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1. Weil’s Theorem

The current work presents a proof of the Weil theorem on the bound on general character

sums over a finite field Fq. Suppose for the moment that q is prime. One example of such a

character sum is the Kloosterman sum

(1)
∑
x∈F∗q

e(ax+ bx−1)

with a, b ∈ Fq, where we denote e(x) := exp(2πi
q
x) and x−1 is the inverse of x in Fq. An

application that Kloosterman has derived from studying these sums is a theorem on the

representations of large positive integers in the form a1x
2
1 + a2y

2 + a3z
2 + a4t

2 in [4]. In the

proof of this theorem, a crucial building block was an estimate on Kloosterman sums.

This example elucidates the importance of general character sums over finite fields and their

upper bounds, and shall be the motivation of this thesis: As well as proving Weil’s theorem,

we will show a direct application of Weil’s theorem to deduce the Kloosterman bound

(2)

∣∣∣∣∣∣
∑
x∈F∗q

e(ax+ bx−1)

∣∣∣∣∣∣ ≤ 2q1/2.

The prerequisites to the understanding of this thesis are some basic knowledge on finite fields,

classical algebraic geometry [2], algebraic number theory [5], L-series [5, 3], and characters

[3].

Theorem 1.1 (Weil). Let q be a prime power and χ be a non-trivial multiplicative character

of order d of Fq. Let ψ a non-trivial additive character of Fq. Let m,n ≥ 1 and let f and g

be polynomials in one variable over Fq with the following properties:

(a) The polynomial f has m distinct roots in a fixed algebraic closure Fq.

(b) The polynomial g is of degree n.

(c) The polynomials Y d−f(X) ∈ Fq[X][Y ] and Zq−Z−g(X) ∈ Fq[X][Z] are absolutely

irreducible, i.e., irreducible over any algebraic closure of Fq.

Then,

(3)

∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))ψ(g(x))

∣∣∣∣∣∣ ≤ (m+ n− 1)
√
q.
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The present work shows a proof for Theorem 1.1 following [6] and [3]. In the remainder

of the current section we shall give an outline of the proof.

Fix f, g ∈ Fq[X] satisfying the conditions of Theorem 1.1. We first assume that f is a

monic polynomial and g has zero constant term; restrictions which we will remove at the

end of the proof.

Let Fqν/Fq be a field extension of degree ν. The norm NmFqν /Fq and the trace TrFqν /Fq

from Fνq to Fq are multiplicative, respectively additive characters [3] and therefore we find

that the compositions χν := χ ◦ NmFqν /Fq and ψν := ψ ◦ TrFqν /Fq are also multiplicative,

respectively additive characters.

Definition 1.2.

(4) Sχψν :=
∑
x∈Fqν

χν(f(x))ψν(g(x))

In Chapter 3 we show that for all χ, ψ there exist complex numbers ωχψ,1, ..., ωχψ,m+n−1

such that for all ν

(5) Sχψν = −(ωνχψ,1 + ...+ ωνχψ,m+n−1).

Further, we find that for the trivial characters χ0 and ψ0 the sum Sχ0ψ0ν evaluates to qν .

Definition 1.3. Nν :=
∣∣{(x, y, z) ∈ F3

qν : yd = f(x), zq − z = g(x)}
∣∣

It turns out that Nν is related to Sχψν via the formula

(6) Nν =
∑
χ

of exponent d

∑
ψ

Sχψν

a result which will be derived in Chapter 2.

Theorem 1.4. Suppose f ∈ Fq[X, Y ] is absolutely irreducible and of total degree d > 0. Let

N be the number of zeros of f in F2
q. If q > 250d5, then

(7) |N − q| <
√

2d5/2q1/2.

Proof. This follows from the Riemann hypothesis for curves over finite fields, which is proved

in [7] and [1]. �



A PROOF OF WEIL’S BOUND ON GENERAL CHARACTER SUMS 5

In Chapter 4, using the bound

(8) |Nν − qν | < O(qν/2)

derived from Theorem 1.4, we will deduce

(9) |Sν | ≤ (m+ n− 1)qν/2

and in particular

(10) |S| ≤ (m+ n− 1)
√
q

which proves Theorem 1.1.

As an application, we will apply Weil’s theorem to deduce an upper bound on Kloosterman

sums in Chapter 5.

2. Relating character sums to the numbers of solutions of polynomials

Let χ, ψ, χν and ψν as above. Let χ0 be the trivial multiplicative character and ψ0 the

trivial additive character.

We shall first study multiplicative character sums: Suppose that the polynomial f(x)

satisfies the conditions of Theorem 1.1 and is monic. Let

(11) Sχ,ν :=
∑
x∈Fqν

χν(f(x)).

We note that

(12) Sχ0,ν = qν .

Lemma 2.1 (Orthogonality Relation). Let G be a finite abelian group and θ0 be the trivial

character G→ C∗.

(a) For any character θ : G→ C∗

(13)
∑
x∈G

θ(x) =

 |G| if θ = θ0,

0 if θ 6= θ0.

(b) For any x ∈ G

(14)
∑
θ∈Ĝ

θ(x) =

 |G| if x = 1,

0 if x 6= 1,
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where Ĝ is the dual group of characters of the group G.

Proof. (a) If θ = θ0, then

(15)
∑
x∈G

θ0(x) =
∑
x∈G

1 = |G|

If θ 6= θ0, then there exists y ∈ G such that θ(y) 6= 1. As x runs through G in the summation,

so does yx. Hence,

(16)
∑
x∈G

θ(x) =
∑
x∈G

θ(yx) = θ(y)
∑
x∈G

θ(x).

Since we have assumed that θ(y) 6= 1, it must be true that

(17)
∑
x∈G

θ(x) = 0.

The proof of (b) is analogous to that of (a). �

Let d be an integer dividing q − 1.

Lemma 2.2. For any given w ∈ Fqν , the number of y ∈ Fqν with yd = w equals

(18)
∑
χdν=1

χν(w) =
∑
χd=1

χ(NmFqν /Fq(w))

Proof. The characters of exponent d are precisely those which are trivial on the subgroup

(F∗qν )d := {wd | w ∈ F∗qν}. Therefore, we may view them as characters on the factor group

F∗qν/(F∗qν )d. The orthogonality relation in Lemma 2.1 (b) becomes

(19)
∑
χdν=1

χν(w) =

 [F∗qν : (F∗qν )d] if w ∈ (F∗qν )d,

0 otherwise.

The characters of F∗qν/(F∗qν )d correspond to the characters of F∗qν which are of order dividing

d by the composition

(20) F∗qν → F∗qν/(F∗qν )d → C∗.

and since x is trivial in F∗qν/(F∗qν )d if and only if w = yd. Therefore, setting χν(0) = 0 if χν

is non-trivial and χν(0) = 1 if χν is trivial, we get that

(21)
∑
χdν=1

χν(w) =

 d if w = yd for some y ∈ F∗qν

0 otherwise
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and hence

(22)
∑
χdν=1

χν(w) = |{y ∈ Fqν |yd = w}|.

�

We shall now look at additive character sums. Suppose that g(x) satisfies the conditions

given by Theorem 1.1.We define

(23) Sψ,ν :=
∑
x∈Fqν

ψν(g(x)).

It follows that

(24) Sψ0,ν = qν .

Lemma 2.3. For any y ∈ Fqν we have

(25) |{x ∈ Fqν |xq − x = y}| =

 q if TrFqν /Fq(y) = 0

0 if TrFqν /Fq(y) 6= 0

Proof. Let α ∈ Fqν . Considering the Frobenius map σ : α → αq we clearly have σν(α) = α.

The kernel of the map

δ : Fqν → Fqν

x 7→ xq − x = σ(x)− x

is Fq because the Frobenius automorphism only fixes the field Fq. Hence, | Im(δ)| = qν−1.

Further, Im(δ) ⊂ Ker(TrFqν /Fq) since for all x ∈ Fqν we have

(26) TrFqν /Fq(δ(x)) = TrFqν /Fq(σ(x)− x) =
ν=1∑
i=0

σi+1 − σi(x) = σn(x)− x = 0.

However, since TrFqν /Fq is a polynomial of degree qν−1, it cannot vanish at more than qν−1

points and hence Im(δ) = Ker(TrFqν /Fq) and the result follows, since the equation has no

solution if y /∈ Ker(TrFqν /Fq) and q solutions otherwise. �

Lemma 2.4. For any given w ∈ Fqν , the number of z ∈ Fqν with zq − z = w equals

(27)
∑
ψν

ψν(w) =
∑
ψ

ψ(TrFqν /Fq(w))
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Proof. By Lemma 2.3, if TrFqν /Fq(w) = 0, then we have q solutions of zq − z = w and by the

orthogonality relation from Lemma 2.1 our sum (27) equals q. If TrFqν /Fq(w) 6= 0, then there

are no solutions by Lemma 2.3 and the sum is zero by Lemma 2.1 again. �

Lemma 2.5. The number Nν of (x, y, z) ∈ F3
qν with yd = f(x) and zq − z = g(x) is

(28) Nν =
∑
χdν=1

∑
ψ

Sχψν .

Proof. Combining Lemmas 2.2 and 2.4 we write

(29)

Nν =
∣∣{(x, y, z) ∈ F3

qν : yd = f(x), zq − z = g(x)}
∣∣

=
∑
x∈Fqν

|{y ∈ Fqν : yd = f(x)}| · |{z ∈ Fqν : zq − z = g(x)|

=
∑
x∈Fqν

 ∑
χdν = 1

χν(f(x)

( ∑
ψν 6=ψ0

ψν(g(x))

)

=
∑
χdν = 1

∑
ψν 6=ψ0

∑
x∈Fqν

χν(f(x))ψν(g(x))

=
∑
χdν = 1

∑
ψν 6=ψ0

Sχψν .

�

Additionally, Equations (12) and (24) yield

(30) Sχ0ψ0ν = qν .

3. Writing character sums as sums of complex numbers

Fix f ∈ Fq[X] monic with m distinct roots over Fq, a fixed algebraic closure of Fq. In

Fq[X] we have

(31) f(x) =
m∏
i=1

(x+ γi)
ai

with distinct γ1, ..., γm.

Let Gν be the multiplicative group of rational functions r(x) = h1(x)
h2(x)

with h2(x) 6= 0 and

hi(x) ∈ Fqν [X] monic. We define G′ν ≤ Gν as the subgroup consisting of rational functions
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with h1(γi)h2(γi) 6= 0 for all i ∈ {1, ...,m}. For r(x) ∈ G′ν , we define

(32) {r} :=
m∏
i=1

r(γi)
ai .

Proposition 3.1. {r} is an element of F∗qν .

Proof. It is easily seen that {r} is an algebraic element. To show that {r} ∈ Fqν it suffices

to show that σ({r}) = {r} for every automorphism σ of the splitting field of f(X). Such

automorphisms, however, simply permute the roots γi of f(X) and therefore permute the

factors of {r} and the result follows. �

Lemma 3.2. The character G′ν → C∗, r 7→ χν({r}) is multiplicative.

Proof. Let r1(x) and r1(x) be elements of G′ν . Then,

(33)

χν({r1}{r2}) = χ ◦ NmFqν /Fq({r1}{r2})

= χ ◦ NmFqν /Fq({r1})χ ◦ NmFqν /Fq({r2})

= χν({r1})Xν({r2})

using the fact that χν = χ ◦ NmFqν /Fq is a multiplicative character. �

Further, we define H ′′ν ≤ G′ν as the subgroup consisting of r(x) = h1(x)
h2(x)

with h1(γi) =

h2(γi) 6= 0 for all i ∈ {1, ...,m}.

Lemma 3.3. For all r ∈ H ′′ν we have

(34) χν({r}) = 1.

Proof. The result follows from Lemma 3.2 and the definition of H ′′ν . �

We now proceed similarly with the additive character ψν : Fix a polynomial g ∈ Fqν [X] of

degree n with constant term zero. Let r := r(x) ∈ Gν . Define

(35) [r] := g(α1) + . . .+ g(αu)− g(β1)− . . .− g(βv) if r =

∏u
i=1(X + αi)∏v
j=1(X + βj)

with α1, . . . , αu, β1, . . . , βv ∈ Fq .

Proposition 3.4. [r] is an element of Fqν .



10 MORITZ WINGER

Proof. The automorphisms σ of the splitting field of g(X) permute the roots αi of∏u
i=1(X + αi) and βi of

∏v
j=1(X + βj). Therefore σ([r]) = [r] for all σ. �

Lemma 3.5. The character Gν → C∗, r 7→ ψν([r]) is additive.

Proof. We observe that [r] ∈ Fqν and [r1r2] = [r1] + [r2]. Therefore, since ψν is an additive

character, ψν([r1r2]) = ψν([r1]) + ψν([r2]). �

Let u, v ≥ n. We define H ′ν ⊂ Gν as the subset of elements r(x) = h1(x)
h2(x)

with h1(x) =

xu + a1x
u−1 + . . . + au and h2(x) = xv + b1x

v−1 + . . . + bv where a1 = b1, . . . , an = bn. For

example, the polynomials xu lie in H ′ν , as well as the polynomials xu + an+1x
u−n−1 + . . .+ au

with u > n.

Proposition 3.6. The subset H ′ν is a subgroup of Gν .

Proof. It can easily be seen that the inverse and 1 lie in H ′ν . Let h1 = p
q

and h2 = p′

q′
be

elements of H ′ν with

(36) p = xu + a1x
u−1 + . . .+ au, q = xv + b1x

v−1 + . . .+ bv

and

(37) p′ = xw + c1x
w−1 + . . .+ cw, q′ = xr + d1x

r−1 + . . .+ dr

Then the coefficient of x` in h1h2 is
∑

i+j=` aicj in the numerator and
∑

i+j=` bidj in the

denominator. Since ai = bi and cj = dj for all i, j ∈ {1, . . . , n}, we have that h1h2 ∈ H ′ν . �

Lemma 3.7. If r ∈ H ′ν, then ψν([r]) = 1 .

Proof. The function g(α1) + . . .+ g(αu) viewed as a polynomial in Fqν [α1, . . . , αu] is a sym-

metric polynomial of degree n. Therefore it is a polynomial in the first n elementary sym-

metric polynomials in α1, . . . , αu, which means it is also a polynomial in the coefficients

a1, . . . , an of h1(x). We can write g(α1) + . . . + g(αu) = l1(a1, . . . , an). Similarly, we get

g(β1) + . . . + g(βu) = l2(b1, . . . , bn). Recalling that g has constant term zero and that by

definition of H ′ν , we have ai = bi for all 1 ≤ i ≤ n, we get that l1 = l2. Hence, [r] = 0 and

therefore ψ([r]) = 1. �

We now define the subgroup Hν := H ′ν ∩H ′′ν .
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Proposition 3.8. Suppose that ` ≥ 0. Then every coset of Hν in G′ν contains precisely q`

polynomials of degree n+m+ `.

Proof. Let r(x) ∈ G′ν . We need to show that there are precisely q` polynomials k(x) =

xn+m+` + b1x
n+m+`−1 + ...+ bn+m+` with k(x)/r(x) ∈ Hν . If k(x)/r(x) ∈ Hν and if r(x) has

the expansion r(x) = xu + a1x
u−1 + ..., then

(38) b1 = a1, . . . , bn = an

and

(39) k(γi) = r(γi) ∀i ∈ {1, . . . ,m}.

Hence, the coefficients b1, ..., bn are determined by Equation (38). Picking arbitrary values

for bn+1, ..., bn+`, the equations (39) form a non-homogeneous linear system of equations in

the m remaining coefficients bn+`+1, . . . , bn+`+m. The corresponding matrix to this system is

the Vandermonde matrix in γi and, since γ1, . . . , γm are distinct, its determinant is non-zero.

Hence, the system in Equation (39) can be solved uniquely and the freedom of choice consists

of picking bn+1, ..., bn+`, which gives q` possibilities. �

Proposition 3.9. Suppose that the polynomial Y d − f(X) has coefficients in a field K.

Then, if Y d − cf(X) is absolutely irreducible for every c with c ∈ K \ {0} it follows that if

f(X) = a(X − x1)d1 · · · (X − xs)ds is the factorisation of f in any algebraic closure K with

xi 6= xj for i 6= j, then (d, d1, . . . , ds) = 1.

Proof. Suppose t := (d, d1, . . . .ds) > 1. Then, by putting

(40) g(X) := (X − x1)d1/t . . . (X − xs)ds/t

we get that

(41) Y d − 1

a
f(X) = Y d − g(X)d = (Y a/t − g(X))(Y

d
t
(t−1) + Y

d
t
(t−2)g(X) + . . .+ g(X)t−1)

which shows that Y d − 1
a
f(X) is reducible over K, which is a contradiction. �

Definition 3.10. We define the character Xν(r) := χν({r})ψν([r]) from G′ν to C∗.

Proposition 3.11. (a) The character Xν is a character on the group G′ν and on the

subgroup Hν := H ′ν ∩H ′′ν we have Xν(r) = 1.
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(b) Suppose that χ 6= χ0 is of exponent d and Y d − f(X) is absolutely irreducible, or

ψ 6= ψ0 and Zq − Z − g(X) is irreducible. Then, the character Xν is not principal,

i.e., Xν(k) 6= 1 for some k ∈ G′ν .

(c) Suppose the conditions of (b) hold and ` ≥ 0. Then,

(42)
∑
h∈G′ν
h monic

deg(h)=n+m+`

Xν(h) = 0.

Proof. (a) The equality Xν(r) = 1 follows immediately from the definition of the subgroup

Hν and the properties of χν and ψν on Hν .

(b) Suppose Xν(k) = 1. Because χν({k}) is a dth root of unity and ψν([k]) is a pth root of

unity where (d, p) = 1 and with Xν(k) = χν({k})ψν([k]), we have

(43) χν({k}) = ψν([k]) = 1.

Therefore it suffices to find a k with χν({k}) 6= 1 for the first case and a k where ψν([k]) 6= 1

for the second case.

Assume that χν is non-trivial of order e with e|d. Since Y d−f(X) is absolutely irreducible,

not all the exponents in

(44) f(X) = (X + γ1)
a1 · · · (X + γm)am

are multiples of e by Proposition 3.9. Say, e does not divide a1. Given c2, . . . , cm ∈ F∗q,

we can pick c1 ∈ F∗q with ca11 · · · camm 6∈ (F∗q)e and therefore with χν(c
a1
1 . . . camm ) 6= 1. By the

argument of Proposition 3.8, there exists a polynomial k(X) ∈ G′ν with

(45) k(γi) = ci (i = 1, . . . ,m).

Then, {k} = ca11 · · · camm and χν({k}) 6= 1.

For the second case, considering a fixed non-trivial additive character ψν , let Zq−Z−g(X)

be absolutely irreducible. Denoting by Tr,Trν ,Tr
′

ν the trace homomorphisms Fq → Fp,

Fqν → Fq, Fqν → Fp, respectively, the character ψν is of the type

(46) ψν(z) = e(Tr(az)/p)



A PROOF OF WEIL’S BOUND ON GENERAL CHARACTER SUMS 13

where e(x) := exp(2πi
p
x) and for some a ∈ F∗q. The polynomial Zq − Z − ag(X) =

a
(
(Z
a

)q − (Z
a

)− g(X)
)

is absolutely irreducible as well. Hence, the polynomial

(47) Zp − Z − ag(x)

is absolutely irreducible, where p is the characteristic. This is true because if q = pν , then

Zq − Z = u(Z)p − u(Z) with u(Z) = Zpν−1
+ . . . + Zp + Z. Given x ∈ Fqν , if Tr′ν(x) = 0,

by Lemma 2.3, there are p values of z ∈ Fqν with zp − z − ag(x) = 0. If Tr′ν(x) 6= 0, there

are no such z. By Theorem 1.4 we have that Nν < pqν for large enough ν. Therefore, there

will be some x ∈ Fqν with Tr′ν(ag(x)) 6= 0. Let k(X) = (X +x1) · · · (X +xν) ∈ Fq[X], where

x = x1, . . . , xν are the conjugates of x over Fq. Then [k] = g(x1) + . . .+ g(xν) = Trν(x) and

(48)

ψ([k]) = e(Tr(aTrν(g(x)))/p)

= e(Tr(Trν)(ag(x))/p)

= e(Tr′ν(ag(x))/p) 6= 1.

By the freedom of choice of x, one may ensure that k ∈ G′ν .

(c) By (a) and (b), the character Xν induces a non-principal character on the finite factor

group G′ν/Hν . By Proposition 3.8, the polynomial h will lie precisely q` times in every given

coset of G′ν/Hν . Then the result follows from the orthogonality property of characters χ on

finite abelian groups G, namely that
∑

x∈G χ(x) = 0 if χ is nontrivial (see Theorem 2.1). �

We shall extend the definition of Xν by setting Xν(h) = 0, if h is a polynomial not in G′ν .

Consider the formal power series

(49) Lν(Xν , U) :=
∑

h∈Fqν [X]
monic

Xν(h)Uν deg(h) ∈ C[[U ]].

Proposition 3.12 (Product Formula).

(50) Lν(Xν , U) =
∏

h irreducible, monic

(1−Xν(h)Udeg(h))−1.
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Proof. Since every polynomial can be written uniquely as a product of powers of irreducible

polynomials, we get in analogy to the Euler product formula for Zeta-functions

(51)

∑
h∈Fqν [X]
monic

Xν(h)Uν deg(h) =
∏

h irreducible, monic

(1 +
Xν(h)

Udeg(h)
+
Xν(h

2)

U2 deg(h)
+ · · · )

=
∏

h irreducible, monic

(1−Xν(h)Udeg(h))−1.

�

Now let χ0 the trivial multiplicative character and ψ0 the trivial additive character. In

accordance to the conditions of Weil’s theorem, suppose now that χ 6= χ0 is of exponent

d and Y d − f(X) is absolutely irreducible, or ψ 6= ψ0 and Zq − Z − g(X) is irreducible.

Equation (5) is a corollary of Proposition 3.14 on the properties of the series Lν .

Proposition 3.13. Let ζ be a ν-th root of unity and m be a positive integer. Then we have

the polynomial identity

(52)
∏
ζν=1

(1− ζmU) =
(
1− Uν/(ν,m)

)(ν,m)
.

Proof. In the case where (ν,m) = 1, the identity reduces to

(53)
∏
ζν=1

(1− ζmU) = 1− Uν ,

which in this case is a true statement, since both sides are polynomials of degree ν with

constant term 1 and with roots ζ−m. For the general case, let ν = ν1(ν,m) andm = m1(ν,m).

As the summation runs through a residue system modulo ν, it runs (ν,m) times a residue

system modulo ν1. Therefore, the result is obtained by raising

(54)
∏
ζν1=1

(1− ζm1 U) = 1− Uν1

to the (ν,m)-th power. Equation 54 is correct by the first case, since (ν1,m1) = 1. �

Proposition 3.14. The series Lν can be written as

(55) Lν(Xν , U) =
∏
ζν=1

L1(X1, ζU),

where ζ is a root of unity.
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Proof. By Proposition 3.12, for all ν

(56) Lν(Xν , U) =
∏

h∈Fqν [X]
irreducible,monic

(1−Xν(h)U ν deg(h))−1.

All irreducible, monic polynomials h ∈ Fq[X] of degree d split into k := (d, ν) distinct monic

irreducible polynomials of degree e := d/k:

(57) h(X) = h̃1(X) · · · h̃k(X)

with h̃i ∈ Fqk [X] for all i ∈ {1, . . . , k}. By definition,

(58) Xν(h̃i) = χν({h̃i})ψν([h̃i])

with

(59)

χν({h̃i}) = χ

(
NmFqν /Fq

(
m∏
j=1

h̃i(γj)
aj

))

= χ

(
k∏
i=1

NmFqν /Fqk

(
m∏
j=1

h̃i(γj)
aj

))

= χ

(
NmFqν /Fqk

(
m∏
j=1

h(γj)
aj

))

= χ

(
m∏
j=1

h(γj)
aj

)
= χ({h})ν/k

and

(60)

ψν([h̃i]) = ψ
(

TrFqν /Fq([h̃i])
)

= ψ

(∑
µ

∑
j

g(αij)
qµ

)

= ψ

(∑
µ

∑
j

g(αq
µ

ij )

)

= ψ

(
ν

k

∑
i,j

g(αij)

)

= ψ

(∑
i,j

g(αij)

)ν/k

= ψ([h])ν/k.
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Therefore for all i ∈ {1, . . . , k}

(61) Xν(h̃i) = X1(h)ν/k.

It follows that

(62) Xν(h̃i)U
ν/k = (X1(h)U)ν/k.

Now, by Proposition 3.13, setting m = d and X = X1(h)Ud we can write

(63)

Lν(Xν , U) =
∏

h∈Fqν [X]
irreducible,monic

(1−X1(h)U eν)−k

=
∏

h∈Fqν [X]
irreducible,monic

∏
ζν=1

(1− ζdX1(h)Ud)−1

=
∏
ζν=1

∏
h∈Fqν [X]

irreducible,monic

(1− ζdX1(h)Ud)−1

=
∏
ζν=1

L1(X1, ζU)

which is the desired result. �

Proposition 3.15. The L-series is a polynomial in the variable U that is of the form

(64) L1(Xν , U) = 1 + c1U + ...+ cn+m−1U
(n+m−1)

and if χ 6= χ0 or if χ = χ0 and f(X) = 1, then

(65) c1 =
∑
x∈Fq

χ(f(x))ψ(g(x)).

Proof. We write L1(Xν , Uh) = 1 + c1Uh + . . . with

(66) ct =
∑
h∈G′ν

polynomial
of degree t

Xν(h).
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for all t. By Proposition 3.11 (c), we have ct = 0 if t ≥ n + m. Thus L1(Xν , Uh) is a

polynomial in Uh of degree less than n+m. Using the definition of Xν we get

(67)

c1 =
∑
h∈G′ν

polynomial
of degree 1

Xν(h) =
∑
x

∀i: x+γi 6=0

Xν(X + x)

=
∑

∀i: x+γi 6=0

χν({X + x})ψν([X + x])

=
∑

∀i: x+γi 6=0

χν((x+ γ1)
a1 · · · (x+ γm)am)ψν(g(x))

=
∑
f(x) 6=0

χν(f(x))ψν(g(x))

=
∑
x

χν(f(x))ψν(g(x)).

�

Proposition 3.16. There exist k ∈ N and ω1, ..., ωk ∈ C such that for all ν

(68) Lν(Xν , U) = (1− ων1Uν) · · · (1− ωνkU ν).

Proof. By Proposition 3.15 we can write L1(X,U) = 1 + c1U + ... + cn+m−1U
(n+m−1). i.e it

is a polynomial in U with constant term 1. Therefore we can write

(69) L1(X,Uh) = (1− ω1U)...(1− ωkU)

for complex ω1, ..., ωk. With Proposition 3.14 we can write

Lν(Xν , U) =
∏
ζν=1

L1(X, ζU)

= (1− ων1Uν)...(1− ωνkUν)

(70)

which is the desired result. �

The next proposition is the main result of this chapter and yields Equation (5).

Proposition 3.17. Suppose that χ 6= χ0 is of exponent d and Y d − f(X) is absolutely

irreducible, or that ψ 6= ψ0 and Zq−Z−g(X) is irreducible. Suppose that χ 6= χ0 or χ = χ0

with f(X) = 1. Then, for all ν

(71) Sχψν = −(ωνχψ,1 + ...+ ωνχψ,m+n−1).
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Proof. We apply Proposition 3.15 to Fqν and with Proposition 3.16 we have

(72)
Lν(X,U) = 1 + cν,1U

ν + . . .+ cν,n+m−1U
ν(n+m−1)

= (1− ων1Uν)...(1− ωνkUν)

Comparing coefficients and, since by Proposition 3.15 cν,1 = Sχψν , we deduce

(73) Sχψν = cν,1 = −(ωνχψ,1 + ...+ ωνχψ,m+n−1).

�

4. Proof of Weil’s Theorem: Putting it all together

The goal of this section is to use the results from the previous chapters to prove Theorem

1.1. Let f, g ∈ Fqν [x] satisfy the hypotheses of Theorem 1.1. We first impose the condition

that f is monic and that g has constant term zero. We recall the definition

(74) Sχψν :=
∑
x∈Fq

χ
(
NmFqν /Fq(f(x))

)
· ψ
(
TrFqν /Fq(g(x))

)
.

By Proposition 3.17 we can write

(75) Sχψν = −(ωνχψ,1 + ...+ ωνχψ,m+n−1)

with the following bound on the absolute values of ωνχψ,1, ..., ω
ν
χψ,m+n−1:

Proposition 4.1. For all i,

(76) |ωχψ,i| ≤
√
q.

Proof. By Lemma 2.5 and Theorem 1.4 applied to Fqν we can write

(77)
∑
χ

of exponent
dividing d

∑
ψ

Sχψν = Nν = qν +O(qν/2).

Applying Lemma 4.2 on Equation (77) together with Proposition 3.17 and using the fact

that Sχ0ψ0ν = qν yields the desired result. �

Lemma 4.2. If ω1, ..., ωl are complex numbers and for a B > 0 such that ων1+...+ωνl = O(Bν)

for all ν, then |ωj| ≤ B for all j ∈ {1, ..., l}.
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Proof. We consider the expansion

(78) − log(1− ωz) = ωx+
1

2
ω2z2 +

1

3
ω3z3 + . . . .

Then

(79) − log((1− ω1z) · · · (1− ωlz)) =
∞∑
ν=1

1

ν
(ων1 + . . .+ ωνl )zν .

By assumption, the sum on the right hand side converges and therefore the function on the

left hand side is analytic for |z| < B−1. We get that 1 − ωjz 6= 0 if |z| < B−1 and hence

|ωj| ≤ B. �

With Equation (75) , we obtain

(80) |Sχψν | ≤ (m+ n− 1)qν/2

and in particular the statement of Theorem 1.1.

It remains to remove the restrictions on the polynomials f and g. So far, we have used that f

is monic and g has zero constant term. However, since χ(af(x)) = χ(a)χ(f(x)) our estimate

for the multiplicative character still holds in general. Further, since ψ(g(x)+b) = ψ(g(x))ψ(b)

we find that the absolute value of the character sum does not change.

This concludes the proof of Weil’s Theorem.

5. Application of Weil’s Theorem: A Bound on Kloosterman Sums

We consider a non-trivial additive character ψ and the Kloosterman sums

(81)

∣∣∣∣∣∣
∑
x∈F∗q

ψ(ax+ bx−1)

∣∣∣∣∣∣
where a, b ∈ F∗q and x−1 is the inverse of x in Fq.

Theorem 5.1. Let ψ a non-trivial character of Fq. Then

(82)

∣∣∣∣∣∣
∑
x∈F∗q

ψ(ax+ bx−1)

∣∣∣∣∣∣ ≤ 2
√
q.

In the following, we present a proof of the theorem for the case when q is odd. In order

to be able to directly apply Weil’s Theorem, we apply the following Lemma to the given

Kloosterman sum.
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Lemma 5.2. Let ψ 6= ψ0 and χ be any quadratic character of F∗q. Then,

(83)
∑
x∈F∗q

ψ(ax+ bx−1) =
∑
y∈Fq

ψ(y)χ(y2 − 4ab).

Proof. The sum on the left hand side can be written as

(84)
∑
y∈Fq

ψ(y)Z(y)

with Z(y) the number of x ∈ F∗q with y = ax+ bx−1. Solving for x yields

(85) x =
1

2a
±
√
y2 − 4ab

which may or may not be an element of Fq. If y2 − 4ab 6= 0 is a square, then Z(y) = 2. If

y2 − 4ab 6= 0 is not a square, then Z(y) = 0. If y2 − 4ab = 0, then Z(y) = 1. Now, since χ

is the quadratic character of Fq, we have that χ(z) = 1 or χ(z) = −1 if z 6= 0 is a square or

a non-square in Fq. We get

(86) Z(y) = χ(y2 − 4ab) + 1.

With this we can write

(87)

∑
x∈F∗q

ψ(ax+ bx−1) =
∑
y∈Fq

ψ(y)Z(y)

=
∑
y∈Fq

ψ(y)χ(y2 − 4ab) +
∑
y∈Fq

ψ(y)

=
∑
x∈Fq

ψ(x)χ(x2 − 4ab).

�

The polynomials Y 2− (X2−4ab) and Zq−Z−X are absolutely irreducible and therefore

the conditions of Weil’s theorem are satisfied and we deduce that the sum on the right hand

side of Lemma 5.2 has absolute value ≤ (m+ n− 1)
√
q = 2

√
q, which proves Theorem 5.1.

Theorem 5.1 also holds when q is even and we shall now sketch a proof for this case. Let G

be the group of rational functions h1(X)
h2(X)

where h1(X) and h2(X) are monic polynomials. Let

Ĝ be the subgroup of functions whose numerators and denominators have non-zero constant
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term. For r(x) ∈ Ĝ, let

(88)

[r] :=

a(α1 + . . .+ αu − β1 − . . .− βv) + b( 1
α1

+ . . .+ 1
αu
− 1

β1
− . . .− 1

βv
) if r(X) =

∏u
i=1(X+αi)∏u
j=1(X+βj)

0, if r(X) = 1
,

with α1, . . . , αu, β1, . . . , βv ∈ Fq. Then [r] ∈ Fq and [r1r2] = [r1] + [r2] and the function

X(r) := ψ([r]) is a character on Ĝ. We let Ĥ be the subset of Ĝ consisting of r(X) = h1(X)
h2(X)

where

(89)
h1(X) = Xu + a1X

u−1 + . . .+ au−1X + au,

h2(X) = Xv + b1X
v−1 + . . .+ bv−1X + bv

with

(90) a1 = b1,
au−1
au

=
bv−1
bv

.

We find that Ĥ is a subgroup of Ĝ and as an analogue to Lemma 3.7 we have

Lemma 5.3. If r ∈ Ĥ, then X(r) = 1.

Proof. If r ∈ Ĥ, then

(91) α1 + . . .+ αu − . . .− βv = a1 − b1 = 0

and

(92)
1

α1

+ . . .+
1

αu
− 1

β1
− . . .− 1

βv

which yields [r] = 0 and X(r) = ψ([r]) = 1. �

The analogue to Proposition 3.8 is

Proposition 5.4. Let ` ≥ 0. Then every coset of Ĥ in Ĝ contains precisely q`(q − 1)

polynomials of degree `+ 3.

By carrying out the analogue of the argument in Chapter 3, we find that the L-function

L(X,U) is a polynomial of the type

(93) L(X,U) = 1 + c1U + c2U
2 = (1− ω1)(1− ω2U)
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with

(94) c1 =
∑
x∈F∗q

ψ(ax+ bx−1).

The result follows immediately from |ωi| ≤ q1/2 which is deduced by showing that the numer

Nν x, z in Fqν of x 6= 0, zq − z = ax + bx−1 satisfies Equation (7). This follows from

Theorem 1.4 , since aX2 − (Zq − Z)X + b is absolutely irreducible.
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