∈ R. Hence, by Lemma 4.6, X4 is a maximal regular sequence in m. Therefore,
1 = depth(m) = depth(mm) < ht(mm). So, Rm, and hence R by the contraposition of
Lemma 6.6, are not Cohen-Macaulay.

Proposition 6.8. In a Cohen-Macaulay ring R we have for all a $ R:

depth(a) = ht(a).

Proof. In any noetherian ring, we have by Proposition 5.1

depth(a) 6 ht(a)

for any ideal a ⊂ R. So we aim to show the reverse inequality.
By Proposition 4.9, we can choose a prime ideal p containing a such that

depth(a) = depth(p).

If we can show depth(p) = ht(p), then the inequality follows for a, since ht(p) > ht(a). So
without loss of generality, replace a by a prime ideal p.

Furthermore, we can restrict ourselves to local Cohen-Macaulay rings. To see why this
suffices, consider a maximal ideal m as in Proposition 5.4. By Lemma 6.6, the ring Rm is
Cohen-Macaulay. If we know that the equality holds for local Cohen-Macaulay rings, then

htR(p) = htRm(pm) = depthRm
(pm) = depthR(p).

This shows that we can assume without loss of generality that R is a local Cohen-Macaulay
ring with maximal ideal m.
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Suppose that there exists a prime ideal p with

depth(p) < ht(p).

Choose this p maximal among all such prime ideals that satisfy the strict inequality above.
Since R is Cohen-Macaulay, depth(m) = ht(m), and hence p $ m.

As p $ m, there exists x ∈ m r p such that (x, p) ⊂ m = j(R). By Proposition 4.9,
there exists a prime ideal p′ containing (x, p) such that depth(p′) = depth((x, p)). After
applying Proposition 5.7 we obtain

depth(p′) = depth((x, p)) 6 depth(p) + 1.

As p $ p′, we have ht(p) + 1 6 ht(p′). This implies:

depth(p′) 6 depth(p) + 1 < ht(p) + 1 6 ht(p′)

which contradicts the maximality of p. �

In Lemma 6.6, we saw how a Cohen-Macaulay ring behaves when localising with respect
to a maximal ideal. This can now be extended to any localisation.

Proposition 6.9. Cohen-Macaulayness is preserved by localisation.

Proof. Let R be Cohen-Macaulay and let S ⊂ R be a multiplicative subset. The
localisation S−1R is noetherian. Consider a maximal ideal m ⊂ S−1R. By Proposition 5.1,
we always have

depthS−1R(m) 6 htS−1R(m).

Any prime ideal of a localisation corresponds to a prime ideal within RrS, so call m̂ ⊂ R
the prime ideal corresponding to m. By assumption, R is Cohen-Macaulay, so by Propo-
sition 6.8,

depthR(m̂) = htR(m̂).

We also know from [1, 31, Prop.1] that the height is preserved by localisation, which means

depthR(m̂) = htR(m̂) = htS−1R(m).

By Lemma 5.3, we obtain
depthS−1R(m) > depthR(m̂)

which shows the desired inequality

depthS−1R(m) > htS−1R(m).

Hence S−1R is also Cohen-Macaulay. �

After having examined how Cohen-Macaulay rings behave under localisation, it is nat-
ural to wonder if some sort of reverse also holds. As is possible with other properties such
as the ring being normal, Cohen-Macaulayness is a local property.
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Proposition 6.10. Suppose that for all m maximal Rm is Cohen-Macaulay. Then R is
also Cohen-Macaulay.

Proof. Let m ⊂ R be a maximal ideal. By localising at m and using Proposition 5.4 we
see that

depthR(m) = depthRm
(mm).

Since Rm is a Cohen-Macaulay ring by assumption, we get

depthRm
(mm) = htRm(mm).

The height of m is preserved by localisation with respect to m. By combining these facts,
we infer

depthR(m) = htR(m)

which shows that R is Cohen-Macaulay, as m was arbitrary. �

An arbitrary factor ring of a Cohen-Macaulay ring is not necessarily Cohen-Macaulay
again. The following lemma gives us conditions under which we can factor to obtain again
a Cohen-Macaulay ring. Though its scope might seem limited, its use will be apparent
once we prove Theorem 6.12.

Lemma 6.11. If x is a non-zero-divisor of a Cohen-Macaulay ring R, then R/(x) is also
Cohen-Macaulay.

Proof. A factor ring of a noetherian ring is again noetherian.
Any maximal ideal in R/(x) is of the form m/(x) for a maximal ideal m in R which

contains x. As R is Cohen-Macaulay, we get depth(m) = ht(m). Referring back to the
proof of Proposition 5.1 and since x was assumed to be a non-zero-divisor, we can argue
similarly to obtain

ht(m/(x)) + 1 6 ht(m).

Let a1 + (x), . . . , ar + (x) ∈ m/(x) be a maximal regular sequence in m/(x), which
implies that m/(x, a1, . . . , ar) ⊂ Z(R/(x, a1, . . . , ar)). Hence, x, a1, . . . , ar is a maximal
regular sequence in m. By this argument and by Corollary 4.8, we obtain

depth(m) = depth(m/(x)) + 1.

Now we concatenate all findings to obtain:

ht(m/(x)) + 1 6 ht(m) = depth(m) = depth(m/(x)) + 1

which implies
ht(m/(x)) 6 depth(m/(x)).

By Proposition 5.1 we get equality, and hence R/(x) is Cohen-Macaulay. �

Theorem 6.12. A ring R is Cohen-Macaulay if and only if the polynomial ring R[X] is
Cohen-Macaulay.
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Proof. By Hilbert’s Basis Theorem 2.6, R is noetherian if and only if R[X] is noetherian.
Let R[X] be Cohen-Macaulay. The element X is a non-zero-divisor of R[X], and hence by
Lemma 6.11, we see that R[X]/(X) ∼= R is also Cohen-Macaulay.

Now suppose that R is Cohen-Macaulay. Consider a maximal ideal m ⊂ R[X]. We
would like to show that R[X]m is Cohen-Macaulay and then apply Proposition 6.10. Since
we know that R[X]m is noetherian, we aim to show the equality of depth and height on
maximal ideal of R[X]m.

Set m̂ := m∩R. Then m̂ is a prime ideal of R. We would first like to show that we can
reduce R to be a local ring with maximal ideal m̂.

Since Rr m̂ ⊂ R[X] rm we obtain by using the universal property of R[X]m

(6.12) R[X]m ∼= (Rm̂[X])m.

Using Lemma 6.6, without loss of generality, we can suppose that R is a local Cohen-
Macaulay ring with maximal ideal m̂.

Now, we have
R[X]/m̂R[X] ∼= (R/m̂)[X].

As R/m̂ is a field, (R/m̂)[X] is a principal ideal domain. By the isomorphism above,
R[X]/m̂R[X] is also a principal ideal domain. Consider m/(m̂R[X]), which must be a
principal ideal, meaning

m/(m̂R[X]) = (f + m̂R[X])

for a monic polynomial f in R[X]. From this, we deduce that m = (m̂, f).
Take a maximal regular sequence a1, . . . , ar in m̂. The elements a1, . . . , ar also lie in m,

and since R[X]/(a1, . . . , ar)R[X] ∼= (R/(a1, . . . , ar))[X], they form a regular sequence in
m. Since f is monic, it is not a zero-divisor of R[X]/(a1, . . . , ar)R[X]. Therefore, we can
extend the regular sequence a1, . . . , ar in m to the regular sequence

a1, . . . , ar, f ∈ m.

By taking suprema, we obtain

depth(m̂) + 1 6 depth(m).

We see using Krull’s Principal Ideal Theorem 2.7, since f is neither a zero-divisor nor
a unit,

ht(m/(m̂R[X])) = ht((f + m̂R[X])) = 1.

If we have a chain of prime ideals p0 $ . . . $ pn ⊂ m̂R[X], we obtain the chain of prime
ideals p0 ∩R $ . . . $ pn ∩R ⊂ m̂, which implies

ht(m̂R[X]) 6 ht(m̂).

For arbitrary ideals b ⊂ a we have

ht(a) 6 ht(b) + ht(a/b).
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Hence,

ht(m) 6 ht(m̂R[X]) + ht(m/(m̂R[X])) = ht(m̂R[X]) + 1 6 ht(m̂) + 1.

Since R is Cohen-Macaulay by Lemma 6.6, we get

ht(m) 6 ht(m̂) + 1 = depth(m̂) + 1 6 depth(m)

Because of Proposition 5.1 we always have the reverse inequality. So R[X] is Cohen-
Macaulay, where R is the local ring with maximal ideal m̂. If we pass now to the localisation
with respect to m, the height and depth will stay the same by Proposition 5.4. This implies
that R[X]m is Cohen-Macaulay as well.

Then, since the maximal ideal m was arbitrary, we use the isomorphism in (6.12) and
apply Proposition 6.10 to find that our original polynomial ring R[X] is Cohen-Macaulay.

�

Remark 6.13. By induction, we can extend the above to the following: A ring R is
Cohen-Macaulay if and only if for any n > 0, the polynomial ring R[X1, . . . , Xn] is Cohen-
Macaulay.

For a less obvious Cohen-Macaulay ring, one can have a look at the paper by R. Pink
and S. Schieder [5], where one of the algebras they construct is Cohen-Macaulay.

7 (Universally) Catenary rings

Finally we are able to introduce the concepts of a catenary ring and universally catenary,
which are what we need in order to understand the first main theorem stated at the
beginning of the thesis. It is then our aim to connect Cohen-Macaulay rings from the
previous chapter with (universally) catenary rings, namely by showing that every Cohen-
Macaulay ring is already catenary.

Definition 7.1. A ring R is called catenary if for any two prime ideals p ⊂ p′ ⊂ R any
two maximal chains of prime ideals between p and p′ have the same length.

As the definition is stated in terms of prime ideals, catenary rings are bound to behave
well under localisation or passing to the factor ring.

Proposition 7.2. Every quotient ring R/a of a catenary ring R is catenary.

Proof. The prime ideals of R/a correspond to prime ideals of R which contain a, and the
inclusions are preserved. Hence R/a is catenary. �

Proposition 7.3. Every localisation of a catenary ring R is catenary.
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Proof. The prime ideals of S−1R for some multiplicative set S ⊂ R are in a one-to-one
inclusion-preserving correspondence to the prime ideals p of R which satisfy p ∩ S = ∅.
Hence the localisation of a catenary ring is catenary. �

The definition of a catenary ring can be extended further:

Definition 7.4. A ring for which all finitely generated algebras over it are catenary rings
is called universally catenary.

In order to prove that Cohen-Macaulay rings are also catenary — thus linking the
two concepts together — we first prove the claim for the particular case of local Cohen-
Macaulay rings in the following proposition. As often in Commutative Algebra, one can
show a claim for a local ring and then are able to use localisation to arrive at the main
result. We follow the same trail of thoughts here.

Proposition 7.5. In any local Cohen-Macaulay ring, any two maximal chains of prime
ideals have the same length.

Proof. We claim that the maximal chains are precisely those of length dim(R). To this
end consider a maximal chain of prime ideals p0 $ . . . $ pn, where pn is the only maximal
ideal of R. Since pn is the only maximal ideal, we see that ht(pn) = dim(R) and therefore
we want to show that n = ht(pn). The height satisfies n 6 ht(pn), which means we aim to
show the reverse inequality.

For this, we turn to the depth of pn. We do induction on 0 6 i 6 n to find depth(pi) 6 i.
For i = 0, we have

depth(p0) = ht(p0) = 0.

The first equality is due to the ring being Cohen-Macaulay and Proposition 6.8, and
the second equality is because the chain is maximal. Our inductive hypothesis is that
depth(pi) 6 i.

In the inductive step, one localises at pi, which does no harm since the prime ideals
below pi will be in a one-to-one order-preserving correspondence with the prime ideals in
the localisation. Let a ∈ pi,pi r pi−1,pi and consider pi−1,pi + (a) ⊂ pi,pi . The ideal pi,pi is
the only maximal ideal of the localisation and there is no prime ideal properly between
pi,pi and pi−1,pi . Hence, pi,pi is also the only prime ideal above pi−1,pi + (a). Hence, we see
by Proposition 4.9 that

depthRpi
(pi,pi) = depthRpi

(pi−1,pi + (a)).

Since pi,pi = j(Rpi), applying Proposition 5.7 yields

depthRpi
(pi−1,pi + (a)) 6 depthRpi

(pi−1,pi) + 1.

Because pi is the only maximal ideal above pi−1, we find thanks to Proposition 5.4 that

depthRpi
(pi−1,pi) = depthR(pi−1)
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We see that

depthR(pi) 6 depthRpi
(pi,pi) = depthRpi

(pi−1,pi + (a)) 6 depthRpi
(pi−1,pi) + 1

= depthR(pi−1) + 1 6 i− 1 + 1 = i,

where the first inequality is due to Lemma 5.3, the last inequality is due to the induction
hypothesis, and all steps in-between due to the arguments developed above.

This implies the following for pn:

depth(pn) 6 n.

which, since the ring is Cohen-Macaulay, shows

ht(pn) = depth(pn) 6 n.

This in turn implies that
ht(pn) = n.

�

Proposition 7.6. Every Cohen-Macaulay ring is catenary.

Proof. Let q ⊂ p be two prime ideals in R. Localising at q results in a local Cohen-
Macaulay ring thanks to Proposition 6.9. Then, by Proposition 7.5, we can infer that two
maximal chains of prime ideals below q in the original ring have the same length. We now
localise R at p. Again by Proposition 6.9 and Proposition 7.5 we can now assume without
loss of generality that R is a local Cohen-Macaulay ring, where any two maximal chains of
prime ideals below q, or below p, have the same length.

Consider two maximal chains of prime ideals between q and p,

q = p0 $ p1 $ . . . $ pn−1 $ pn = p

and
q = p′0 $ p′1 $ . . . $ p′m−1 $ p′m = p.

Elongate both chains {pi}06i6n, {p′j}06j6m by a maximal chain of prime ideals below q =
p0 = p′0. This results in two maximal chains of prime ideals below p, which by Propo-
sition 7.5 must have the same length. This implies n = m, which means that any two
maximal chains of prime ideals between q and p have the same length.

Since q and p were arbitrary, the claim follows. �

One can already see the path leading up to the first statement of our main theorem.
We know that Z, any field K, and any Dedekind ring are Cohen-Macaulay, and hence, by
what we have just proved, are catenary. What remains to be shown is that if we have a
finitely generated algebra over them, the resulting ring is again catenary. More generally:

Theorem 7.7. Any Cohen-Macaulay ring is universally catenary.
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Proof. Let R′ be a finitely generated R-algebra. Since R′ is finitely generated over R,
we have a surjective ring homomorphism ϕ : R[X1, . . . , Xn] � R′. We find using the
homomorphism theorem:

R′ ∼= R[X1, . . . , Xn]/ ker(ϕ).

We recall that by Remark 6.13, any polynomial ring in finitely many variables over
a Cohen-Macaulay ring is Cohen-Macaulay. By Proposition 7.6, the polynomial ring
R[X1, . . . , Xn] is also catenary. Proposition 7.2 ensures that R[X1, . . . , Xn]/ ker(ϕ) is cate-
nary, and hence, R′ is catenary. �

8 Proofs of the main Theorems

All results in the previous sections now lead to the proof of the first theorem:

Theorem 8.1. Any ring that is finitely generated over a field K, or over Z, or over any
Dedekind ring, respectively, is catenary.

Proof. We apply Theorem 7.7 to Examples 6.2, 6.3, 6.4 and 6.5. �

For the second theorem, we will need a few preliminary results.

Lemma 8.2. For every local catenary integral domain R, and for any of its prime ideals
p, we have

ht(p) + coht(p) = dim(R).

Proof. Call the maximal ideal m. As R is an integral domain and catenary, any maximal
chains of prime ideals between (0) and m have the same length.

Let p be an arbitrary prime ideal of R. Given any maximal chain between (0) and p
and any maximal chain between p and m, we can glue them together to form a maximal
chain between (0) and m, since R is catenary. Hence

ht(p) + coht(p) = ht(m) = dim(R),

because R is local. �

Proposition 8.3. For any catenary integral domain R, for which all its maximal ideals m
satisfy

ht(m) = dim(R),

the equality
ht(p) + coht(p) = dim(R)

holds for any of its prime ideals p.
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Proof. The assumption on the maximal ideals assures that if we pass to the localisation
with respect to some maximal ideal that

dim(Rm) = ht(m) = dim(R).

If we take some prime ideal p, we find a maximal ideal m containing p. Upon localising
with respect to m we find

dim(R) = dim(Rm) = ht(pm) + coht(pm) 6 ht(p) + coht(p).

The first equality stems from the argument above and the second equality is due to
Lemma 8.2. The inequality is because, while the height is preserved under this locali-
sation, the coheight might be reduced. We always have dim(R) > ht(p) + coht(p), so we
obtain the desired equality. �

Proposition 8.4. Any integral domain R′ that is finitely generated over R ∈ {Z, K}
satisfies

(8.4) For all m ⊂ R′ maximal : ht(m) = dim(R′).

Proof. We reduce to the case R′ = R[X1, . . . , Xn]: Assume that the property (8.4) holds
for R[X1, . . . , Xn]. As before, for some n ∈ Z>0 and for the associated homomorphism
ϕ : R[X1, . . . , Xn]� R′, we have

R′ ∼= R[X1, . . . , Xn]/ ker(ϕ)

by the homomorphism theorem. The ideals of R[X1, . . . , Xn]/ ker(ϕ) are in a one-to-one
correspondence with the ideals of R[X1, . . . , Xn] containing ker(ϕ). Furthermore ker(ϕ) is
prime, because R′ is an integral domain.

Let m ⊂ R[X1, . . . , Xn]/ ker(ϕ) be a maximal ideal and let m be the corresponding
maximal ideal of R[X1, . . . , Xn]. The ideal ker(ϕ) lies in m, and we can consider a maximal
chain of prime ideals

(0) $ . . . $ ker(ϕ) $ . . . $ m.

We obtain

ht(m) = ht(m)− ht(ker(ϕ)) = dim(R[X1, . . . , Xn])− ht(ker(ϕ))

> coht(ker(ϕ)) = dim(R[X1, . . . , Xn]/ ker(ϕ)).

The first equality is given because by Theorem 8.1, R′ is catenary. The second equality
is due to our assumption that the property (8.4) holds for the polynomial ring. The re-
maining inequality and equality hold by the definition of height, coheight and the Krull
dimension. We deduce that ht(m) = dim(R[X1, . . . , Xn]/ ker(ϕ). So if we can show the
property (8.4) for R[X1, . . . , Xn] then (8.4) will also follow for R[X1, . . . , Xn]/ ker(ϕ) ∼= R′.
Hence we can just consider the polynomial ring.
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We proceed by induction on n. The case n = 0 works, since both {Z, K} satisfy the
property (8.4) by Examples 6.2 and 6.3. Our inductive hypothesis is that for some n > 0
the ring R[X1, . . . , Xn] satisfies the property (8.4).

Consider Rn+1 := R[X1, . . . , Xn+1] and some maximal ideal m ⊂ Rn+1. It always holds
that ht(m) 6 dim(R[X1, . . . , Xn+1]). Call Rn := R[X1, . . . , Xn] and set m̃ := m ∩ Rn. The
ideal m̃ is prime. If we take a chain of prime ideals

p0 $ . . . $ pn = m̃

in Rn, we obtain a chain of prime ideals in Rn+1 by taking their pushforward in Rn+1 via
the inclusion

p0[Xn+1] $ . . . $ pn[Xn+1] = m̃[Xn+1] ⊂ m.

Since Rn+1/(m̃[Xn+1]) ∼= (Rn/m̃)[Xn+1], the ideal m̃[Xn+1] cannot be maximal and hence
we see that the inclusion m̃[Xn+1] $ m is strict. Hence,

ht(m̃) + 1 6 ht(m).

We would like to show that m̃ is a maximal ideal of Rn. Consider the diagram

R

Rn Rn+1.

Define n := m∩R = m̃∩R. Then n is prime in R, and we want to show that n is maximal
too. If R = K, it holds.

If R = Z, then n = (p) for a prime number p ∈ Z, which is a maximal ideal. The case
p = 0 is not possible: If m ∩R = (0), consider

Z ↪→ Rn+1 � Rn+1/m.

The kernel of the composition is n = (0). Thus, we obtain

Z ↪→ Q ↪→ Rn+1/m.

Since Rn+1/m is a finite ring extension over Z, it is also a finite ring extension over Q. By
Theorem 2.5, Rn+1/m is a finite field extension over Q, and hence it is a finitely generated
Q-module. Now, the theorem by Artin-Tate 2.4 implies that Q is a finitely generated
Z-algebra, which is a contradiction.

Consider the induced diagram of injective homomorphisms:

R/n

Rn/m̃ Rn+1/m.
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Both R/n and Rn+1/m are fields, since n and m are maximal. We obtain inclusions

R/n ↪→ Rn/m̃ ↪→ Rn+1/m.

By Theorem 2.5, Rn+1/m is a finite field extension of R/n, which implies

dimR/n(Rn/m̃) <∞.

We use a result from Algebra which says that if you have a field extension M/L and a
subring L ⊂ S ⊂ M with dimL(S) < ∞, then S is a field. Therefore, we find that Rn/m̃
is a field too. Thus, m̃ is a maximal ideal of Rn.

We find
dim(Rn+1) = dim(R) + n+ 1 = dim(Rn) + 1 = ht(m̃) + 1,

where the first two equalities follow from Theorem 2.9 and the last one follows from the
induction hypothesis. Therefore,

dim(Rn+1) = ht(m̃) + 1 6 ht(m),

which implies equality and concludes the proof. �

Finally, we can prove the second theorem:

Theorem 8.5. Any integral domain R that is finitely generated over a field K, or over Z,
satisfies the following:

(i) For all prime ideals p ⊂ R: ht(p) + coht(p) = dim(R).

(ii) For all maximal ideals m ⊂ R: ht(m) = dim(R).

Proof. By Proposition 8.4, all maximal ideals have height equal to the dimension of R,
which shows (ii). Applying Proposition 8.3 we obtain (i). �

9 Geometric interpretation

First, consider an algebraically closed field K, set R := K[X1, . . . , Xn] and recall the
following definitions:

Definition 9.1. The subset

V (S) := {x ∈ Kn | ∀f ∈ S : f(x) = 0 } ⊂ Kn

defined by a subset S ⊂ R is called an affine algebraic variety.

Definition 9.2. For any subset X ⊂ Kn we define the subset

I(X) := {f ∈ R | ∀x ∈ X : f(x) = 0 } ⊂ R.
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Recall that the Zariski-topology on Kn has as closed sets precisely the V (S) for all
S ⊂ R. Furthermore, I(X) is an ideal, and the Zariski-closed subsets of Kn are in a
mutually inverse bijection to the radical ideals of R via the maps I and V . We also
know that the prime ideals and the irreducible Zariski-closed subset are in a one-to-one
order-reversing correspondence under this bijection.

Call X a Zariski-closed subset of Kn and denote by RX := R/I(X) its coordinate ring.
Suppose we have a regular sequence a1 + I(X), . . . , ar + I(X) in RX for a1, . . . , ar ∈ R.
We are interested in what happens in Kn. Let us look at a1 + I(X). By the definition of
a regular sequence, we know that a1 + I(X) is not a zero-divisor of RX .

We examine the fact that a1 is not a zero-divisor of RX further by recalling that for
any ring R′ we have

{ zero-divisors ofR′ } =
⋃

p∈Ass((0))

p.

The associated prime ideals of (0) are comprised of the minimal prime ideals above (0) —
which are also the minimal elements of Ass((0)) — and the embedded prime ideals. Hence,
we know that a1 cannot lie in any of the associated prime ideals of RX . The minimal
prime ideals of RX correspond to the irreducible components of X, and the remaining
prime ideals of Ass((0)) correspond to the embedded components. We are now able to
translate the above into a condition on our variety X: If V (a1) denotes the hypersurface
associated to a1, then for all irreducible components and embedded components V (p) of
X, we have V (p) 6⊂ V (a1).

When we look at the next element of the sequence, we require its image in RX/(a1 +
I(X)) ∼= R/(I(X), a1) to be a non-zero-divisor. The ring R/(I(X), a1) is the coordinate
ring of the new variety V (I(X), a1) = X ∩ V (a1), which is the intersection of the varieties
X and V (a1). Hence in the next step, we cut the new variety X ∩ V (a1) with another
hypersurface V (a2) such that once more, none of the irreducible or embedded components
of X ∩ V (a1) are contained in X ∩ V (a1) ∩ V (a2). This means that at every step, each
irreducible or embedded component of the new intersection must be strictly included in an
irreducible component of the previous intersection.

We continue in the same manner, until we reach the end of the regular sequence, where
the condition that R/(I(X), a1, . . . , ar) 6= 0 ensures that the final intersection

X ∩ V (a1) ∩ . . . ∩ V (ar)

is nonempty. The depth of the ring RX is therefore the supremum over all such sequences
of intersecting the variety X.

Analogously, we can analyse the depth of an ideal I(X) associated to a variety X.
Consider a regular sequence a1, . . . , ar in I(X). This time, the fact that ai ∈ I(X) implies
that X ⊂ V (ai), meaning that the variety X lies within each hypersurface. By a similar
argument, we find that at each step, every irreducible or embedded component of

Kn ∩ V (a1) ∩ . . . ∩ V (ai)
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must be strictly included in an irreducible component of

Kn ∩ V (a1) ∩ . . . ∩ V (ai−1),

and that
Kn ∩ V (a1) ∩ . . . ∩ V (ar) 6= ∅.

Hence we can think of cutting through Kn one step at a time and approaching the
“shape” of the variety X. The depth of the variety is therefore the supremum over all such
cuts.

We see that depth is just another way of trying to find a meaningful way of measuring
what we intuitively would call dimension of a variety. The depth of the coordinate ring RX

would correspond to the dimension, whereas the depth of the ideal I(X) can be considered
as a codimension of X. This means that we could establish a dimension theory using
depth. We already have a notion of dimension and codimension though, given by the
Krull dimension and the height. Further even, we know thanks to Proposition 5.1 in what
relation they stand. Hence, if a ring is Cohen-Macaulay, the two approaches to define a
concept of dimension coincide.

We also examined catenary rings, which we can try to visualise. As mentioned before,
prime ideals correspond to irreducible subsets, and hence chains of prime ideals

p0 $ . . . $ pn

correspond to chains of irreducible subsets, with the order reversed:

V (p0) % . . . % V (pn).

So when we have a catenary ring, for example K[X1, . . . , Xn] — as was shown in Theo-
rem 7.7 —, the number of steps it takes to move from one irreducible subset to another
that contains it is always the same, no matter along which chain of irreducible subsets we
decide to go.

Let us look back at how we interpreted regular sequences and the depth of an ideal.
Given prime ideals q ⊂ p, let us consider a maximal chain of prime ideals

q = p0 $ . . . $ pn = p

which corresponds to a chain of irreducible subsets

V (q) = V (p0) % . . . % V (pn) = V (p).

We can go back to the proof of Proposition 7.5 to see that for any subsequent irreducible
subsets V (pi+1) $ V (pi) we can find some hypersurface V (a) which contains V (pi+1) but
does not contain V (pi). This hypersurface corresponds to some element in the localisation
with respect to pi+1. This helps us relay the depth of pi+1 to the depth of pi, i.e. we make
a connection between the codimension of V (pi+1) and the codimension of V (pi). Namely,

27



the codimension in each step — going from V (p0) to V (pn) — can increase by at most
one, in a sense taking into account the extra hypersurface in-between the two subsets. But
then, since the ring is Cohen-Macaulay, we deduced in the proof that any maximal chain
of prime ideals must have length equal to the height of p/q. So, in a sense, the depth forces
the property of catenary onto the ring.

Lastly, we return to look at the Krull dimension. We found in Theorem 8.5 that for
an integral domain that is finitely generated over a field K, or over Z, the dimension and
codimension of an irreducible Zariski-closed subset behaves as we expect them to, meaning
that they add up to the dimension of the whole space.

To make it easier to imagine the varieties, we discussed the classical algebraic geometry
case of the affine coordinate space Kn, but the ideas can be generalised to schemes too.
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