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Introduction
A smooth projective complex algebraic curve X of genus g ≥ 2 is said to have many
automorphisms if every deformation of X together with its automorphism group is
trivial. Previous work on curves with many automorphisms includes papers by Rauch
[Rau70], Popp [Pop72], Wolfart [Wol97], [Wol00], and Streit [Str01]. In [Wol00],
among other results, the curves with many automorphisms up to genus four are clas-
sified. Furthermore, for each of these curves X of genus up to four, Wolfart determines
if the Jacobian variety Jac(X) has complex multiplication. Related work also includes
papers by Shaska [Sha04], [Sha06], and Sevilla and Shaska [SS07]. In [Sha06], Shaska
determines equations of hyperelliptic curves with a given automorphism group and
branching type.

In this thesis, with Theorem 5.4, we give a classification, up to isomorphism, of the
curves with many automorphisms that are hyperelliptic. There are three infinite fam-
ilies, two of which have one curve each for each genus g ≥ 2, and one of which has one
curve for each genus g ≥ 3. Furthermore, there are 15 hyperelliptic curves with many
automorphisms which do not belong to the infinite families. For each hyperelliptic
curve with many automorphisms, we try to determine whether its Jacobian variety
Jac(X) has complex multiplication. This is achieved for all but five of the curves.

Furthermore, with Theorem 10.25, we give a necessary and sufficient criterion, based
on the construction of an n-pointed stable curve of genus zero, to decide whether
the Jacobian of a hyperelliptic curve defined over a number field has potential good
reduction at a given prime with residue characteristic > 2. The proof is based on the
characterization of a semi-stable model of the curve presented in a paper by Bosch
[Bos80].

This thesis is organized as follows: In Section 1, we review parts of equivariant de-
formation theory that are needed in Section 2. In Section 2, we give several equivalent
characterizations of curves with many automorphisms. In Section 3, we review some
results about hyperelliptic curves that are needed in the remainder of the thesis. In
Section 4, we give a necessary and sufficient criterion for a hyperelliptic curve to have
many automorphisms. In Section 5, we apply this criterion to find, up to isomor-
phism, all hyperelliptic curves with many automorphisms. In Section 6, we introduce
a method for finding genus one curves that are quotients of a given hyperelliptic
curve, which we use in Section 9. In Section 7, we review some results from the the-
ory of abelian and semi-abelian varieties and complex multiplication. In Section 8, we
mostly determine the characters of the representations of the automorphism groups
of the curves found in Section 5 on their spaces of global holomorphic 1-forms. In
Section 9, we apply the methods from Section 6 and the results from Section 8 to
determine, for most of the hyperelliptic curves with many automorphisms, whether
the Jacobian variety has complex multiplication. Finally, in Section 10, we give a
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criterion to determine if the Jacobian variety of a hyperelliptic curve over a number
field has potential good reduction in characteristic > 2.
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1. Equivariant deformations
Notation 1.1. For an algebraic curve X over a field K, we denote by AutK(X)

the automorphism group of X over K. If the field K is clear from the context,
we sometimes write Aut(X) instead of AutK(X). For a smooth projective complex
algebraic curve X, we denote by ΩX the sheaf of holomorphic 1-forms on X, and by
ΘX the tangent sheaf. Because ΩX and ΘX are invertible, they are coherent. For
n ∈ Z≥1, we denote by Cn the cyclic group of order n, by Dn the dihedral group of
order 2n, by Sn the symmetric group on n points and by An the alternating group
on n points. For a scheme S over a ring R and some ring R′ with a morphism
Spec(R′) → Spec(R), we define SR′ := S×Spec(R) Spec(R′). For a number field K, we
denote by OK its ring of integers. For any field K, we denote by K× its multiplicative
group. Suppose that R is a discrete valuation ring (DVR) with fraction field K and
corresponding discrete valuation v : K → Z ∪ {∞}. Then we denote by K̂ the
completion of K with respect to v and by R̂ the corresponding DVR of K̂. For a
graph G, we denote by V (G) and E(G) the vertex set and the edge set, respectively.

Definition 1.2. Let G be a group, let X1, X2 be sets and suppose that G acts on
X1 and X2. A map f : X1 → X2 is called G-equivariant if

∀x ∈ X1 ∀g ∈ G : f(gx) = gf(x).

We follow Chapter 3.2.b of [Bys09]. For an introduction to deformation theory
see also [Ser06]. Let K be an algebraically closed field, let C denote the category
of local Artinian rings with residue field K. The morphisms of C are the local ring
homomorphisms between the objects of C. Let Set denote the category of sets. Let
X be a smooth scheme over K, let G be a finite group and let ρ : G → AutK(X) be
a faithful action of G on X.

Definition 1.3 (Definition 3.2.5 in [Bys09]). A lift of the pair (X, ρ) to an object A
of C is a triple (XA, ρA, i), where XA is a flat scheme over Spec(A) and ρA : G →
AutA(XA) is a homomorphism and i : X → XA is a G-equivariant K-morphism
inducing an isomorphism X → XA ×Spec(A) Spec(K).

Two lifts (XA, ρA, i) and (X ′
A, ρ

′
A, i

′) are called equivalent if there exists a G-
equivariant isomorphism φ : XA → X ′

A over A such that φ ◦ i = i′.

The following definition partly follows Definition 3.2.6 in [Bys09] and page 21 in
[Ser06].

Definition 1.4. The covariant infinitesimal deformation functor of the pair (X, ρ) is
defined by

DX,G : C → Set

A 7→ {lifts of (X, ρ) to A} / ∼ ,
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where ∼ denotes the equivalence relation on lifts. On the morphisms of C, the functor
is defined as follows: Let f : A → B be a morphism of C and let (XA, ρA, i) be a lift
of (X, ρ) to A.

X XA

Spec(K) Spec(A)

i

Then, there is an induced lift (XB , ρB , j) of (X, ρ) to B given as follows:

X XA ×Spec(A) Spec(B) =: XB

Spec(K) Spec(B)

j

We define XB := XA ×Spec(A) Spec(B). The morphism j is the unique morphism
induced by the universal property of the fiber product XA ×Spec(A) Spec(B). The
map ρB is constructed as follows: The universal property of the fiber product induces
a homomorphism ψ : AutA(XA) → AutB(XB). We define ρB := ψ ◦ ρA. It is G-
equivariant. The image of the morphism f : A → B under DX,G is now defined as
the map

{lifts of (X, ρ) to A} / ∼ → {lifts of (X, ρ) to B} / ∼

(XA, ρA, i) 7→ (XA ×Spec(A) Spec(B), ρB , j),

where ρB and j are as constructed above. This is well-defined since equivalent lifts
to A induce equivalent lifts to B. Since the identity morphism id : A → A induces
the identity map on the equivalence classes of lifts and the construction respects
compositions of morphisms of C, we see that DX,G is a covariant functor.

Definition 1.5. The tangent space of DX,G is tDX,G
:= DX,G(K[ϵ]/ϵ2).

Remark 1.6. By Proposition 1.2.2 in [Bys09], the tangent space tDX,G
can be endowed

with a canonical K-vector space structure.

Remark 1.7. Let X ′ be a smooth scheme over K and let ρ′ : G′ → AutK(X ′) be
a faithful action of a finite group G′ on X ′. Suppose that η : DX,G → DX′,G′ is a
natural transformation. By Theorem 3.2.4 in [Bys09] and Remark 1.2.3 in [Bys09],
the natural transformation η induces a K-linear map

ηK[ϵ]/ϵ2 : tDX,G
→ tDX′,G′
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on the tangent spaces.

Proposition 1.8. Suppose that X is a smooth curve over K of genus g ≥ 2. Then
DX,G is pro-representable.

Proof. The proof is analogue to the proof of Théorème 2.1 in [BM00], where it is
proved in positive characteristic.

Definition 1.9 (see page 9 in Section 1.1.1 and Definition 1.1.3 in [Ser06]). Let A
be a ring, let R be an A-algebra and let I be an R-module. An A-extension of R by
I is a short exact sequence

(R′, φ) : 0 → I → R′ φ−→ R→ 0,

where R′ is an A-algebra and φ is a homomorphism of A-algebras whose kernel I is
an ideal of R′ satisfying I2 = (0). For every A-algebra R and for every R-module I
we let ExA(R, I) denote the set of A-extensions of R by I.

Fact 1.10. We can define an R-module structure on ExA(R, I). For the construction
see Section 1.1.2 in [Ser06].

Definition 1.11 (see Section 2.1 in [Ser06]). For any object A of C, we call ExK(A,K)

the obstruction space of A.

Definition 1.12 (see Definition 2.2.9 in [Ser06]). Suppose that V is a K-vector space
such that for every object A of C and for every ξ ∈ DX,G(A) there is a K-linear map

ξV : ExK(A,K) → V

with the following property: The kernel ker(ξV ) consists of isomorphism classes of
extensions (Ã, φ) ∈ ExK(A,K) such that

ξ ∈ Im[DX,G(Ã) → DX,G(A)].

Then V is called an obstruction space for the functor DX,G. If DX,G has 0 as an
obstruction space, then it is called unobstructed.

To compute the tangent space and an obstruction space of DX,G, we need equiv-
ariant sheaf cohomology, which was introduced by Grothendieck in Section 5.2 in
[Gro57].

Proposition 1.13. 1. The equivariant sheaf cohomology H1(X;G,ΘX) is the tan-
gent space to DX,G.

2. The equivariant sheaf cohomology H2(X;G,ΘX) is an obstruction space to
DX,G.
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Proof. See Proposition 3.2.7 in [Bys09].

Proposition 1.14. Suppose that DX,G is unobstructed. Let Auniv be the ring under-
lying the universal formal deformation given by Proposition 1.8 and let d = dim tDX,G

.
Then

Auniv ∼= K[x1, . . . , xd].

Proof. It follows from the paragraph after Definition 2.2.9 in [Ser06] that the ob-
struction space to Auniv, as in Definition 1.11, is isomorphic to the obstruction space
of DX,G. Because the tangent spaces of Auniv and DX,G are isomorphic, Corollary
2.2.11 in [Ser06] now tells us that dimAuniv = d. Because DX,G is unobstructed, we
have

Auniv ∼= K[x1, . . . , xd]

by Proposition 2.1.1.(ii) in [Ser06].

2. Curves with many automorphisms
Let X be a smooth projective complex algebraic curve of genus g ≥ 2.

Definition 2.1. The curve X is said to have many automorphisms if DX,Aut(X)(A)

is trivial for all A ∈ C.

Theorem 2.2. The following categories are equivalent:

1. The category of smooth projective complex algebraic curves.

2. The category of compact Riemann surfaces.

3. The category of field extensions of transcendence degree one over C, with arrows
reversed.

Proof. See Theorem 4.2.9 in [Nam84].

Theorem 2.3 (Serre). Let Xan denote the compact Riemann surface associated to
X by Theorem 2.2. Then the category of coherent schemes on X is equivalent to the
category of coherent analytic schemes on Xan.

Proof. This is an instance of Serre’s GAGA principle. See for example Theorem 2.1
in Appendix B in [Har77].

Lemma 2.4. Let G < Aut(X). Then, for any n ≥ 0, we have Hn(X;G,ΘX) ∼=
Hn(X,ΘX)G.
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Proof. We transfer the problem to the category of compact Riemann surfaces by
Theorem 2.2 and Theorem 2.3. Then, the group G acts discontinuously on X by
homeomorphisms. Therefore, we obtain from the first corollary to Théorème 5.3.1
in [Gro57] and the following paragraph that Hq(G,ΘX) = 0 for q > 0. Because G
is finite and we are working in characteristic 0, the conclusion is obtained from the
corollary to Proposition 5.2.3 in [Gro57].

Definition 2.5. A branched covering β : X → P1
C with at most three branch points

is called a Belyĭ function.

Proposition 2.6. The following are equivalent:

(i) The curve X has many automorphisms.

(ii) We have H1(X,ΘX)Aut(X) = 0.

(iii) We have H0(X,Ω⊗2
X )Aut(X) = 0.

(iv) There exists a Belyĭ function β : X → P1
C that defines a normal cover.

Proof. (i)⇐⇒(ii): Let G := Aut(X). By Lemma 2.4, we have H1(X;G,ΘX) ∼=
H1(X,ΘX)G and H2(X;G,ΘX) ∼= H2(X,ΘX)G. But H2(X,ΘX) = 0, because the
dimension of X is one. Therefore, by Proposition 1.13, it follows that DX,G is unob-
structed and of dimension d := dim tDX,G

= dimH1(X,ΘX)G. By Proposition 1.14,
we have Auniv ∼= C[x1, . . . , xd], where Auniv is the universal deformation of DX,G.
Since for every A ∈ C we have

DX,G(A) ∼= MorC-alg.(A
univ, A),

it follows that dimDX,G(A) = 0 ⇔ d = 0.
(ii)⇐⇒(iii): Since Θ ‹

X = ΩX , by Serre duality we have

H1(X,ΘX) ∼= H0(X,Ω⊗2
X ) ‹

and this isomorphism is Aut(X)-equivariant. The representation of Aut(X) onH0(X,Ω⊗2
X ) ‹

has nonzero fixed points if and only if the dual representation on H0(X,Ω⊗2
X ) has

nonzero fixed points.
(i)⇐⇒(iv): See Theorem 6 in [Wol97].

Remark 2.7. Belyĭ’s Theorem 4 in [Bel83] states that X can be defined over a number
field if and only if X admits a Belyĭ function. Therefore, by Proposition 2.6, every
curve with many automorphisms can be defined over a number field.
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3. Hyperelliptic curves
Definition 3.1. A smooth projective algebraic curve Xof genus g ≥ 2 over a field K
of characteristic 0 is called hyperelliptic if there is a finite morphism π : X → P1

K of
degree 2, called the hyperelliptic double cover.

Let X be a complex hyperelliptic curve of genus g.

Proposition 3.2. The morphism π : X → P1
C of degree 2 is unique up to automor-

phisms of P1
C.

Proof. See Theorem III.7.3 in [FK92].

Proposition 3.3. A complex algebraic curve is hyperelliptic if and only if it is the
projective completion of an affine curve of the form

y2 = f(x),

where f is a separable polynomial of degree deg f ≥ 5.

Proof. See Proposition 4.11 in Chapter III of [Mir95].

Remark 3.4. If, in affine coordinates, the curve X is given by y2 = f(x), the double
cover π : X → P1

C, in affine coordinates, is given by

(x, y) 7→ x.

Proposition 3.5. Suppose that X is given by y2 = f(x). Then deg f = 2g + 2 or
deg f = 2g + 1. If deg f = 2g + 2, the branch points of the double cover π are the
roots of f . If deg f = 2g + 1, then the branch points of π are the roots of f and the
point ∞ ∈ P1

C.

Proof. See Lemma 1.7 in Chapter III of [Mir95].

Definition 3.6. The ramification points P1, . . . , P2g+2 ∈ X of the double cover π are
called the Weierstrass points of X. We denote the set of the images of the Weierstrass
points under π by

W (X) := {π(P1), . . . , π(P2g+2)} .

Proposition 3.7. There is a unique involution in Aut(X), denoted by σ and called the
hyperelliptic involution, that fixes exactly the Weierstrass points of X. It is the unique
involution of X with 2g + 2 fixed points. Furthermore, the hyperelliptic involution is
in the center of Aut(X).

Proof. Corollary 1 and 2 and 3 in III.7.9. in [FK92].

Corollary 3.8. The hyperelliptic double cover π : X → P1
C is the quotient map

X → X/⟨σ⟩∼= P1
C, up to a change of coordinates of P1

C.
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Proof. The quotient map f : X → X/⟨σ⟩ is of degree 2, because σ has order 2. The
ramification points of f are exactly the fixed points of σ. Therefore, by Proposition 3.7
and Proposition 3.2, the maps f and π are equal up to an automorphism of P1

C.

Definition 3.9. We call Aut(X) := Aut(X)/⟨σ⟩ the reduced automorphism group of
X.

In the following, we will identify Aut(X) with its image in Aut(P1
C). This is possible

by Corollary 3.8.

Proposition 3.10. Each finite subgroup of Aut(P1
C)

∼= PGL2(C) is isomorphic to
one of Cn, Dn, A4, S4 and A5 for some n ∈ Z≥1, and any two finite isomorphic
subgroups of Aut(P1

C) are conjugate to each other.

Proof. See Chapter III in [Bli17].

Because g ≥ 2, the groups Aut(X) and Aut(X) are finite. Therefore we have:

Corollary 3.11. The reduced automorphism group Aut(X) is isomorphic to one of
the groups listed in Proposition 3.10.

Proposition 3.12. The reduced automorphism group Aut(X) is the maximal sub-
group of Aut(P1

C) that acts on W (X). That is:

Aut(X) =
{
T ∈ Aut(P1

C)
∣∣ TW (X) =W (X)

}
.

Proof. Let T be an automorphism of X. Then T permutes the ramification points of
the hyperelliptic double cover π. Therefore, the image T of T in Aut(X) acts as a
permutation on W (X). Conversely, by Lemma 2 in [Tsu58], any automorphism S of
Aut(P1

C), which permutes W (X), can be lifted to an automorphism of X.

Finally, we will also use the following:

Proposition 3.13. Let Y be a smooth projective complex algebraic curve of genus
g′. Then

dimH0(Y,ΩY ) = g′.

Proof. See Proposition III.5.2 in [FK92].

4. A criterion for finding the hyperelliptic curves with
many automorphisms

Let X be a complex hyperelliptic curve of genus g ≥ 2.
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Theorem 4.1. If Aut(X) is not cyclic, then X has many automorphisms if and only
if the action of Aut(X) on W (X) does not have a free orbit. If Aut(X) is cyclic,
then X has many automorphisms if and only if the action of Aut(X) on W (X) has
exactly one free orbit.

We will need the following lemma:

Lemma 4.2. If w ∈ W (X), then |Aut(X)w| = |Aut(X)| if and only if w is not a
ramification point of ϕ : P1

C → P1
C/Aut(X) ∼= P1

C.

Proof. Let p := ϕ(w). Then Aut(X)w = ϕ−1(p) by the definition of ϕ. Because p is
a branch point of ϕ if and only if |ϕ−1(p)| < |Aut(X)|, the result follows.

Proposition 4.3. Let H < Aut(X), let ϕ : X → X/H be the quotient map and let
gH be the genus of X/H. Let n be the number of branch points of ϕ in X/H. Then

dimH0(X,Ω⊗2
X )H = 3gH − 3 + n.

Proof. A point y ∈ X/H is a branch point of ϕ if and only if its preimages are
ramification points of ϕ. The ramification points of ϕ are exactly those for which the
point stabilizer in H is nontrivial. The conclusion then follows from Remark in V.2.2
in [FK92].

In our case, we will use H = Aut(X) and therefore X/H ∼= P1
C and gAut(X) = 0.

Lemma 4.4. Let ϕ : P1
C → P1

C/Aut(X) ∼= P1
C denote the quotient map. If Aut(X) is

not cyclic, then ϕ has exactly three branch points. If Aut(X) is cyclic and nontrivial,
then ϕ has exactly two branch points.

Proof. See for example §2 in [BS86].

Lemma 4.5. If Aut(X) is trivial, then X does not have many automorphisms.

Proof. If Aut(X) is trivial, then Aut(X) is generated by the hyperelliptic involution
and the quotient map X → X/Aut(X) has 2g + 2 branch points. Then X cannot
have many automorphisms, because by Proposition 4.3 we would need

0 = dimH0(X,Ω⊗2
X )Aut(X) = −3 + 2g + 2,

which is impossible because g ∈ Z≥1.

Proof of Theorem 4.1. Denote by π : X → P1
C the hyperelliptic double cover and

denote by ϕ : P1
C → P1

C/Aut(X) the quotient map and let

ψ := ϕ ◦ π : X → X/Aut(X) ∼= P1
C.

We want to use condition (iii) in Proposition 2.6 to determine the hyperelliptic curves
that have many automorphisms.
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By Lemma 4.5, we may assume that Aut(X) is nontrivial. Let n denote the number
of branch points of ψ and let m denote the number of branch points of ϕ.
Claim: Let k be the number of free orbits of Aut(X) in W (X). Then n = m+ k.

Proof. A point p ∈ P1
C is a branch point of ψ if and only if |ψ−1(p)| < |Aut(X)|.

Therefore, the point p is a branch point of ψ if and only if p is a branch point of ϕ or
ϕ−1(p) ⊆ W (X). We want to show that the branch points of ψ that are not branch
points of ϕ correspond precisely to the free orbits of Aut(X) in W (X). If p is not a
branch point of ϕ then ϕ−1(p) is a free orbit of the action of Aut(X) on P1

C. Therefore,
if p is a branch point of ψ that is not a branch point of ϕ, then ϕ−1(p) is a free orbit
of Aut(X) in W (X). Conversely, if ϕ−1(p) is a free orbit in W (X), then p is a branch
point of ψ and p is not a branch point of ϕ, because |ϕ−1(p)| = |Aut(X)|.

By Proposition 4.3, we have dimH0(X,Ω⊗2
X )Aut(X) = 0 if and only if n = 3. If

Aut(X) is not cyclic, then, by Lemma 4.4, the map ϕ has exactly three branch points.
Therefore, by the Claim, we have n = 3 if and only if Aut(X) has no free orbits in
W (X). If Aut(X) is cyclic, then by Lemma 4.4, the map ϕ has exactly two branch
points. Therefore, by the Claim, we have n = 3 if and only if Aut(X) has exactly one
free orbit in W (X).

Remark 4.6. For a hyperelliptic curve X of genus g given by

y2 = f(x),

a basis of H0(X,Ω⊗2
X ) is B1 ∪ B2, where B1 and B2 are defined by

B1 :=

{
xk(dx)2

y

∣∣∣∣ 0 ≤ k ≤ g − 3

}
,

B2 :=

{
xk(dx)2

y2

∣∣∣∣ 0 ≤ k ≤ 2g − 2

}
.

Furthermore, we have H0(X,Ω⊗2
X )⟨σ⟩ = span(B2). For a reference see Section 7 in

[Løn80]. Therefore, if Aut(X) is known, one can compute H0(X,Ω⊗2
X )Aut(X) by a

direct calculation by using the given basis.

5. Calculating the hyperelliptic curves with many
automorphisms

To compute equations for the hyperelliptic curves with many automorphisms, we
have to choose a conjugacy class for each of the finite subgroups of Aut(P1

C) listed in
Proposition 3.10.
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Definition 5.1. We choose the following coordinates, as in [Sha06], where ξn is a
primitive nth root of unity and ω = 1−

√
5

2 and ϵ is a primitive fifth root of unity:

Cn :=⟨x 7→ ξnx⟩

Dn :=
⟨
x 7→ ξnx, x 7→ x−1

⟩
A4 :=

⟨
x 7→ −x, x 7→ x+ i

x− i

⟩
S4 :=

⟨
x 7→ ix, x 7→ −x− 1

x+ 1

⟩
A5 :=

⟨
x 7→ ωx+ 1

x− ω
, x 7→ ϵx

⟩
Proposition 5.2. For each finite subgroup G < Aut(P1

C) in the coordinates given in
the previous definition and for each non-free orbit A of G in P1

C = C ∪ {∞}, Table 1
lists a separable polynomial p with A ∩ C as its roots.

G Polynomial p ∞ ∈ A

Cn, n > 1
1 yes
x no

Dn, n > 1

x yes
xn − 1 no
xn + 1 no

A4

t4 := x(x4 − 1) yes
p4 := x4 + 2i

√
3x2 + 1 no

q4 := x4 − 2i
√
3x2 + 1 no

S4

r4 := x12 − 33x8 − 33x4 + 1 no
s4 := x8 + 14x4 + 1 no

t4 yes

A5

r5 := x20 − 228x15 + 494x10 + 228x5 + 1 no
s5 := x(x10 + 11x5 − 1) yes

t5 := x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1 no

Table 1: Non-free orbits of the finite subgroups of Aut(P1
C)

Proof. Because the non-free orbits of G in P1
C are exactly the preimages of the branch

points of the quotient map ϕ : P1
C → P1

C/G
∼= P1

C, we know by Lemma 4.4 that there
are two non-free orbits if G is cyclic and three non-free orbits otherwise. To find the
points in these orbits, note that a point P ∈ P1

C is in a non-free orbit of G if and only
if the stabilizer GP of P is nontrivial. Therefore, it suffices to calculate fixed points
of elements of G and their orbits under the action of G until we have found enough
non-free orbits.
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1. For the case G = Cn, for n ∈ Z≥1, clearly the points 0 and ∞ are fixed points
of the whole group. Therefore, we already found all non-free orbits of G.

2. For the case G = Dn, we see by a direct calculation that {0,∞} and
{
ξ1n, . . . , ξ

n
n

}
and

{
ζξ1n, . . . , ζξ

n
n

}
, where ζ ∈ C is chosen such that such that ζn = −1, are

three distinct non-free orbits.

3. If G ∈ {A4, S4, A5}, see the calculation in GAP [GAP17] in Appendix B.1.

Lemma 5.3. Let G < Aut(P1
C) be finite. If G fixes a point p ∈ P1

C, then G is cyclic.

Proof. After a change of coordinates, we may assume that p = ∞. Then we can embed
G ↪→ Aut(C) by restricting the action of G, where Aut(C) denotes the automorphism
group of C viewed as an affine algebraic variety. Because all finite subgroups of Aut(C)
are cyclic, the conclusion follows.

Theorem 5.4. A complex hyperelliptic curve has many automorphisms if and only
if it is isomorphic to a curve in Table 2.

Proof. Let X be a complex hyperelliptic curve with many automorphisms of genus g.
Then G := Aut(X) is not trivial by Lemma 4.5. By Corollary 3.11, the group G is
isomorphic to one of Cn, Dn, A4, S4 and A5 for some n ≥ 2. We choose coordinates
on P1

C, such that G acts on P1
C as specified in Definition 5.1. We proceed by a case

distinction on the different possibilities for G and list, for each choice of G, the possible
sets W (X) and use the fact that X is uniquely determined by W (X). View W (X)

as the union of the orbits of the action of G on it. We construct all possibilities for
W (X) by using Theorem 4.1 and Proposition 5.2 and exclude possible sets of branch
points when the curve associated to these already has a reduced automorphism group
strictly containing G.

1. Case G = Cn: By Theorem 4.1, the action of G on W (X) has exactly one free
orbit. By Proposition 5.2, the non-free orbits of G on P1

C are {0} and {∞}. Let
p ∈ W (X) be in the free orbit of G. After a change of coordinates in P1

C by
multiplication with p−1, we may assume without loss of generality that p = 1.
Because multiplication with a constant commutes with the action of G, the
coordinates of the action of G do not change. The free orbit is now the set of
roots of xn − 1.
Claim: n is odd.

Proof. Assume, for contradiction, that n is even. Then, because |W (X)| is even,
either none or both of {0} and {∞} have to be subsets of W (X). In either case,
the dihedral group Dn acts on W (X). Therefore, by Proposition 3.12, we have
Dn < Aut(X), which is a contradiction.
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Because n is odd and |W (X)| is even, either 0 ∈W (X) or ∞ ∈W (X). But the
curves given by y2 = x2g+1−1 and y2 = x2g+2−x are isomorphic. Therefore, if
X exists, we may assume that X is given by y2 = x2g+1− 1 and n = 2g+1. By
Lemma 5.3, it follows that C2g+1 is indeed the full reduced automorphism group
of the hyperelliptic curve defined by y2 = x2g+1 − 1. Therefore, a hyperelliptic
curve X with many automorphisms and Aut(X) = Cn exists and is defined by

y2 = xn − 1.

2. Case G = Dn: By Theorem 4.1, the action of G on W (X) has no free orbits.
By Proposition 5.2, the non-free orbits of G on P1

C are {0,∞}, the set of roots
of xn − 1 and the set of roots of xn + 1. Therefore, the curve X is given by

y2 = xϵ1(xn − 1)ϵ2(xn + 1)ϵ3

for some ϵ1, ϵ2, ϵ3 ∈ {0, 1}.
Claim: ϵ2 + ϵ3 = 1.

Proof. If ϵ2 = ϵ3 = 0, the curve X is not hyperelliptic. If ϵ2 = ϵ3 = 1, the curve
X is given by y2 = xϵ1(x2n−1) and D2n acts on X. Then, by Proposition 3.12,
we have D2n < G, which is a contradiction.

Therefore, the curve X is of the form y2 = xϵ1(xn ± 1).
Claim: n is even.

Proof. Suppose that n is odd. If ϵ1 = 0, then 0 /∈ W (X) and ∞ ∈ W (X),
because |W (X)| is even, which is a contradiction. If ϵ1 = 1, then 0 ∈ W (X)

and ∞ /∈W (X), which is also a contradiction.

Because the curves given by y2 = xϵ1(xn − 1) and y2 = xϵ1(xn + 1) are isomor-
phic, we may assume that X is given by

y2 = xϵ1(x2g+2−2ϵ1 − 1)

and n = 2g + 2 − 2ϵ1. Note that, for even n > 4 we have Dn ̸< S4 and for
even n > 2 we have Dn ̸< A5. If g ≥ 2 and ϵ1 = 0 the curve X is given by
y2 = x2g+2 − 1 and its full automorphism is indeed D2g+2. If g ≥ 3 and ϵ1 = 1

the curve X is given by y2 = x2g+1 − x and its full automorphism group is
indeed D2g. The remaining case, if g = 2 and ϵ1 = 1, is given by y2 = x(x4− 1)

and has reduced automorphism group S4 as is shown below.

3. Case G = A4: By Theorem 4.1, the action of G on W (X) has no free orbits.
By Proposition 5.2, the curve X is given by

y2 = tϵ14 p
ϵ2
4 q

ϵ3
4
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for some ϵ1, ϵ2, ϵ3 ∈ {0, 1}. Note that p4q4 = s4, where the roots of s4 are a
non-free orbit of the action of S4. Also the roots of t4, together with ∞, form a
non-free orbit of the action of S4. Therefore, if ϵ1 is arbitrary and ϵ2 = ϵ3 = 1,
the group S4 acts on W (X) and therefore, by Proposition 3.12, we have S4 < G,
which is a contradiction.
Claim: ϵ1 = 1.

Proof. If ϵ1 = 0, then ϵ2 = ϵ3 = 1, because otherwise the genus of X would be
one. This is a contradiction.

Claim: ϵ2 + ϵ3 = 1.

Proof. The case ϵ2 = ϵ3 = 1 has been treated above. If ϵ2 = ϵ3 = 0, the curve X
is defined by y2 = t4, which implies S4 < G, which is also a contradiction.

It follows that X, if it exists, is defined by y2 = t4p4 or y2 = t4q4. But the
two possibilities are isomorphic. Therefore, we may assume that X is defined
by y2 = t4p4. It remains to show that the reduced automorphism group of the
projective curve Y defined by y2 = t4p4 is indeed A4 and not S4. Suppose that
S4 acts on W (Y ). Then all orbits of S4 on W (Y ) are non-free, because all points
in W (Y ) already have non-trivial point stabilizers in A4 < S4. Therefore, the
curve Y would be a curve with many automorphisms and appear in the next
case. Since it does not do that, the group S4 does not act on W (Y ) and therefore
X exists and is equal to Y .

4. Case G = S4 or G = A5: By Theorem 4.1, the action of G on W (X) has no
free orbits. Since S4 and A5 are not proper subgroups of any finite subgroups
of Aut(P1

C) and all nontrivial products of the polynomials for S4, respectively
A5, listed in Table 1 define hyperelliptic curves, the hyperelliptic curves with
many automorphisms with reduced automorphism group S4, respectively A5,
are exactly given by the nontrivial products of the polynomials listed for the
respective groups in Table 1.

Definition 5.5. The groups Vn, Un, W2 and W3 in Table 2 are defined by

Un :=
⟨
a, b

∣∣ a2, b2n, ababn+1
⟩
,

Vn :=
⟨
a, b

∣∣ a4, bn, (ab)2, (a−1b)2
⟩
,

W2 :=
⟨
a, b

∣∣ a4, b3, ba2b−1a2, (ab)4
⟩
,

W3 :=
⟨
a, b

∣∣ a4, b3, (ab)8, a2(ab)4⟩
as defined in Theorem 2.1 in [BGG93].
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Theorem 5.6. The automorphism groups of the hyperelliptic curves with many au-
tomorphisms are as given in Table 2.

Proof. To determine the (not reduced) automorphism groups of the curves in Table 2,
we use the classification of the automorphism groups of hyperelliptic curves in Satz
5.1 in [BS86]. Let X by a hyperelliptic curve and let ψ : X → X/Aut(X) ∼= P1

C and
ϕ : P1

C → P1
C/Aut(X) be the quotient maps. Then the isomorphism class of Aut(X)

is completely determined by Aut(X) and the ramification orders of the map ψ of the
branch points of ϕ. Each branch point of ϕ corresponds to a non-free orbit of the
action of Aut(X) on P1

C. Let p ∈ P1
C be a branch point of ϕ and let

ep =
|Aut(X)|
|ψ−1(p)|

denote its ramification order with respect to ψ. If ϕ−1(p) ⊆W (X), then

|ψ−1(p)| = |ϕ−1(p)|

and
ep =

|Aut(X)|
|ϕ−1(p)|

.

Otherwise, we have |ψ−1(p)| = 2|ϕ−1(p)| and therefore,

ep =
|Aut(X)|
2 |ϕ−1(p)|

.

Thus, for each curve X in Table 2, we can determine the needed ramification orders
by looking at which non-free orbits of Aut(X) on P1

C are in W (X).
Alternatively, the automorphism groups can be obtained from Table 1 in [Sha06].

6. Quotient curves
Let X be a smooth projective complex algebraic curve of genus g ≥ 0 and let G <

Aut(X) be a finite group. Recall that the quotient X/G also has the structure of a
smooth projective complex algebraic curve.

Proposition 6.1. Suppose that g ≥ 2 and let g̃ be the genus of X/G. Then

g̃ = dimH0(X,ΩX)G.

Proof. See Corollary V.2.2 in [FK92].

Suppose that g ≥ 2. The dimension of the space of invariants in the space of
holomorphic differentials can be computed using character theory:
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Aut(X) Aut(X) Affine eq. of X is y2 − f(x) Genus Jac(X) has CM

X1 C4g+2 C2g+1 f = x2g+1 − 1 g ≥ 2 yes
X2 V2g+2 D2g+2 f = x2g+2 − 1 g ≥ 2 yes
X3 U2g D2g f = x2g+1 − x g ≥ 3 yes
X4 SL2(3) A4 f = t4p4 4 yes
X5 GL2(3) S4 f = t4 2 yes
X6 C2 × S4 S4 f = s4 3 no
X7 W2 S4 f = r4 5 yes
X8 GL2(3) S4 f = s4t4 6 no
X9 W3 S4 f = r4t4 8 yes
X10 W2 S4 f = r4s4 9 ?
X11 W3 S4 f = r4s4t4 12 ?
X12 C2 ×A5 A5 f = s5 5 no
X13 C2 ×A5 A5 f = r5 9 no
X14 SL2(5) A5 f = t5 14 yes
X15 C2 ×A5 A5 f = r5s5 15 no
X16 SL2(5) A5 f = s5t5 20 ?
X17 SL2(5) A5 f = r5t5 24 ?
X18 SL2(5) A5 f = r5s5t5 30 ?

Table 2: Hyperelliptic curves with many automorphisms

Definition 6.2. We denote by χhol the character of the canonical representation of
Aut(X) on the space of holomorphic differentials H0(X,ΩX) and by χtriv the trivial
character of Aut(X).

Lemma 6.3. For a character χ of Aut(X), denote by χ|G the restriction of χ to G.
We have

dimH0(X,ΩX)G = ⟨χhol|G, χtriv|G⟩.

Proof. This follows from basic character theory.

Proposition 6.4. Let E be a complex elliptic curve with identity P ∈ E. Then, the
group of automorphisms of E that fixes P is cyclic of order 2, 4 or 6.

Proof. See Corollary III.10.2 in [Sil09].

Proposition 6.5. Let X be a complex hyperelliptic curve and let G < Aut(X) be
such that Y := X/G has genus one. Denote by G the image of G in Aut(X) and
denote by ϕ : P1

C → P1
C/G

∼= P1
C the quotient map. Let V1 := ϕ(W (X)) and let V2 be

15



the set of branch points of ϕ and let V := V1 ∪ V2. Then, there are distinct points
P1, . . . , P4 ∈ V such that ∞ /∈ {P1, P2, P3} and Y is isomorphic to the projective
completion of

y2 = (x− P1)(x− P2)(x− P3)(x− P4)

if P4 ̸= ∞, and
y2 = (x− P1)(x− P2)(x− P3),

if P4 = ∞.

Proof. First note that the hyperelliptic involution σ of X is not contained in G,
because if it was, the quotient Y would have genus 0. Since σ is in the center of
Aut(X) and the quotient π2 : X → Y is categorical, the involution σ acts on Y .
Let w ∈ X be a Weierstrass point and denote the hyperelliptic double cover by
π1 : X → P1

C. Then w is fixed by σ, and therefore π2(w) is fixed by the action of σ on
Y . It follows that σ induces an involution on Y , again called σ, that fixes π2(w). It
follows directly from Proposition 6.4 that σ is the unique involution on Y that fixes
π2(w). Let g : Y → Y /⟨σ⟩∼= P1

C denote the quotient map. Then g ◦ π2 = ϕ ◦ π1, since
in the case of g ◦π2, we first take the quotient by G and then by σ, and in the case of
ϕ◦π1, we first take the quotient by σ and then by G. Let P1, . . . , P4 denote the branch
points of g in P1

C and suppose, without loss of generality, that ∞ /∈ {P1, P2, P3}. If
P4 ̸= ∞, an equation for Y is given by

y2 = (x− P1)(x− P2)(x− P3)(x− P4).

Otherwise, an equation for Y is given by

y2 = (x− P1)(x− P2)(x− P3).

Because P1, . . . , P4 are branch points of g and π2 is a branched covering of degree
|G|, the points P1, . . . , P4 are also branch points of g ◦ π2. Then P1, . . . , P4 are also
branch points of ϕ ◦ π1. The branch points of ϕ ◦ π1 are given by V .

Theorem 6.6 (Constructive version of Lüroth’s theorem). Let K and L be fields such
that K ⊊ L ⊆ K(x). Then, the field extension K(x)/L is finite and any coefficient
of the minimal polynomial of x over L that is not in K generates K(x) over L.

Proof. See the proof of Theorem 1.3 in [Oja90].

Remark 6.7. At least one of the coefficients of the minimal polynomial of x over L is
not in K since x is transcendental over K.

The following Lemma is stated without a detailed proof in [Sha06].

Lemma 6.8. Let G be a finite subgroup of Aut(P1
C) and let h1, . . . , h|G| ∈ C(x)

be the Möbius transformations associated to the elements of G. Then, up to an
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automorphism of the image, the morphism f : P1
C → P1

C/G
∼= P1

C is given by any
nonconstant elementary symmetric polynomial in h1, . . . , h|G|.

Proof. In terms of function fields, the morphism f is given by the inclusion C(x)G ↪→
C(x). It remains to show that C(x)G is generated by any nonconstant elementary
symmetric polynomial in h1, . . . , h|G|. Because G is finite, the extension C(x)/C(x)G

is Galois with Gal
(
C(x)/C(x)G

)
= G. Let f ∈

(
C(x)G

)
[y] be the minimal polynomial

of x over C(x)G. Then f(x) = 0 and therefore f(hk(x)) = 0 for 1 ≤ k ≤ |G|, because
Gx =

{
h1(x), . . . , h|G|(x)

}
. Because

[
C(x)/C(x)G

]
= |G|, we have degy f = |G|.

Therefore,

f(y) =

|G|∏
k=1

(y − hk(x))

and the coefficients of f(y) are the elementary symmetric polynomials in h1, . . . , h|G|.
The conclusion follows from Theorem 6.6.

7. Abelian varieties and semi-abelian varieties

7.1. Abelian varieties

For more information on abelian varieties see for example [Lan83], [BL04] and [Mil08].
Let K be a field.

Definition 7.1. An abelian variety over K is a smooth geometrically connected
projective commutative group scheme over K.

Definition 7.2. An abelian scheme A over a scheme S is a proper smooth commu-
tative group scheme over S whose fibers are abelian varieties.

Remark 7.3. Not all commutative group schemes are abelian varieties. For example
the multiplicative group Gm,K := GL1,K is an affine algebraic group.

Let A be an abelian variety over K.

Definition 7.4. We say that A is simple if A ̸= 0 and the only abelian subvarieties
of A, i.e. the subschemes of A that are also abelian varieties with the group structure
induced by A, are 0 and A.

Remark 7.5. For every abelian variety A over C the underlying complex analytic
manifold is isomorphic to a complex torus Cdim A/Λ, where Λ is a real lattice of rank
2dimA. For further information see for example Chapter I of [Mum74] or Theorem
4.5.4 in [BL04].

Example 7.6. The complex abelian varieties of dimension one are precisely the
complex elliptic curves. See Example 4.1.3 in [BL04].
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Definition 7.7. Let B be an abelian varieties over K. A morphism φ : A → B is a
morphism A → B of schemes. A homomorphism ψ : A → B is a morphism that is
also a group homomorphism for the group structures on A and B. A homomorphism
is called an isogeny if φ is surjective and kerφ is finite. If there exists an isogeny
φ : A→ B, we call A and B isogenous and write A ∼ B.

Proposition 7.8. Being isogenous defines an equivalence relation on the category of
abelian varieties over K.

Proof. See Remark 8.6 in [Mil08] and Section 10 in [Mil08].

Theorem 7.9 (Poincaré’s complete reducibility theorem). If B is an abelian subva-
riety of A, then there is an abelian subvariety C of A such that B ∩ C is finite and
A = B +C. In particular, we have A ∼ B ×C. If A and B are defined over K, then
we can also take C to be defined over K.

Proof. See Theorem 6 in §1 in Chapter II in [Lan83].

Corollary 7.10. The abelian variety A is isogenous to a product Xn1
1 × · · · ×Xnk

k ,
where the Xi are simple and not isogenous to each other. Up to permutation of
the factors, the isogeny types of X1, . . . , Xn and the integers n1, . . . , nk are uniquely
determined.

Proof. See the Corollary to Theorem 6 in §1 in Chapter II in [Lan83].

Corollary 7.11. Suppose that φ : A → B is a surjective homomorphism of abelian
varieties. Then, there is an abelian subvariety C of A such that A ∼ B × C.

Proof. Let C = kerφ. By Theorem 7.9, there is an abelian subvariety B′ of A such
that A ∼ B′ × C and A = B′ + C and B′ ∩ C is finite. We get a homomorphism
φ̃ : B′ × C → B that factors through A. Because C = kerφ the map φ̃|B′ is still
surjective, and because B′∩kerφ is finite, the kernel ker φ̃|B′ is also finite. Therefore,
we have B′ ∼ B and the conclusion follows.

7.2. Semi-abelian varieties

Let K be a perfect field and let K be an algebraic closure of K.

Definition 7.12. An algebraic torus over K of rank r ∈ Z≥0 is an algebraic group
that is isomorphic over K to Gr

m,K
.

Definition 7.13. A semi-abelian variety over K is a commutative group scheme G
over K for which there exists an exact sequence

1 → T → G→ A→ 1,

where T is an algebraic torus and A is an abelian variety.
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Definition 7.14. A semi-abelian scheme over a scheme S is a separated smooth
commutative group scheme over S whose fibers are semi-abelian varieties.

Theorem 7.15 (Chevalley’s Theorem). Let G be an algebraic group over K. Then,
there is a unique short exact sequence of algebraic groups

1 → H → G→ A→ 1,

where H is a linear algebraic group and A is an abelian variety. The formation of H
commutes with base change to an arbitrary perfect field extension of K.

Proof. See Theorem 1.1 in [Con02].

Definition 7.16. Let G be a semi-abelian variety over K. Let T be an algebraic
torus over K and let A be an abelian variety over K such that G is an extension of
A by T . The rank of T is called the toric rank of G.

Corollary 7.17. The toric rank of a semi-abelian variety G over K is well-defined.

Proof. This follows from the uniqueness in Theorem 7.15, because algebraic tori are
linear algebraic groups.

Corollary 7.18. Let G be a semi-abelian variety over K and let K ′ be a perfect field
extension of K. Then G and GK′ have the same toric rank.

Proof. This follows from Theorem 7.15, because the formation of the linear algebraic
group commutes with base change to K ′.

Let R be a DVR with fraction field K and perfect residue field k of characteristic
char k ̸= 2 and let S = Spec(R).

Definition 7.19. Let X be a scheme over S. We define the generic fiber of X to be
Xη := XK . The special fiber of X is defined as X0 := Xk.

Let A be an abelian variety over K.

Definition 7.20. We say that A has good reduction over R if it is the generic fiber
of an abelian scheme A over R. We say that A has potential good reduction over R
if there is a finite extension K ′ of K and an extension of R to a DVR R′ of K ′ such
that AK′ has good reduction over R′.

The abelian variety A is said to have semi-stable reduction of toric rank r over
R if there is a semi-abelian group scheme A over S such that Aη

∼= A and A0 is a
semi-abelian group scheme of toric rank r.

For a number field F , a prime ideal p ⊂ OF and an abelian variety A′ over F we say
that A′ has good reduction, respectively potential good reduction, respectively semi-
stable reduction at p if A′ has good reduction, respectively potential good reduction,
respectively semi-stable reduction over the DVR OF,p := (OF )p.
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An important result about semi-stable reduction due to Grothendieck and Mumford
is the following:

Theorem 7.21 (Stable Reduction Theorem for abelian varieties). There is a finite
extension K ′ of K such that A has semi-stable reduction over the integral closure of
R in K ′.

Proof. See Theorem 1 in Section 7.4 of [BLR90]

For a reference about good reduction of abelian varieties see [ST68] and Section 6
in [Mil06]. For a reference about semi-stable reduction see Section 7.4 in [BLR90].

Proposition 7.22. Suppose that K ′ is a perfect extension of K and let R′ be a DVR
that extends R in K ′. Denote by k′ the residue field of R′ and suppose that k′ is
perfect. Let A be an abelian variety over K. Suppose that A has semi-stable reduction
of toric rank r over R and that AK′ has semi-stable reduction of toric rank r′ over
R′. Then r = r′.

Proof. Suppose first that K ′ = K and R′ = R. Let A be the Néron model of A over
R. The Néron model exists by Corollary 2 in Section 1.3 in [BLR90]. Let A1 and
A2 be semi-abelian schemes over R such that the special fiber A1 of A1 has toric
rank r and the special fiber A2 of A2 has toric rank r′. Then, since A1 and A2

are smooth and separated, Proposition 3 in Section 7.4 in [BLR90] states that the
identity components A0

1 and A0
2 of A1 and A2 are both isomorphic to the identity

component A0 of A. In particular, they have the same toric rank, since the toric rank
of a semi-abelian variety is only determined by its identity component.

For the general case, let AR be a semi-abelian scheme over R such that the special
fiber A0,R of AR has toric rank r. Then, the general fiber of AR′ is AK′ and the special
fiber A0,R′ of AR′ is given by A0,R′ = A0,R ×Spec(k) Spec(k′). Then, the semi-abelian
schemes A0,R and A0,R′ have the same toric rank by Corollary 7.18. Therefore, the
scheme AR′ is a semi-abelian model of AK′ over R′, the special fiber of which has
toric rank r′. The conclusion now follows from the first part of the proof.

Proposition 7.23. Suppose that A has semi-stable reduction of toric rank r over R.
Then A has potential good reduction over R if and only if r = 0.

Proof. If r = 0, then there is a model A of A over R such that the special fiber
is an abelian variety. Then, by Theorem 5 in Section 7.4 in [BLR90], the abelian
variety A has good reduction over R. Conversely, suppose that r > 0. Assume,
for contradiction, that A has potential good reduction. Let R′ be an extension of
R and K ′ be the fraction field of R′ such that there is an abelian scheme A that
is a model of the extension AK′ of A to K ′. Then, by Theorem 5 in Section 7.4
in [BLR90] the abelian variety AK′ has semi-stable reduction of toric rank 0. By
applying Proposition 7.22, we obtain the desired contradiction.

20



Proposition 7.24. Let K̂ and R̂ be the completions of K and R with respect to the
discrete valuation on K that induces R. Then A has potential good reduction over R
if and only if AK̂ has potential good reduction over R̂.

Proof. Suppose that AK̂ has potential good reduction. Then AK̂ has semi-stable
reduction of rank zero over a finite extension L̂ of K̂. By Theorem 7.21, the abelian
variety A has semi-stable reduction of reduction of rank r over some finite extension
F of K for some r ≥ 0. Denote by F̂ the corresponding completion of F and let M̂ be
a finite extension of K̂ that contains L̂ and F̂ . Then AM̂ has semi-stable reduction of
rank zero over the corresponding extension RM̂ of R. Since M̂ is a perfect extension
of F , by Proposition 7.22 it follows that r = 0.

Conversely, suppose that A has potential good reduction over R. Let F be a finite
extension of K such that AF has good reduction over the corresponding extension of
R. Then, by Proposition 7.23 and Corollary 7.18, the abelian variety AF̂ has good
reduction over the corresponding extension of R̂. The conclusion follows since F̂/K̂
is finite.

7.3. Jacobian varieties

We follow Section 11.1 in [BL04] for the construction of the Jacobian variety for a
complex smooth projective curve X of genus g > 0:

Lemma 7.25. A canonical embedding of H1(X,Z) into H0(X,ΩX) ‹ is given by

H1(X,Z) → H0(X,ΩX) ‹

γ 7→
(
ω 7→

∫
γ

ω

)
.

Proof. See Lemma 11.1.1 in [BL04].

We identify H1(X,Z) with its image in H0(X,ΩX) ‹ and define

Definition 7.26. The Jacobian variety or Jacobian of X is

Jac(X) := H0(X,ΩX) ‹/H1(X,Z).

Proposition 7.27. The complex torus Jac(X) can be endowed with a canonical
structure of an abelian variety.

Proof. See the definition of a complex abelian variety in Section 4.1 in [BL04] and
Proposition 11.1.2 in [BL04].

Proposition 7.28. The dimension of Jac(X) is g.

Proof. We have dim Jac(X) = dimH0(X,ΩX) ‹ = dimH0(X,ΩX) = g by Proposi-
tion 3.13.
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Proposition 7.29 (Universal property of the Jacobian). Let p ∈ X. Then there is a
canonical morphism αp : X → Jac(X) called the Abel-Jacobi map for p with αp(p) = 0

such that the following holds: Suppose that A is an abelian variety and φ : X → A

is a rational map. For q ∈ A, let tq denote the translation map of A by q. Then
there exists a unique homomorphism φ̃ : Jac(X) → A such that for every p ∈ X the
following diagram commutes:

X A

Jac(X) A

φ

αp t−φ(p)

φ̃

Proof. See the Universal Property of the Jacobian 11.4.1 in [BL04].

7.4. The Picard scheme

Definition 7.30. For a scheme X we denote by Pic(X) the Picard group of X, that
is the group of isomorphism classes of invertible sheaves on X with the tensor product
as the group operation.

Remark 7.31. By Remark 6.12.1 in [Har77], the Picard group Pic(X) can be expressed
as the sheaf cohomology group H1(X,O∗

X).

The following definitions follow Chapter 9 in [FGI+05].

Definition 7.32. Let S be a locally Noetherian scheme and let f : X → S be a
separated morphism of finite type. For an S-scheme T we write XT := X ×S T . The
relative Picard functor PicX/S from the category of schemes over S to the category
of abelian groups is defined by

PicX/S(T ) = Pic(XT )/f
∗
T Pic(T ),

where fT : XT → T denotes the projection map. It is a contravariant functor,
because the functor X 7→ Pic(X) ∼= H1(X,O∗

X) is contravariant. We denote its
associated sheaves in the étale and fppf Grothendieck topologies by Pic(X/S)(ét) and
Pic(X/S)(fppf) respectively. If PicX/S or Pic(X/S)(ét) or Pic(X/S)(fppf) is representable,
the representing scheme is called the Picard scheme and is denoted by PicX/S . In
this case, we say that the Picard scheme PicX/S exists.

For more information on Grothendieck topologies and sheaves in this context, see
Section 2.3 in Part 1 of [FGI+05].

Remark 7.33. If PicX/S exists, it is unique up to unique isomorphism and repre-
sents all of the relative Picard functors PicX/S , Pic(X/S)(ét) and Pic(X/S)(fppf) that
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are representable. See page 262 in [FGI+05]. Furthermore PicX/S commutes with
base change: Let S′ be an S-scheme. Then PicXS′/S′ exists, too, and is given by
PicXS′/S′ = PicX/S ×SS

′. This is a formal consequence of the definition. For a
reference, see page 305 in [FGI+05].

Proposition 7.34. For a smooth proper curve C over a field K, the Picard scheme
PicC/K exists and is a group scheme and the identity component Pic0

C/K is an abelian
variety.

Proof. See Proposition 3 in Section 9.2 in [BLR90].

Proposition 7.35. Let C be a proper smooth curve over a field K. Then the for-
mation of Pic0

X/K commutes with base extension: For a field K ′ containing K we
have

Pic0
XK′/K′ = Pic0

X/K ×Spec(K) Spec(K ′).

Proof. See Proposition 9.5.3 in Part 5 in [FGI+05].

Definition 7.36. Let C be a smooth proper curve over a field K. Then we call
Pic0

C/K its Jacobian.

By the following proposition, this definition agrees with our earlier definition of the
Jacobian:

Proposition 7.37. There is a canonical isomorphism of abelian varieties Jac(X)
∼−→ Pic0

X/C.

Proof. By Theorem 2.5 in Chapter VII in [CS86], there is a canonical isomorphism
between Jac(X) and the identity component Pic0(X) of the Picard group Pic(X).
We can identify Pic0(X) and (Pic0

X/C)red, but by the main Theorem in [Oor66], the
scheme Pic0

X/C is already reduced.

7.5. Complex multiplication

For an introduction to the theory of complex multiplication for abelian varieties see
[Mil06]. Let A be an abelian variety over a field F of characteristic 0.

Definition 7.38. We define the endomorphism algebra over Q of A as

EndQ(A) := End(A)⊗Z Q.

Definition 7.39. Suppose that A is simple. Then we say that A has complex mul-
tiplication (CM) if EndQ(A) contains a field K with [K : Q] = 2 dimA. For A not
necessarily simple, we say that A has CM if every simple abelian subvariety in the
isogenous decomposition in Corollary 7.10 has CM.

Remark 7.40. The abelian variety A has CM if and only if EndQ(A) contains a com-
mutative semisimple algebra Λ of dimension 2dimA over Q.
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Proposition 7.41. Suppose that an abelian variety B is isogenous to A. Then A

has CM if and only if B has CM.

Proof. It suffices to prove the claim for the case in which A and B are simple. In this
case EndQ(A) ∼= EndQ(B), as stated on page 43 in Section I.10 in [Mil08].

Corollary 7.42. Let X be a smooth projective complex algebraic curve and suppose
that there is a non-constant morphism φ : X → E, where E is an elliptic curve. If E
does not have CM, then Jac(X) does not have CM.

Proof. By Proposition 7.29, there is a surjective homomorphism φ̃ : Jac(X) → E.
By Corollary 7.11, we obtain a decomposition Jac(X) ∼ E × B for some abelian
subvariety B of Jac(X). Because E is simple, it must be isogenous to one of the
components in the decomposition of Jac(X) into simple abelian varieties. The claim
then follows from Proposition 7.41.

To find curves in Table 2 that have Jacobians that have CM, we apply the following
criterion:

Proposition 7.43. Let X be a smooth projective complex algebraic curve of genus
g ≥ 2. If

⟨Sym2 χhol, χtriv⟩ = 0,

then Jac(X) has CM.

Proof. This is the statement of the second part of Proposition 5 in [Str01].

Remark 7.44. The condition in Proposition 7.43 can only be satisfied by curves with
many automorphisms. For a reference, see the Remark on page 287 in [Str01].

Proposition 7.45. Let E be an elliptic curve over C with CM. Then j(E) is an
algebraic integer.

Proof. See Theorem 6.1 in II.6 of [Sil94].

Proposition 7.46. Let A be an abelian variety over a number field K ⊂ C such that
AC has CM. Then A has potential good reduction at all primes of OK .

Proof. Denote by K the algebraic closure of K in C. Then, by Corollary II.7.10 in
[Mil06], the abelian variety AK has CM over K, because AC has CM. Let e1, . . . , en for
some n ∈ Z≥1 be generators of a semisimple commutative Q-algebra Λ in EndQ(AK)

with of degree 2dimAK over Q. Let K ′ ⊂ K be a finite extension of K such that
for 1 ≤ l ≤ n we have el ∈ EndQ(AK′), where we identify EndQ(AK′) with its image
in EndQ(AK). Such an extension exists, because each morphism between projective
varieties over K can be defined by a finite set of polynomials with coefficients in K.
Since e1, . . . , en ∈ EndQ(AK′), we have Λ ⊆ EndQ(AK′) and AK′ has CM. If AK′ has
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potential good reduction at all primes of K ′, then AK has potential good reduction at
all primes of K. The abelian variety AK′ has potential good reduction at all primes
of K ′ by Proposition II.7.12 in [Mil06].

Remark 7.47. Let X be a smooth projective curve defined over a number field K. If
Jac(XC) has CM, then we can apply Proposition 7.46, because the formation of Pic0

commutes with extending the base field by Proposition 7.35, and therefore,

Jac(XC) ∼= Pic0
X/K ×Spec(K) Spec(C).

Below, in Theorem 10.25, we will give a criterion to decide whether Pic0
X/K has

potential good reduction at a given prime ideal p with 2 /∈ p in the case that X is
hyperelliptic.

8. Computing the representation on the space of
holomorphic differentials

To get information about whether the Jacobians of the curves in Table 2 have CM,
we determine χhol for each of the curves in Table 2 that does not belong to one of
the infinite families X1, X2 or X3. Let X be a smooth projective complex algebraic
curve X of genus g ≥ 2.

Theorem 8.1 (Eichler trace formula). Let T ∈ Aut(X) be an automorphism of order
n > 1. Let ξ = e2πi/n and let t be the number of fixed points of T on X. Then
there are integers ν1, . . . , νt such that 1 ≤ νk < n and νk and n are coprime for all
k ∈ {1, . . . , t} such that

χhol(T ) = 1 +

t∑
k=1

ξνk

1− ξνk
.

Proof. This is a special case of the Eichler trace formula in V.2.9 in [FK92].

Corollary 8.2 (Lefschetz Fixed Point Formula). Let T ∈ Aut(X) be a nontrivial
automorphism and let t be the number of fixed points of T . Then

2 Re (χhol(T )) = 2− t.

Proof. We follow the proof of Corollary in V.2.9 in [FK92]: Note that for any θ ∈ C
with |θ| = 1 and θ ̸= 1 we have 2 Re(θ/(1− θ)) = −1 and apply Theorem 8.1.

Proposition 8.3. Let T ∈ Aut(X) be nontrivial. If T is the hyperelliptic involution,
then T has 2g + 2 fixed points. Otherwise T has at most four fixed points.

Proof. See Corollary 2 in III.7.9 and Proposition III.7.11 in [FK92].
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Corollary 8.4. Let T ∈ Aut(X) be nontrivial. If T is the hyperelliptic involution,
then

χhol(T ) = −g.

Otherwise, we have
Re (χhol(T )) ∈

{
1,

1

2
, 0,−1

2
,−1

}
.

Proof. This follows directly from the combination of Corollary 8.2 and Proposition 8.3.

Proposition 8.5. For 4 ≤ k ≤ 18 the character χhol of the curve Xk in Table 2
has the decomposition into irreducible characters as stated in Table 3. When several
alternatives are given, the character χhol is sufficiently determined to know the degrees
of the constituents, their fields of definition and to apply Proposition 7.43.

Proof. Let X be one of the curves in Table 3 and let g be the genus of X. We proceed
as follows to find χhol:

1. We determine which conjugacy class of Aut(X) contains the hyperelliptic in-
volution σ. By Proposition 3.7, the involution σ is in the center. In all cases,
there is a single conjugacy class which contains elements of order 2 and is in the
center of Aut(X).

2. Let χ1, . . . , χn be the irreducible characters of Aut(X). For 1 ≤ k ≤ n, if
χk(σ) ̸= −degχk, then χk cannot be a constituent of χhol. This is because
χhol(σ) = −g = −degχhol by Corollary 8.4 and |χk(σ)| ≤ degχk by basic
character theory. Using this observation, we can cut down on the set of possible
constituents of χhol.

3. Enumerate all possible characters of Aut(X) with degree g that have only con-
stituents that satisfy the observation in step 2. Remove from this list all char-
acters which do not satisfy the condition in Corollary 8.4. If X /∈ {X4, X10},
this determines χhol sufficiently.

If X = X4, after step 3, we have

χhol ∈ {χ4 + χ5, χ4 + χ6, χ5 + χ6} .

Consider the element T ∈ S4 = Aut(X4) with

T (x) =
x− i

x+ i

of order 3. By a direct calculation, we see that T has exactly one fixed point in
W (X4). Therefore, a lift T of T to Aut(X) has either one or three fixed points.
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Then, by Corollary 8.2, we have Re(χhol(T )) = ± 1
2 . By looking at the character table

of SL2(3) ∼= Aut(X) in Appendix A, we see that

χhol ∈ {χ4 + χ5, χ4 + χ6} ,

and the two possibilities are complex conjugate to each other.
If X = X10, after step 3, we have

χhol ∈ {χj + χ5 + χk + χl | j ∈ {3, 4} and k, l ∈ {9, 10}} .

By looking at the character table of W2
∼= Aut(X) in Appendix A, we see that if

T ∈ Aut(X) has order 4, then Re(χhol(T )) = 0 and therefore, by Corollary 8.2, the
automorphism T has two fixed points. Then, by Theorem 8.1, we have

χhol(T ) = 1 +
im1

1− im1
+

im2

1− im2
,

for some m1,m2 ∈ {1, 3}. It follows that χhol(T ) ∈ {−i, 0, i}. By a direct calculation,
this implies that {k, l} = {9, 10}.
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Curve X Aut(X) χhol Degrees

X4 SL2(3) χ4 + χ5 or χ4 + χ6 degχ4 = degχ5 = degχ6 = 2

X5 GL2(3) χ4 or χ5 degχ4 = degχ5 = 2

X6 C2 × S4 χ7 or χ8 degχ7 = degχ8 = 3

X7 W2 χ5 + χ9 or χ5 + χ10
degχ5 = 2

degχ9 = degχ10 = 3

X8 GL2(3) χ4 + χ8 or χ5 + χ8
degχ4 = degχ5 = 2

degχ8 = 4

X9 W3 χ4 + χ5 + χ8
degχ4 = degχ5 = 2

degχ8 = 4

X10 W2

χ3 + χ5 + χ9 + χ10

or
χ4 + χ5 + χ9 + χ10

degχ3 = degχ4 = 1

degχ5 = 2

degχ9 = degχ10 = 3

X11 W3 χ4 + χ5 + 2χ8
degχ4 = degχ5 = 2

degχ8 = 4

X12 C2 ×A5 χ10 degχ10 = 5

X13 C2 ×A5 χ8 + χ10
degχ8 = 4

degχ10 = 5

X14 SL2(5) χ2 + χ3 + χ7 + χ9

degχ2 = degχ3 = 2

degχ7 = 4

degχ9 = 6

X15 C2 ×A5 χ3 + χ4 + χ8 + χ10

degχ3 = degχ4 = 3

degχ8 = 4

degχ10 = 5

X16 SL2(5) χ2 + χ3 + χ7 + 2χ9 See X14

X17 SL2(5) χ2 + χ3 + 2χ7 + 2χ9 See X14

X18 SL2(5) χ2 + χ3 + 2χ7 + 3χ9 See X14

Table 3: The character χhol for the hyperelliptic curves with many automorphisms.
The names of the irreducible characters for each group are taken from the
character tables in Appendix A. The automorphism groups were determined
in Theorem 5.6.

9. Determining which Jacobians have CM
Theorem 9.1. For each curve X in Table 2 the Jacobian Jac(X) has CM or does
not have CM as indicated in the table, unless the curve is marked with a “?”.

Proof. If X is of type X1, X2 or X3, it is shown in Theorem 2.4.4 in [Roh09] that
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Jac(X) has CM. Otherwise, the character χhol is sufficiently determined in Proposi-
tion 8.5 to determine whether Proposition 7.43 is applicable. If the criterion Propo-
sition 7.43 is applicable, i.e. if

⟨Sym2 χhol, χtriv⟩ = 0,

the Jacobian Jac(X) has CM. This supplies the “yes” entries in Table 2. For the “no”
entries, we want to apply Corollary 7.42.

If X = X6, then X is defined by y2 = s4 and it is shown on page 20 in Section 6.3
of [Wol00] that a simple factor of Jac(X) is isogenous to the genus one curve given
by

y2 = x4 − 14x2 + 1.

which has the non-integral j-invariant 24 · 13
32

. Therefore, by Proposition 7.45, this
elliptic curve does not have CM. Therefore, by Corollary 7.42, the abelian variety
Jac(X) does not have CM.

If X = X12, by Theorem 2 in [Pau13], we have Jac(X) ∼ E5, where E is the genus
one curve defined by the affine equation

y2 = x(x2 + 11x− 1).

The elliptic curve E has the non-integral j-invariant 214 · 313

53
. Therefore, by Propo-

sition 7.45, this elliptic curve does not have CM. Therefore, by Corollary 7.42, the
abelian variety Jac(X) does not have CM.

Suppose that X = X13. Then, as stated in Table 2, the curve X is defined by the
affine equation

y2 = r5(x) = x20 − 228x15 + 494x10 + 228x5 + 1.

Let
p(x) := x4 − 228x3 + 494x2 + 228x+ 1

and consider the morphism of function fields

ϕ : C(x, y)/(y2 − p(x)) → C(x, y)/(y2 − r5(x))

x 7→ x5

y 7→ y.

This induces a surjective morphism from X to the elliptic curve defined by the affine
equation

y2 = p(x).

The j-invariant of this elliptic curve is 217

32
. Therefore, by Proposition 7.45, it does

not have CM. By Corollary 7.42, the abelian variety Jac(X) does not have CM.
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Suppose that X = X8. Then, by a computation in GAP in Appendix B.2, the
automorphism group Aut(X) has a subgroup G ∼= S3 such that

⟨ResG(χhol),ResG(χtriv)⟩ = 1.

By Lemma 6.3, we have

dimH0(X,ΩX)G = ⟨ResG(χhol),ResG(χtriv)⟩ = 1

and therefore, by Proposition 6.1, the quotient curve Y := X/G has genus one. Let G
be the image of G in Aut(X) and denote by ϕ : P1

C → P1
C/G

∼= P1
C the quotient map.

In Appendix B.2, using Sage [S+17] and GAP [GAP17], we calculate V1 := ϕ(W (x)),
using Lemma 6.8, and the branch points V2 of ϕ in P1

C/G. Then, we iterate through
the possible equations of Y given by Proposition 6.5. By a calculation in Sage [S+17]
in Appendix B.2, we find that the j-invariant of Y is one of the following, where
ξ8 = e2πi/8:

j8,1 :=
467888 + 855712ξ8 + 855712ξ38

729
,

j8,2 := j8,1,

207646

6561
,

4000

9
,

−219488

729

By j8,1, we denote the complex conjugate of j8,1. Because j8,1 and j8,2 are complex
conjugates, either both or none of them is an algebraic integer. If both were algebraic
integers, then j8,1 + j8,2 = 935776

729 would be an algebraic case. Therefore, none of the
possible j-invariants is an algebraic integer. Hence, the elliptic curve Y does not have
CM by Proposition 7.45. Therefore, by Corollary 7.42, the abelian variety Jac(X)

does not have CM.
Suppose that X = X15. Analogously to the case where X = X8, we find a group

G < Aut(X) such that X/G has genus one. In this case, we have G ∼= A4. We proceed
analogously to the case of X = X8 and find that the j-invariant of Y := X/G is one
of the following, where ξ15 = e2πi/15:

j15,1 := −149017

240
ξ715 +

149017

240
ξ515 −

149017

120
ξ415 +

149017

240
ξ315 −

149017

240
ξ215 −

149017

120
ξ15 +

771047

720
,

j15,2 := j15,1,

27436

27
,

−19465109

248832
,

357911

2160
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We have j15,1 + j15,2 = 200941
720 . Therefore, as in the case of X8, none of the possible

j-invariants is an algebraic integer. It follows that the abelian variety Jac(X15) does
not have CM. For the calculation of the j-invariants see Appendix B.2.

10. Models of curves

10.1. Semi-stable models

Definition 10.1 (see page 246 in [BLR90]). Let X be a curve over an algebraically
closed field K. A point x of X is an ordinary double point if the completion ÔX,x of
the local ring OX,x is isomorphic to K[[s, t]]/(st).

Definition 10.2 (Definition 9.2.6 in [BLR90]). Let S be any scheme, and let g be
an integer. A semi-stable curve of genus g over S is a proper and flat morphism
f : X → S whose fibers Xs̄ over geometric points s̄ of S are reduced, connected,
one-dimensional, and satisfy the following conditions:

(i) The scheme Xs̄ has only ordinary double points as singularities.

(ii) We have dimk(s̄)H
1(Xs̄,OXs̄

) = g.

Definition 10.3 (see page 246 in [BLR90]). Let X be a semi-stable curve over an
algebraically closed field K. We define the dual graph of X to be an undirected multi-
graph Γ(X) as follows: The vertex set of Γ(X) is the set of irreducible components of
X. The edges correspond to the ordinary double points of X: Each singular point x of
X which lies on some irreducible components X1 and X2 defines an edge connecting
the vertices corresponding to X1 and X2.

Remark 10.4. Note that in this definition X1 = X2 is allowed.

Let R be a DVR, let K be its field of fractions and let S = Spec(R).

Definition 10.5. Let X be a smooth projective algebraic curve of genus g over K.
A semi-stable model of X over S is a semi-stable curve X of genus g over S such that
XK

∼= X.

Remark 10.6. The semi-stable reduction theorem, Theorem 9.2.7 in [BLR90], asserts
that every proper smooth geometrically connected curve X over K has a semi-stable
model X after replacing K with some finite extension K ′ of K and R with the integral
closure R′ of R in K ′.

10.2. Stable n-pointed curves of genus zero

For more information about n-pointed stable curves see [Knu83], [GHvdP88], [Kee92]
and [Pin13]. The following definition is a special case of Definition 1.1 in [Knu83].
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Definition 10.7. Let S be a scheme and let n ∈ Z≥3. An n-pointed stable curve of
genus zero over S is a flat and proper morphism f : X → S together with n distinct
sections s1, . . . , sn : S → X such that for each geometric fiber Xs̄ of f

(i) the geometric fiber Xs̄ is a reduced and connected curve such that each ir-
reducible component is isomorphic to P1

k(s̄) and any singularities are ordinary
double points.

(ii) for all i ∈ {1, . . . , n} the geometric fiber Xs̄ is smooth at si(s̄).

(iii) for all i, j ∈ {1, . . . , n} we have si(s̄) ̸= sj(s̄) whenever i ̸= j.

(iv) for every irreducible component E of Xs̄ we have

| {si(s̄) | si(s̄) ∈ E} ∪ {singularities on E} | ≥ 3.

(v) we have H1(Xs̄,OXs̄
) = 0.

Fact 10.8. Conditions (i) and (v) imply together that the dual graph Γ(Xs̄) is a tree.

Let R be a DVR with fraction field K, a uniformizer π ∈ R and residue field
k = R/(π) with char k > 2. We set S = Spec(R).

Definition 10.9. Let X be an n-pointed stable curve of genus zero over S. We
call Γ(Xk) the dual tree of X , where k is an algebraic closure of k. The sections
s1(k), . . . , sn(k) of X0 induce markings sΓ1 , . . . , sΓn ∈ V (Γ(Xk)) such that sΓi = v if and
only if si(k) is in the irreducible component of Xk that corresponds to v. We define

mX : V (Γ(Xk)) → Z≥0

v 7→
∣∣{i ∈ {1, . . . , n}

∣∣ sΓi = v
}∣∣

to be the function that assigns the number of markings on a vertex v to the vertex.

Proposition 10.10. Let λ1, . . . , λn ∈ K ∪ {∞} be n distinct points. Then there
is, up to isomorphism, a unique n-pointed stable curve X of genus zero over S with
Xη

∼= P1
K and λ1, . . . , λn as sections in Xη.

Proof. This follows from the uniqueness of the stabilization and contraction oper-
ations. For more information on stabilization and contraction of n-pointed stable
curves see Section 2 in [Knu83].

Lemma 10.11. Let λ1, . . . , λn ∈ K be distinct elements. Then, there is a K-affine
linear transformation µ : K → K such that µ(λ1), . . . , µ(λn) lie in R and have at
least two distinct equivalence classes modπ.
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Proof. After multiplication with a sufficient power of π, we may assume without loss
of generality that λ1, . . . , λn ∈ R. Let µ1(x) := x− λ1 and let r ∈ Z≥0 be such that
πr|µ(λi) and πr+1 ∤ µ(λi) for all i ∈ {1, . . . , n}. Let µ2(x) := x/πr, then µ := µ2 ◦ µ1

has the desired property.

Let Λ = {λ1, . . . , λn} ⊂ K ∪ {∞} be a set of n distinct points with n ≥ 3. After
an application of Lemma 10.11, we may assume without loss of generality that Λ ⊂
R ∪ {∞} and at least two of the elements of Λ ∩ R have different reductions modπ.
We want to construct the n-pointed stable curve of genus zero C over S with Xη

∼= P1
K

and the markings Λ ⊂ P1
K in the generic fiber. We proceed iteratively to construct C:

Let C1 := P1
R. We define the sections si(K) := λi for i ∈ {1, . . . , n}. Then the

sections s1(K), . . . , sn(K) of P1
K extend to sections s1(k), . . . , sn(k) ∈ P1

k of the special
fiber of P1

R, because Λ is a set of R-rational points in P1
K . Now P1

R is “almost” an n-
pointed stable curve of genus zero over S: Conditions (iii) and (iv) might be violated,
since there might be i, j ∈ {1, . . . , n} with i ̸= j such that λi ≡ λj (mod π) and there
might be only two distinct equivalence classes modπ. If the stability condition (iv)
is indeed violated, we add an auxiliary section δ : S → P1

R that does not collide with
any other sections in the special fiber. Then condition (iv) is not violated anymore,
because there are at least two equivalence classes of the λ1, . . . , λn (mod π).

Suppose we are given a model Cl of P1
K over S with sections s1, . . . , sn, such that

Cl is “almost” an n-pointed stable curve of genus zero over S, in the sense that only
condition (iii) possibly fails in the special fiber. For i ∈ {1, . . . , n}, we denote by

Ai := {j ∈ {1, . . . , n} | si(k) = sj(k)}

the set indices of the sections which collide with si(k) in the special fiber. If all of
the Ai contain only one element each, the model Cl is already stable. Otherwise, we
want to construct a model Cl+1 with strictly fewer collisions. Pick some i0 such that
|Ai0 | ≥ 2 and let x : P1

K → K denote a coordinate on P1
K such that

x ({λi | i ∈ Ai0}) ⊂ R

and
{i ∈ {1, . . . , n} | x(λi) + (π) = x(λi0) + (π)} = Ai0 .

Let r ∈ Z≥1 be the largest integer such that for all i, j ∈ Ai0 we have

πr|(x(λi)− x(λj)).

Now, let Cl+1 be the scheme obtained from Cl by blowing up the ideal

(x− x(λi0), π
r) ⊂ R[x]
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centered at the section si0(k) ∈ Cl
0. By doing this, a new irreducible component iso-

morphic to P1
k is attached at si0(k) in Cl

0 and affine coordinates for this new component
on P1

K are given by

x′ =
x− x(λi0)

πr
and y′ =

1

x′
.

Then the sections {si | i ∈ Ai0} do not all collide in the same point of Cl+1
0 , since, by

the definition of r, there are i′, j′ ∈ Ai0 such that x(λi′) ̸≡ x(λj′) (mod πr). Also, we
have

{x′(λi) | i ∈ Ai0} ⊂ R

and therefore, for all j ∈ Ai0 , the section sj(k) lands in the smooth locus of the new ir-
reducible component. The other sections in the special fiber, that is {si(k) | i ∈ {1, . . . , n} \Ai0},
do not change, since the blow-up induces an isomorphism away from the closed point
that we blow up. Also, the generic fiber P1

K of Cl does not change when we blow up.
The scheme Cl+1 is again “almost” an n-pointed stable curve of genus zero over S

in the sense that only condition (iii) may be violated. Indeed, the new irreducible
component of Cl+1

0 has at least two distinct points with markings and is connected by
a double point to the component in which the sections associated to Ai0 previously
collided.

After finitely many steps of blowing up, we finally arrive at some scheme C′ over
S, where no sections collide in the special fiber. Let C be the model obtained from
C′ after possibly removing the auxiliary section δ and collapsing the corresponding
component in the special fiber which becomes unstable, i.e. violating condition (iv),
by using the contraction defined in Section 2 in [Knu83]. Then C is an n-pointed
stable curve over S with markings λ1, . . . , λn in the generic fiber P1

K of C.

10.3. The relative Picard functor

Definition 10.12 (see Theorem 2.13 in [Hat02]). If A is a topological space and B

is a nonempty closed subspace that is a deformation retract of some neighborhood of
B in A, we call (A,B) a good pair.

Lemma 10.13. For a connected finite multi-graph G with n vertices and m edges,
we have H0(G) ∼= Z and H1(G) ∼= Zm−n+1 and Hl(G) = 0 for l > 1.

Proof. Let e be an edge in G which is not a loop. Then (G, e) is a good pair and the
graph G′ obtained from G by collapsing e has the same homology groups by Theorem
2.13 in [Hat02]. The graph G′ has n − 1 vertices and m − 1 edges. The claim then
follows by induction on the number of vertices, because if n > 1 there is at least one
edge in G which is not a loop. The base case is the wedge sum of m−n+1 circles.

Proposition 10.14. Let X be a semi-stable curve over a field K. Then Pic0
X/K

is uniquely an extension of an abelian variety by an algebraic torus T . The rank of
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the torus part T is the rank of H1(Γ(XK),Z). In particular, the semi-abelian variety
Pic0

X/K is an abelian variety if and only if Γ(XK) is a tree.

Proof. Let G := Γ(XK). By Example 8 in Chapter 9.2 of [BLR90], the scheme
Pic0

X/K is a semi-abelian variety of toric rank rkH1(G,Z). To prove the last state-
ment of the proposition, let n := |V (G)| and m := |E(G)|. Because G is connected,
it is a tree if and only if n −m = 1. The conclusion follows with Lemma 10.13 and
the universal coefficients theorem for cohomology.

Let R be a DVR, let K be its field of fractions, let π be a uniformizer of R, and let
k = R/(π) be the residue field. Suppose that char k > 2 and let S = Spec(R).

Proposition 10.15. Let X be a geometrically irreducible projective algebraic curve
over K and let X be a projective semi-stable model of X over S such that the irreducible
components of Xk are geometrically irreducible. Then PicX/S exists and has an
open group subscheme Pic0

X/S of finite type whose fibers are Pic0
X/K and Pic0

Xk/k
.

Furthermore, the scheme Pic0
X/S is smooth over S.

Proof. By Theorem 9.4.18.1 in Part 5 of [FGI+05], the scheme PicX/S exists and rep-
resents Pic(X/S)(ét). By Remark 7.33, the scheme PicX/S also represents Pic(X/S)(fppf).
By Example 8 in Section 9.2 in [BLR90], the schemes PicX/K and PicXk/k ex-
ist and by Proposition 9.5.19 in Part 5 of [FGI+05] they are smooth. By Corol-
lary 9.5.13 in Part 5 of [FGI+05], we have dimK PicX/K = dimK(X,OX) and
dimk PicXk/k = dimk(Xk,OXk

). By the definition of a semi-stable curve, it follows
that dimK PicX/K = dimk PicXk/k. Now we can apply Proposition 9.5.20 in Part
5 of [FGI+05]: There is an open group subscheme Pic0

X/S of PicX/S with generic
fiber Pic0

X/S ×S Spec(K) ∼= Pic0
X/K and special fiber Pic0

X/S ×S Spec(k) ∼= Pic0
Xk/k

.
Furthermore, because S is reduced, it follows from the same Proposition that Pic0

X/S

is smooth over S.

10.4. Associated trees

We fix some conventions on graphs that we use throughout the remainder of this
Section.

Definition 10.16. Let T be a rooted tree with root r. Let v1, v2 ∈ V (T ) be adjacent
vertices. Then v1 is called the parent of v2 and v2 is called a child of v1 if the unique
path from r to v2 contains v1. The set of descendants of v for v ∈ V (T ) is defined as

DT (v) := {w ∈ V (T ) | the (unique) path from r to w contains v} .

The subtree Tv is defined to be the full subgraph of T induced by DT (v). We define

ℓT (v) := |DT (v) ∩ {leaves of T} |
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to be the number of descendants v which are leaves of T .
For a graph G and an edge e ∈ E(G), we denote by G − e the graph which is

obtained from G by deleting the edge e (but not its incident vertices).

Example 10.17. For a rooted tree T with root r, we have Tr = T . For every leaf
l ∈ V (T ), the graph Tl consists only of the vertex l.

Let R and K and k and π be as in the previous Subsection and denote by v :

K → Z ∪ {∞} the discrete valuation on K that induces R. For some n ≥ 3, let
λ1, . . . , λn ∈ R be distinct elements. We set Λ := {λ1, . . . , λn}. Following Section 5
in [Bos80], we construct a tree TA associated to λ1, . . . , λn. The subscript A stands
for associated. Let s ∈ R>1 and denote by | · |v the non-archimedean norm induced
on K by v defined by |λ|v := s−v(λ) for all λ ∈ K. We define the vertex set of TA by

V (TA) := {B ∩ Λ | B ⊂ K is a closed ball in the | · |v-norm such that B ∩ Λ ̸= ∅} .

The edges are given by

E(TA) := {{v1, v2} | v1, v2 ∈ V (TA) such that v1 ⊊ v2 and ∄w ∈ V (TA) : v1 ⊊ w ⊊ v2} .

Definition 10.18. The graph TA is called the associated tree of λ1, . . . , λn. We call
Λ = {λ1, . . . , λn} the root of TA.

Remark 10.19. The construction is independent of the parameter s > 1, since the
norms are equivalent for different choices of s.

Proposition 10.20. The graph TA is a rooted tree.

Proof. Since Λ ∈ V (TA) and every v ∈ V (TA) is a subset of Λ and there are only
finitely many vertices, it follows that there is a path from v to Λ in TA. Therefore,
the graph TA is connected. Assume, for contradiction, that TA is not a tree. Then,
there is a cycle (v1, . . . , vl) for some pairwise different v1, . . . , vl ∈ V (TA). The graph
TA induces a directed graph T ′ as follows: We set V (T ′) := V (TA) and for each edge
{v1, v2} ∈ E(TA) we add the directed edge (v1, v2) to E(T ′) if v2 ⊂ v1. Otherwise, we
have v1 ⊂ v2 and add the directed edge (v2, v1) to T ′. Then (v1, . . . , vl) is not a cycle
in T ′, because the inclusions of the vertices in each other are strict. Therefore, there
exists some i ∈ {1, . . . , l} such that (vi−1, vi) ∈ E(T ′) and (vi+1, vi) ∈ E(T ′), where
we set v0 := vl and vl+1 := v1. Then, we have vi−1 ⊋ vi ⊊ vi+1 and it follows that
vi−1 ∩ vi+1 ̸= ∅. Since the metric on K that is induced by | · |v is an ultrametric, it
follows that either vi ⊊ vi−1 ⊊ vi+1 or vi ⊊ vi+1 ⊊ vi−1. But this is a contradiction
to the fact that {vi, vi+1} ∈ E(TA) and {vi, vi−1} ∈ E(TA).

If n is odd, let T (1)
A be the tree obtained from TA by adding one extra leaf {∞} to

the root vertex Λ = {λ1, . . . , λn} ∈ V (TA). Otherwise, let T (1)
A := TA. Let T (2)

A be
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the tree obtained from T
(1)
A in the following way: If the root Λ ∈ V (T

(1)
A ) has more

than two children in T
(1)
A , let T (2)

A := T
(1)
A . Otherwise, by the construction of T (1)

A

and TA, the root Λ has exactly two children in T
(1)
A . In this case, we let T (2)

A be the
tree obtained from T

(1)
A by “collapsing” the root node. More precisely, we add an

edge {v1, v2} connecting the two children of Λ in T
(1)
A and remove Λ and the edges

incident to Λ in T (1)
A and call the resulting tree T (2)

A . We do this, so that the tree T (2)
A

is stable in the sense that every non-leaf vertex has degree at least 3.
Let T ′

A be the tree obtained from T
(2)
A by removing all vertices that are leaves in

T
(2)
A . We define the map

mA : V (T ′
A) → Z≥0

v 7→
∣∣∣{leaves adjacent to v in T

(2)
A

}∣∣∣
that counts the leaves in T

(2)
A adjacent to each non-leaf vertex v ∈ T

(2)
A .

Lemma 10.21. If n is even, let Λ′ := {λ1, . . . , λn}. Otherwise, let Λ′ := {λ1, . . . , λn,∞}.
Let C be the n-pointed stable curve of genus zero over S with markings Λ′ ⊂ P1

K in
the generic fiber constructed in Section 10.2. Denote by T the dual tree of C. Then,
there is a canonical isomorphism f : T ′

A → T such that mA(v) = mC(f(v)) for all
v ∈ V (T ′

A).

Proof. Both T ′
A and C0 can be constructed by iteratively adding new vertices, re-

spectively, irreducible components, to distinguish the markings that are the same up
to some power of π, and contracting at most one vertex, respectively at most one
irreducible component that is unstable.

More precisely, let v ∈ V (TA) be a vertex and let v1, . . . , vl be the children of v. The
elements of v cannot be further distinguished modπr for some r ∈ Z>0. Let r′ > r

be the smallest integer such that modπr′ not all of the elements of v are equivalent.
Then v1, . . . , vl are the subsets of v whose elements are equivalent modπr′ .

For C0 the situation is analogous: As described in Section 10.2, we repeatedly blow
up points in the special fiber where several sections collide. Also in this case, we
blow up with the smallest possible power of π such that not all of the sections which
previously collided, collide in the blow-up. The final contraction in the construction
of C0 in Section 10.2 corresponds to “collapsing” the root node to go from T

(1)
A to T (2)

A

in the construction of T ′
A above.

Let n ≥ 5 and letX be the projective hyperelliptic curve given by the affine equation

y2 =

n∏
i=1

(x− λi).

Let K̂ be the completion of K with respect to |·|v and let R̂ be the corresponding com-
pletion of R. In Theorem 4.2 in [Bos80], a semi-stable model X of XF̂ is constructed
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for some finite extension F̂ of K̂ over the corresponding extension R̂′ of R̂. Denote
by k′ the residue field of R̂′ and let k′ be an algebraic closure of k′. Furthermore,
the irreducible components of the special fiber X0 are geometrically irreducible. The
special fiber X0 is described in the following two lemmas.

Lemma 10.22. The non-leaf vertices of the associated tree TA of λ1, . . . , λn corre-
spond to the irreducible components of X0 as follows: Let v ∈ V (TA) be a non-leaf
and let v1, . . . , vr be the children of v. If

ℓTA
(v1) ≡ · · · ≡ ℓTA

(vr) ≡ 0 (mod 2)

then v corresponds to two disjoint irreducible components Cv,1 and Cv,2 of X0 with
Cv,1

∼= Cv,2
∼= P1

k′ . Otherwise, the vertex v corresponds to a single irreducible compo-
nent Cv,1 of X0.

Proof. See paragraph A) on page 38 in Section 5 in [Bos80].

Lemma 10.23. The singularities of Xk′ are characterized as follows: Let Cu,i1 and
Cw,i2 be irreducible components of X0 corresponding to non-leaf vertices u,w ∈ V (TA).
They are disjoint if and only if u and w are not neighbors in TA. Suppose that u
and w are neighbors and that w ⊂ u. Then Cu,i1 and Cw,i2 intersect in exactly two
points if and only if ℓTA

(w) is even and neither u nor w have two disjoint irreducible
components corresponding to them. Otherwise, that is if ℓTA

(w) is odd or at least one
of u and w has two irreducible components corresponding to it, the components Cu,i1

and Cw,i2 intersect in exactly one point.

Proof. See paragraph B) on page 38 in Section 5 in [Bos80].

Lemma 10.24. The graph Γ(Xk′) is a tree if and only if for every non-root vertex
v ∈ V (TA) the number of descendant leaves ℓTA

(v) is odd.

Proof. If ℓTA
(v) is odd for all non-root vertices v ∈ V (TA), then by Lemma 10.22, each

non-leaf vertex w ∈ V (TA) corresponds to a unique vertex of Γ(Xk′). By Lemma 10.22,
because for each child w of a vertex v in V (TA) the number ℓTA

(w) is odd, there are
no multiple edges in TA. Two vertices of Γ(Xk′) are connected by an edge, if and only
if the corresponding vertices in TA are neighbors. Then Γ(Xk′) is a tree, because TA
is a tree.

Conversely, suppose that Γ(Xk′) is a tree.
Claim: No vertex in v ∈ V (TA) corresponds to two irreducible components in Xk′ .

Proof. Assume, for contradiction, that there is a (non-leaf) vertex v ∈ V (TA) that
corresponds to two irreducible components in Xk′ . Denote by w1 and w2 the vertices
in Γ(Xk′) that correspond to the two irreducible components in Xk′ that correspond
to v. Let v1, . . . , vl ∈ V (TA) be the children of v in TA. We have l ≥ 2, because
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every non-leaf vertex of TA has at least two children by the construction of TA. Note
that v1, . . . , vl are not leaves in TA, because ℓTA

(t) is odd for any leaf t ∈ V (TA). Let
w′

1 and w′
2 be vertices in Γ(Xk′) that correspond to v1 and v2, respectively. Then

by Lemma 10.23, we have {w1, w
′
1} , {w2, w

′
1} , {w1, w

′
2} , {w2, w

′
2} ∈ E(TA). We have

found the cycle (w1, w
′
1, w2, w

′
2, w1) in Γ(Xk′) and therefore, thee graph Γ(Xk′) is not

a tree.

Assume, for contradiction, that there is a non-root vertex v ∈ V (TA) with ℓTA
(v) ≡

0 (mod 2). Let w ∈ V (TA) be the parent of v. Then, by the Claim and Lemma 10.22,
the vertices v and w both correspond to unique vertices v′ and w′ in Γ(Xk). Because
ℓTA

(v) is even, by Lemma 10.23, the vertices v′ and w′ are connected by two edges
which gives the desired contradiction.

10.5. A criterion for potential good reduction of Pic0
X/K

Theorem 10.25. Let X be a hyperelliptic curve with branch points λ1, . . . , λn ∈ P1
K

for some number field K and let p ⊂ OK be a prime ideal such that 2 /∈ p. Let Y
denote the n-pointed stable curve of of genus zero over Spec(OK,p) with the markings
λ1, . . . , λn in the generic fiber. Then Pic0

X/K has potential good reduction at p if and
only if the following condition holds for every edge e of the dual tree T of Y: Let T1
and T2 be the two connected components of T − e. Then, the marked trees T1 and T2
each have an odd number of markings, i.e.∑

v∈V (T1)

mY(v) ≡
∑

v∈V (T2)

mY(v) ≡ 1 (mod 2).

Proof. After multiplication of λ1, . . . , λn with a suitable power of a generator of p,
we may assume that λ1, . . . , λn ∈ OK,p ∪ {∞}. Let X be the semi-stable model of
XF̂ , constructed in [Bos80] and mentioned in the previous Subsection, for some finite
extension F̂ of K̂. By Proposition 7.24 and Proposition 7.35, the abelian variety
Pic0

XF̂ /F̂
has potential good reduction over the extension R̂ of OK,p to F̂ if and only

if Pic0
XK/K has potential good reduction over OK,p. Let S = Spec(R̂) and denote

by k the residue field of R̂. By Proposition 10.15, the generic fiber of Pic0
X/S is

Pic0
XF̂ /F̂

and the special fiber is Pic0
X0/k. By Proposition 10.14, the special fiber

Pic0
X0/k is a semi-abelian variety with toric rank r := rkH1(Γ(Xk),Z). Therefore,

the abelian variety Pic0
XF̂ /F̂

has semi-stable reduction of toric rank r over R̂. By
Proposition 7.23, the abelian variety Pic0

XF̂ /F̂
has potential good reduction over R̂ if

and only if r = 0. By Proposition 10.14, this is the case if and only if Γ(Xk) is a tree.
Let TA be the associated tree of {λ1, . . . , λn}\{∞}. By Lemma 10.24, the dual graph
Γ(Xk) is a tree if and only if for every non-root vertex of v ∈ V (TA) the number ℓ(v)
is odd. Let T ′

A and mA : V (T ′
A) → Z≥0 be as constructed in Section 10.4. Let T ′

v
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denote the subtree of T ′
A with root v. Then∑

w∈T ′
v

mA(w) = ℓTA
(v).

By Lemma 10.21, there is an isomorphism f : T ′
A → T such that mY(f(w)) = mA(w)

for all w ∈ V (T ′
A). Let e ∈ E(T ′

A) be the edge connecting v and its parent in T ′
A. The

subtree T ′
v of T ′

A then corresponds to one of the connected components C of T −f(e).
It follows that ∑

w∈V (T ′
v)

mA(w) =
∑

w∈V (T−f(e))

mY(w)

and therefore, the component C contains an odd number of markings if and only if
ℓTA

(v) is odd. Because the total number of markings n is even, the other component
C ′ of T − f(e) contains the same parity of markings as C. The conclusion follows,
because every edge of T is in the image of f .

Corollary 10.26. Suppose that the hyperelliptic curve X is defined by the affine
equation

y2 = f(x) :=

n∏
i=1

(x− λi)

for some λ1, . . . , λn ∈ OK for some number field K. Let p ⊂ OK be a prime ideal
with a generator p ∈ OK , such that charOK,p > 2 and such that p does not divide the
discriminant ∆(f) in OK . Then Pic0

X/K has potential good reduction at p.

Proof. We have
∆(f) =

∏
1≤i<j≤n

(λi − λj)
2.

Therefore, for all i, j ∈ {1, . . . , n} with i ̸= j, we have p ∤ (λi−λj). Let k be the residue
field of OK,p, then because λi ̸≡ λj (mod p), the reductions λ1 := λ1 +(p), . . . , λn :=

λn+(p) ∈ k are all different. Therefore, the special fiber of the n-pointed stable curve
over Spec(OK,p) with markings λ1, . . . , λn is isomorphic to P1

k and the dual tree is
just one vertex without any edges. The conclusion follows from Theorem 10.25.

Remark 10.27. If we want to check whether Pic0
X/K for a hyperelliptic curve X given

by the affine equation

y2 = f(x) :=

n∏
i=1

(x− λi)

for λ1, . . . , λn ∈ OK for some number field K has potential good reduction at all
primes of OK such that the residue field does not have characteristic two, Corol-
lary 10.26 implies that the condition in Theorem 10.25 only needs to be verified for
finitely many primes p1, . . . , ps, namely the prime factors of ∆(f). Since the dual tree
of the n-pointed stable model of P1

K over a DVR with fraction field K can be algo-
rithmically constructed, for example by using the associated tree defined above, we
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can algorithmically decide whether Pic0
X/K has potential good reduction everywhere,

except in characteristic two.

10.6. Application to the hyperelliptic curves with many
automorphisms

For the hyperelliptic curves with many automorphisms in Table 2, we can now de-
termine whether their Jacobians have potential good reduction in characteristic > 2.
Unfortunately, for the curves X10, X11, X16, X17 and X18 for which we did not de-
termine if their Jacobians have CM in Theorem 9.1, it turns out that their Jacobians
have potential good reduction in all characteristics > 2. Therefore, we cannot apply
Proposition 7.46 to prove that the Jacobians do not have CM.

In the following examples, for each curve X given by y2 = f(x) in Table 2 whose
Jacobian does not have CM, or where we do not know whether it has CM, we calcu-
late the dual trees of the pointed stable curves of genus zero that are marked with
the branch points W (X). We do this at all primes that do not lie above 2 which
divide the discriminant of the polynomial f(x) defining the curve. We then know all
characteristics > 2 for which Jac(X) does not have potential good reduction. The cal-
culations were done by constructing the associated trees in Sage [S+17] in Appendix
B.3.

In the following examples, the numbers on the vertices of the dual trees are the
numbers of markings on the corresponding irreducible components of the pointed
stable curves.

Example 10.28.
The Jacobian Jac(X6) does not have potential good reduction in characteristic 3, as
can be seen from the dual tree of the pointed stable curve and applying Theorem 10.25.
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Figure 1: Dual tree of the pointed stable curve of genus zero associated to the curve
X6 and char k = 3

Example 10.29.
The Jacobian Jac(X8) does not have potential good reduction in characteristic 3.

2

2
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2

6

Figure 2: Dual tree of the pointed stable curve of genus zero associated to the curve
X8 and char k = 3

Example 10.30.
The Jacobian Jac(X10) has potential good reduction in all characteristics > 2.
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Figure 3: Dual tree of the pointed stable curve of genus zero associated to the curve
X10 and char k = 3

Example 10.31.
The Jacobian Jac(X11) has potential good reduction in all characteristics > 2.
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Figure 4: Dual tree of the pointed stable curve of genus zero associated to the curve
X11 and char k = 3

Example 10.32.
The Jacobian Jac(X12) does not have potential good reduction in characteristic 5.
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Figure 5: Dual tree of the pointed stable curve of genus zero associated to the curve
X12 and char k = 5

Example 10.33.
The Jacobian Jac(X13) does not have potential good reduction in characteristic 3.
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Figure 6: Dual tree of the pointed stable curve of genus zero associated to the curve
X13 and char k = 3

20

Figure 7: Dual tree of the pointed stable curve of genus zero associated to the curve
X13 and char k = 5

Example 10.34.
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The Jacobian Jac(X15) does not have potential good reduction in characteristic 3 and
5.
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Figure 8: Dual tree of the pointed stable curve of genus zero associated to the curve
X15 and char k = 3
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Figure 9: Dual tree of the pointed stable curve of genus zero associated to the curve
X15 and char k = 5

Example 10.35.
The Jacobian Jac(X16) has potential good reduction in all characteristics > 2.
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Figure 10: Dual tree of the pointed stable curve of genus zero associated to the curve
X16 and char k = 3
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Figure 11: Dual tree of the pointed stable curve of genus zero associated to the curve
X16 and char k = 5

Example 10.36.
The Jacobian Jac(X17) has potential good reduction in all characteristics > 2.
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Figure 12: Dual tree of the pointed stable curve of genus zero associated to the curve
X17 and char k = 3
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Figure 13: Dual tree of the pointed stable curve of genus zero associated to the curve
X17 and char k = 5

Example 10.37.
The Jacobian Jac(X18) has potential good reduction in all characteristics > 2.
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Figure 14: Dual tree of the pointed stable curve of genus zero associated to the curve
X18 and char k = 3
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Figure 15: Dual tree of the pointed stable curve of genus zero associated to the curve
X18 and char k = 5

A. Character tables
The following character tables were computed using GAP [GAP17].
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ord(·) 1 6 6 2 3 3 4

Class size 1 4 4 1 4 4 6

χ1 1 1 1 1 1 1 1

χ2 1 α2 α 1 α α2 1

χ3 1 α α2 1 α2 α 1

χ4 2 1 1 −2 −1 −1 0

χ5 2 α α2 −2 −α2 −α 0

χ6 2 α2 α −2 −α −α2 0

χ7 3 0 0 3 0 0 −1

Table 4: The character table of SL2(3), where α = e2πi/3

ord(·) 1 6 2 3 4 8 8 2

Class size 1 8 1 8 6 6 6 12

χ1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 −1 −1 −1

χ3 2 −1 2 −1 2 0 0 0

χ4 2 1 −2 −1 0 −α α 0

χ5 2 1 −2 −1 0 α −α 0

χ6 3 0 3 0 −1 1 1 −1

χ7 3 0 3 0 −1 −1 −1 1

χ8 4 −1 −4 1 0 0 0 0

Table 5: The character table of GL2(3), where α = e2πi/8 + e6πi/8

ord(·) 1 2 2 2 3 6 2 2 4 4

Class size 1 1 6 6 8 8 3 3 6 6

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 −1 −1 1 1 −1 1 −1 −1 1

χ3 1 −1 1 −1 1 −1 1 −1 1 −1

χ4 1 1 −1 −1 1 1 1 1 −1 −1

χ5 2 −2 0 0 −1 1 2 −2 0 0

χ6 2 2 0 0 −1 −1 2 2 0 0

χ7 3 −3 −1 1 0 0 −1 1 1 −1

χ8 3 −3 1 −1 0 0 −1 1 −1 1

χ9 3 3 −1 −1 0 0 −1 −1 1 1

χ10 3 3 1 1 0 0 −1 −1 −1 −1

Table 6: The character table of C2 × S4
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ord(·) 1 4 2 3 2 4 4 6 2 4

Class size 1 6 1 8 3 6 6 8 3 6

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 −1 1 1 1 −1 −1 1 1 −1

χ3 1 −i −1 1 1 i −i −1 −1 i

χ4 1 i −1 1 1 −i i −1 −1 −i
χ5 2 0 −2 −1 2 0 0 1 −2 0

χ6 2 0 2 −1 2 0 0 −1 2 0

χ7 3 −1 3 0 −1 −1 1 0 −1 1

χ8 3 1 3 0 −1 1 −1 0 −1 −1

χ9 3 −i −3 0 −1 i i 0 1 −i
χ10 3 i −3 0 −1 −i −i 0 1 i

Table 7: The character table of W2

ord(·) 1 4 3 4 2 8 6 8

Class size 1 12 8 6 1 6 8 6

χ1 1 1 1 1 1 1 1 1

χ2 1 −1 1 1 1 −1 1 −1

χ3 2 0 −1 2 2 0 −1 0

χ4 2 0 −1 0 −2 α 1 −α
χ5 2 0 −1 0 −2 −α 1 α

χ6 3 1 0 −1 3 −1 0 −1

χ7 3 −1 0 −1 3 1 0 1

χ8 4 0 1 0 −4 0 −1 0

Table 8: The character table of W3, where α = −
√
2
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ord(·) 1 3 2 5 5 2 6 2 10 10

Class size 1 20 15 12 12 1 20 15 12 12

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 −1 −1 −1 −1 −1

χ3 3 0 −1 α β −3 0 1 −α −β
χ4 3 0 −1 β α −3 0 1 −β −α
χ5 3 0 −1 α β 3 0 −1 α β

χ6 3 0 −1 β α 3 0 −1 β α

χ7 4 1 0 −1 −1 4 1 0 −1 −1

χ8 4 1 0 −1 −1 −4 −1 0 1 1

χ9 5 −1 1 0 0 5 −1 1 0 0

χ10 5 −1 1 0 0 −5 1 −1 0 0

Table 9: The character table of C2 ×A5, where α = 1−
√
5

2 and β = 1+
√
5

2

ord(·) 1 10 10 2 5 5 3 6 4

Class size 1 12 12 1 12 12 20 20 30

χ1 1 1 1 1 1 1 1 1 1

χ2 2 α β −2 −α −β −1 1 0

χ3 2 β α −2 −β −α −1 1 0

χ4 3 β α 3 β α 0 0 −1

χ5 3 α β 3 α β 0 0 −1

χ6 4 −1 −1 4 −1 −1 1 1 0

χ7 4 1 1 −4 −1 −1 1 −1 0

χ8 5 0 0 5 0 0 −1 −1 1

χ9 6 −1 −1 −6 1 1 0 0 0

Table 10: The character table of SL2(5), where α = 1−
√
5

2 and β = 1+
√
5

2
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B. Computer algebra code

B.1. Calculating the non-free orbits

The following GAP [GAP17] code calculates the polynomials for the groups A4, S4

and A5 in Table 1.

Listing 1: nonfreeorbitsA4.gap

M1 := [[-E(4),0],[0,E(4)]];;
M2 := [[1,E(4)],[1,-E(4)]];;
x := X(Rationals,"x");;
M2 := M2 / RootsOfPolynomial(CF(4), x^2 - Determinant(M2))[1];;

Gt := Group(M1,M2);;
G := Gt / Group(-IdentityMat(2));;
f := NaturalHomomorphism(G);;
elePGL := List(Elements(G), g->PreImagesRepresentative(f,g));;
moeb := List(elePGL, g->(g[1][1]*x+ g[1][2])/(g[2][1]*x+g[2][2]));;

fp := Set(Union(List(moeb,m->RootsOfPolynomial(CF(12),
NumeratorOfRationalFunction(m) - x*DenominatorOfRationalFunction(m)))));

orbit1 := Set(List(Filtered(moeb,m->Value(DenominatorOfRationalFunction(m),
[x],[fp[1]])<>0), m->Value(m,[x],[fp[1]])));;

orbit2 := Set(List(moeb,m->Value(m,[x],[fp[6]])));;
orbit3 := Set(List(moeb,m->Value(m,[x],[fp[8]])));;

p1 := Product(orbit1, l->x-l);
p2 := Product(orbit2, l->x-l);
p3 := Product(orbit3, l->x-l);

Listing 2: nonfreeorbitsS4.gap

M1 := [[E(4),0],[0,1]]/E(8);;
M2 := -[[1,-1],[1,1]];;
M2 := M2 / RootsOfPolynomial(CF(8), x^2 - Determinant(M2))[1];;

Gt := Group(M1,M2);;
G := Gt / Group(-IdentityMat(2));;
f := NaturalHomomorphism(G);;
elePGL := List(Elements(G), g->PreImagesRepresentative(f,g));;
moeb := List(elePGL, g->(g[1][1]*x+ g[1][2])/(g[2][1]*x+g[2][2]));;

fp := Set(Union(List(moeb,m->RootsOfPolynomial(CF(24),
NumeratorOfRationalFunction(m) - x*DenominatorOfRationalFunction(m)))));;

orbit1 := Set(List(Filtered(moeb,m->Value(DenominatorOfRationalFunction(m),
[x],[fp[1]])<>0),m->Value(m,[x],[fp[1]])));;

orbit2 := Set(List(moeb,m->Value(m,[x],[fp[6]])));;
orbit3 := Set(List(moeb,m->Value(m,[x],[fp[20]])));;
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p1 := Product(orbit1, l->x-l);
p2 := Product(orbit2, l->x-l);
p3 := Product(orbit3, l->x-l);

Listing 3: nonfreeorbitsA5.gap

om := (-1+Sqrt(5))/2;;
M1 := [[E(5),0],[0,1]]/E(10);;
M2 := [[om,1],[1,-om]];;
x := X(Rationals,"x");;
M2 := M2 / RootsOfPolynomial(CF(5), x^2 - Determinant(M2))[1];;

Gt := Group(M1,M2);;
G := Gt / Group(-IdentityMat(2));;
f := NaturalHomomorphism(G);;
elePGL := List(Elements(G), g->PreImagesRepresentative(f,g));;
moeb := List(elePGL, g->(g[1][1]*x+ g[1][2])/(g[2][1]*x+g[2][2]));;

fp := Set(Union(List(moeb,m->RootsOfPolynomial(CF(60),
NumeratorOfRationalFunction(m) - x*DenominatorOfRationalFunction(m)))));;

orbit1 := Set(List(Filtered(moeb,m->Value(DenominatorOfRationalFunction(m),
[x],[fp[1]])<>0),m->Value(m,[x],[fp[1]])));;

orbit2 := Set(List(moeb,m->Value(m,[x],[fp[2]])));;
orbit3 := Set(List(moeb,m->Value(m,[x],[fp[14]])));;

p1 := Product(orbit1, l->x-l);
p2 := Product(orbit2, l->x-l);
p3 := Product(orbit3, l->x-l);

B.2. Calculating elliptic quotients of X8 and X15

Listing 4: quotientcurveX8.gap

GL23:=GL(2,3);;
tblGL23:=CharacterTable(GL23);;
char1:=Irr(tblGL23)[4]+Irr(tblGL23)[8];;
char2:=Irr(tblGL23)[5]+Irr(tblGL23)[8];;

sgs:=List(ConjugacyClassesSubgroups(GL23),h->Representative(h));;
List(sgs,g->ScalarProduct(TrivialCharacter(g),RestrictedClassFunction(char1,g

)));
List(sgs,g->ScalarProduct(TrivialCharacter(g),RestrictedClassFunction(char2,g

)));
# [ 6, 0, 3, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ]
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M1:=[[E(8),0],[0,E(8)^7]];;
M2:=[[-1,1],[1,1]];;
x:=X(Rationals,"x");;
M2:=M2/RootsOfPolynomial(CF(8),x^2-Determinant(M2))[1];;

Gt:=Group(M1,M2);
G:=Gt/Group(-IdentityMat(2));
pr:=NaturalHomomorphism(G);;

sgsG:=ConjugacyClassesSubgroups(G);;
List(sgsG,H->Order(Representative(H))); # Only one group of order 6
Display(StructureDescription(Representative(sgsG[8])));
S3:=Representative(sgsG[8]);;
S3t:=List(Elements(S3),g->PreImagesRepresentative(pr,g));;
S3moeb:=List(S3t,g->(g[1][1]*x+g[1][2])/(g[2][1]*x+g[2][2]));;

roots1:=RootsOfPolynomial(CF(12),x^8+14*x^4+1);;
roots2:=RootsOfPolynomial(CF(4),x*(x^4-1));;

rami1:=Set(List(S3moeb,m->Value(m,[x],[roots1[1]]))); # Length(rami1)=2
rami2:=Set(List(S3moeb,m->Value(m,[x],[roots1[2]]))); # Length(rami2)=6

# Length(rami3)=6 (including Infinity)
rami3:=Set(List(Filtered(S3moeb,s->Value(DenominatorOfRationalFunction(s),
[x],[roots2[1]])<>0),s->Value(s,[x],[roots2[1]])));

fixedpointsS3:=Set(Union(List(S3moeb,m->RootsOfPolynomial(CF(24),
NumeratorOfRationalFunction(m) - x*DenominatorOfRationalFunction(m)))));;

rami4:=Set(List(S3moeb,m->Value(m,[x],[fixedpointsS3[1]]))); # Length(rami4)
=3

rami5:=Set(List(S3moeb,m->Value(m,[x],[fixedpointsS3[2]]))); # Length(rami5)
=3

rami6:=Set(List(S3moeb,m->Value(m,[x],[fixedpointsS3[7]]))); # = rami1

Listing 5: quotientcurveX8.sage

K.<e24>=CyclotomicField(24)
e4 = e24^6
e8 = e24^3
e12 = e24^2
R.<x,y>=K[]

S= [x, ((-1/2+1/2*e4)*x+(1/2-1/2*e4))/((-1/2-1/2*e4)*x+(-1/2-1/2*e4)),
((-1/2-1/2*e4)*x+(-1/2+1/2*e4))/((1/2+1/2*e4)*x+(-1/2+1/2*e4)),
((-1/2*e8-1/2*e8^3)*x+(-1/2*e8-1/2*e8^3))/((-1/2*e8-1/2*e8^3)*x+\

(1/2*e8+1/2*e8^3)), (-e4)*x^-1,
((1/2*e8+1/2*e8^3)*x+(-1/2*e8+1/2*e8^3))/((1/2*e8-1/2*e8^3)*x+(-\

1/2*e8-1/2*e8^3))]
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Sym=SymmetricFunctions(K).elementary()
S1=Sym([1,0]).expand(6).substitute(x0=S[0],x1=S[1],x2=S[2],x3=S[3],x4=S[4],x5

=S[5])

# we calculate the images of the points in V under the map P^1->P^1/S_3
# the ramification points
r1=S1.substitute(x=e12^7+e12^8)
r2=S1.substitute(x=-e12^4-e12^11)
r3=S1.substitute(x=-e8+e8^2-e8^3)
r4=S1.substitute(x=-e8^3)
# r5 = S1(infinity) = infinity

print(Jacobian(y^2 - (x-r1)*(x-r2)*(x-r3)).j_invariant())
print(Jacobian(y^2 - (x-r1)*(x-r2)*(x-r3)*(x-r4)).j_invariant())
print(Jacobian(y^2 - (x-r1)*(x-r2)*(x-r4)).j_invariant())
print(Jacobian(y^2 - (x-r1)*(x-r3)*(x-r4)).j_invariant())
print(Jacobian(y^2 - (x-r2)*(x-r3)*(x-r4)).j_invariant())

Listing 6: quotientcurveX15.gap

G:=DirectProduct(CyclicGroup(2),AlternatingGroup(5));;
tbl:=CharacterTable(G);;

char:=Irr(tbl)[3]+Irr(tbl)[4]+Irr(tbl)[8]+Irr(tbl)[10];

sgs:=List(ConjugacyClassesSubgroups(G),h->Representative(h));;
List(sgs,g->ScalarProduct(TrivialCharacter(g),RestrictedClassFunction(char,g)

));
# output: [ 15, 0, 7, 8, 5, 3, 0, 4, 3, 2, 3, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0

]
StructureDescription(sgs[17]); # A4

x:=X(Rationals,"x");;

om:=(-1+Sqrt(5))/2;;
M1:=[[om,1],[1,-om]] / (E(5)^2-E(5)^3);;
M2:=[[E(5),0],[0,E(5)^4]];;
GMt:=Group(M1,M2);;
GM:=GMt/Group(-IdentityMat(2));;
phi:=NaturalHomomorphism(GM);;
sgsGM:=ConjugacyClassesSubgroups(GM);;
List(sgsGM,H->StructureDescription(Representative(H)));

A4t:=List(Elements(Representative(sgsGM[8])),g->PreImagesRepresentative(phi,g
));;

A5t:=List(Elements(GM),g->PreImagesRepresentative(phi,g));
roots1:=RootsOfPolynomial(CF(15),x^20-228*x^15+494*x^10+228*x^5+1);
roots2:=RootsOfPolynomial(CF(20),x*(x^10+11*x^5-1));

A4moeb:=List(A4t,g->(g[1][1]*x+ g[1][2])/(g[2][1]*x+g[2][2]));
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fixedpointsA4:=Set(Union(List(A4moeb,m->RootsOfPolynomial(CF(60),
NumeratorOfRationalFunction(m) - x*DenominatorOfRationalFunction(m)))));

rami1:=Set(List(A4moeb,m->Value(m,[x],[roots1[1]]))); # Length(rami1)=4
rami2:=Set(List(A4moeb,m->Value(m,[x],[roots1[2]]))); # Length(rami2)=12
rami3:=Set(List(A4moeb,m->Value(m,[x],[roots1[3]]))); # Length(rami3)=4
Set(roots1) = Union(rami1,rami2,rami3);

# Length(rami4)=12 (including infinity)
rami4:=Set(List(Filtered(A4moeb,m->Value(DenominatorOfRationalFunction(m),
[x],[roots2[1]])<>0),m->Value(m,[x],[roots2[1]])));

rami5:=Set(List(A4moeb,m->Value(m,[x],[fixedpointsA4[1]]))); # = rami3
rami6:=Set(List(A4moeb,m->Value(m,[x],[fixedpointsA4[2]]))); # = rami1
rami7:=Set(List(A4moeb,m->Value(m,[x],[fixedpointsA4[9]])));

Listing 7: quotientcurveX15.sage

# A5_4 quotient by A4:

K.<e60>=CyclotomicField(60)
R.<x,y>=K[]
e4=e60^15;
e5=e60^12;
e15=e60^4;
e20=e60^3;

S=[x,-e5^2/x,(x+(-e5^2-e5^3))/((e5+e5^2+e5^3)*x+(-e5^2)),
(x+(-e5-e5^4))/((e5+e5^3+e5^4)*x+(-e5)),
(x+(e5^2+e5^3+e5^4))/((-e5^2-e5^3)*x+(-e5^3)),
(x+(-e5^2-e5^4))/((-e5^2-e5^4)*x+(-e5)),
(x+(e5+e5^2+e5^3))/((-e5^3-e5^4)*x+(-e5^3)),
(x+(-e5-e5^3))/((-e5-e5^3)*x+(-e5^4)),
(x+(-e5^3-e5^4))/((-e5-e5^2)*x-1),
(x+(e5+e5^3+e5^4))/((e5+e5^2+e5^4)*x-1),
(x+(e5+e5^2+e5^4))/((-e5-e5^4)*x+(-e5^4)),
(x+(-e5-e5^2))/((e5^2+e5^3+e5^4)*x+(-e5^2))];

Sym=SymmetricFunctions(K).elementary()
S1=Sym([1,0]).expand(12).substitute(x0=S[0],x1=S[1],x2=S[2],x3=S[3],

x4=S[4],x5=S[5],x6=S[6],x7=S[7],x8=S[8],x9=S[9],x10=S[10],x11=S[11])

r1=S1.substitute(x=-e15-e15^4-e15^8-e15^11)
r2=S1.substitute(x=-e15-e15^2-e15^4-e15^14)
r3=S1.substitute(x=-e15-e15^2-e15^7-e15^8)
r4=S1.substitute(x=-e20-e20^4-e20^12-e20^16+e20^17)

print(Jacobian(y^2-(x-r1)*(x-r2)*(x-r3)).j_invariant())
print(Jacobian(y^2-(x-r1)*(x-r2)*(x-r3)*(x-r4)).j_invariant())
print(Jacobian(y^2-(x-r1)*(x-r2)*(x-r4)).j_invariant())
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print(Jacobian(y^2-(x-r1)*(x-r3)*(x-r4)).j_invariant())
print(Jacobian(y^2-(x-r2)*(x-r3)*(x-r4)).j_invariant())

B.3. Calculating associated trees

Listing 8: associatedTrees.sage

def findChildCircles(points, pi):
if len(points)<2:

raise Exception("At␣least␣two␣points␣needed")
circles = set()
pointsLeft = set(points)
while pointsLeft:

p = next(iter(pointsLeft))
minValDist = min({(p-q).ord(pi) for q in points})
c = frozenset({q for q in points if (p-q).ord(pi) > minValDist})
circles.add(c)
pointsLeft = pointsLeft.difference(c)

return circles

def createAssociatedTree(branchPoints, pi):
if len(branchPoints)<3:

raise Exception("At␣least␣3␣points␣are␣required")
if len(set(branchPoints)) < len(branchPoints):

raise Exception("Points␣must␣be␣pairwise␣different")
K = branchPoints[0].parent()
if not K.is_field() or K.characteristic() > 0:

raise Exception("The␣points␣must␣lie␣in␣in␣a␣field␣of␣characteristic␣
0")

for p in branchPoints:
if p.parent() != K:

raise Exception("Base␣field␣must␣be␣same␣for␣all␣points")
if pi.parent() != K or not pi.is_prime():

raise Exception("pi␣must␣be␣a␣prime␣in␣the␣base␣field")
T = DiGraph()
v0 = frozenset(branchPoints)
T.add_vertex(frozenset(branchPoints))
to_process = [v0]
while to_process:

current = to_process.pop()
if len(current) == 1:

continue
circles = findChildCircles(current,pi)
for c in circles:

cfrozen = frozenset(c)
T.add_path([current,cfrozen])
to_process.append(cfrozen)

return T
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