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Introduction

The text at hand is a first look at the theory of fundamental groups of
schemes. As the name suggests, this theory has many similarities with
the theory of fundamental groups in topology. On the other hand, it also
encompasses classical Galois theory, thereby generalizing it to arbitrary
arithmetic schemes.

We briefly recall the topological theory. Let X be a connected topological
space, and let x € X be a point. Let F, be the functor from the category
of covers of X to the category of sets which sends a cover ¥ — X to its
fiber over x. Each fiber is a 71 (X, x)-set via the monodromy action. If X
has a universal cover X — X , then F, is represented by X and factors
through an equivalence of categories between the category of covers of X
and the category of 71 (X, x)-sets. In this way, m1(X,z) completely classifies
the covers of X. By the Yoneda Lemma, the automorphism group of F) is
isomorphic to Autx (X)°P, which in turn is isomorphic to 7, (X, z). Hence
we recover the fundamental group of X as the automorphism group of F,.

The fundamental group of a connected scheme S is defined using an
analogous framework. The first step is to identify the class of morphisms
replacing topological covers; these are the finite étale covers of S. The base
scheme S' is equipped with a geometric base point 5, i.e. a morphism from
the spectrum of an algebraically closed field. Working with geometric fibers,
we then construct a functor Fs from the category of finite étale covers of S
to the category of sets. Reversing the topological situation, the fundamental
group m1(5,35) of S with base point 5 is defined to be the automorphism
group of Fs.

After setting up the general theory, we discuss the classification theorem:
F5 induces an equivalence of categories with the category of finite continuous
m1(5,5)-sets. There are two aspects of the theory which facilitate this
discussion. Firstly, a special role is played by connected finite étale Galois
covers, which are those connected finite étale covers whose automorphism
group acts transitively on geometric fibers. Every finite étale cover is an
intermediate cover of a Galois cover, and we can describe automorphisms of
F5 as compatible families of automorphisms of the Galois covers. Secondly,
because of the finiteness condition placed on finite étale covers, Fs takes
values in the category of finite sets; hence m1(.S,5) has a natural profinite
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structure. Chapter 3 develops the necessary notions for this point of view.

The analogy drawn above can be made precise using the axiomatic
framework of Galois categories, as developed by Grothendieck [I]. Although
we do not introduce this notion, it will be clear that the proofs only use
formal properties of finite étale covers and the functor Fs.

The second part of the text is devoted to the study of finite étale covers
of schemes which are locally of finite type over the complex numbers C.
We associate with such a scheme S a topological space S2", called the
analytification of S, whose topology is obtained by gluing the topologies
locally inherited from the analytic topology on C™. This construction is
functorial, and transforms finite étale covers of S into topological covers of
S, The natural question is now whether any topological cover of S*" arises
from a finite étale cover of S.

Perhaps surprisingly, this is the case. For smooth projective curves and
their associated compact Riemann surfaces, this question was already studied
by Riemann. Grothendieck [I] gave a proof in the general setting introduced
above. More precisely, the functor which maps a finite étale cover of S to
the associated topological cover of S?™ with finite fibers is an equivalence
of categories. It follows formally, using the material developed in Chapter
3 and the classification theorem in the topological setting, that there is an
isomorphism of topological groups between the fundamental group of S and
the profinite completion of the fundamental group of S#".

The author would like to thank Prof. Dr. Richard Pink for his patient
guidance, and Alexandre Puttick for helpful comments on an earlier version
of the text.
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Chapter 1

Finite Etale Morphisms

We define finite étale morphisms and explore some of their properties, start-
ing from the case where the base scheme is the spectrum of a field. The
development of the theory in this and the next chapter follows Lenstra [4]
Chapters 4 and 5] and Szamuely [7, Chapters 5.2 and 5.3].

1.1 Finite étale schemes over a field

Definition 1.1. Let k be a field. A k-algebra A is called étale over k if it is
isomorphic to a finite product of finite separable field extensions of k.

Proposition 1.2. Let k be a field, let 2 be an algebraically closed field con-
taining k, and let A be a k-algebra. The following conditions are equivalent:

(a) A is étale over k,
(b) A®g Q is isomorphic to a finite product of copies of €2,
(¢) A®g Q is reduced and finite-dimensional over €Q.

Proof. Assume first that (a) holds. Since the functor — ®j © preserves finite
products, we may assume that A is a finite separable field extension of k.
By the primitive element theorem, A is isomorphic over k to k[T']/(f) for a
monic irreducible separable polynomial f € k[T]. Let f = [[/~,(T — a;) be
its factorization in Q[T'], where the factors T' — a; are distinct because f is
separable. Then

KT/ @ @ = [ [QITINT - a5) = "
=1

by the Chinese Remainder Theorem.
It is clear that (b) implies (c). Assume now that (c) holds. Let m be the
dimension of A ®; Q over . It coincides with the dimension of A over k,



so A is finite-dimensional. Hence it is Artinian, which in turn implies that
it is isomorphic to a finite product of Artinian local k-algebras. Because
A ®y Q is reduced, so is A. Thus A is in fact isomorphic to a finite product
k1 x --- x k,. of finite field extensions of k. Each k; is separable, because
k; Qi Q is reduced. Hence A is étale over k. O

Proposition 1.3. If k is a field and A is an étale k-algebra, then the module
of relative differentials 4, of A over k is zero.

Proof. By Proposition and the compatibility of relative differentials with
base change, it suffices to consider the case where A = k" for a nonnegative
integer m. Let M be an A-module, and let d: A — M be a k-derivation.
Denote by eq,...,e, the canonical basis of A over k. Note that each e;
is idempotent; we claim that this implies d(e;) = 0. Indeed, applying d
to both sides of the equation €? = e¢; yields 2e;d(e;) = d(e;). Multiplying
by e; on both sides turns this into 2e;d(e;) = e;d(e;), so e;d(e;) = 0. Thus
d(e;) = 2e;d(e;) = 0. Because {e1,...,e,} spans A as a vector space over k,
it follows that d = 0. O

1.2 Finite locally free morphisms

Definition 1.4. A morphism of schemes p: X — S is called finite locally
free if it is affine and pOx is a finite locally free Og-module.

Proposition 1.5. The image of a finite locally free morphism of schemes
w: X — S is open and closed.

Proof. Since ¢ is finite, ¢(X) is closed. Hence ¢(X) = supp(¢«Ox), which
is open because O x is finite locally free. O

Corollary 1.6. If p: X — S is a finite locally free morphism of schemes to
a connected scheme S, then ¢ is surjective if and only if X is nonempty.

Proof. The image of ¢ is open and closed in S by Proposition Since
S is connected, this means that ¢ is surjective if and only if its image is
nonempty. O

Definition 1.7. Let p: X — S be a finite locally free morphism of schemes,
and let s € S be a point. Since ¢ is finite locally free, the stalk (p+Ox)s is
free of finite rank over Og . Its rank is called the degree of ¢ at s, and is
denoted by deg,(yp).

Proposition 1.8. The degree of a finite locally free morphism of schemes
p: X — S is a locally constant function of s € S. If S is connected, then the
degree of ¢ is constant.



Proof. Every point s € S has an open neighborhood U such that (¢+Ox)|v
is free of rank deg,(¢) over Og|y. Then the stalk of p,Ox at every point of
U is free of rank deg,(y) over the stalk of Og at that point, so the degree of
@ is constant on U. The second assertion is a direct consequence of the first
assertion and the definition of connectedness. O

Lemma 1.9. A finite locally free morphism of schemes p: X — S is an
isomorphism if and only if its degree at every point of S is 1.

Proof. Being an isomorphism is local on the target, and a ring homomorphism
A — B is an isomorphism if and only if it makes B a free A-module of
rank 1. O

1.3 Finite étale morphisms

Definition 1.10. A morphism of schemes p: X — S is called finite étale
if it is finite locally free and for every point s € S the fiber X of p over s is
the spectrum of an étale k(s)-algebra, where k(s) denotes the residue field
of s. A surjective finite étale morphism X — S is also called a finite étale
cover of S.

Let S be a scheme. We denote by Sch/S the category of S-schemes, and
by FinEt /S its full subcategory whose objects are the finite étale morphisms
X — 5. A geometric point of S is a morphism of schemes 5: Spec(2) — 5,
where € is an algebraically closed field. The image of § consists of a single
point s; we say that s lies over s. The geometric fiber over s of a morphism
X — Sis Xz:= X xg Spec(Q).

Definition 1.11. Let S be a scheme, and let’s: Spec(2) — S be a geometric
point. We view Spec(Q2) as an S-scheme via 5. The fiber functor associated
with 5 is the functor

Fs: FinEt/S — Set,
(X — 85) — Morg(Spec(2), X),
Y — (T —> 1 oT).
Proposition 1.12. Let ¢: X — S be a finite étale morphism of schemes,

and let s: Spec(Q) — S be a geometric point of S. Then F5(X) is in natural
bijection with the underlying set of Xs.

Proof. By Proposition all points of X5 are Q-rational; hence the underly-
ing set of X5 is in natural bijection with Morq(Spec(f2), X5). The claim fol-
lows from the natural bijection Morg(Spec(2), X5) =~ Morg(Spec(f2), X). O

Definition 1.13. Let p: X — S be a finite étale morphism of schemes, and
let s be a geometric point of S. The degree of ¢ at § is the degree of © at
the point s over which 3 lies, and is denoted by degs(y).



Remark 1.14. Let ¢: X — S be a finite étale morphism of schemes, and
let 5 be a geometric point of S. It follows from Proposition that the
degree of ¢ at 5 is equal to the number of points of X5. By Proposition [I.12]
it is therefore also equal to the cardinality of F5(X).

Example 1.15. A locally closed embedding is finite étale if and only if it is
an open and closed embedding.

Example 1.16. Let K < L be a finite field extension. The corresponding
morphism Spec(L) — Spec(K) is finite locally free of degree dimg (L); it is
finite étale if and only if L is separable over K.

Example 1.17. Let A be a ring, and let f € A[T] be a monic polynomial
of degree m such that (f,0f/0T) = (1) in A[T], where 0f/0T is the formal
derivative of f with respect to T. Because f is monic, A[T]/(f) is free of
rank m over A. If p is a prime ideal of A and € is an algebraic closure of its
residue field k(p), then A[T]/(f) ®4 2 = Q™ as Q-algebras by the Chinese
Remainder Theorem and the fact that f splits into distinct linear factors
over 2. Hence the canonical morphism A — A[T]/(f) induces a finite étale
morphism of degree m on spectra.

Example 1.18. Let k be a field, let A = k[T, T~'], and let G, » = Spec(A)
be the multiplicative group over k. For every nonzero integer n, the morphism
of k-algebras 1,,: A — A with ¢,,(T") = T™ corresponds to a surjective finite
locally free morphism of schemes ¢, : Gy, — Gy . If 7 > 0, then 9, is
isomorphic to the canonical morphism A — A[U]/(U" — T'). The formal
derivative of U™ — T with respect to U is nU™ . If the characteristic of k
does not divide n, then (U™ — T,nU"!) = (T) = (1) in A[U]; hence ¢, is
finite étale of degree n by Example If n <0, then ¢, is the composite
of ¢_, and the automorphism ¢_;. Provided that n is not divisible by the
characteristic of k, the morphism ¢, is also finite étale of degree —n in that
case.

Example 1.19. Let k£ be a field, and let n > 1 be an integer. Consider
the morphism of k-algebras ¥,,: k[T] — k[T] with ¥,(T) = T, and the
corresponding morphism A}C — A}c. The latter is finite locally free of degree
n, but not finite étale. Indeed, its fiber over the origin consist of a single
nonreduced point.

Example 1.20. Let p be a prime number, and let A be an IF,-algebra.
Given an element a € A, consider the polynomial f = TP —T —a € A[T] and
the scheme X = Spec(A[T]/(f)). The formal derivative of f with respect to
T is —1, so the canonical morphism A — A[T]/(f) corresponds to a finite
étale morphism X — Spec(A) of degree p by Example



1.4 Permanence properties

We now discuss permanence properties of finite locally free and finite étale
morphisms, such as being stable under composition and base change. As a
technical tool, we need the following algebraic result.

Proposition 1.21. Let A be a ring. For every A-module M the following
conditions are equivalent:

(a) M is finitely generated and projective,
(b) M is finitely presented and M, is free for every p € Spec(A),
(¢) M is finite locally free.

Proof. We indicate the main steps in the proof, and refer to Lenstra [4,
Section 4.6] for a more complete explanation. That (a) implies (b) follows
from the fact that a finitely generated projective module over a local ring is
free. Suppose that M satisfies (b), and let p € Spec(A). A straightforward
calculation shows that any basis of M, over A, lifts to a basis of M over
Ay for some f e A~ p. Hence M satisfies (c). Finally, in order to show
that (c) implies (a), first prove that M is finitely presented. Consequently,
the functors Homa (M, —) s and Homy, (My, (—)s) are isomorphic for every
f e A. Since M is locally projective, it follows that M is projective. O

Proposition 1.22. (a) The composite of two finite locally free morphisms
of schemes ¢: X =Y and : Y — Z is finite locally free.

(b) Let p: X — S and ¥: Y — S be morphisms of schemes. If ¢ is finite
locally free, the so is the base change pro: X xgY — Y of ¢ by 1.

Proof. Because affine morphisms are stable under composition and base
change, we may reduce to the affine case. Both assertions then follow
from the equivalence of conditions (a) and (c¢) in Proposition and the
characterization of projective modules as direct summands of free modules.

O]

Proposition 1.23. (a) The composite of two finite étale morphisms of
schemes p: X =Y and ¢: Y — Z is finite étale.

(b) Let p: X — S and ¥: Y — S be morphisms of schemes. If ¢ is finite
étale, the so is the base change pro: X xgY — Y of ¢ by 1.

Proof. (a) The morphism 1) o ¢ is finite locally free by Proposition In
order to show that it is finite étale, we use Proposition Let z€ Z be a
point, let € be an algebraic closure of k(z), and let Z: Spec(§2) — Z be the
resulting geometric point lying over z. We need to show that the geometric
fiber X5 is isomorphic to the spectrum of a finite product of copies of €.



Note that Xz is naturally isomorphic to X xy Yz over Yz, so in particular
over ). Since 1 is finite étale, Yz is isomorphic over §2 to the spectrum of
a finite product of copies of 2; since ¢ is finite étale and fiber products of
schemes commute with coproducts, so is Xz.

(b) The morphism pr, is finite locally free by Proposition As in the
proof of part (a), choose a point y € Y and a geometric point : Spec(Q) — Y
lying over y. We need to show, by Proposition [I.2] that the geometric fiber
(X xgY)z is isomorphic to the spectrum of a finite product of copies of €.
Note that (X xgY)z is naturally isomorphic to Xy.z = X x g Spec(f2) over
(2. Because ¢ is finite étale, Xz is isomorphic to the spectrum of a finite
product of copies of €2 by Proposition the claim follows. O

Corollary 1.24. Let p: X — Y and ¥: Y — Z be finite locally étale
morphisms of schemes. If Y and Z are connected, then the degree of 1o ¢ is
equal to the product of the degrees of ¢ and 1.

Proof. See the proof of part (a) of the preceding proposition, which gives a
formula for the geometric fibers of i o . O

Remark 1.25. Let S be a scheme. For every finite family of schemes
X1,..., X, which are finite étale over S, their coproduct [ [;_; X; in the
category Sch/S is finite étale over S. Hence it is also their coproduct in
the full subcategory FinEt/S . The same thing is true for their product
X1 Xg -+ xg X, by Proposition Note that the fiber functor preserves
both finite coproducts and finite products.

Proposition 1.26. Let p: X — S be a finite étale morphism to a connected
scheme S.

(a) The number of connected components of X is less than or equal to the
degree of .

(b) Ewvery connected component of X is open.

Proof. Assertion (b) is a purely topological consequence of (a), since the
degree of ¢ is finite. We now prove (a). Let 5§ be a geometric point of S.
We induct on degg(¢), which is independent of the choice of 5 because S
is connected. If degz(¢) = 0, then X is empty; if degz(¢) = 1, then ¢ is
an isomorphism. Assume now that degg(¢) > 1. If X is connected, then
the claim holds. Otherwise X is the union of two disjoint nonempty open
and closed subsets U; and Us. Being composites of finite étale morphisms,
the restrictions ¢|y, and ¢|y, are finite étale; hence they are surjective by
Corollary Since Fjs preserves coproducts, F5(X) is the disjoint union of
the nonempty sets F5(U;) and F5(Uy). In particular the degrees of ¢y, and
©|u, are strictly smaller than that of ¢. By induction the claim holds for Uy
and Us; but then it holds for X. ]



Proposition 1.27. If p: X — S is a finite étale morphism, then the sheaf
of relative differentials Qx5 of X over S is zero.

Proof. We may assume that X = Spec(B) and S = Spec(A) are affine, in
which case Qy/g is the quasi-coherent Ox-module associated with Qg 4.
Since ¢ is of finite type, {2p, 4 is finitely generated. Let q be a prime ideal
of B, and let p = ¢(q). By Nakayama’s Lemma, (2p/4)q = 0 if and only if
Qp/a ®p K(q) = 0. The latter is isomorphic to Qg ,x(p)/k(p) @B k) £(4);
which is zero by Proposition Thus Qp/4 = 0. O

Proposition 1.28. If o: X — S is a finite étale morphism, then the diago-
nal morphism Ay,: X — X xg X is an open and closed embedding.

Proof. Since ¢ is affine, it is separated, so A, induces an isomorphism of
X with a closed subscheme Y of X xg X. We now wish to show that Y
is an open subscheme of X x ¢ X. We may assume that X = Spec(B) and
S = Spec(A) are affine. Let I be the kernel of the codiagonal B®4 B — B.
It is finitely generated because B is finitely generated over A, and the
associated quasi-coherent ideal J of Ox ¢ x is the ideal of definition of Y.
The quotient I/I? is isomorphic to Qp /A, which is zero by Proposition
Let p be a prime ideal of B ®4 B containing I. Then I, is contained in the
unique maximal ideal of (B ®4 B),. Since Ig = I, we must have I, = 0 by
Nakayama’s Lemma. In other words, the stalk of J at every point y € Y is
trivial; because it is finitely generated, J vanishes on an open neighborhood
of y. Thus Y is an open subscheme of X xg X. O

Proposition 1.29. Let p: X — S and: Y — X be morphisms of schemes.
If p o) and ¢ are finite étale, then so is 1.

Proof. The graph morphism I'y,: Y — Y xg X is the base change of the
diagonal morphism A, by 1 xgidx, and ¢ = pryoI'y. As the diagonal
morphism is an open and closed embedding by Proposition [1.28] it is finite
étale. But then so is I'y, since finite étale morphisms are stable under base
change by Proposition Similarly, pr, is finite étale as the base change of
po1) by . Thus 1) is finite étale as a composite of finite étale morphisms. [

Proposition 1.30. Let Y be a connected S-scheme, and let p1,p2: Y 3 X
be S-morphisms to a finite étale S-scheme X. If there exists a nonempty
S-scheme T and an S-morphism ¥: T — 'Y such that @1 09 = py 0, then
$1 = p2.

Proof. Denote by eq(¢1, ¢2) the equalizer of ¢; and ¢y in the category of
S-schemes. The following diagram is easily checked to be cartesian:

eq(p1, p2) Y

l %JMDQ)

X A X xg X,




where A is the diagonal morphism of X over S, j is the canonical embedding,
and eq(p1,p2) — X is the composite p; 0 j = @30 j. Since A is an open
and closed embedding by Proposition so is j. But Y is connected
and eq(p1, ¢2) is nonempty by assumption, which means that j must be an
isomorphism. Thus ¢ = s. O



Chapter 2

Galois Covers

2.1 Galois covers

Having introduced finite étale morphisms, we now study their automorphism
groups.

Construction 2.1. Given a finite étale morphism X — S and a geometric
point 5 of S, there is a canonical left action of Autg(X) on F5(X). Namely,
feAutg(X) acts on T € Fg(X) by f -7 := F5(f)(T).

Proposition 2.2. Let X — S be a connected finite étale cover, and let s
be a geometric point of S. Then the left action of Autg(X) on F5(X) as
defined in Construction is free, and the cardinality of Autg(X) is less
than or equal to the degree of .

Proof. Suppose that f € Autg(X) and T € F5(X) are such that F5(f)(z) = 7.
Then foZ =idx oZ, so f = idx by Proposition [[.30] Hence the action is
free. Since X — S is surjective, there is a point T € Fz(X). We have the
injective map

Autg(X) = F5(X), g~ F5(9)(7);

hence the cardinality of Autg(X) is at most that of F5(X). The second
assertion follows from this and the natural bijection between F5(X) and X,
see Proposition [I.12] O

Proposition 2.3. Let ¢: X — S be a connected finite étale cover. Then
the following conditions are equivalent:

(a) The order of Autg(X) is equal to the degree of p,
(b) Autg(X) acts transitively on Fg(X) for every geometric point s of S,

(¢) Auts(X) acts transitively on Fg(X) for one geometric point 3 of S.



Proof. Assume first that (a) holds. Let § be a geometric point of S, and
let T € F5(X) be a lift of 5. By Proposition the action of Autg(X) on
F5(X) is free, so the map

u: Autg(X) — F5(X), g+~ Fs(9)(T)

is injective. Because the degree of ¢ is equal to the cardinality of F5(X),
the map w is a bijection. Therefore (a) implies (b). Since S is nonempty,
(b) implies (¢). Suppose that (c) holds, so Autg(X) acts transitively on
F5(X) for a geometric point s of S. Choose a lift T € F5(X) and define u as
above. Because the action of Autg(X) on Fg(X) is free and transitive, u is
a bijection. Hence (a) follows. O

Definition 2.4. A morphism of schemes X — S is called a connected finite
étale Galois cover if it is a connected finite étale cover and satisfies the
equivalent conditions of Proposition [2.3

Remark 2.5. Given a finite étale morphism of schemes X — S and a
geometric point § of S, one can also consider the left action of Autg(X)
on X3z arising by base change of its left action on X. Under the bijection
between Xz with Fgz(X) from Proposition m it corresponds to left action
of Autg(X) on Fs.

Example 2.6. If K is a field, then a connected finite étale Galois cover of
Spec(K) is a morphism Spec(L) — Spec(K) corresponding to a finite Galois
extension K c L.

Example 2.7. Let us reexamine Example Let n be a positive integer
not divisible by the characteristic of k, let A = B = k[T, T!], and view B
as an A-algebra via ¢,. There is an isomorphism of groups

u: Auta(B) = pn(k), f— f(T)/T,

where p, (k) denotes the group of nth roots of unity in k. Hence the corre-
sponding connected finite étale cover ¢, : Gy, — Gy, x is Galois if and only
if k£ contains a primitive nth root of unity.

Proof. Any f € Aut4(B) satisfies ¢, 0f = 1, s0 f(T)" = T™. Hence f(T)/T
is an nth root of unity in k. We construct an inverse v of u. Given ¢ € p,(k),
define v(¢) to be the morphism of k-algebras k[T, T~1] — k[T, T'] sending
T to ¢T. Then 1, o v(¢) = 1y, since

Pn((O(T)) = (CT)" =T

The map v is clearly a group homomorphism and an inverse of u. The last
assertion follows from the above isomorphism and Proposition O
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Proposition 2.8. If p: X — S is a connected finite étale Galois cover, then
every S-endomorphism of X is an automorphism.

Proof. Let s be a geometric point of S, let T € F5(X) be a lift of 5, and
let f be an S-endomorphism of X. Because ¢ is Galois, there exists an
S-automorphism g of X such that F5(¢)(Z) = F5(f)(Z). But then g = f by
Proposition [1.30 O

Definition 2.9. Let p: X — S be a finite étale cover. An intermediate
cover of ¢ is a factorization X — Z — S of ¢. A morphism of intermediate
covers (X > Z — S) —» (X —> Z' - S) is a morphism Z — Z' such that
the diagram

/N,
7

S

VA

commutes.

As in Galois theory, there is a correspondence between intermediate covers
of a connected finite étale Galois cover and subgroups of its automorphism
group. In order to state the correspondence, we need to introduce quotients
of schemes by groups of automorphisms.

2.2 Quotients of schemes

Definition 2.10. Let C be a category, let X be an object of C, and let G
be a subgroup of Aut(X). A quotient of X by G is an object G\X of C
together with a universal G-invariant morphism w: X — G\X, i.e. for every
G-invariant morphism ¢: X — Y there is a unique morphism ¢': G\X — Y
satisfying ' o w = 1.

Remark 2.11. If X — S is a morphism in € and G is a subgroup of
Autg(X) such that the quotient G\ X exists, then X — S factors through
the canonical morphism X — G\X.

Remark 2.12. Let X = Spec(A) be an affine scheme, and let G be a
subgroup of Aut(A). The functor Spec induces a bijection of G with a
subgroup G’ of Aut(X). Denote by A the ring of invariants of the canonical
left action of G on A. The affine scheme Spec(A®) together with the
morphism X — Spec(A%) corresponding to the inclusion A < A is a
quotient of X by G’ in the category of affine schemes.

11



Construction 2.13. Let X be a scheme, and let G be a subgroup of Aut(X).
Consider the quotient space G\ X, whose points are the orbits of the points of
X under the canonical left action of G, and let 7: X — G\ X be the canonical
projection. Since m,Ox = m.g.Ox for every g € G, there is a canonical right
action of G on 7,Ox. Defining O x to be the sheaf of G-invariant sections
of m+Ox, we obtain the ringed space (G\X, O¢\ x)-

Proposition 2.14. Let ¢: X — S be an affine morphism of schemes, and
let G be a finite subgroup of Autg(X). Then the ringed space G\X as defined
in Construction |2.15 is an S-scheme, and is a quotient of X by G in the
category AfE/S of schemes which are affine over S.

Proof. See Szamuely [7, Proposition 5.3.6] for the first assertion, and Lenstra
[4, Paragraph 5.18] for the second. O

Proposition 2.15. Let p: X — S be a finite étale morphism of schemes,
and let G be a subgroup of Autg(X). Let X — G\X be a quotient of X by
G in Aff/S. Then both morphisms in the factorization X — G\X — S of ¢
are finite étale.

Proof. See Lenstra [4, Proposition 5.20]. O

Corollary 2.16. Let p: X — S be a finite étale morphism of schemes, and
let G be a subgroup of Autg(X). Then a quotient of X by G in the category
FinEt/S ezists.

Proof. This is immediate from Proposition because FinEt/ S is a full
subcategory of Aff/S. O

Proposition 2.17. Let p: X — S be a finite étale morphism of schemes,
let G be a subgroup of Auts(X), and let Z — S be a morphism of schemes.
Then the canonical morphism G\(X xsZ) — (G\X) xs Z is an isomorphism.

Proof. See Lenstra [4, Proposition 5.21]. O

Proposition 2.18. Let ¢: X — S be a connected finite étale cover, and
let G be a subgroup of Auts(X). Then X > G\X — S is a connected
intermediate cover of ¢, and Autg x(X) = G.

Proof. The first part follows from Proposition[2.15 Since 7 is G-invariant, we
have G  Autg x (X). The degree of finite étale morphisms is multiplicative
by Corollary [1.24] so 7 has degree equal to the order G. Hence we must have

G = Aute x (X) by Proposition O

Proposition 2.19. A connected finite étale cover ¢: X — S is Galois if
and only if the canonical morphism Autg(X)\X — S is an isomorphism.
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Proof. Let s be a geometric point of S. The morphism Autg(X)\X — S is
an isomorphism if and only if it is of degree 1. By Proposition [2.17] we have
Autg(X)\ X5 = (Autg(X)\X)s. Hence the degree of Autg(X)\X — Sis 1
if and only if Autg(X) acts transitively on Xz. By Remark , this is the
case if and only if Autg(X) acts transitively on F5(X). O

2.3 Galois correspondence

Theorem 2.20 (Galois correspondence). Let ¢p: X — S be a connected
finite étale Galois cover. The assignments

(X > Z—8)— Autz(X)
(X > H\X > S) «— H.

extend to an equivalence of categories between the category of intermediate
covers of ¢ and the category of subgroups of Autg(X).

Proof. Given a morphism of intermediate covers
(X >Z->8)—>(X—->272-25),

the inclusion Autz(X) < Autz (X) holds. Conversely, an inclusion H ¢ H'
among subgroups of Autg(X) yields a factorization X — H\X — H'\X of
the canonical morphism X — H’\ X, which is readily seen to be a morphism
of intermediate covers

(X > H\X - §) - (X > H\X — S).

That these constructions are inverse to each other is immediate from Propo-

sitions 2.18 and 2.19] O

Proposition 2.21. Let ¢: X — S be a connected finite étale Galois cover,
and let
x%~z%s

be an intermediate cover of ¢ such that ¥ is a connected finite étale Galois
cover. Then there is surjective group homomorphism

u: Autg(X) — Autg(Z2)
with kernel Autz(X).

Proof. Let s be a geometric point of S, and let T € F5(X) be a lift of 5.
Given f € Autg(X), we want to find u(f) € Autg(Z) making the diagram

T | T
7 u(f) 7

13



commute. By Proposition this is equivalent to

Fs(u(f)(Fs(m) (7)) = F5(m o f)(T).

Since 1 is Galois, there exists a unique such u(f). By uniqueness of u(f),
the resulting map u: Autg(X) — Autg(Z) is a group homomorphism. Now
let us show that u is surjective. Note that Fs(m) is surjective. Because ¢
is Galois, this implies that for every g € Autg(Z) there exists f € Autg(X)
such that Fs(m o f)(Z) = Fs(g o w)(Z). Then u(f) = g by construction, so
u is surjective. The kernel of u consists of those f € Autg(X) satisfying
m=mof, ie feAuty(X). O

Example 2.22. By Examples [I.16) and 2.6, the Galois correspondence for a
Galois extension K < L is a special case of Theorem [2.20)

Example 2.23. We return to Example Assume that there exists a
primitive nth root of unity ¢ in k. Then the automorphism group of 1, is
cyclic with generator v((), and its subgroups are generated by powers of v(().
Let H be such a subgroup, say generated by v(¢)? for a divisor d of n. Denote
by H' the corresponding group of automorphisms of G, ;. By Remark
H'\G,, . is given by the spectrum of A”. The latter consist of all Laurent
polynomials f = >)/__ a; 7% such that f (¢4T) = £, i.e. a; is nonzero only
if di is divisible by n. Hence AY = k[T™/4,T="/?]. The intermediate cover
G = H\Gp , — G 1 of ¢y, corresponds to the canonical factorization
A — A" < A of 4. Its isomorphism class is the same as that of the
intermediate cover

Pn/d

Gmk

)

Pd
Gm,k Gm,kz-

By Theorem [2.20] every connected intermediate cover of ¢, lies in such an
isomorphism class.

We now show that every connected finite étale cover of S is an intermediate
cover of a connected finite étale Galois cover of S. The proof is taken from
Szamuely [7, Proposition 5.3.9].

Proposition 2.24 (Galois closure). Let ¢: X — S be a connected finite
étale cover. Then there exists a connected finite étale Galois cover P — S
which factors through .

Proof. Let s be a geometric point of S, and let m be the degree of . Choose
an enumeration F5(X) = {Z1,...,Tm}. We denote by X" the m-fold product
X xg--- xg X. By the universal property of the fiber product, there is a
natural bijection

u: Fg(X™) = F5(X)™, T~ (pryo%Z,...,pr,, o).

14



Let Z be the element of Fg(X™) corresponding to (Z1,. .., Ty, ) under u, and
let P be the connected component of X™ over which T lies. Let m be the
composite of the embedding P < X™ with the projection pr;: X™ — X.
By Proposition both 7 and ¢ o 7 are finite étale.

We now show that the image of F5(P) in F5(X)™ consists of tuples with
pairwise distinct entries. Suppose that there exists 7' € Fgz(P) such that
u(@') = (74,...,T;,) has entries 7} = ¥, for distinct indices i and j. By
Proposition this implies that the projections pr;, pr;: P 3 X are equal.
Since the entries of u(Z) are pairwise distinct, this is impossible.

We prove that every T’ € Fg(P) lies in the Autg(P)-orbit of Z. By the
above, u(T') = (Ty(1); - - - To(m)) for a permutation o € S({1,...,m}). This
permutation induces an automorphism f of X™ by permuting the factors.
Then f(P) is a connected component of X; the point p € P over which @
lies is contained in both P and f(P), so we must have f(P) = P. Hence f
restricts to an automorphism f’ of P such that Fs(f')(Z) = @'. O

Corollary 2.25. Let S be a connected scheme, let s be a geometric point of
S, let o: X — S be a finite étale cover, and let T € Fg(X). There exists a
connected finite étale Galois cover P — S, an S-morphism 7w: P — X, and
D € F5(P) such that Fs(m)(p) = T.

Proof. Let Z be the connected component of X over which T lies. It is open
and closed by Proposition [[.26] so the canonical embedding j: Z — X is
finite étale. Applying Proposition to ¢ o j yields a connected finite étale
Galois cover P — S which factors through a finite étale cover 7’: P — Z.
Define m = j o7’. Since Fg(n’) is surjective, T lies in the image of Fs(w). [
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Chapter 3

Profinite groups

3.1 Continuous group actions

A left action of a topological group G on a set E without a topology is called
continuous if the corresponding map G x E — E is continuous, where F
is equipped with the discrete topology. This is the case if and only if the
stabilizer of every x € F is open in G.

Remark 3.1. If F is finite and the symmetric group S(E) is equipped with
the discrete topology, then an action G x £ — FE is continuous if and only if
the corresponding group homomorphism G — S(F) is continuous.

3.2 Profinite groups

By a cofiltered diagram in a category € we mean a functor P: J — €, where J
is a small cofiltered category. In order to simplify our notation, we will write
i€ J for i € Ob(J). A topological group G is called profinite if it is a limit
of a cofiltered diagram of finite discrete topological groups. In particular
G is quasi-compact, Hausdorff, and totally disconnected. Profinite groups
form a full subcategory of TopGrp, the category of topological groups. The
inclusion functor from profinite to topological groups has a left adjoint, which
we construct in several steps.

Construction 3.2. Let G be a topological group. Define J to be the
category whose objects are the open normal subgroups of G of finite index,
with a unique morphism M — N if M < N, and no morphism from M to N
otherwise. With the obvious composition of morphisms, J is a small cofiltered
category. There is a functor P: J — TopGrp that maps an object M of
J to the finite discrete quotient group G/M. Given a morphism M — N
in J, define P(M — N) to be the unique morphism G/M — G/N that is
compatible with the projections from G. The profinite completion G of G is
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the limit of P; it is a profinite group, and comes with a natural morphism
nag: G — G.

Lemma 3.3. The image of ng is dense in G.

Proof. Let h = (hpysM)pzes be an element of G, and let U = hker(pry) be a
fundamental open rAleighborhood of h; see Lemma Then ng(hy) € U, so
na(G) is dense in G. O

Lemma 3.4. Let G be the limit of a cofiltered diagram P:J — TopGrp of
finite discrete groups. For everyi € J, denote by pr;: G — P(i) the canonical
projection. The open normal subgroups ker(pr;) of G form a fundamental
system of open neighborhoods of the identity element e € G.

Proof. Let U be an open neighborhood of e in G. By definition of the topology
of the limit, there is a nonnegative integer m and objects i(1),...,i(r) €J
such that [, _; ker(pr;()) is an open neighborhood of e in U. Because J is
cofiltered, there exists j € J such that there is a morphism j — i(k) in J for
every k € {1,...,7}. Then ker(pr;) is an open neighborhood of e in U. [

Proposition 3.5. The assignment G — G extends to a functor from the
category of topological groups to the category of profinite groups.

Proof. Let ¢: G — H be a morphism of topological groups. For every open
normal subgroup N of H of finite index, ¢ ~!(N) is an open normal subgroup
of G of finite index. The family of morphisms

G — G/~ (N) — H/N,

where the first morphism is the canonical projection, induces a morphism
p: G- H by the universal property of the limit. The diagram

G .q
lso k@
H— "M 0

commutes; since the image of G — @G is dense by Lemma and @ is
Hausdorff, this uniquely characterizes ¢. It follows that

G — G,
pr—¢
is a functor. ]

Proposition 3.6. A topological group G is profinite if and only if ng is an
isomorphism.
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Proof. The condition is clearly sufficient, so we only need to prove necessity.
Suppose that G is a profinite group. The kernel of 7 is trivial by Lemma (3.4
and the fact that G is Hausdorff. Because G is quasi-compact and G is
Hausdorff, ng is a closed map. Its image is also dense by Lemma so it is
a homeomorphism. O

Proposition 3.7. The profinite completion of a topological group G has
the following universal property: given a profinite group H and a morphism
©: G — H, there exists a unique morphism ¢’ : G — H such that ¢ = ¢'ong.

Proof. By Proposition there exists a unique morphism @: G — H such
that @ ong = ng o ¢. Since ng is an isomorphism, the claim follows. U

It follows formally that the functor G — G is left adjoint to the inclusion
functor from profinite groups to topological groups.

Corollary 3.8. Let G be a profinite group, and let H be a closed subgroup
of G, equipped with the induced topology. Then H is a profinite group.

Proof. We apply Proposition Since H is quasi-compact and H is Haus-
dorff, the morphism 7y is closed and surjective. Consider the commutative
diagram

H—" L, H

{j k?

G ne @,
where j is the inclusion. Since n¢ is an isomorphism and j is injective, ny is
injective. Thus it is an isomorphism. O

Proposition 3.9. Let G be a topological group. There is a natural isomor-
phism of categories between the category of finite continuous G-sets and the
category of finite continuous G-sets.

Proof. Let E be a finite set. By Remark[3.1] continuous left actions of G on E
are in natural bijection with morphisms G — S(E). By Proposition[3.7 these
are in natural bijection with morphisms G— S (E). Applying Remark
again yields the desired isomorphism on objects. The correspondence on
morphisms is immediate. O

3.3 Automorphism groups of functors

Construction 3.10. Let C be a small category, and let F': € — FinSet be
a functor to the category of finite sets. For every E € C, equip Aut(F(E))
with the discrete topology. Let J be the category whose objects are the
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finite subsets of Ob(€), with a unique morphism A — A’ if A’ < A, and no
morphism from A to A’ otherwise. Consider the cofiltered diagram

P:J— TopGrp,

A [ ] Aut(F(E)),
EeA

which sends a morphism A — A’ to the canonical projection

[ Aw(F(E) - ] Aut(F(E)).

EecA E'cA’

Then [ [pee Aut(F(E)) is a limit of P, so in particular a profinite group.
Note that Aut(F') is a closed subgroup of this product, because the groups
Aut(F(FE)) are Hausdorff. We equip Aut(F') with the induced topology,
which makes it a profinite group by Corollary

Proposition 3.11. In the situation of Construction [3.10, the canonical left
action of Aut(F) on E is continuous for every E € C.

Proof. The left action Aut(F') x E — E factors as

Awt(F) x EPEE A (F(E) x E— E,

where the second map is the canonical left action of Aut(F(F)) on E. This
action is continuous because the topology of Aut(F(F)) is discrete; the map
prg x idg is continuous by definition of the topology of Aut(F'). O

Proposition 3.12. For every topological group G, the category FinCont-G-Set
of finite continuous G-sets is essentially small, i.e. equivalent to a small
category.

Proof. Let E be a finite continuous G-set, and let F1, ..., E,. be its G-orbits.
For every i € {1,...,r}, choose x; € E; and denote by Uj its stabilizer. Since
U; is open, the canonical left action of G on G/U; is continuous. Since E;
is a transitive G-set, the map g — ¢ - x; induces an isomorphism between
G/U; and E;. Hence E is isomorphic to [[i_; G/U;. Such G-sets form a
set, so FinCont-G-Set has a full subcategory whose inclusion functor is an
equivalence of categories. O

Whenever necessary, e.g. when applying Construction we replace
FinCont-G-Set by the full subcategory described in the preceding proof.

Proposition 3.13. Let G be a profinite group, and let

U: FinCont-G-Set — FinSet
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be the forgetful functor. Endow Aut(U) with the topology from Construc-
tion[3.10. There is a natural isomorphism of topological groups

u: G = Aut(U)
mapping g € G to the automorphism u(g) of U whose component at E € C is
w(g)p: UE) > U(E), z—g-z.

Proof. Because the morphisms in FinCont-G-Set are G-equivariant maps,
u is well-defined. It follows from the definition of a left action that u is a
group homomorphism.

We now construct an inverse of u. For every open normal subgroup M
of G we have the continuous map

Aut(U) - G/M, [ fou(M).

The family of these maps is compatible with the projection G/N" — G/N
for every inclusion N’ ¢ N among open normal subgroups of G, so it induces
a continuous map
v: Aut(U) > G.

Since Aut(U) is quasi-compact and Gis Hausdorff, v is closed. It is immediate
from the respective constructions that v o u = ¢, which is an isomorphism
by Proposition Hence (7751 ov)owu =idg.

It remains to show that u0(7751 ov) = idpu(r)- Let f be an automorphism
of U, and let M be an open normal subgroup of GG. For every g € G there is
a G-equivariant map

wg: G/IM — G/M, ¢'M — g¢'gM.
This is well-defined because M is normal. Since f is a morphism of functors,

fa(gM) = fam(wg(M)) = wy(fa/m(M)) = fan(M)gM.

Hence fg/ps is just left-multiplication by fq/y(M). By construction of u
and v, this implies
u(ng' (M) = faym

In order to finish the proof, it suffices to show that f is already determined
by the components fg/n, where N ranges over all open normal subgroups of
G. Let E be a finite continuous G-set. By Proposition [3.12] we may suppose
that E is of the form [ [;_; G/H; for open subgroups H; of G. Denote by j
the inclusion of G/H; into E. Since f is a morphism of functors,

fele/m, = feoU@) =U@) ° fa/u;-

Hence we further reduce to the case that £ = G/H for an open subgroup H
of E. By Lemma H contains a normal open subgroup N of G. Then
the diagram
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U(G/N) U(G/H)
lfc/zv lfG/H
U(G/N) U(G/H)

commutes, so fg g can be recovered from fg/y. Thus uo (7]51 ov) = idpu (),
as desired. 0
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Chapter 4

Fundamental Group

4.1 Definition

Fix a scheme S and a geometric point 5 of S. In order to avoid set-theoretic
difficulties, we prove that FinEt/S is essentially small. Whenever necessary,
we replace FinEt/S by the full subcategory described in the proof.

Proposition 4.1. The category FinEt/S is essentially small.

Proof. Up to isomorphism, a finite locally free morphism X — S is deter-
mined by

an affine open covering (V;);e; of S consisting of pairwise distinct sets,
a nonnegative integer m; for every i € I,
m;

)
)

(c) the structure of an Og(V;)-algebra on every module Og(V;)™,
)

and gluing data for the schemes U; := Spec(Og(V;)™), i.e. open sub-
schemes U;; < U; for all ¢,j € I and S-isomorphisms ¢;;: U;; = Uj;
satisfying the cocycle conditions.

The schemes obtained by this process form a set, which implies that the
category of finite locally free morphisms X — S is essentially small. Hence
so is the full subcategory of finite étale morphisms X — S. O

Definition 4.2. The fundamental group of S with base point s is defined

to be the automorphism group of Fs, equipped with the topology from Con-
struction and is denoted by m1(S,3).

4.2 Profinite structure of the fundamental group

From now on, we assume that the base scheme S is connected.
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Definition 4.3. Let C be a category. A functor F': C — Set is called pro-
representable if there exists a cofiltered diagram P:J — C together with an
isomorphism of functors

colim More(P(7), —) = F.
€]

If this is the case, then we say that P pro-represents F'.

Construction 4.4. We construct a cofiltered diagram pro-representing Fs.
The index category J is a subcategory of FinEt/S whose objects are the
connected finite étale Galois covers of S. For every i € J, choose p; € F5(i).
Given ¢, j € J, there is at most one S-morphism ;;: @ — j satisfying

Fs(ij)(p;) = p;-

We define Mory(i,5) = {pi;} if ¢i; exists, and Mory(i,j) = & otherwise.
Denote the inclusion functor J — FinEt/ S by P.

Given i, j € J, the canonical morphism P(i) x g P(j) — S is finite étale. By
Corollary [2.25] there exists k € J and an S-morphism 7: P(k) — P(i) x s P(j)
such that F5(m)(py,) = (P;,p;). Composing 7 with the respective projections,
we obtain morphisms & — ¢ and k — j in J. Hence J is cofiltered.

We retain the diagram P and the points p; for the rest of this chapter.
The following proof is taken from Szamuely [7, Proposition 5.4.6].

Proposition 4.5. The cofiltered diagram P defined in Construction [{.4)
pro-represents Fs.

Proof. For every i € J there is a morphism of functors
n;: Morg(P(i),—) — Fs
whose component at an object X of FinEt /S is
(mi)x: Mors(P(i), X) — Fs(X), g+~ Fs(g9)(D:)-
For every morphism ¢;;: 4 — j in J we have 7; o Morg(y;j, —) = n;, since
Fs(g 0 9i3)(p:) = Fs(9)(p;)
for every g € Morg(P(i), X). The universal property of

G = cqlijm Morg(P(i), —)
1€

yields a unique morphism 7: G — Fs induced by the morphisms 7;.
We construct an inverse of 1. Given a finite étale cover X — S and
T € F5(X), there exists i € J and an S-morphism 7: P(i) — X such that

Fs(m)(pi) ==
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by Corollary Let ¥x: F5(X) — G(X) be the map that sends T to the
equivalence class of ; it is well-defined because J is cofiltered. We claim
that Jx is an inverse of nx. On the one hand, we have

(nx 0 Vx)(T) = F5(7)(p;) = T;

hence nx o ¥x is the identity map. On the other hand, if 7’: P(i') - X
represents an element of G(X), then

(0x o nx)([7']) = Ix (Fs(x')(By)) = [*].

Note that ¥ is natural in X, so we have a morphism of functors ¥: Fs — G
with component ¥x at X. It follows from the above calculations that ¥ is
the desired inverse of 7. O

Given a group G, we write G°P for the group with the same underlying

set and the opposite group law; it is naturally isomorphic to G via x — z 1.

Construction 4.6. Let ¢;;: i — j be a morphism in the category J, i.e.
P(j) — S is an intermediate connected finite étale Galois cover of P(i) — S.
By Proposition there is a surjective group homomorphism

uij: Autg(P(i))* — Autg(P(5));
it maps g; € Autg(P(i))° to the unique g; € Autg(P(j))°P satisfying
gj © Pij = ¥Pij © Gi-

Note that u;; is the identity and wji, o u;; = ugy for all 4, j, k € J, so we have
a functor

J — TopGrp,
i — Autg(P())°P,
Pij > Uiy,
where the finite groups Autg(P(i))°P are equipped with the discrete topology.
Proposition 4.7. There is an isomorphism of topological groups
u: m(9,35) = liI§1Aut5(P(i))°p
1€
induced by the morphisms
u;: m1(5,3) — Autg(P(i))P

such that
Fs(ui(f))(®:) = fre) (D)
for every f € m(S,3).
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Proof. We construct an inverse w of u. As in the proof of Proposition
denote by G the functor colim;eg Morg(P(i), —) and by n the isomorphism
G = F5. The diagram

i —> Morg(P(i),—)
is the composite of P with the contravariant Yoneda embedding
P(i) —> Morg(P(i), —)

and Aut(P)°P = lim;eg Autg(P(7))°P, so there is a canonical group homomor-
phism
v: lirglAutS(P(i))OP — Aut(G).
1€

Let w be the composite of v with
Aut(G) = m1(S,s), h—noho 77*1,

Let us check that u and w are inverse to each other. Given f € m1(S,5),
let X — S be a finite étale morphism of schemes, and T € F5(X). By
Corollary there exists ¢ € J and an S-morphism 7: P(i) — X such that
Fs(m)(p;) = T. Then

w(u(f))x (@) = wu(f))x(Fs(7)([P;))

Hence (wou)(f) = f. On the other hand, starting out with an element
g = (9i)iey of lim;eg Auts(P(4))°P, we have

by Proposition this implies u;(w(g)) = g;.

Thus w is a bijective group homomorphism. It is also continuous, because
each u; is continuous. Since 7 (.5, 5) is quasi-compact and lim;eg Autg(P(7))°P
is Hausdorff, u is also a closed map. Hence it is a homeomorphism. ]

The following technical result shows that the morphisms u; are surjective.
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Lemma 4.8. Let G be the limit of a cofiltered diagram P:J — TopGrp of
quasi-compact Hausdorff topological groups with surjective transition mor-
phism. Suppose moreover that between any two objects of J there are only
finitely many parallel morphisms. Then the projection pr;: G — P(j) is
surjective for every j € J.

Proof. Let h; € P(j). For every i € J, define E; to be the subset of [ [,y P(')
consisting of all elements (g;/)yeg such that g; = h; and P(¢)(g;) = gy for
every ¢’ € J and every morphism ¢: i — i’. Then prj_l(hj) = (1 Bi, and
each E; is closed because the groups P(i’) are Hausdorff. Since [ ;.4 P(i’)
is quasi-compact, it suffices to show that the family (FE;);cs has the finite
intersection property. To prove that each FE; is nonempty, use that J is
cofiltered, that there are only finitely many parallel morphisms between any
two objects of J, and that the transition morphisms are surjective. Given
finitely many objects i(1),...,i(r) of J, there exists [ € J such that there is
a morphism | — (k) in J for every k € {1,...,r}. Then Ej is contained in
(k=1 Ei(x), so the latter is nonempty. O

4.3 Classification theorem

Let f be an automorphism of Fs, and let ¢v: X — Y be a morphism in
FinEt/S. Then fy o F5(v) = F5(¢) o fx, i.e. F5() is m1(S5,3)-equivariant.
Thus Fs factors through the functor
Fibs: FinEt/S — FinCont- (S, 3)-Set,
Y — F5(¥).

Proposition 4.9. The group m1(S,3) acts transitively on Fs(X) for every
connected finite étale cover X — S.

Proof. Let m: Q@ — X be a Galois closure of X — S, and § € F5(Q). We
show that every point of F5(X) lies in the orbit of T := F5(7)(g). Given
T € Fg(X), let ¢ € F5(Q) be such that Fg(7)(¢) = T'. Since 7 is Galois,
it has an automorphism h taking g to ¢. Combining Proposition with
Lemmal[4.8] we see that h can be lifted to 71 (S, 3), i.e. there exists f € m(S,3)
such that fg(g) =¢. Since f is a morphism of functors, we have

Ix(T) = fx(Fs(m)(q))
= F5(m)(fQ(2))

=/
=X .

Hence 71(S,35) acts transitively on Fs(X). O

We are now in a position to prove that the fundamental group of S clas-
sifies its finite étale covers. More precisely, we have the following statement:
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Theorem 4.10. The functor Fibs: FinEt/S — FinCont-r(S,5)-Set is
an equivalence of categories.

Proof. We begin by checking that Fibgz is faithful. Let ¢1,¢92: X 3 Y be
morphisms in FinEt/S such that Fs(11) = Fs(¢2). Let j: Z < X be the
embedding of a connected component of X. Then Fs(t1 0j) = F5(¢207), so
11 0j = 1907 by Proposition[1.30] Since this is the case for every connected
component of X, we deduce 11 = 1)o.

Now let us show that Fibg is full. Let X — S and Y — S be finite étale
morphisms, and let w: F5(X) — F5(Y) be a m1(S,5)-equivariant map. Since
F5 preserves finite coproducts, it suffices to consider the case where X is
connected. Let Y7,...,Y, be the connected components of Y. Then F5(Y')
is canonically isomorphic to [[;_; F5(Y;), and each F5(Y;) is a transitive
m1(5,5)-set by Proposition As F5(X) is transitive for the same reason,
w factors through F5(Y;) for some i € {1,...,r}. Hence we may assume
that X and Y are connected. Choose a point = € F5(X). Since m1(95,5)
acts transitively on Fg(X) and F5(Y'), the map w is already determined by
Yy = w(T). Arguing as in Construction we find a connected finite étale
Galois cover @@ — S, a point § € F5(Q), and S-morphisms 7x: @ — X and
Ty : Q — Y satisfying

Fs(rx)(@) =% and Fs(ny)(Q) =7.

We claim that 7y factors through wx. For every h € Autx(Q), there exists
fem(S,3) such that fo(q) = Fs(h)(g) by an argument as in the proof of
Proposition Straightforward calculations using naturality of f and the
definition of T show that

Fy(my o h)(q) = Fs(my)(q)-

By Proposition this implies Ty o h = 7y. Since X together with 7x is
a quotient of @ by Autx (@), there exists a unique S-morphism ¢: X — Y
such that my = ¢ o mx. By construction, F5(¢)(Z) = 7, so F5(¢) = w.
Finally, let us show that Fibz is essentially surjective. Let E be a finite
continuous (5, 5)-set. Decomposing E into its 71 (.9, 5)-orbits and using
the fact that Fibg preserves finite coproducts, we may assume that F is
a transitive 7 (S, 5)-set. Then E is isomorphic to m1(S,5)/H for an open
subgroup H of 71(S,3) of finite index. Let i € J be such that ker(u;) ¢ H,
see Lemma and let U = u;(H). Consider the (S, s)-equivariant map

w: m(8,3) = Fs(P(i), [+ fru) (D)

which is surjective by Proposition If f e m(S,5), then w L (Uw(f))
consist of all g € m1(.5,35) for which there exists h € H such that

9p@) (i) = Fs(ui(h))(fpeiy(P:)),
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since Autg(P(i)) acts on F5(P(7)) via F5. But

Fs(ui(h))(fp@ (i) = (f o B)p@) (P3)

so (foh)~log € ker(u;) and therefore g € fH. This shows w™ ! (Uw(f)) c fH;
the reverse inclusion is immediate. Hence w induces an isomorphism of
m1(S,5)-sets

m1(8,5)/H = U\F5(P(i).

Since
U\F5(P(i)) = Fs(U\P(i))

by Proposition this implies E =~ F5(U\P(1)). O
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Chapter 5

Analytic Topology

The material in this chapter is adapted from Neeman [6, Chapter 4]. From
now on we work in the category Sch/C of schemes over the field of complex
numbers C. Recall that for every scheme X locally of finite type over C there
is a natural bijection between the set X (C) of C-rational points of X and
the set of closed points of X; the bijection maps a morphism Spec(C) — X
to the unique point in its image.

Construction 5.1. Let X be an affine scheme of finite type over C. Choose
a closed embedding ¢: X — A{; it induces an injective map

©(C): X(C) — AZ(C), tw— pot.

Denote by w,, the natural bijection A% (C) = C™. We equip C™ with the
analytic topology, and X (C) with the initial topology induced by u,, o ¢(C);
the resulting topological space is denoted by X?". As a formal consequence
of the fact that the analytic topology on C™ is finer than the Zariski topology,
it follows that the topology of X?" is finer than the induced topology. Hence
the canonical map X" — X is continuous.

Proposition 5.2. The topology of X" is independent of .

Proof. Let ¢p: X — A and ¢: X — AP be closed embeddings, with
corresponding surjective morphisms of C-algebras

a: C[Xq,...,Xn]—>0x(X) and f:C[Y1,...,Yn] > O0x(X).
For every i € {1,...,m}, choose a polynomial p; € C[Y1,...,Y,] such that
O[(XZ) = ,6(]77,) Let
w: C[Xl,,Xm]HC[Yl,,Yn]

be the morphism of C-algebras with w(X;) = p;. Then ow = «, so passing
to spectra we have the commutative diagram
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X(L,Ag

idx [Spec(w)
X" LAn
Now pass to C-rational points; Spec(w)(C): A (C) — A¢(C) corresponds
to the map
CTL _)CWL’ Yy — (pl(y)vapm(y))7

which is continuous with respect to the analytic topologies. By commutativity
of the above diagram, the topology on X (C) induced by ¢ is coarser than
the topology induced by . Since the argument is symmetric in ¢ and v,
the claim follows. O

Definition 5.3. Let X be a scheme locally of finite type over C. We define
the analytic topology on X (C) to be the final topology with respect to the
canonical injective maps U™ — X (C), where U ranges over all affine open
subschemes of X. The resulting topological space is denoted by X" and is
called the analytification of X.

Remark 5.4. Since the analytic topology on the affine open subschemes is
finer than the induced topology, the canonical map X*" — X is continuous.

Construction 5.5. The assignment X —— X?" extends to a functor from
the category of schemes locally of finite type over C to the category of
topological spaces, which we call the analytification functor. In fact, equipping
C™ with the sheaf of holomorphic functions, X?" locally inherits the structure
of a ringed space. Thus X" becomes an analytic space; see Grothendieck [2]
Définition 2.1]. Given a morphism f: X — Y, we have

FULXM YRt fot,

Continuity of f2" in the affine case follows by drawing a diagram as in the
proof of Proposition [5.2] replacing the upper X by Y and idx by f. The
general case can then be reduced to this, because continuity is local.

Instead of defining the analytic topology as the final topology with respect
to all embeddings of affine open subschemes, we could choose an affine open
covering and try to glue the analytic topologies of the members of the covering.
The next two results show that this procedure works and yields the same
topology.

Lemma 5.6. Let X be an affine scheme of finite type over C. For every
f€0x(X), the canonical open embedding i: D(f) — X of the distinguished
open subscheme D(f) induces an open embedding i*": D(f)*" — X",

Proof. Suppose first that X = A{' with coordinates Xi,...,X,,. Given
feC[Xy,...,Xnn], we have the commutative diagram
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D(f)—L— Ap+L,

where j embeds D(f) as the closed subscheme V(fXp41 — 1) of AGT,
and 7 is the projection onto the first m coordinates. Passing to C-rational
points and using the bijections wug : A’&(@) =, C*, we need to show that the
projection

V(f(@)rmi —1) = C™, (2, Zmt1) > T

from the vanishing locus V (f(2)Zmi1 — 1) € €™ *! is an open embedding
for the complex topologies; but this is clear, as it induces a homeomorphism
with the open subspace

(C™); = fz e C" | f(2) # 0} = C™

In the general case, choose a closed embedding X — A{' correspond-
ing to a surjective morphism a: C[Xi,..., X;]— Ox(X). Let g € a=1(f).
By the universal property of localization, there is a unique morphism
B: C[X1,...,Xm]g = Ox(X)s such that the diagram

C[X1,...,Xm] L Ox(X)

| |

C[X1,. .. Xl Ox(X);

commutes, where the unlabeled morphisms are the canonical ones. Since «
is surjective, so is 8. Passing to spectra, then to C-rational points and using
the first step, we obtain the commutative diagram

B

Cjn an
(C™)g ———D(N)™,

where all morphisms except for ¢ are known to be embeddings; hence *" is
also an embedding. Its image corresponds to the intersection of D(f) with the
set of closed points of X, so we conclude that 7®" is an open embedding. [J

Proposition 5.7. Let X be a scheme locally of finite type over C, and let
j: U — X be the embedding of an affine open subscheme. The associated
continuous map j*": U™ — X" is an open embedding.

Proof. The map 72" is injective, and its image is the inverse image of the
open set U under the canonical continuous map c¢: X*" — X. It remains to
show that j®" is an open map. Let A be an open subset U?"; we need to
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show that for every affine open subscheme V' of X, the inverse image B of
¢(7*"(A)) under the map V*" — X is an open subset of V", Take a point
x € B, and let W be an affine open neighborhood of ¢(x) in U n V' which is
simultaneously distinguished in U and V. By Lemma [5.6, we have canonical
open embeddings W2" < U and W&" — V?". Hence B is open at z. [J

Lemma 5.8. Let X — S and Y — S be morphisms of schemes locally of
finite type over C. The natural bijection

u: (X x5Y)(C) = X(C) xg)Y(C), tw> (pryot,pryot).
induces a homeomorphism (X xgY)2 = X3 x gan Y20,
Proof. Because of the gluing construction of fiber products and Proposi-
tion [5.7, we may assume that X, Y, and S are affine. Choosing appropriate
generators of the corresponding rings, we find a closed embedding x: .S — A\fD

as well as closed embeddings ¢: X < A{ and ¢: Y — Ag with m > [ and
n = [ fitting into commutative diagrams

Y

L m n

X A¢ Y Ag
l k and l

S —X AL S—2 AL,

where the morphisms Afl — Aé] and A¢ — A\%D are the projections. Then
¢ Xy ¢ can be used to define the analytic topology on (X xgY)(C) by
Proposition [5.2l The claim follows from naturality of u. O

A continuous map ¢: X — Y of topological spaces is separated if the
diagonal of X xy X is closed. Equivalently, any two distinct points of X
lying over the same point of Y have disjoint open neighborhoods in X.

Proposition 5.9. Let ¢: X — S be a morphism of schemes locally of finite
type over C. If p is a separated morphism of schemes, then ©®" is a separated
continuous map.

Proof. Denote by A the diagonal morphism X — X x g X, which is a closed
embedding since ¢ is separated. The diagonal map

§: X > X X gan XUt (£,1)

is the composite of A*" with the homeomorphism u from Lemma [5.8] By
Remark the image of A®" is closed in (X xg X)?". Hence the image of
0, which is precisely the diagonal of X" X gan X" is closed. O

Proposition 5.10. A scheme X locally of finite type over C is connected if
and only if its analytification X" is connected.

Proof. See Grothendieck [I, Exposé XII, Proposition 2.4]. O
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Chapter 6

Comparison Theorem

6.1 Topological theory

Let X be a connected topological space, and let z € X be a point. A cover
of X is a continuous map ¢: Y — X such that every point x € X has an
evenly covered open neighborhood, i.e. an open neighborhood U in X such
that ¢ ~1(U) is a disjoint union of open subsets of Y each of which is mapped
homeomorphically onto U by ¢. Note that we do not assume that ¢ is
surjective. As for schemes, we define a fiber functor F, from the category
Cov/X of covers of X to the category of sets. It maps a cover p: Y — X
to the fiber ¢ ~!(x), and a morphism of covers, i.e. a continuous map over
X, to the induced map on the fibers. A universal cover of X is a simply
connected cover of X; it exists for example if X is locally contractible.

Theorem 6.1. If X has a universal cover, then the fiber functor F, induces
an equivalence of categories

Cov/X ~ m(X,x)-Set,
which sends a cover to its fiber over x equipped with the monodromy action.

Proof. See Szamuely [7, Theorem 2.3.4]. O

We view 71 (X, x) as a discrete topological group, and denote its profinite
completion by 71 (X, x).

Corollary 6.2. If X has a universal cover, then F, induces an equivalence
of categories
FinCov/X ~ FinCont-7 (X, z)-Set.

Proof. The equivalence of categories from Theorem [6.1] restricts to an equiv-
alence of categories

FinCov/X ~ Fin-m (X, z)-Set.

Since 71 (X, x) is discrete, every finite 71 (X, z)-set is continuous. Now apply
Proposition [3.9 O
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6.2 Analytification of finite étale covers

We again work in the category Sch/C. Fix a connected scheme S locally of
finite type over C and a geometric point 5§ € S®. As a first step toward the
comparison theorem, we prove that the analytification of a finite étale cover
of S is a cover of 52" with finite fibers.

Definition 6.3. A morphism of affine schemes X — Y 1is called standard
étale if it is isomorphic to a morphism of the form Spec(B) — Spec(A) with

B = (A[Y]/(9)n

for g € A[Y] monic and h € A[Y]/(g) such that 0g/0Y becomes invertible in
(A[Y1/(9))n-

Theorem 6.4. A morphism of schemes ¢: X — Y is finite étale if and only
if it is finite and for every point x € X there exist affine open neighborhoods
U of x and V of p(z) such that o(U) ¢ V and ¢|y: U — V is standard

étale.
Proof. See Milne [5, Chapter I, Theorem 3.14]. O

Lemma 6.5. Let fi,..., fr € C[Xy,...,Xn] and g € C[X1,..., X, Y] be

such that 5
%9

is invertible at a point (z,y) of the vanishing locus V (fi,..., fr,g) < C™ x C.
Then the projection

T‘—:V(flw"af'rag)_)V(fla"'afT)> (£/7y/)'_)£/

is a homeomorphism at (x,y).

Proof. Consider the holomorphic map
F:C"xC—C, (2.y)—gy),

which satisfies V(f1 ..., fr) n F=1(0) = V(f1,..., fr,g). Since (0g/0Y)(z,y)
is invertible, the Implicit Function Theorem applies. Thus there are open sets
Uc €™ and V c C satisfying (z,y) € U x V together with a holomorphic
map G: U — V such that (U x V) n F~1(0) is the graph of G. In particular,
the restriction of 7 to

UxV)aV(fiy.o s fryg) 2 U V(f1,..., fr)

has the inverse 2/ — (2/, G(2')). Hence 7 is a homeomorphism at (z,y). O
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Proposition 6.6. Let p: X — Y be a morphism of affine schemes of finite
type over C. If v is standard étale, then its analytification . X" — Y?an
s a local homeomorphism.

Proof. Assume that X = Spec(B) and Y = Spec(A) are as in Definition
As 'Y is of finite type over C, we can replace A by C[X1,..., Xn]/(f1,-.-, fr)
for certain fi,..., fr € C[Xy,...,X;n]. Lifting g to C[X7,..., X\, Y], we
may assume

B = (C[X1,.... Xm, Y]/(f1,- s fri9))n

for he C[Xy,...,Xm,Y]/(f1,--., fr,g) such that dg/dY becomes invertible
in B. Then ¢*" corresponds to the composite

V(fla"'7f’r‘ag)h(—’v(fla"'af?”’g)l’v(fla”-afr)a

where 7 is as in Lemma Because of our assumption on dg/0Y and h,
(0g/dY)(x) is invertible at every point x € V(fi,..., fr,¢g)n. Combining
Lemma [6.5] with Lemma [5.6] shows that ¢®" is a local homeomorphism. [

The degree of a continuous map ¢: X — Y of topological spaces at a
point y € Y is the cardinality of the fiber ¢ ~!(y).

Proposition 6.7. Let p: X — Y be a separated continuous map of topolog-
ical spaces. If ¢ is a local homeomorphism with finite fibers whose degree is
a locally constant function of y €Y, then ¢ is a cover.

Proof. Let y be a point of Y, and let o ~!(y) = {x1,..., 2} be an enumera-
tion of the fiber of ¢ over y. If it is empty, then y has an open neighborhood
whose inverse image under ¢ is empty, because the degree of ¢ is locally con-
stant. Hence we may assume that @*1(y) is nonempty. Since ¢ is separated,
there are pairwise disjoint open neighborhoods Uy, ..., Uy, of 21, ..., 2y in X.
After shrinking them, we may assume that there exists an open neighborhood
V of y on which the degree of ¢ is constant and such that each U; maps
homeomorphically onto V. Then V is an evenly covered open neighborhood
of y, because (V) = Uy U --- U Up,. O

Proposition 6.8. If o: X — S is a finite étale morphism, then its analyti-
fication @*": X2 — S?" is a cover with finite fibers.

Proof. The map ¢*" is a local homeomorphism by Propositions and
and separated by Proposition Its fibers are in bijection with geometric
fibers of ¢, so they are finite and their cardinality is locally constant. The
claim follows from Proposition O

35



6.3 Comparison theorem

Conversely, every cover of S with finite fibers arises as the analytification of
a finite étale cover. This is a much deeper result, which was already studied
by Riemann in the case of smooth projective curves and their associated
compact Riemann surfaces.

Theorem 6.9. The functor

FinEt/S — FinCov/S™,
(X N S) — (Xan N San))
w — ¢an
18 an equivalence of categories.

Proof. See Grothendieck [I, Exposé XII, Théoreme 5.1]. O

Using this theorem, we are now going to compare the fundamental group
of S with the topological fundamental group of S?". In order to use the
topological theory, we need the following result.

Theorem 6.10. The topological space S*" is locally contractible.

Proof. As a special case of Hironaka [3| Theorem 1], S*" locally admits the
structure of a simplicial complex, so it is locally contractible. ]

Theorem 6.11. There is an isomorphism of topological groups
%1(San7§) e 71-1(575)‘

Proof. We have the following diagram:

FinEt/S A FinCov/S"

~

Fs ~|T

Set v FinCont-7 (5", 5)-Set,

where F% is the fiber functor, A is the analytification functor, T is the
equivalence of categories from Corollary and U is the forgetful functor.
If : X — S is a finite étale cover, then (¢®)~1(3) coincides with Fs(X).
Hence U oT o A = F%, i.e. the above diagram commutes. Since T o A is an
equivalence of categories, it induces an equivalence — o (T o A) between the
category of set-valued functors on FinCont-71 (5", 5)-Set and the category
of set-valued functors on FinEt/S . Explicitly, — o (T'o A) is given by

F+——Fo(ToA),
(f: F—> G) —> foidroa,
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where f oidp,4 is the horizontal composite of idp.4 and f. Thus we have
an isomorphism of topological groups

Aut(U) = Aut(Fs), f+— foidroa.
Composing this with the isomorphism of topological groups
m1(S*™,35) = Aut(U)
from Proposition yields the claim. O

Before departing from the reader, we give some applications of the results
in this chapter.

Example 6.12. Let S be the affine line over C; then 52" is homeomorphic
to C. Because every cover of a simply connected topological space is trivial,
Theorem implies that every finite étale morphism X — S is isomorphic
to one of the form [ [}, S — S for some nonnegative integer n. In particular,
m1(5,3) is trivial.

Example 6.13. Continuing the story of Example let S be the mul-
tiplicative group over C. Its analytification S®" is homeomorphic to the
subspace €~ {0} of C, so m1(5*",5) = Z. By Theorems [6.9 and we have
FinEt/S ~ Fin-m;(5%",5)-Set. Up to isomorphism, every finite transitive
Z-set is of the form Z/(n) for some nonzero integer n. It follows that every
connected finite étale cover of S is isomorphic to ¢, for some nonzero integer
n. An arbitrary finite étale morphism X — S is a finite coproduct of such
covers.

Example 6.14. Let S = IP%J ~ {0, 1,00} be the projective line minus three
points. Its analytification S*" is homeomorphic to C~ {0, 1}, so 71(S*",35) is
a free group on two generators. Equip 71(S®",3) with the discrete topology.
By Proposition morphisms from 71 (5", 5) to a profinite group H are in
natural bijection with morphisms 71(5*",5) — H. Such morphisms in turn
correspond to elements of H x H. Hence 71(5%",5) is a free profinite group
on two generators.
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