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1 Introduction

Polynomial rings in n variables over a field K appear everywhere in mathematics. Since
these rings are so fundamental we believe it is very natural to study the structure of
their automorphism groups. This would be the way an algebraist would think about
this problem, whereas an algebraic geometer would regard this automorphism group
as the automorphism group of affine n-space, a geometric object. There are many
problems surrounding this group which have not been solved for general n. An example
is the linearization problem, which asks if every element of finite order in the group is
conjugate to an affine automorphism. A counterexample to this conjecture is given in
[1] by Asanuma over a field of positive characteristic, but it is still an open problem
for fields of characteristic 0. A more famous problem on polynomial automorphisms is
the Jacobian conjecture which states that a K-algebra homomorphism whose Jacobian
determinant is a nonzero constant is an automorphism. Again the conjecture is wrong
for fields of positive characteristic but open for fields of characteristic 0. The kind
of problem we will be focusing on in this thesis is the problem of giving elementary
generators for the group.

The aim of this thesis is to study the cases n = 1 and n = 2 and give a summary of
the progress in the case n ≥ 3. The case n = 2 will be the main part of this paper. In
this case we will show that the group can be generated by two kinds of automorphisms
which have a simple description.

I would like to thank my advisor, Professor Richard Pink for his support, and en-
couragement to pursue this subject.
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2 First definitions and results

We will now introduce some notation which will be used throughout the thesis: Fix
R := R′[X1, ..., Xn] the polynomial ring in n variables over a commutative ring R′. The
automorphism group of R we will denote by AutR′(R). We notice that an element φ ∈
AutR′(R) is uniquely determined by the tuple (φ(X1), ..., φ(Xn)). Therefore we will
often write (f1, .., fn) ∈ Rn for the unique automorphism that sends Xi to fi for all i.
We write X for the set {X1, .., Xn}.

Definition 2.1. We call φ ∈ AutR′(R) affine if for all i = 1, ..., n : φ(Xi) is a linear
polynomial.

Definition 2.2. Let i ∈ {1, ..., n}. We call φ ∈ AutR′(R) an X \ {Xi}-based shear if
for all j ∈ {1, ..., n} \ {i} : φ(Xj) = Xj and φ(Xi) = Xi + f for some fixed polynomial
f in the variables X \ {Xi}

An easy computation shows that the inverse of a shear is again a shear where the
polynomial f in Definition 2.2 is replaced by −f . More generally we have the following
definition:

Definition 2.3. Let i ∈ {1, ..., n}. We call φ ∈ AutR′(R) an X \ {Xi}-based de
Jonquières automorphism if φ(R′[X \ {Xi}]) = R′[X \ {Xi}].

Example 2.4. An X \ {Xi}-based shear is an X \ {Xi}-based de Jonqières automor-
phism.

Definition 2.5. We call φ ∈ AutR′(R) tame if it can be written as a composition of
affine and shear automorphisms. The group of all tame automorphisms will be denoted
as Tn(R′).

Definition 2.6. We call φ ∈ AutR′(R) triangular if φ(Xi) = Xi + fi(Xi+1, ..., Xn) for
fi in K[Xi+1, ..., Xn] and i = 1, .., n.

Remark 2.7. We notice that all triangular automorphisms are tame.

As mentioned before, the main part of this thesis will be about the case n = 2 and
R′ a field. Our aim will be to prove the following theorem:

Theorem 2.8. (Jung,Van der Kulk) All automorphisms of K[X1, X2] are tame. Fur-
thermore AutK(K[X1, X2]) = A ∗C B the amalgamated product of A and B over C,
where A is the group of affine automorphisms of K[X1, X2] and B the group of X2-based
de Jonquières automorphism and C = A ∩B.

This theorem was first proven by Jung [2] in 1942 in the case where K = C and
without the amalgamated product decomposition. Van der Kulk [3] then proved the
general case over an arbitrary field with the product decomposition in 1953. In later
years many different kind of proofs have been proposed, some (algebro)-geometric in
nature such as in [4] and others purely algebraic like the proof by Makar-Limanov [5].
Our interest in this paper lies in this purely algebraic approach. Dicks [6] simplified
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the proof of Makar-Limanov and we will be closely following this proof of Dicks as it is
explained in [7]. But first we will study the case n = 1:

Theorem 2.9. Every φ ∈ AutK(K[X]) is affine.

Proof. Since φ is surjective there exists f ∈ K[X] such that

(1) φ(f) = X,

If we write f(X) =
∑n

i=0 aiX
i with n ∈ Z≥0 and ai in K for all i and an nonzero, the

equation (1) becomes
∑n

i=0 aiφ(X)i = X by the homomorphism property and φ being
the identity function on K. This tells us that the degree of φ(X) cannot be greater
than 1 or else

(2) 1 = deg(X) = deg(
n∑
i=0

aiφ(X)i) = deg(φ(X)n) = n deg(φ(X)) 6= 1,

which is a contradiction. So we have deg(φ(X)) ≤ 1 but φ(X) cannot be in K, because
then X = φ(f) would be in K. Therefore deg(φ(X)) = 1.

This theorem also tells us that we can embed AutK(K[X]) into a subgroup of
GL2(K): Since every φ ∈ AutK(K[X]) is affine there exist unique a ∈ K× and b ∈ K
such that φ(X) = aX + b. This implies that

(3) φ 7→
(
a b
0 1

)
defines a well-defined map, and an easy computation shows that this is a group homo-
morphism. So this means that in the case n = 1 we can think of the automorphism
group as a finite dimensional object over K. This makes the case n = 1 quite easy
to study compared to the cases where n ≥ 2. In the cases where n ≥ 2 the shear
automorphisms allow us to embed K[X1], which is a infinite-dimensional vector space
over K, into the automorphism group AutK(K[X1, ..., Xn]). A way we can do this is by
sending an f ∈ K[X1] to the X \ {X2}-based shear automorphism defined by f(X1).

3 Basic notions on weighted degrees

In this section we will prove Theorem 2.8. For an automorphism (g1, g2) ∈ AutK(K[X1, X2]),
let (f1, f2) be its inverse. The basic idea of the proof is to introduce a weighted degree
on K[X1, X2] using the (1, 0)-degree d1 and (0, 1)-degree d2 of f1 (see Definition 3.1).
With this weighted degree we can prove that d1 divides d2 or the other way around.
This is a key step that also appears in all other proofs of Theorem 2.8. Fix (n1, n2) ∈ Z2

with (n1, n2) 6= (0, 0).
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Definition 3.1. We define a function d : K[X1, X2]→ Z ∪ {−∞} by setting

d(f) := sup{n1i+ n2j | aij 6= 0}

where f =
∑
i,j≥0

aijX
i
1X

j
2 . It is called the (n1, n2)-degree of f .

The (1, 1)-degree is the usual total degree and instead of d(f) we denote this by
deg(f). We call the (1, 0)-degree the X1-degree. Similarly we call the (0, 1)-degree the
X2-degree.

Definition 3.2. For (a, b) and (a′, b′) in Z2 we say (a, b) ≤ (a′, b′) if an1 + bn2 <
a′n1 + b′n2 or an1 + bn2 = a′n1 + b′n2 with a′n2 ≥ an2 and bn1 ≥ b′n1.

Lemma 3.3. (Z2,≤) is a totally ordered abelian group

Proof. We first show that ≤ defines a total order on Z2:

Totality: Let (a, b) and (a′, b′) be elements in Z2 such that (a, b) � (a′, b′). By Defini-
tion 3.2 this is equivalent to saying that n1a+n2b > n1a

′+n2b
′ or n1a+n2b = n1a

′+n2b
′

with a′n2 < an2 or bn1 < b′n1. If n1a+ n2b > n1a
′ + n2b

′ we are finished since then by
Definition 3.2 we have (a′, b′) ≤ (a, b). Therefore we assume that n1a+n2b = n1a

′+n2b
′

with a′n2 < an2 or bn1 < b′n1. Suppose that a′n2 < an2. This implies that n2 is
nonzero. We multiply the equation n1a+ n2b = n1a

′ + n2b
′ by n2 and get the equation

n1n2a + n2
2b = n1n2a

′ + n2
2b
′. Let us assume n1 ≤ 0. From a′n2 < an2 we get that

n1n2a ≤ n1n2a
′ which implies that n2

2b ≥ n2
2b
′. Since n2

2 > 0 we get that b ≥ b′. If
instead we assume n1 > 0 we would get b ≤ b′. But in both cases we get bn1 ≤ b′n1.
By Definition 3.2 this means that (a′, b′) ≤ (a, b).

Transitivity: Let (a, b), (a′, b′) and (a′′, b′′) be elements in Z such that (a, b) ≤ (a′, b′)
and (a′, b′) ≤ (a′′, b′′). If n1a + n2b < n1a

′ + n2b
′ or n1a

′ + n2b
′ < n1a

′′ + n2b
′′, the

inequality n1a+ n2b < n1a
′′ + n2b

′′ follows via the transitivity of ≤ on Z. This implies
(a, b) ≤ (a′′, b′′) by Definition 3.2. So assume that n1a+n2b = n1a

′+n2b
′ = n1a

′′+n2b
′′.

By Definition 3.2 we know have the inequalities a′n2 ≥ an2, bn1 ≥ b′n1, a′′n2 ≥ a′n2,
b′n1 ≥ b′′n1. The transitivity of ≤ on Z implies that a′′n2 ≥ an2 and bn1 ≥ b′′n1. The
case where bn1 < b′n1 works analogously. By Definition 3.2 this implies (a, b) ≤ (a′′, b′′).

Antisymmetry: Let (a, b) and (a′, b′) be elements in Z2 such that (a, b) ≤ (a′, b′)
and (a′, b′) ≤ (a, b). This implies an1 + bn2 = a′n1 + b′n2 and a′n2 = an2 and bn1 = b′n1

by the antisymmetry of the usual total order on Z. Since (n1, n2) 6= (0, 0) we know
n1 6= 0 or n2 6= 0. Let us assume n1 6= 0. From bn1 = b′n1, we get b = b′. But
this implies a = a′ via the equation an1 + bn2 = a′n1 + b′n2. The other case works
analogously.

Compatibility: The only thing left to show is the compatibility of the total order
with the additive structure of Z2. This means for all (a, b), (a′, b′), (c, d) in Z2 such that
(a, b) ≤ (a′, b′) it follows that (a, b) + (c, d) ≤ (a′, b′) + (c, d). This immediately follows
from Definition 3.2 and the fact that (Z,≤) is a totally ordered abelian group.
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Definition 3.4. We define a function D : K[X1, X2]→ Z2 ∪ {−∞} by setting

D(f) := sup{(i, j) | aij 6= 0}

where f =
∑

i,j≥0 aijX
i
1X

j
2 and the total order on Z2 as in Definition 3.1.2.

Remark 3.5. In all the equations and inequalities involving elements of G∪{−∞} we
use the convention that the symbol −∞ satisfies the following: ∀g ∈ G : −∞ < g and
g +−∞ = −∞.

Definition 3.6. Let (G,≤,+) be a totally ordered abelian group. Let R be a commu-
tative ring. We call a function δ : R → G ∪ {−∞} a degree function if it satisfies the
following properties:
For all x, y ∈ R :
(i) δ(xy) = δ(x) + δ(y)
(ii) δ(x+ y) ≤ max{δ(x), δ(y)}
(iii) δ(x) = −∞⇔ x = 0

Remark 3.7. Let δ : R→ G∪{−∞} be a degree function. Since δ(1) = δ(1·1) = 2δ(1)
we get δ(1) = 0. Now we want to compute δ(−1). We have 0 = δ(1) = δ((−1) · (−1)) =
2δ(−1) which implies δ(−1) = 0 since a totally ordered abelian group has no torsion
elements.

Lemma 3.8. For a degree function δ : R→ G∪{−∞} we have the following property:
For all x, y ∈ R :
if δ(x) 6= δ(y) it follows that δ(x+ y) = max{δ(x), δ(y)}.

Proof. Assume δ(x) > δ(y). We leave the case where y = 0 to the reader. Therefore
we assume that y is nonzero. we know that

δ(x) = δ((x+ y) + (−y)) ≤ max{δ(x+ y), δ(−y)}.

If δ(x + y) were strictly smaller than max{δ(x), δ(y)} = δ(x) it would imply δ(x) ≤
δ(−y) = δ(−1)+δ(y) = δ(y) which is a contradiction. Therefore δ(x+y) = max{δ(x), δ(y)}.

Lemma 3.9. Let R be an integral domain and δ a degree-function on R. We can extend
δ to δ̃ : Quot(R)→ G∪{−∞} by setting δ̃(a

b
) = δ(a)− δ(b) for an a

b
∈ Quot(R). Then

δ̃ is well-defined and is again a degree-function on Quot(R).

Proof. We leave the proof to the reader.

Definition 3.10. Let G,G′ be totally ordered abelian groups. We call a function
φ : G ∪ {−∞} → G′ ∪ {−∞} a homomorphism of totally ordered abelian groups if it
satisfies the following properties:
For all g, h ∈ G ∪ {−∞}:
(i) g ≤ h⇒ φ(g) ≤ φ(h)
(ii) φ(g) = −∞⇔ g = −∞
(iii)φ(g + h) = φ(g) + φ(h)
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Lemma 3.11. Let φ : G∪{−∞} → G′∪{−∞} be a homomorphism of totally ordered
abelian groups. Let S be a finite subset of G ∪ {−∞}. Then we have the following
equation:

(4) sup{φ(S)} = φ(sup{S})

Proof. This immediately follows by Definition 3.10 property (i) and if S is empty prop-
erty (ii).

Lemma 3.12. Let δ : R → G ∪ {−∞} be a degree function. Let φ : G ∪ {−∞} →
G′∪{−∞} be a homomorphism of totally ordered abelian groups. Then the composition
φ ◦ δ is again a degree-function on R.

Proof. We leave the proof to the reader.

Lemma 3.13. Both d and D are degree functions on K[X1, X2].

Proof. We first define the function φ : Z2 ∪ {−∞} → Z ∪ {−∞} by setting φ((a, b)) =
n1a + n2b and φ(−∞) = −∞ and notice this is a homomorphism of totally ordered
abelian groups. Then by Lemma 3.11 it follows that φ ◦ D = d. Then Lemma 3.12
tells us that it is enough to prove that D is a degree function on K[X1, X2]. We leave
the proof that D satisfies property (ii) and (iii) in Definition 3.6 to the reader and only
prove property (i): Let f, g be elements in K[X1, X2]. The case where fg = 0 is clear
since then f or g will be zero, so we assume that f and g are both nonzero. We write
f and g in the following form:

(5) f =
∑
i,j≥0

aijX
i
1X

j
2 , g =

∑
i,j≥0

bijX
i
1X

j
2 .

We write D(f) = (i0, j0) and D(g) = (i′0, j
′
0). The product fg can be written in the

following form:

(6)
∑
i′′,j′′

≥0

(
∑
(i,j)+(i′,j′)
=(i′′,j′′)

aijbi′j′)X
i′′

1 X
j′′

2

If we have a (i′′, j′′) such that the inner sum is nonzero then we know that a term aijbi′j′
which is nonzero must appear in the inner sum. For this term to be nonzero both aij
and bi′j′ have to be nonzero. This implies (i, j) ≤ D(f) and (i′, j′) ≤ D(g). And from
these two inequalities we get that (i′′, j′′) = (i, j) + (i′, j′) ≤ D(f) + D(g). This gives
us the inequality D(fg) ≤ D(f) +D(g).

Claim 3.14. Let (i, j), (i′, j′) be elements in (Z≥0)2 such that (i, j) + (i′, j′) = D(f) +
D(g) and the term aijbi′j′ is nonzero. Then (i, j) = (i0, j0) and (i′, j′) = (i′0, j

′
0).

Proof. Consider (i, j, i′, j′) ∈ (Z≥0)4 which differs from (i0, j0, i
′
0, j
′
0) and which satisfies

the equation (i, j) + (i′, j′) = D(f) + D(g). Let us assume (i, j) 6= (i0, j0) or else we
work with (i′, j′) 6= (i′0, j

′
0). Then we must have (i, j) < (i0, j0) or the other way around.

Suppose (i, j) < (i0, j0). This together with the equation (i, j)+(i′, j′) = (i0, j0)+(i′0, j
′
0)

implies (i′, j′) > (i′0, j
′
0). This means that bi′j′ is zero so the term aijbi′j′ is also zero.
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This shows us that the inner sum for (i′′, j′′) = D(f)+D(g) consist only of the term
ai0j0bi′0j′0 which is nonzero. This implies the inequality D(fg) ≥ D(f) +D(g). Since we
have both inequalities the equality D(fg) = D(f) +D(g) follows.

Lemma 3.9 tells us that we can extend d and D to K(X1, X2). We will still denote
these extensions by the same letters d and D. The equation φ◦D = d in the beginning
of the proof of Lemma 3.13 tells us that D is a kind of refinement of d. The next lemma
tells us this equation still holds for the extensions of d and D to K(X1, X2)

Lemma 3.15. The equation φ ◦D = d holds on K(X1, X2).

Proof. We know the equation holds for polynomials. Let q = f
g
be a rational function

where f, g ∈ K[X1, X2] and g nonzero. We now have φ(D(q)) = φ(D(f) − D(g)) =
φ(D(f))− φ(D(g)) = d(f)− d(g) = d(f

g
).

Definition 3.16. We define the function |·| : K[X1, X2]→ K[X1, X2] by setting

(7) |f | =
∑
i,j≥0

n1i+n2j=d(f)

aijX
i
1X

j
2 .

It is called the leading term of f .

Definition 3.17. Let R,R′ be a commutative rings. We call a function ψ : R → R′

multiplicative if for all x, y ∈ R : ψ(xy) = ψ(x)ψ(y).

Lemma 3.18. If R and R′ are integral domains and ψ a multiplicative function from
R to R′ such that ψ(x) 6= 0 for all x 6= 0, we can extend ψ to ψ̃ : Quot(R)→ Quot(R′)

by setting ψ̃(a
b
) := ψ(a)

ψ(b)
where a

b
∈ Quot(R). The extension ψ̃ is well defined and is

again a multiplicative function.

Proof. We leave the proof to the reader.

Lemma 3.19. The leading term function is multiplicative.

Proof. Let f, g be elements in K[X1, X2]. We write f and g in the following form:

(8) f =
∑
i,j≥0

aijX
i
1X

j
2 , g =

∑
i,j≥0

bijX
i
1X

j
2 .

Both |fg| and |f ||g| are polynomials where the monomials X i′′
1 X

j′′

2 with nonzero co-
efficients satisfy n1i

′′ + n2j
′′ = d(fg) = d(f) + d(g). Therefore to show the equality

|fg| = |f ||g| it is enough to show that for any (i′′, j′′) ∈ (Z≥0)2 such that n1i
′′ +

n2j
′′ = d(f) + d(g), the corresponding coefficients of the monomial X i′′

1 X
j′′

2 are the
same. In |fg| this corresponding coefficient is the sum over all aijbi′j′ such that
(i, j) + (i′, j′) = (i′′, j′′). In |f ||g| this coefficient is the sum over all aijbi′j′ such
that n1i + n2j = d(f) and n1i

′ + n2j
′ = d(g) and (i, j) + (i′, j′) = (i′′, j′′). These

sums are the same since for any (i, j, i′, j′) ∈ (Z≥0)4 such that aijbi′j′ is nonzero and
(i, j) + (i′, j′) = (i′′, j′′), we know that n1i + n2j ≤ d(f) and n1i

′ + n2j
′ ≤ d(g).

Since (n1i + n2j) + (n1i
′ + n2j

′) = n1i
′′ + n2j

′′ = d(f) + d(g) we can conclude that
n1i+ n2j = d(f) and n1i

′ + n2j
′ = d(g).
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Using Lemma 3.18 we extend the leading term function toK(X1, X2), again denoted
by |·|.

Definition 3.20. We call an element f in K(X1, X2) (n1, n2)-homogeneous if |f | = f .

Example 3.21. The notion of a (1, 1)-homogeneous polynomial coincides with the
usual notion of a homogeneous polynomial.

Lemma 3.22. Let f1, f2 be in K(X1, X2) such that d(f1) = d(f2) = c ∈ Z. Then we
have

(9) d(f1 + f2) < c⇔ |f1|+ |f2| = 0.

Proof. In the case where f1 and f2 are polynomials the lemma is clear since
d(f1+f2) < c if and only if the highest terms of f1 and f2 cancel each other out, in other
words d(f1 + f2) < c if and only if |f1|+ |f2| = 0. For the general case we write f1 = p1

q1

and f2 = p2
q2

with p1, q1, p2, q2 polynomials where q1 and q2 are nonzero. The inequality
d(f1+f2) < c is equivalent to d(p1q2+p2q1) < c+d(q1)+d(q2) = d(p1q2) = d(p2q1). This
is equivalent to |p1q2| + |p2q1| = 0 by applying the lemma in the case of polynomials.
This equation is then equivalent to |f1|+ |f2| = 0, using Lemma 3.19.

Remark 3.23. Lemma 3.22 can be easily extended to a sum of more than 2 polynomials
of the same (n1, n2)-degree.

Lemma 3.24. Let f1, f2 be in K(X1, X2) such that d(f1) > d(f2). Then we have

(10) |f1 + f2| = |f1|.

Proof. We notice d(f1 + f2) = d(f1) due to Lemma 3.8. Since d((f1 + f2) + (−f1)) =
d(f2) < d(f1), Lemma 3.22 tells us that |f1 + f2|+ |−f1| = 0. This implies (10).

Lemma 3.25. Let f1,f2 be in K(X1, X2) such that |f1| and |f2| are algebraically inde-
pendent over K. Then we have

(11) |K[f1, f2]| ⊆ K[|f1|, |f2|].

Proof. A nonzero element g in |K[f1, f2]| is of the form |p(f1, f2)| with p a nonzero
polynomial in two variables. Let us write p(Y1, Y2) in the following form:

(12) p(Y1, Y2) =
∑
i,j≥0

aijY
i

1Y
j

2 .

We now isolate the monomials of highest degree. If (d(f1), d(f2)) = (0, 0) we set
p0 := p and µ := 0. Notice that the cases d(f1) = −∞ or d(f2) = −∞ do not
occur since then |f1| and |f2| would satisfy the equation |f1||f2| = 0 which would
contradict the assumption that |f1| and |f2| are algebraically independent over K. If
(d(f1), d(f2)) 6= (0, 0) we define p0 to be equal to the leading term of p with respect to
the (d(f1), d(f2))-degree function. We also define µ to be the (d(f1), d(f2))-degree of p.

Claim 3.26. d(p0(f1, f2)) = µ.
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Proof. The element p0(f1, f2) is a sum of monomial expressions in f1 and f2 where each
of those expressions has (n1, n2)-degree µ. If d(p0(f1, f2)) were strictly smaller than µ,
Lemma 3.22 with Remark 3.23 would imply p0(|f1|, |f2|) = 0. But this is not possible
since |f1| and |f2| are algebraically independent over K.

By Lemma 3.24 we know that |p(f1, f2)| = |p0(f1, f2)+(terms of lower degree)| =
|p0(f1, f2)|. By Lemma 3.22 with Remark 3.23 and Claim 3.26 we know that

d(p0(f1, f2)− p0(|f1|, |f2|)) < µ = d(p0(f1, f2)) = d(p0(|f1|, |f2|)).

This tells us that

|p0(f1, f2)| = |p0(|f1|, |f2|) + p0(f1, f2)− p0(|f1|, |f2|)| = |p0(|f1|, |f2|)|

by using Lemma 3.24. Since p0(|f1|, |f2|) is already homogeneous (it is the sum of homo-
geneous elements of the same degree), we have |p(f1, f2)| = |p0(|f1|, |f2|)| = p0(|f1|, |f2|)
which lies in K[|f1|, |f2|].

4 Key lemmas

In this section we will prove some rather technical lemmas which play an important
role in the proof of Theorem 2.0.2.

Lemma 4.1. If f1 and f2 are non-zero (n1, n2)-homogeneous elements of K(X1, X2)
that are algebraically dependent over K, then there exists λ ∈ K× such that

(13) f
d(f2)
1 = λf

d(f1)
2 .

Proof. Since f1 and f2 are algebraically dependent over K, we have p(f1, f2) = 0 for
some nonzero polynomial p. Since the case where (d(f1), d(f2)) = (0, 0) is clear we
assume (d(f1), d(f2)) 6= (0, 0). We can assume p to be (d(f1), d(f2))-homogeneous by
possibly replacing p by its (d(f1), d(f2))-leading term. Let (d(f1), d(f2)) = (sd1, sd2)
with s = gcd(d(f1), d(f2)) then p is also (d1, d2)-homogeneous. We write p in the
following form:

(14) p =
∑
i,j≥0

aijY
i

1Y
j

2 .

Since p is (d1, d2)-homogeneous we know that if aij is nonzero, then id1 + jd2 is a
constant independent of i and j. We fix an i0 and j0 such that ai0j0 is nonzero. For
any other pair (i′, j′) such that ai′j′ is nonzero we have the following equation:

(15) i0d1 + j0d2 = i′d1 + j′d2.

Using the fact that d1 and d2 are coprime this equation implies that

(16) (i′, j′) = (i0 − kd2, j0 + kd1)

for some k in Z. If we divide out f i01 f
j0
2 from the equation p(f1, f2) = 0 and possibly

multiply by an appropriate power of f−d21 fd12 we get a nonzero polynomial equation for
f−d21 fd12 with coefficients in K. Since K is relatively algebraically closed in K(X1, X2)
we get that f−d21 fd12 lies in K×. This implies the lemma.
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Definition 4.2. We call an element p in K(X1, X2) a proper power if p = λqa for some
q ∈ K(X1, X2) and λ ∈ K× and a ∈ Z>1.

Lemma 4.3. For every non-constant p in K(X1, X2) we have p = λqa for some q ∈
K(X1, X2) and λ ∈ K× and a ∈ Z≥1, where q is not a proper power.

Proof. After fixing a system of representatives of irreducible polynomials {pi | i ∈ I}
under the relation of associatedness, we uniquely decompose p into a product of integer
powers of the pi’s. Let l denote the positive greatest common divisor of the exponents
in this decomposition. If we divide each exponent by l we get a q. This q is not a
proper power since its exponents in the decomposition are coprime.

Lemma 4.4. Let f and q be elements in K(X1, X2) with q not a proper power. If we
have an equation of the form f l = λqm with (l,m) ∈ Z2 \ {(0, 0)} and λ ∈ K×, we can
conclude f = λ̃qb for some b ∈ Z and λ̃ ∈ K×.
Proof. After fixing a system of representatives of irreducible polynomials {pi | i ∈ I}
under the relation of associatedness, we look at the unique decompositions of f and q
into products of integer powers of the pi’s. So we write

f = upe1i1 p
e2
i2
· .... · penin , q = vp

e′1
i1
p
e′2
i2
· .... · pe

′
n
in
,

with u and v nonzero elements in K and the ij’s pairwise distinct for j = 1, .., n. The
fact that q is not a proper power implies that gcd(e′1, ..., e

′
n) ∼ 1. Using the equation

f l = λqm we get the equations lei = me′i with i = 1, ..., n. The coprimeness of e′1, ..., e′n
tells us that we can write 1 as a Z-linear combination of e′1, ..., e′n. This together with
the equations imply that l | m. Therefore we get the equations lei = lbe′i for some b
in Z and for all i = 1, ..., n. Since l is nonzero we get the equations ei = be′i for all
i = 1, ....n. These equations imply the lemma.

Lemma 4.5. Let p1,p2 ∈ K(X1, X2) with d(p1) 6= 0. Then there exist (n1, n2)-
homogeneous q1, q2 ∈ K(X1, X2) with q1 not a proper power such that the following
holds:

(17) |K[p±1
1 , p2]| ⊆ K[q±1

1 , q2] and |p1| = λqa1 ,

for some λ ∈ K× and a ∈ Z>0.

Proof. We first prove that to show (17) it is enough to prove

(18) |K[p1, p2]| ⊆ K[q±1
1 , q2] .

Let w be an element of K[p±1
1 , p2]. Let b ∈ Z≥0 such that wpb1 lies in K[p1, p2]. Then

|w| = |wpb1||p−b1 | lies in K[q±1
1 , q2] since |wpb1| lies in K[q±1

1 , q2] and |p−b1 | = |p1|−b =
λ−bq−ab1 also lies in K[q±1

1 , q2]. Therefore (17) holds.
Now we prove the existence of q1 and q2 such that (17) holds. Lemma 4.3 gives us a
q1 not a proper power such that |p1| = λqa1 for some λ ∈ K× and a ∈ Z≥1. We assume
that p2 is not an element of K[p±1

1 ] since if it were, we could set q2 = 0.

Case 1: ∀h ∈ K[p±1
1 ] : |p2 − h| ∈ K[|p1|±1].
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Claim 4.6. There exists a sequence (µkp
bk
1 )k≥1 in K[p±1

1 ] with µk ∈ K× and bk ∈ Z for
all k in Z≥1, such that the sequence

p2,k := p2 −
k∑
i=1

µip
bi
1

satisfies d(p2,k+1) < d(p2,k) for all k ∈ Z≥0. Moreover if d(p1) is negative, only finitely
many bk’s are negative.

Proof. We construct µk and bk inductively. Suppose that µ1p
b1
1 upto µkpbk1 for a k ∈ Z≥0

are already constructed such that d(p2,l+1) < d(p2,l) for all l = 0, .., k − 1. We know
that |p2,k| lies in K[|p1|±1]. Since |p2,k| is also homogeneous and nonzero we get that
|p2,k| is of the form α|p1|β with α in K× and β in Z. We set µk+1 := α and bk+1 := β.
By Lemma 3.22 it follows that

(19) d(p2,k+1) = d(p2,k − µk+1p
bk+1

1 ) < d(p2,k).

We notice that bk+1d(p1) = d(p2,k) for all k ∈ Z≥1. For large enough k we know that
d(p2,k) is negative. If d(p1) is also negative it follows that for large enough k, the
exponent bk+1 must be positive.

We can assume that d(p1) < 0 after possibly replacing p1 and q1 by p−1
1 and q−1

1 .
Let f be a nonzero element in K[p1, p2]. We write f as r(p1, p2) where r is an element
in K[Y1, Y2]. Denote by t2 the Y2-degree of r. We now use the sequence p2,k constructed
in Claim 4.6. Since there are only finitely many bk’s which are negative, l := inf{bk |
k ∈ Z≥1} exists and is finite. We now choose a k large enough such that d(p2,k) <
d(f) + t2|l|d(p1) and d(p2,k) is negative. We notice that

r(p1, p2) = r(p1, p2,k +
k∑
i=1

µip
bi
1 ) =

∑
i∈Z,j≥0

aijp
i
1p
j
2,k

with aij nonzero for only finitely many (i, j) ∈ Z × Z≥0, where we get the last ex-
pression by expanding out r(p1, p2,k +

∑k
i=1 µip

bi
1 ). If there are bi’s in b1, ..., bn which

are negative we know that the smallest i, such that there exists a j such that aij is
nonzero, is bounded from below by t2l. This means that multiplying f with pt2|l|1 en-
sures that the resulting element f̃ lies in K[p1, p2,k]. Since d(p2,k) < d(f̃) and d(p2,k) is
negative, monomial expressions in f̃ which contain p2,k have (n1, n2)-degree strictly less
than d(f̃). Then |f̃ | is an element in |K[p1]| by Lemma 3.24. But |K[p1]| is contained
in K[|p1|]. This shows that |f | is an element of K[|p1|±1]. Therefore q2 = 0 does the job.

Case 2 ∃h ∈ K[p±1
1 ] : |p1| and |p2 − h| are algebraically independent over K.

In this case the lemma follows via Lemma 3.25 with q2 = |p2 − h| and the following
equality:

(20) K[p±1
1 , p2 − h] = K[p±1

1 , p2].
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For the remaining case we construct q2 via induction on a. More precisely we assume
the lemma is true for all a′ < a with a′ ∈ Z≥1.

Case 3: ∃h ∈ K[p±1
1 ] : |p2 − h| /∈ K[|p1|±1] and |p1| and |p2 − h| are algebraically

dependent over K.
Due to Lemma 4.1 we get that |p1|d(p2−h) is a scalar multiple of |p2 − h|d(p1). Then
we notice that |p2 − h|d(p1) is a scalar multiple of a power of q1. Therefore we can
use Lemma 4.4 to show that |p2 − h| = µqb1, for some µ ∈ K× and b ∈ Z. Since
|p2 − h| does not lie in K[|p1|±1] we know that a cannot divide b. This also shows
that the base case a = 1 has already been taken care of in the cases we did before.
Then we can write b = ra + ã with r, ã ∈ Z and 0 < ã < a. This implies that
|(p2 − h)p−r1 |=µ̃qã1 where µ̃ = µλ−r. This means for p′1 = (p2 − h)p−r1 and p′2 = p1 the
induction hypothesis implies that a (n1, n2)-homogeneous element q′2 exists such that
|K[(p2 − h)p−r1 , p1]| ⊆ K[q±1

1 , q′2]. The claim follows by setting q2 := q′2 and with these
inclusions:

(21) K[q±1
1 , q′2] ⊇ |K[(p2 − h)p−r1 , p±1

1 ]| ⊇ |K[p1, p2]|,

where the first inclusion follows by the same argument as in the beginning of the
proof.

We use this lemma to say something about automorphisms of the polynomial ring
in Lemma 4.9.

Lemma 4.7. Let f be an element of K[X1, X2]. Let di ≥ 0 be the Xi-degree of f
(i = 1, 2). Let d1 and d2 be both nonzero. If Xa

i appears in the (d2, d1)-leading term
of f with a nonzero coefficient for some i ∈ {1, 2} and some a ∈ Z≥1, it follows that
a = di and both terms Xd1

1 and Xd2
2 appear in the (d2, d1)-leading term of f with nonzero

coefficients. Moreover D(f) = (d1, 0) where D denotes the (d2, d1)-bidegree.

Proof. In the following proof d will always mean the (d2, d1)-degree function and |·| will
always mean the (d2, d1)-leading term. WLOG we assume Xa

1 appears in |f | with a
nonzero coefficient. Since d1 is the X1-degree of f it follows that a monomial Xd1

1 X
l
2

appears in f with a nonzero coefficient for some l ∈ Z≥0. Since Xa
1 appears in |f | and

a ≤ d1 we get the following inequalities:

d1d2 ≥ ad2 = d(Xa
1 ) ≥ d(Xd1

1 X
l
2) = d1d2 + d1l ≥ d1d2

It follows that all these inequalities are equalities, which shows that a = d1. Since Xa
1

appears in |f | with a nonzero coefficient we also know that d(f) = d(Xa
1 ) = d1d2. Since

d2 is the X2-degree of f we get that a monomial X l′
1 X

d2
2 appears in f with a nonzero

coefficient for some l′ ∈ Z≥0. We then get the following inequalities:

d1d2 = d(f) ≥ d(X l′

1 X
d2
2 ) = l′d2 + d1d2 ≥ d1d2

Again it follows that all these inequalities are equalities, which shows that l′ = 0.
Therefore Xd2

2 appears in |f |. Now we only need to show that D(f) = (d1, 0). We
know that d(f) = d(Xd1

1 ) = d1d2. We now make the following claim:
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Claim 4.8. For all (l, k) ∈ (Z≥0)2 such that X l
1X

k
2 appears in f with a nonzero coeffi-

cient, we have (d1, 0) ≥ (l, k).

Proof. Since d(f) = d1d2 we now that d(X l
1X

k
2 ) = d2l + d1k ≤ d1d2. By Definition 3.2

we only need to check that when d2l + d1k = d1d2 we have d1d1 ≥ ld1 and kd2 ≥ 0d2

which is clearly the case since l ≤ d1 and 0d2 = 0.

Since Xd1
1 appears in f the claim implies that D(f1) = (d1, 0).

Lemma 4.9. Let (f1, f2) ∈ AutK(K[X1, X2]). Let di ≥ 0 be the Xi-degree of f1

(i = 1, 2). Then d1 divides d2 or the other way around. Moreover we have d(f1) = d1d2

where d is the (d2, d1)-degree function.

Proof. In the following proof D will always mean the (d2, d1)-bidegree function.

Case 1: d1d2 = 0.
In this case d1 = 0 or d2 = 0 which implies d1 divides d2 or the other way around.
For the second statement of the lemma we assume d1 6= 0. The case d2 6= 0 works
analogously. Then d2 = 0 which implies that f1 lies in K[X1]. Since d(X1) = 0 and
f1 6= 0 we have d(f1) = 0.

Case 2: d1d2 6= 0.
This implies that d(f1) 6= 0. Now by Lemma 4.5 there exists (d2, d1)-homogeneous q1, q2

with q1 not a proper power such that the following holds:

(22) |K[f1, f2]| ⊆ K[q±1
1 , q2] and |f1| = λqa1 ,

for some λ ∈ K× and a ∈ Z>0. Since (f1, f2) is an automorphism we know that X1

and X2 are elements of K[f1, f2]. Moreover they are both (d2, d1)-homogeneous, so
by (22) they both lie in K[q±1

1 , q2]. This means that D(K[q±1
1 , q2]) contains both (1, 0)

and (0, 1). Therefore (Z≥0)2 is contained in D(K[q±1
1 , q2]). We now distinguish two

subcases:

Case 2a: D(q1) and D(q2) are Z-independent:
We have

(23) (Z≥0)2 ⊆ D(K[q±1
1 , q2] \ {0}) = ZD(q1) + Z≥0D(q2).

The equality in (23) is due to the fact that for any nonzero element in K[q±1
1 , q2]

the monomial expressions in q1 and q2 have distinct bidegrees. This is due to the
Z-independence of D(q1) and D(q2). The right-hand side of (23) can be viewed as a
half-plane in Z2. We notice thatD(q1) lies in the first quadrant (by (22)). But since this
half plane has the line defined by D(q1) as boundary and contains the first quadrant,
D(q1) must lie on one of the coordinate axes. Furthermore we know that (D(q1), D(q2))
is a Z-basis of Z2. Therefore the transformation matrix defined by this basis must have
determinant ±1. This is only possible if D(q1) = (1, 0) or (0, 1). Now we know that
D(q1) = a−1D(f1), in other words we know that D(f1) = (a, 0) or (0, a). Lemma 4.7
then implies that D(f1) = (d1, 0) and both terms Xd1

1 and Xd2
2 appear in |f1| with
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nonzero coefficients. Therefore a = d1 and by using (22) we see that d2 = X2-degree
of |f1| = X2-degree of qd11 = (X2-degree of q1)d1. This shows that d1 divides d2. Since
D(f1) = (d1, 0) we get d(f1) = d1d2.

Case 2b: D(q1) and D(q2) are Z-dependent:
This means that D(q1) and D(q2) generate a cyclic subgroup of Z2. We can choose a
generator (i1, i2) of this cyclic subgroup in the following fashion:

(24) D(qr) = jr(i1, i2), k1j1 + k2j2 = 1, jr, ir, kr ∈ Z (r = 1, 2).

So we have D(qj21 ) = j1j2(i1, i2) = D(qj12 ). Then there exists a µ in K× such that
D(qj21 − µq

j1
2 ) < j1j2(i1, i2). This can be shown by considering the case where q1 and

q2 are polynomials, then it easily extends to rational functions. We now claim that
qj21 − µq

j1
2 is nonzero. If this were not the case it would follow by Lemma 4.4 that q2

would lie in K[q±1
1 ]. This would imply that D(K[q±1

1 , q2] \ {0}) = ZD(q1). But (1, 0)
and (0, 1) lie in D(K[q±1

1 , q2] \ {0}) therefore D(q1) would generate all of Z2 which is
not possible. We set (i′1, i

′
2) := D(qj21 − µq

j1
2 ). Since q1 and q2 are (d2, d1)-homogeneous

and qj21 − µq
j1
2 is nonzero we have

(25) i′1d2 + i′2d1 = d(qj21 − µq
j1
2 ) = j1j2(i1d2 + i2d1).

by Lemma 3.22. If (i1, i2), (i′1, i
′
2) were Z-dependent, we would have (i′1, i

′
2) = j1j2(i1, i2)

using the last equality in (25) . But this is not the case so we now know that
(i1, i2), (i′1, i

′
2) are Z-independent. We define q′1 := qk11 q

k2
2 and q′2 := qj21 q

−j1
2 . We now

claim the following chain of equalities:

(Z≥0)2 ⊆ D(K[q±1
1 , q±1

2 ] \ {0}) = D(K[q′±1
1 , q′±1

2 ] \ {0})
= D(K[q′1, q

′
2] \ {0}) + Z(i1, i2) = D(K[q′1, q

′
2 − µ] \ {0}) + Z(i1, i2)

= Z≥0(i′1, i
′
2) + Z(i1, i2) = Z(j1a)−1D(f1) + Z≥0(i′1, i

′
2).

The first equality follows from K[q±1
1 , q±1

2 ] = K[q′±1
1 , q′±1

2 ]. For the second equality we
notice that any element w′ in K[q′±1

1 , q′±1
2 ] \ {0} can always be written as wq′l11 q

′l2
2 with

w ∈ K[q′1, q
′
2] \ {0} and some (l1, l2) ∈ Z2. Since D(q′1) = (i1, i2) and D(q′2) = (0, 0) we

get that

D(w′) = D(w) + l1D(q′1) + l2D(q′2) ∈ D(K[q′1, q
′
2] \ {0}) + Z(i1, i2).

The inclusion in the other direction is clear. The third equality follows from

K[q′1, q
′
2] \ {0} = K[q′1, q

′
2 − µ] \ {0}.

For the fourth equality we notice that

D(q′2 − µ) = D((qj21 − µq
j1
2 )q−j12 ) = (i′1, i

′
2)− j1j2(i1, i2) ∈ Z≥0(i′1, i

′
2) + Z(i1, i2).

Since (i1, i2) and (i′1, i
′
2) are Z-independent it follows that D(q′1) and D(q′2 − µ) are

Z-independent. Now we can use the same argument as in Case 2a to show that

D(K[q′1, q
′
2 − µ]) = Z≥0(i1, i2) + Z≥0((i′1, i

′
2)− j1j2(i1, i2)).
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This explains the fourth equality. Just as in Case 2a we can use the halfplane argument
to show that (j1a)−1D(f1) = (1, 0) or (0, 1). Then Lemma 4.7 implies D(f1) = (d1, 0).
Therefore (j1a)−1D(f1) = (1, 0). Since (i1, i2) = (j1a)−1D(f1) = (1, 0) we get that
D(qr) = (jr, 0) for r = 1, 2. This implies d(qr) = jrd2 for r = 1, 2. Since q1 and q2 are
(d2, d1)-homogeneous we have the following inclusion:

(26) d(K[q±1
1 , q2]) ⊆ Zd(q1) + Z≥0d(q2).

The right-hand side of this inclusion is contained in Zd2, and since K[q±1
1 , q2] contains

the element X2 we know that d(X2) = d1 lies in Zd2. This shows that d2 divides d1.
Since D(f1) = (d1, 0) we get d(f) = d1d2.

Remark 4.10. If (f1, f2) ∈ AutK(K[X1, X2]) then (f2, f1) ∈ AutK(K[X1, X2]) by
precomposing (f1, f2) with (X2, X1). This means Lemma 4.9 also holds for f2 and its
X1-degree d′1 and X2-degree d′2.

5 The proof of Theorem 2.8

In this section we prove a theorem from which we can deduce the tameness of AutK(K[X1, X2]).
The theorem shows more or less that if an automorphism (g1, g2) is not affine, we can
lower the total degree of g1 by precomposing an X2-based shear to (g1, g2). By an easy
induction it follows that every element in AutK(K[X1, X2]) is a composition of affine
automorphisms and shears, therefore tame. We remind the reader that with deg we
mean the (1, 1)-degree, in other words the total degree.

Lemma 5.1. Let f , g1 and g2 be nonzero elements in K[X1, X2] such that f is not a
constant. Let di ≥ 0 be the Xi-degree of f (i = 1, 2). We assume d(f) = d1d2 where d
denotes the (d2, d1)-degree function. If deg(gd11 ) 6= deg(gd22 ) then

deg(f(g1, g2)) = max{deg(gd11 ), deg(gd22 )}.

Proof. We assume deg(gd11 ) > deg(gd22 ). The other case works analogously. This implies
d1 6= 0.

Claim 5.2. For terms of the form X i
1X

j
2 with nonzero coefficient in f and i < d1 we

have deg(gi1g
j
2) < deg(gd11 )

Proof. LetX i
1X

j
2 be a term in f with a nonzero coefficient and i < d1. Since d(f) = d1d2

we know that d2i + d1j ≤ d1d2. We can rewrite this inequality as j ≤ d2 − d2
d1
i. This

gives us the following inequality:

deg(gi1g
j
2) = i deg(g1) + j deg(g2) ≤ i deg(g1) + (d2 −

d2

d1

i) deg(g2)

= d2 deg(g2) + i(deg(g1)− d2

d1

deg(g2)).

Since i < d1 and deg(g1)− d2
d1

deg(g2) > 0 we get deg(gi1g
j
2) < deg(gd11 ).
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Since d1 6= 0 and d(f) = d1d2 the term Xd1
1 appears in f with a nonzero coefficient.

Therefore using Claim 5.1 we see that deg(f(g1, g2)) = deg(gd11 ).

Theorem 5.3. Let (g1, g2) be an automorphism of K[X1, X2] such that deg(g1) ≥
deg(g2). Then either (g1, g2) is affine or there exists a unique µ ∈ K× and d ∈ Z>0

such that deg(g1 − µgd2) < deg(g1).

Proof. If deg(g1) = 1, then deg(g2) = 1 and (g1, g2) is affine. So we can assume
deg(g1) > 1. Let (f1, f2) be the inverse automorphism, this is also not affine. Therefore
f1 or f2 is not linear. Let i be in {1, 2} such that fi is not linear. Let dr = Xr-degree
of fi (r = 1, 2). We view K[X1, X2] with the (d2, d1)-degree function d. We know that
fi(g1, g2) = Xi and by Lemma 4.9 with Remark 4.10 that d(fi) = d1d2.

Claim 5.4. deg(gd11 ) = deg(gd22 ).

Proof. We prove this via contradiction. We assume deg(gd11 ) 6= deg(gd22 ). Then we know
by Lemma 5.1 that

max{deg(gd11 ), deg(gd22 )} = deg(fi(g1, g2)) = deg(Xi) = 1.

Since deg(g1) > 1 we know that d1 = 0. This would then imply deg(gd22 ) = 1. This
tells us that d2 = 1. But this contradicts the assumption that fi is not linear.

Claim 5.4 tells us that d1 and d2 are nonzero. Since deg(g1) ≥ deg(g2) we know that
d1 ≤ d2, so using Lemma 4.9 we know that d1 divides d2. This means dd1 = d2 for some
d in Z>0. This implies deg(g1) = deg(gd2). Let us denote by g̃1 and g̃2 the (1, 1)-leading
terms of g1 and g2. Since f1(g1, g2) = X1 it follows that g̃1 and g̃2 are algebraically
dependent over K. Then we can use Lemma 4.1 to deduce that g̃1

deg(g2) = µ′g̃2
deg(g1)

for some µ′ in K×. This implies g̃1 = µg̃2
d for some µ ∈ K× by considering the prime

factorizations of g̃1 and g̃2. This implies that deg(g1 − µgd2) < deg(g1).

Theorem 5.5. Every element in AutK(K[X1, X2]) is tame.

Proof. Let (g1, g2) be an element of AutK(K[X1, X2]). We do induction on deg(g1) +
deg(g2). By possibly precomposing with the automorphism (X2, X1) we can assume
deg(g1) ≥ deg(g2). The base case is deg(g1) + deg(g2) = 2. In this case the theorem is
true since affine automorphisms are tame. Let us assume deg(g1) + deg(g2) > 2. Then
by using Theorem 5.3 we know that deg(g1−µgd2) < deg(g1) for some µ in K× and d in
Z>0. This tells us that by precomposing with the X2-based shear (X1−µXd

2 , X2) we get
an automorphism φ for which we can use our induction hypothesis since deg(φ(X1)) +
deg(φ(X2)) < deg(g1) + deg(g2). Therefore φ is tame. This tells us that (g1, g2) is
tame.

Remark 5.6. We notice that Theorem 5.3 actually gives us an algorithm to compute a
factorization of an automorphism into affine and shear automorphisms. We denote by
ḡ the (1, 1)-leading term of a g in K[X1, X2]. The algorithm is given on the next page.
We notice that this algorithm not only computes a factorization into affine and shear
automorphisms of a given automorphism (g1, g2), but also checks for any given pair
(f, g) ∈ K[X1, X2] with total degrees greater than or equal to 1, if this pair defines an
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automorphism of K[X1, X2]. To illustrate this algorithm we apply it to the following
concrete example, where char(K) 6= 2:

(g1, g2) = (X4
1 − 2(X3

1 −X2
1X2 −X2

1 +X1X2) +X2
2 +X1 +X2, X

2
1 −X1 +X2).

The algorithm will display the following:

(X1 +X2
2 , X2), (X1 +X2, X2), (X2, X1), (X1 +

1

4
X2

2 , X2), (−X1 +X2, 2X1).

This tells us that our example defines an automorphism. To get the factorization we
have to read the output in a backward fashion:

(g1, g2) = (−X1 +X2, 2X1) ◦ (X1 +
1

4
X2

2 , X2) ◦ (X2, X1) ◦ (X1 +X2, X2) ◦ (X1 +X2
2 , X2)
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Algorithm 1 TameFact(g1, g2)

H
if (g1, g2) is affine then

if det(g1, g2) 6= 0 then
print (g1, g2).
return

else
print "not an automorphism"
return

end if
end if

if deg(g1) < deg(g2) then
print "(X2, X1),"
TameFact(g2, g1)
return

end if

if deg(g2) | deg(g1) then
d← deg(g1)

deg(g2)

if ḡ2d

ḡ1
∈ K then

µ← ḡ2d

ḡ1

print "(X1 + µXd
2 , X2),"

TameFact(g1 − µgd2 , g2)
return

else
print "not an automorphism"
return

end if
else

print "not an automorphism"
return

end if
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6 Introduction to amalgamated products

Theorem 2.0.2 not only says that every automorphism is tame, but also gives us a de-
composition of the group as an amalgamated product of two subgroups. In this section
we will introduce the basic definitions concerning such products.

We first introduce a special case of the amalgamated product, called the free product
of two groups:

Definition 6.1. Given two groups G and H a free product of G and H is a group J
together with homomorphisms i1 : G→ J , i2 : H → J satisfying the following universal
property: For all groups J ′ with homomorphisms i′1 : G→ J ′, i′2 : H → J ′ there exists
a unique homomorphism ψ : J → J ′ such that ψ ◦ i1 = i′1 and ψ ◦ i2 = i′2.

G

i1 ��

i′1

&&
J

ψ // J ′

H

i2

??

i′2

88

If such a J exists, it is unique up to unique isomorphism by the universal property. We
then denote J by G ∗H.

Lemma 6.2. The free product G ∗H exists for any groups G and H.

Proof. (Sketch of construction)
A word in G and H is a formal expression of the form s1s2 · · · sn, where each si is either
an element of G or an element of H. Such a word may be reduced using the following
operations:
(i) Remove an instance of the identity element (of either G or H)
(ii) Replace a pair of the form g1g2 by its product in G, or a pair h1h2 by its product
in H.
It follows that every reduced word is an alternating product of elements of G and
elements of H, e.g. g1h1g2h2 · · · gkhk. The group J whose elements are the reduced
words in G and H, under the operation of concatenation followed by reduction satisfies
the universal property of the free product together with the obvious embeddings from
G and H into J . For a more detailed proof we refer the reader to [8].

The name free product is slightly misleading since in the category theoretical sense
it is the coproduct in the category of groups and not the product. Now we introduce
the definition of an amalgamated product.

Definition 6.3. Given groups G,H and N with homomorphisms e1 : N → G and
e2 : N → H, an amalgamated product of G and H over N is a group J together with
homomorphisms i1 : G→ J and i2 : H → J with i1 ◦e1 = i2 ◦e2 such that the following
universal property is satisfied: For all groups J ′ with homomorphisms i′1 : G → J ′,
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i′2 : H → J ′ with i′1 ◦ e1 = i′2 ◦ e2 there exists a unique homomorphism ψ : J → J ′ such
that ψ ◦ i1 = i′1 and ψ ◦ i2 = i′2.

G

i1 ��

i′1

&&
N

e1

>>

e2   

J
ψ // J ′

H

i2

??

i′2

88

As in the case of a free product, if such a J exists it is unique up to unique isomorphism
by the universal property. We then denote J by G ∗N H.

Lemma 6.4. For any given groups G,H and N with homomorphisms e1 : N → G and
e2 : N → H, G ∗N H exists.

Proof. (Sketch of construction)
G ∗N H can be realised as a factor group of G ∗ H. We define L to be the smallest
normal subgroup of G ∗ H which contains all expressions of the form e1(n)(e2(n))−1

with n in N . It can be shown that (G∗H)/L with the obvious homomorphisms satisfies
the universal property of the amalgamated product.

Example 6.5. G ∗N H with N the trivial group is just the free product G ∗H.

Lemma 6.6. Let G be a group and G1 and G2 be subgroups of G which together generate
G. For any element g ∈ G \ (G1 ∪G2) we have

g = xj1 · ... · xjl

with l ∈ Z>1 and (j1, ..., jl) ∈ {1, 2}l such that for all i = 1, ..., j − 1 we have ji 6= ji+1

and for all i = 1, ..., j we have xji ∈ Gji \ (G1 ∩G2).

Proof. We write g as a product of elements in G1 and G2. In this product we simplify
by replacing neighbouring factors by their product if they lie in the same subgroup.
We stop this simplification algorithm when we achieve the product as claimed in the
lemma or there is only one factor left in the product. Since every simplification reduces
the number of factors the algorithm will terminate. But the case where only one factor
is left does not happen for g since by assumption g lies in G \ (G1 ∪G2).

Lemma 6.7. Let G1, G2 and N be groups with homomorphisms e1 : N → G1 and
e2 : N → G2. For any element s ∈ G1 ∗N G2 \ (i1(G1) ∪ i2(G2)) we have

s = ij1(xj1) · ... · ijl(xjl)

with (j1, ..., jl) ∈ {1, 2}l such that for all i = 1, ..., j − 1 we have ji 6= ji+1 and for all
i = 1, ..., j we have xji ∈ Gji \ eji(N).

Proof. The universal property of the amalgamated product implies that G1 ∗N G2 is
generated by i1(G1) and i2(G2). And we also have i1(e1(N)) = i2(e2(N)) ⊆ i1(G1) ∩
i2(G2). Therefore we can apply Lemma 6.6 to prove this lemma.
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Remark 6.8. The amalgamated product is used in topology to describe the funda-
mental group of a topological space. Let X = U ∪ V be a path-connected topological
space with U and V open path-connected subsets of X such that their intersection is
path-connected. Then the following holds:

π1(X) = π1(U) ∗π1(U∩V ) π1(V )

where the homomorphisms from π1(U ∩ V ) into π1(U) and π1(V ) are the ones induced
by the inclusions from U ∩ V into U and V . This is known as the Seifert-Van Kampen
theorem.

7 Group actions on trees

The idea of the proof of the product decomposition is to study the group action of
AutK(K[X1, X2]) on a tree. To do this we will introduce basic definitions concerning
group actions on graphs and we will also define the graph on which AutK(K[X1, X2])
will act. The fact that the graph really is a tree is also shown in this section.

We recall some basic definitions regarding graphs:

Definition 7.1. A graph Γ is a pair (V,E) where V is a set and E ⊆ {subsets of V
consisting of 2 elements}. The set V is called the set of vertices and E the set of edges.

Definition 7.2. A vertex u in a graph Γ = (V,E) is called a neighbour of a vertex v
if {v, u} ∈ E
Definition 7.3. A (positive) weight function on a graph Γ = (V,E) is a function
w : V → R>0.

Definition 7.4. A path in a graph Γ = (V,E) is an ordered sequence of vertices
(u0, ..., uk) for some k ∈ Z≥0 such that {ui, ui+1} ∈ E for all i = 0, ..., k − 1. We call k
the length of the path.

Definition 7.5. A graph Γ = (V,E) is called connected if for any vertices v0 and v1

there exists a path in Γ which starts in v0 and ends in v1.

Definition 7.6. A circuit in a graph Γ = (V,E) is a path (u0, ..., uk) of length strictly
greater than 1 with u0 = uk and for any i 6= j such that ui = uj it follows that
{i, j} = {0, k}.
Definition 7.7. A tree T = (V,E) is a graph which is connected and contains no
circuits.

The weight function is only needed in this section to prove that a certain graph is
a tree using the following lemma:

Lemma 7.8. Let w be a weight function on the graph Γ = (V,E) such that neighbouring
vertices have different weights, and there exists a positive constant C such that for any
x 6= y in w(V ) we have |x − y| ≥ C. If there exists a vertex v0 ∈ V such that all
neighbours of v0 have higher weight and every vertex u 6= v0 has a unique neighbour of
lower weight, we can conclude that Γ is a tree.
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Proof. Γ is connected: It suffices to show that for any u 6= v0 there exists a path
from u to v0: We define a sequence of vertices beginning with u in an iterative fashion.
If the vertex we are at is not v0, the next vertex in the sequence is the unique neigh-
bour of lower weight. If we arrive at v0 the sequence terminates. The assumption on
the absolute difference between two weights tells us that a weight cannot be lowered
infinitely many times without becoming negative. This means that the sequence must
terminate. Therefore we get a path from u to v0.
Γ has no circuits: If it had a circuit we could choose the vertex ũ of highest weight in
the circuit. This cannot be the vertex v0. Therefore ũ has a unique neighbour of lower
weight, but since we are in a circuit there are at least two neighbours of lower weight
which gives us a contradiction.

Definition 7.9. An orientation on a graph Γ = (V,E) is a pair of functions t : E → V
and o : E → V which satisfy the following properties: ∀e ∈ E :
(i) o(e) ∈ e and t(e) ∈ e
(ii) o(e) 6= t(e)
A graph together with an orientation is called an oriented graph.

Definition 7.10. Let G be a group and Γ = (V,E, o, t) an oriented graph. A group
action of G on Γ is a pair of group actions of G on the sets V and E with the following
property:
∀g ∈ G : ∀e ∈ E : o(ge) = go(e) and t(ge) = gt(e)

Remark 7.11. We notice that for a group action of G on an oriented graph Γ =
(V,E, o, t) the group action on the set V already determines the group action on E.
This is due to the fact that ge = g{v1, v2} = {gv1, gv2} for g in G and e = {v1, v2} in
E.

Let Γ = (V,E, o, t) be the oriented graph whose vertices are the K-subspaces of
K[X1, X2] and the orientation and edges are induced by the inclusions. The group
G := AutK(X1, X2) acts on Γ by sending a K-subspace of K[X1, X2] to its image via
an automorphism. This action clearly respects the orientation of Γ. Now we look at the
subgraph T0 consisting of the two vertices v1 = K + KX2 and v2 = K + KX1 + KX2

and the edge connecting them:

v1 v2

Let T be the subgraph generated from T0 by G. This means that T = (V ′, E ′, o, t) is
defined in the following way (the orientation is just the one induced from Γ):

(27) V ′ := Gv1 ∪Gv2, E
′ := {{u1, u2} ∈ E | ∃g ∈ G : g{v1, v2} = {u1, u2}}.

We also define a weight function on T :

Lemma 7.12. The function w : V ′ → R>0 defined by the following formula:

(28) w(K +Kg2) = deg(g2), w(K +Kg1 +Kg2) = −1

2
+ max{deg(g1), deg(g2)},

for (g1, g2) ∈ AutK(K[X1, X2]) is well defined.
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Proof. A vertex u in the graph T is the image of K+KX2 or K+KX1 +KX2 under an
automorphism (g1, g2). Therefore the vertex u is of the formK+Kg2 orK+Kg1+Kg2.
In the case where u = K +Kg2 if u = K +Kg′2 for a possibly different automorphism
(g′1, g

′
2) it follows that g′2 = λg2 + µ for some λ in K× and µ in K. This tells us that

deg(g′2) = deg(g2). In the case where u = K + Kg1 + Kg2 let u = K + Kg′1 + Kg′2
for a possibly different automorphism (g′1, g

′
2). This means we can express g′1 and g′2 in

terms of g1 and g2:

(29) g′1 = λ1 + µ1g1 + ε1g2, g
′
2 = λ2 + µ2g1 + ε2g2,

for some λi, µi, εi ∈ K for i = 1, 2. This tells us that the transformation matrix
M , which transforms coordinates in the basis (1, g′1, g

′
2) into coordinates in the basis

(1, g1, g2), is of the following form:

(30) M =

1 λ1 λ1

0 µ1 µ2

0 ε1 ε2

 .

Since M is invertible this implies

0 6= det(M) = det(

(
µ1 µ2

ε1 ε2

)
)

Therefore (µ1, ε1) and (µ2, ε2) are linearly independent. This implies that it is not
possible that µ1 = µ2 = 0 or ε1 = ε2 = 0. This means in the case where deg(g1) 6=
deg(g2) we have max{deg(g1), deg(g2)} = max{deg(g′1), deg(g′2)}. In the case where
deg(g1) = deg(g2) we have the same equality since it is not possible that in both the
terms µ1g1 + ε1g2 and µ2g1 + ε2g2 the (1, 1)-leading terms of g1 and g2 cancel each other
out. Again this is due to the linear independence of (µ1, ε1) and (µ2, ε2).

Lemma 7.13. Let (g1, g2) be in AutK(K[X1, X2]). Then the neighbours of K + Kg2

in the graph T are the vertices

K +K(g1 + p(g2)) +Kg2

for each p ∈ K[X2].

Proof. Let x be a neighbour of K + Kg2. Since G acts on the graph T we know that
applying (g1, g2)−1 to the edge {K+Kg2, x} gives us again an edge in the graph T . This
edge will consist of K +KX2 and a neighbour x′. We know that this edge comes from
the edge {K+KX2, K+KX1+KX2} via an automorphism (g′1, g

′
2). SinceK+KX2 gets

sent to itself we know that g′2 is linear and lies in K[X2]. For (g′1, g
′
2) to be surjective,

g′1 must have X1-degree 1. Using Lemma 4.9 this implies g′1 lies in KX1 + q where q
lies in K[X2]. This means x′ is of the form K +Kg′1 +Kg′2 = K +K(X1 + p) +KX2

for some p ∈ K[X2]. Conversely any p ∈ K[X2] defines a neighbour of K + KX2 via
the formula K +K(X1 + p) +KX2. The claim follows by applying (g1, g2) to the edge
{K +KX2, x

′}.
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Lemma 7.14. Let (g1, g2) be in AutK(K[X1, X2]). Then the neighbours of K +Kg1 +
Kg2 are the vertices

K +K(λ1g1 + λ2g2)

where (λ1, λ2) ∈ K2 \ {(0, 0)}.

Proof. Now let x be a neighbour of K + Kg1 + Kg2. Like in the previous lemma
we transform the edge {x,K + Kg1 + Kg2} via (g1, g2)−1. We then get the edge
{x′, K + KX1 + KX2}. Since this is an edge in the graph T it comes from the edge
{K+KX2, K+KX1+KX2} via some automorphism. But this automorphism stabilizes
the vertex K + KX1 + KX2, so it is affine. This tells us that x′ is of the form K +
K(λ1X1 + λ2X2) with λ1, λ2 in K not both zero. Conversely any vertex of that form
is a neighbour of K +KX1 +KX2. The claim follows by applying (g1, g2) to the edge
{x′, K +KX1 +KX2}.

Lemma 7.15. In the graph T every vertex u aside from K+KX1 +KX2 has a unique
neighbour of lower weight. And every neighbour of K +KX1 +KX2 has higher weight
than K +KX1 +KX2.

Proof. Case u ∈ Gv1:
This means that u is of the form K + Kg2 for an automorphism (g1, g2). Using The-
orem 5.5 we can assume that deg(g1) ≤ deg(g2) by possibly precomposing (g1, g2)
with X2-based shears. Then Lemma 7.13 gives us a description of all neighbours of
the vertex u. We see that the vertices K + K(g1 + p(g2)) + Kg2 where deg(p) > 1
have higher weight than the vertex K + Kg2. If deg(p) ≤ 1 we get the vertex
K + K(g1 + p(g2)) + Kg2 = K + Kg1 + Kg2. This vertex has lower weight than
K + Kg2 and is therefore the unique neighbour of K + Kg2 with lower weight than
K +Kg2.
Case u ∈ Gv2:
In this case u is of the form K + Kg1 + Kg2 for an automorphism (g1, g2) (not affine
since u 6= K +KX1 +KX2). We can assume deg(g1) 6= deg(g2) by using Theorem 5.5
to correct the automorphism if deg(g1) were equal to deg(g2). Since the correction will
be via the automorphism (X1−µX2, X2) for some µ ∈ K×, the vertex K +Kg1 +Kg2

stays the same. Since Lemma 7.14 gives us a description of the neighbours of u we see
that depending on the degrees of g1 and g2 one of the vertices K + Kg1 or K + Kg2

will be the unique neighbour of K +Kg1 +Kg2 of lower weight. Lemma 7.14 also tells
us that the neighbours of K +KX1 +KX2 are of the form K +K(λ1X1 + λ2X2) with
λ1, λ2 in K not both zero. Therefore all neighbours of K + KX1 + KX2 have higher
weight than K +KX1 +KX2.

Lemma 7.16. The graph T is a tree

Proof. Let w be the weight function defined in Lemma 7.12. It follows from the defi-
nition of w that neighbouring vertices in T have different weights. It is also clear from
the definition that the absolute difference between two different weights is bounded by
1
2
from below. Due to Lemma 7.15 we know that the weight function w satisfies the

remaining hypotheses of Lemma 7.8, which finishes the proof.
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8 Proof of the decomposition

In this section we use the fact that T is a tree to prove the decomposition of AutK(K[X1, X2])
as an amalgamated product.

We define A to be the group of affine automorphisms of K[X1, X2] and B the group
of X2-based de Jonquiéres automorphisms and C = A∩B. A more explicit description
of B and C are

B = {(αX1 + f(X2), βX2 + γ) ∈ AutK(K[X1, X2]) | α, β ∈ K×, γ ∈ K, f ∈ K[X2]},
C = {(αX1 + βX2 + γ, εX2 + θ) ∈ AutK(K[X1, X2]) | α, β, γ, ε, θ ∈ K,αε 6= 0}.

With the inclusions of A and B into AutK K[X1, X2]) we get a natural group ho-
momorphism ψ from A ∗C B into AutK(K[X1, X2]) via the universal property of the
amalgamated product.

A

i1 ##

i′1

**
C

e1

??

e2 ��

A ∗C B
ψ // AutK(K[X1, X2])

B

i2
;;

i′2

44

Theorem 8.1. ψ is an isomorphism

Proof. Surjectivity: To prove this it is enough to show that A and B together generate
all of AutK(K[X1, X2]): We first analyse the neighbours of v1 and v2 in the graph T .
We notice that the stabilizer of v1 is B and the stabilizer of v2 is A. A neighbour x
of v1 comes from the edge {v1, v2} via an automorphism g. This means that g fixes v1

and therefore lies in B. So x is of the form gv2 with g in B. The same argument shows
that any neighbour of v2 is of the form g′v1 with g′ in A. Let G′ be the subgroup of
AutK(K[X1, X2]) generated by A and B. Let T ′ be the subgraph of Γ generated by T0

via the subgroup G′. We notice that T ′ is a subgraph of T . An arbitrary vertex of T ′
is of the form hv1 or hv2 for an h in G′. A neighbour of hv1 in T will be of the form
hgv2 with g in B since by applying h−1 to the edge consisting of hv1 and its neighbour
we get an edge in T connecting v1 and a neighbour. The same argument shows that
a neighbour of hv2 in T is of the form hg′v1 with g′ in A. Since hg and hg′ lie in G′,
the graph T ′ is closed under passage to neighbours in T . Since T is connected we get
T ′ = T . This tells us that for any g in G we have gv1 = g′v1 for some g′ in G′. This
means g′−1g lies in B which implies that g lies in G′.

Injectivity: Assume ker(ψ) 6= {1}. Then there exists an element z in ker(ψ) which
is not the identity. We realise A ∗C B as (A ∗ B)/L where L is the smallest normal
subgroup generated by elements of the form i1(c)i2(c)−1 with c ∈ C. The map ψ then
sends an element g1 · ... ·gnL to g1 · ... ·gn in AutK(K[X1, X2]). This shows that z cannot
be of the form gL with g in A or B or else ψ(gL) = g = id which is a contradiction since
we assumed z not to be the identity. Lemma 6.7 then tells us that z can be written as
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z = a1b2 · ... ·ak−1bkL with ai in A\C and bi in B \C. It is not necessary that the word
starts with an element in A\C and end in an element B \C but all the other cases can
be handled similarly. The element z defines a path in T as seen in the following diagram:

a1v2 = a1b2v2

a1b2v1 = a1b2a3v1
v1 = a1v1

a1b2a3v2

.........

This path ends at ψ(z)v1. Since ψ(z) is the identity the path ends at vertex v1. In the
path there is no backtracking or else somewhere in the path an edge is followed by the
same edge which would imply that for some l we have al ∈ C or bl ∈ C which is not
possible. Therefore this path contains a circuit which gives us a contradiction since T
is a tree.

Remark 8.2. We notice that in the injectivity part of the proof of Theorem 8.1 we
also show the following property of AutK(K[X1, X2]): A nonempty alternating product
of elements in A \ C and B \ C is not equal to the identity.

9 Case n ≥ 3

In this section we illustrate some results on the case n ≥ 3. A natural question to ask is if
the automorphisms of polynomial rings over fields in more than two variables are tame.
This turns out to be wrong. The first counterexample is the Nagata automorphism in
a polynomial ring in 3 variables. As the name suggests the counterexample is due to
a mathematician named Masayoshi Nagata who conjectured that this automorphism
would not be tame. This conjecture was proven in 2003 by I.P. Shestakov and U.U.
Umirbaev [10] for fields of characteristic 0. In this section the field K has characteristic
0.

Definition 9.1. The automorphism

(X − 2Y (Y 2 +XZ)− Z(Y 2 +XZ)2, Y + Z(Y 2 +XZ), Z)

of K[X, Y, Z] is called the Nagata automorphism.

Remark 9.2. The Nagata automorphism fixes Y 2 +XZ. Therefore its inverse is

(X + 2Y (Y 2 +XZ)− Z(Y 2 +XZ)2, Y − Z(Y 2 +XZ), Z).

Theorem 9.3. (Shestakov-Umirbaev) If K has characteristic zero the Nagata auto-
morphism is not tame.

One of the reasons that Nagata thought this automorphism wasn’t tame was due
to the following lemma.
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Lemma 9.4. Since the Nagata automorphism φ fixes Z we can view it as an element
of AutK[Z]((K[Z])[X, Y ]). Then φ is not in T2(K[Z]).

Proof. Consider the natural extension of φ to (K(Z))[X, Y ] and call it ψ. We de-
note by J(K(Z)) resp. J(K[Z]) the set of Y -based de Jonquières automorphisms of
K(Z)[X, Y ] resp. K[Z][X, Y ]. We also denote by A(K(Z)) resp. A(K[Z]) the set
of affine automorphisms of K(Z)[X, Y ] resp. K[Z][X, Y ]. We can factorize ψ in the
following form:

ψ = σ1σ2σ
−1
1 , σ1 = (X + Y 2/Z, Y ), σ2 = (X,Z2X + Y ).

We notice that σ1 is in J(K(Z)) \ A(K(Z)) and σ2 is in A(K(Z)) \ J(K(Z)). Let us
assume that φ lies in T2(K[Z]). This implies that we can write ψ−1 in the following
form:

ψ−1 = λ1τ1λ2...τnλn+1, τi ∈ J(K[Z]), λi ∈ A(K[Z]), i = 1, ..., n+ 1.

Furthermore we can also choose τi such that they do not lie in J(K[Z]) ∩ A(K[Z])
for i = 1, ..., n. The same for λi for i = 1, ..., n + 1 except for λ1 or λn+1 there is the
possibility that at least one of them is the identity. Now we get the following equation:

λ1τ1λ2...τnλn+1σ1σ2σ
−1
1 = id

Remark 8.2 tells us that λn+1 is the identity. And since τnσ1 is in J(K(Z)) Remark 8.2
tells us that τnσ1 also lies in A(K(Z)). We know τn is of the following form:

τn = (a1X + f(Y ), a2Y + γ), a1, a2 ∈ K× γ ∈ K f ∈ (K[Z])[Y ].

This means τnσ1(X) = a1X + f(Y ) + 1
Z

(a2Y + γ)2. Since f(Y ) cannot kill the term
1
Z
a2

2Y
2 we get a contradiction with the fact that τnσ1 is affine.

Martha K. Smith showed in 1989 [10] that the Nagata automorphism becomes tame
after extending it to a polynomial ring in four variables by sending the new variable to
itself. This leads us to the notion of stable tameness.

Definition 9.5. An element φ in AutK(K[X1, .., Xn]) is called stably tame if there
exists an m in Z≥0 such that the natural extension of φ to an automorphism of
K[X1, ..., Xn, Xn+1, ..., Xm] by leaving Xn+1, ..., Xm fixed, is tame.

Now we will go into the details of Martha K. Smith’s proof. For this we first
introduce some definitions regarding derivations on polynomial rings. Let us assume
R = K[X1, ..., Xn].

Definition 9.6. A K-derivation on R is a map D : R → R such that following
properties hold:
For all f, g ∈ R:
(i) D(f + g) = D(f) +D(g)
(ii) D(fg) = fD(g) +D(f)g
(iii) D(K) = {0}
The set of all K-derivations on R is denoted by DerK(R).
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Definition 9.7. Let D be a K-derivation. We define the set

Nil(D) := {f ∈ R | ∃n ∈ Z≥1 : Dn(f) = 0},

where Dn is D composed with itself n times.

Lemma 9.8. Let D be a K-derivation. Then Nil(D) is a K-subalgebra of R.

Proof. Due to D(K) = 0 we know that 1 and 0 lie in Nil(D). Since we have property
(i) in Definition 9.6 we know that Nil(D) is closed under addition. To show that Nil(D)
is closed under multiplication we use the following formula:

Dn(fg) =
n∑
i=0

(
n

k

)
Di(f)Dn−i(g), f, g ∈ R, n ∈ Z≥0.

This can be shown via induction using property (ii) in Definition 9.6. If we take f and
g in Nil(D) and choosing n ∈ Z≥0 big enough, the formula tells us that Dn(fg) = 0.
Therefore fg lies in Nil(D). The property that Nil(D) is also a K-subspace of R follows
from the fact that D(K) = {0} and that Nil(D) is closed under multiplication.

Definition 9.9. A K-derivation D is called locally nilpotent if Nil(D) = R. The set of
all locally nilpotent K-derivations is denoted by LNDK(R).

Definition 9.10. A K-derivation D is called triangular if D(Xi) ∈ K[Xi+1, ..., Xn] for
all i = 1, ..., n.

Lemma 9.11. Triangular K-derivations are locally nilpotent.

Proof. Let D be a triangular K-derivation. Due to Lemma 9.8 it suffices to show that
the Xi lie in Nil(D) for all i = 1, ..., n. We notice that D(Xn) lies in K so therefore
also in Nil(D). This implies that Xn lies in Nil(D). Since D(Xn−1) lies in K[Xn] which
is contained in Nil(D), it follows that Xn−1 lies in Nil(D). If we repeat this argument
recursively we get that the Xi lie in Nil(D) for all i = 1, ..., n.

Remark 9.12. A K-derivation D is uniquely determined by (D(X1), ..., D(Xn)). The
unique K-derivation D such that (D(X1), ..., D(Xn)) = (f1, ..., fn) for (f1, ..., fn) in Rn,
can be written in the following form:

D =
n∑
i=1

fi
∂

∂Xi

.

Lemma 9.13. The map exp : LNDK(R)→ AutK(R) defined by the formula

exp(D) =
∞∑
i=0

1

i!
Di,

is well defined and satisfies the following property: For D and E in LNDK(R) such that
D ◦ E = E ◦D, it follows that exp(D + E) = exp(D) ◦ exp(E).
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Proof. We leave the proof to the reader to look up in [12] page 26.

Example 9.14. Let us consider the triangularK-derivation−2Y ∂
∂X

+Z ∂
∂Y

onK[X, Y, Z].
We notice that (Y 2 + XZ) lies in the kernel of this K-derivation. This implies that
(Y 2 + XZ)(−2Y ∂

∂X
+ Z ∂

∂Y
) is a locally nilpotent K-derivation. An easy computation

shows that exp((Y 2 +XZ)(−2Y ∂
∂X

+ Z ∂
∂Y

)) is equal to the Nagata automorphism.

Lemma 9.15. Let D be a locally nilpotent K-derivation on R. Let w be in ker(D).
We extend D to R[T ] by setting D(T ) := 0. We define τ ∈ AutK(R[T ]) by setting
τ(Xi) := Xi for i = 1, .., n and τ(T ) := T + w. Then we have the following equation:

exp(wD) = τ−1 ◦ exp(−TD) ◦ τ ◦ exp(TD).

Proof. We will show the the following equivalent equation:

(31) exp(TD) ◦ τ ◦ exp(wD) ◦ exp(−TD) = τ.

Due to Lemma 9.13 and the fact that −TD and wD commute with each other, we
know that exp(wD) ◦ exp(−TD) = exp((w − T )D). Now we compute

(τ ◦ exp((w − T )D))(Xi) = τ(
∞∑
j=0

1

j!
(w − T )jDj(Xi)) = exp(−TD)(Xi),

for i = 1, ..., n. And since D(T ) = 0 we have

(τ ◦ exp((w − T )D))(T ) = τ(T ) = w + T,

by composing these two equations with exp(TD) we get (31).

Theorem 9.16. Let D be a triangular K-derivation on R. Let w be in ker(D). We
extend D to R[T ] by setting D(T ) := 0. Then exp(wD) is a tame automorphism of
R[T ].

Proof. Since TD is a triangular K-derivation of R[T ] it follows that exp(TD) is a
triangular automorphism(See Definition 2.6). This implies that exp(TD) is tame. Since
τ in Lemma 9.15 is also tame we get that exp(wD) is tame.

Due to this theorem and Example 9.14 we now see that the Nagata automorphism
is stably tame.

In general a lot is still unknown about the case n = 3, such as if there exist au-
tomorphisms which are not stably tame. It is still being studied on how to weaken
the notion of tameness in a natural way such that it generates the full automorphism
group. One such notion is that of tamizability.

Definition 9.17. An element φ in AutK(K[X1, .., Xn]) is called tamizable if there exists
a Ψ in AutK(K[X1, .., Xn]) such that Ψ ◦ φ ◦Ψ−1 is tame.

It is not known if all automorphisms are tamizable in the case n = 3. Further
conjectures on AutK(K[X1, .., Xn]) are described in [13].
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