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Summary. Let ¢ be a non-isotrivial family of Drinfeld A-modules of rank r in
generic characteristic with a suitable level structure over a connected smooth alge-
braic variety X. Suppose that the endomorphism ring of ¢ is equal to A. Then we
show that the closure of the analytic monodromy group of X in SL, (A{;) is open,
where Af; denotes the ring of finite adeles of the quotient field F' of A.

From this we deduce two further results: (1) If X is defined over a finitely gen-
erated field extension of F', the image of the arithmetic étale fundamental group
of X on the adelic Tate module of ¢ is open in GL,(AL). (2) Let ¥ be a Drinfeld
A-module of rank r defined over a finitely generated field extension of F', and sup-
pose that 1 cannot be defined over a finite extension of F'. Suppose again that the
endomorphism ring of v is A. Then the image of the Galois representation on the
adelic Tate module of v is open in GLr(Aé).

Finally, we extend the above results to the case of arbitrary endomorphism rings.
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1 Analytic monodromy groups

Let IF,, be the finite prime field with p elements. Let £ be a finitely generated
field of transcendence degree 1 over F,. Let A be the ring of elements of F'
which are regular outside a fixed place oo of F'. Let M be the fine moduli
space over F' of Drinfeld A-modules of rank r with some sufficiently high level
structure. This is a smooth affine scheme of dimension r — 1 over F.

Let F,. denote the completion of F' at oo, and C the completion of an
algebraic closure of Fi,. Then the rigid analytic variety Mg" is a finite disjoint
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union of spaces of the form A\ {2, where 2 C (P{"')2" is Drinfeld’s upper half
space and A is a congruence subgroup of SL,.(F') commensurable with SL,.(A).

Let X¢ be a smooth irreducible locally closed algebraic subvariety of Mc.
Then X@&" lies in one of the components A\f2 of M&". Fix an irreducible
component = C (2 of the pre-image of X2". Then & — X&" is an unramified
Galois covering whose Galois group Az := Staba(Z) is a quotient of the
analytic fundamental group of X&".

Let ¢ denote the family of Drinfeld modules over X¢ determined by the
embedding X¢ C Mc¢. We assume that dim X¢ > 1. Since M is a fine moduli
space, this means that ¢ is non-isotrivial. It also implies that r > 2. Let n¢ be
the generic point of X¢ and 7jc a geometric point above it. Let (7. denote the
pullback of ¢ to 7c. Let Aé denote the ring of finite adeles of F. The main
result of this article is the following:

Theorem 1. In the above situation, if Endy.(p5n.) = A, then the closure of
Az in SLT(AQ) is an open subgroup of SLT(AQ).

The proof uses known results on the p-adic Galois representations associ-
ated to Drinfeld modules [Pi97] and on strong approximation [Pi00].

Theorem 1 leaves open the following natural question:

Question 1. If Endj.(p5.) = A, is Az an arithmetic subgroup of SL, (F)?

Theorem 1 has applications to the analogue of the André-Oort conjecture
for Drinfeld moduli spaces: see [Br]. Consequences for étale monodromy groups
and for Galois representations are explained in Sections 2 and 3. The proof
of Theorem 1 will be given in Sections 4 through 7. Finally, in Section 8 we
outline the case of arbitrary endomorphism rings.

For any variety Y over a field k and any extension field L of k& we will
abbreviate Y7, :=Y xy L.

2 Etale monodromy groups

We retain the notations from Section 1. Let k¥ C C be a subfield that is
finitely generated over F', such that X¢ = X x C for a subvariety X C M.
Let K denote the function field of X and K®°P a separable closure of K. Then
1 := Spec K is the generic point of X and 7 := Spec K a geometric point
above 7). Let k%P be the separable closure of k in K*°P. Then we have a short
exact sequence of étale fundamental groups

1 — 7T1(step,’l7) i 7T1(X,T_]) — Gal(k‘sep/k‘) — 1.
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Let A & Hp £oo A, denote the profinite completion of A. Recall that Al =~
F®aA and contains A as an open subring. Let ¢, denote the Drinfeld module
over K corresponding to 7. Its adelic Tate module T'(¢,) is a free module of
rank r over A. Choose a basis and let

p: m(X,7) — GL,.(A) C GLT(AQ)

denote the associated monodromy representation. Let I'8¢°™ < I' € GL,.(A)
denote the images of 71 (Xpyser, ) C w1 (X, %) under p.

Lemma 1. I'8°™ s the closure of g ' A= g in SLT(A) for some element g €
GL,(AL).

Proof. Choose an embedding K — C and a point £ € = above 7. Let
A C F" be the lattice corresponding to the Drinfeld module at . This is
a finitely generated projective A-module of rank r. The choice of a basis of
T(cpn) yields a composite embedding

A" 2 T(py) = A@aA — FTeaA = (AL,

which is given by left multiplication with some element g € GLT(A{,). Since
the discrete group A C SL,.(F) preserves A, we have g~ 'Ag C SL, (121)

For any non-zero ideal a C A let M (a) denote the moduli space obtained
from M by adjoining a full level a structure. Then 7q: M (a) — M is an étale
Galois covering with group contained in GL,.(A/a), and one of the connected
components of M (a)&" above the connected component A\(2 of M&" has the
form A(a)\(2 for

Afa) :={6€ A| g '0g =id mod a/i}.

Let X (a)gser be any connected component of the inverse image 73 1 (Xpser) C
M (a)gsep. Since k°°P is separably closed, the variety X (a)c over C obtained by
base change is again connected. The associated rigid analytic variety X (a)®” is
then also connected (cf. [Lii74, Kor. 3.5]) and therefore a connected component
of 77 1(X2"). But one of these connected components is (Az N A(a))\Z,
whose Galois group over X" = Az\Z'is Az/(AzNA(a)). This implies that
g 1Az g and 71 (Xpeen, 77) have the same images in GL,(4/a) = GL,(A/aA).
By taking the inverse limit over the ideal a we deduce that the closure of
g YAz g in SL,.(A) is I'#*™  as desired. O

Lemma 2. Endgser () = Endy. (¢3¢ )-

Proof. By construction 7jc is a geometric point above 7, and ¢y, is the pullback
of ¢,,. Any embedding of K*°P into the residue field of 7jc induces a morphism
fic — 7. Thus the assertion follows from the fact that for every Drinfeld
module over a field, any endomorphism defined over any field extension is
already defined over a finite separable extension. O
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Theorem 2. In the above situation, suppose that Endgser(py) = A. Then

(a) I'8%°™ js an open subgroup of SLT(AJ;), and
(b) I' is an open subgroup of GLT(AQ).

Proof. By Lemma 2 the assumption implies that Ends. (¢7.) = A. Thus part
(a) follows at once from Theorem 1 and Lemma 1. Part (b) follows from (a) and
the fact that det(I") is open in GLl(Aé). This fact is a consequence of work
of Drinfeld [Dr74, §8 Thm. 1] and Hayes [Ha79, Thm. 9.2] on the abelian class
field theory of F', and of Anderson [An86] on the determinant Drinfeld module.
Note that Anderson’s paper only treats the case A = F,[T]; the general case
has been worked out by van der Heiden [He03, Chap. 4]. Compare also [Pi97,
Thm. 1.8]. O

3 Galois groups

Let ' and A be as in Section 1. Let K be a finitely generated extension field
of F of arbitrary transcendence degree, and let ¢ : A — K{7} be a Drinfeld
A-module of rank r over K. Let K5 denote a separable closure of K and

o : Gal(K*P/K) — GL,(A])

the natural representation on the adelic Tate module of . Let I" C GLT(AQ)
denote its image.

Theorem 3. In the above situation, suppose that Endgser (1)) = A and that
¥ cannot be defined over a finite extension of F inside K°P. Then I is an
open subgroup of GLT(A’;).

Proof. The assertion is invariant under replacing K by a finite extension.
We may therefore assume that 1 possesses a sufficiently high level structure
over K. Then 1 corresponds to a K-valued point on the moduli space M
from Section 1. Let n denote the underlying point on the scheme M, and let
L C K be its residue field. Then 1 is already defined over L, and o factors
through the natural homomorphism Gal(K®?/K) — Gal(L**?/L), where L*P
is the separable closure of L in K®°P. Since K is finitely generated over L, the
intersection K N L*°P is finite over L; hence the image of this homomorphism
is open. To prove the theorem we may thus replace K by L, after which K is
the residue field of 7.

The assumption on 1 implies that even after this reduction, K is not a
finite extension of F. Therefore its transcendence degree over F' is > 1. Let k
denote the algebraic closure of F' in K. Then 7 can be viewed as the generic
point of a geometrically irreducible and reduced locally closed algebraic sub-
variety X C M) of dimension > 1. After shrinking X we may assume that
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X is smooth. We are then precisely in the situation of the preceding section,
with 1 = ¢,. The homomorphism ¢ above is then the composite

Gal(K™P/K) 2 7y (n, 1) — m1(X,7) 2 GL,.(A})

with p as in Section 2. It follows that the groups called I" in this section and
the last coincide. The desired openness is now equivalent to Theorem 2 (b).
O

Note. The adelic openness for a Drinfeld module 9 as in Theorem 3, but
defined over a finite extension of F', is conjectured yet still unproved.

4 p-Adic openness

This section and the next three are devoted to proving Theorem 1. Throughout
we retain the notations from Sections 1 and 2 and the assumptions dim X >
1 and Endg.(¢5.) = A. In this section we recall a known result on p-adic
openness. For any place p # oo of F' let I}, denote the image of I" under the

projection GLT(AQ) — GL,(F}).

Theorem 4. I, is open in GL.(Fy).

Proof. By construction I}, is the image of the monodromy representation
pp: (X, 1) — GL,(Fp)

on the rational p-adic Tate module of ¢,. This is the same as the image of
the composite homomorphism

Gal(K*P/K) = 71 (n,7) - m(X,7) 2 GL,(F).

Since K is a finitely generated extension of F, and Endgser () = A by the
assumption and Lemma 2, the desired openness is a special case of [Pi97,

Next let I'5°°™ denote the image of I'8°°™ under the projection GL, (A?) —
GL,(F},). Note that this is a normal subgroup of I',. Lemma 1 immediately
implies:

Lemma 3. I7°°™ is the closure of g~*A=g in SL.(F,) for some element
g € GL,(F}).
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5 Zariski density

Lemma 4. The Zariski closure H of Az in GL,r is a normal subgroup
Of GLT,F-

Proof. Choose a place p # oo of . Then by base extension Hp, is the Zariski
closure of Az in GL; r,. Thus Lemma 3 implies that g 'H F, 9 is the Zariski
closure of I pgeom in GL; f,. Since I, normalizes I pgeom, it therefore normalizes
g 'Hp,g. But I, is open in GL,.(F},) by Theorem 4 and therefore Zariski dense
in GL;,F,. Thus GL,, P, normalizes ¢~ H F9 and hence H Fps and the result
follows. O

Lemma 5. A= is infinite.

Proof. Let X, K,k and ¢, be as in Section 2. Then, as M} is affine and
dim X > 1, there exists a valuation v of K, corresponding to a point on
the boundary of X not on My, at which ¢, does not have potential good
reduction. Denote by I, C Gal(K®P/Kk*P) the inertia group at v. By the
criterion of Néron-Ogg-Shafarevich [Go96, §4.10], the image of I,, in ™ is
infinite for any place p # oo of F. In particular, Az is infinite by Lemma 3,
as desired.

Alternatively, we may argue as follows. Suppose that Az is finite. Then af-
ter increasing the level structure we may assume that Az = 1. Then I';°"" = 1
by Lemma 3, which means that p, factors as

m (X, 7) — Gal(k*P/k) — GL,.(Fy).

After a suitable finite extension of the constant field k¥ we may assume that
X possesses a k-rational point z. Let ¢, denote the Drinfeld module over
k corresponding to x. Via the embedding ¥ C K we may consider it as a
Drinfeld module over K and compare it with ¢,. The factorization above
implies that the Galois representations on the p-adic Tate modules of ¢,
and ¢, are isomorphic. By the Tate conjecture (see [Tag95] or [Tam95]) this
implies that there exists an isogeny ¢, — ¢, over K. Its kernel is finite and
therefore defined over some finite extension &’ of k. Thus ¢,,, as a quotient of
2 by this kernel, is isomorphic to a Drinfeld module defined over k’. But the
assumption dim X > 1 implies that 1 is not a closed point of My; hence ¢,
cannot be defined over a finite extension of k. This is a contradiction. O

Proposition 1. A= is Zariski dense in SL, p.

Proof. By construction we have H C SL, r, and Lemma 5 implies that H
is not contained in the center of SL, p. From Lemma 4 it now follows that
H = SL, r, as desired. a

The above results may be viewed as analogues of André’s results [An92,
Thm. 1, Prop. 2], comparing the monodromy group of a variation of Hodge
structures with its generic Mumford-Tate group. Our analogue of the former
is Az, and by [Pi97] the latter corresponds to GL, g. In our situation, however,
we do not need the existence of a special point on X.
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6 Fields of coefficients

Let A= denote the image of A= in PGL,.(F). In this section we show that
the field of coefficients of A= cannot be reduced.

Definition 1. Let L1 be a subfield of a field L. We say that a subgroup A C
PGL, (L) lies in a model of PGL, 1, over Ly, if there exist a linear algebraic

group G over Ly and an isomorphism A : G1, 1 —=— PGL, 1, such that
AC /\1(G1(L1))

Proposition 2. Az does not lie in a model of PGL,. r over a proper subfield
of F.

Proof. As before we use an arbitrary auxiliary place p # oo of F. Let I'3°" <[,
denote the images of 7" < I}, in PGL,(F},). Lemma 3 implies that I;3*°™ is
conjugate to the closure of Az in PGL,(F}). By Proposition 1 it is therefore
Zariski dense in PGL,., F,- On the other hand Theorem 4 implies that T, b is an
open subgroup of PGL,(Fy). It therefore does not lie in a model of PGL,. p,
over a proper subfield of F,,. Thus I'y°”™ is Zariski dense and normal in a
subgroup that does not lie in a model over a proper subfield of F},, which by
[Pi98, Cor. 3.8] implies that 5°”™, too, does not lie in a model over a proper
subfield of Fj,.

Suppose now that Az C A\;(G;(F})) for a subfield F; C F, a linear alge-
braic group G; over Fi, and an isomorphism A; : G,y —== PGL,; . Since
Az is Zariski dense in PGL, r, it is in particular infinite. Therefore F; must
be infinite. As F is finitely generated of transcendence degree 1 over I, it fol-
lows that F contains a transcendental element, and so F' is a finite extension
of Fy. Let p; denote the place of Fy below p. Since I'$°”™ is the closure of Az
in PGL,(F}), it is contained in A;(G1(Fip,)). The fact that I¥°°™ does not

lie in a model over a proper subfield of F}, thus implies that F; ,, = F}.

But for any proper subfield Fj g F, we can choose a place p # oo of
F above a place p; of Fi, such that the local field extension Fy,, C Fy is
non-trivial. Thus we must have F} = F', as desired. a

7 Strong approximation

The remaining ingredient is the following general theorem.

Theorem 5. Forr > 2 let A C SL,.(F) be a subgroup that is contained in a
congruence subgroup commensurable with SL,(A). Assume that A is Zariski
dense in SL, p and that its image A in PGL,.(F) does not lie in a model of
PGL, r over a proper subfield of F. Then the closure of A in SLT(A{,) 18
open.
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Proof. For finitely generated subgroups this is a special case of [Pi00, Thm. 0.2].
That result concerns arbitrary finitely generated Zariski dense subgroups of
G(F) for arbitrary semisimple algebraic groups G, but it uses the finite gen-
eration only to guarantee that the subgroup is integral at almost all places
of F. For A as above the integrality at all places # oo is already known in
advance, so the proof in [Pi00] covers this case as well.

As an alternative, we will deduce the general case by showing that every
sufficiently large finitely generated subgroup A; C A satisfies the same as-
sumptions. Then the closure of A; in SL,(A%) is open by [Pi00], and so the
same follows for A, as desired.

For the Zariski density of A; note first that the trace of the adjoint rep-
resentation defines a dominant morphism to the affine line SL, p — Al,
g — tr(Ad(g)). Since A is Zariski dense, this function takes infinitely many
values on A. As the field of constants in F' is finite, we may therefore choose
an element v € A with tr(Ad(v)) transcendental. Then + has infinite order;
hence the Zariski closure H C SL, r of the abstract subgroup generated by
~ has positive dimension. Let H° denote its identity component. Since A is
Zariski dense and SL, p is almost simple, the A-conjugates of H° generate
SL, r as an algebraic group. By noetherian induction finitely many conjugates
suffice. It follows that finitely many conjugates of v generate a Zariski dense
subgroup of SL, r. Thus every sufficiently large finitely generated subgroup
Ay C A is Zariski dense.

Consider such A; and let A; denote its image in PGL,(F). Consider
all triples (F1,G1,\1) consisting of a subfield F; C F, a linear algebraic
group G over Fy, and an isomorphism A\ : G1.rp —~= PGL, r, such that
Ay C M(G1(Fy)). By [Pi98, Thm.3.6] there exists such a triple with F}
minimal, and this F} is unique, and G; and A; are determined up to unique
isomorphism. Consider another finitely generated subgroup A; C Ay C A and
let (Fy, Ho, A2) be the minimal triple associated to it. Then the uniqueness
of (F1,G1, A1) implies that Fy C F5, that G2 = G4, p,, and that Ay coincides
with the isomorphism Gy r = Gi r — PGL, r obtained from A;. In other
words, the minimal model (Fy, Gy, A1) is monotone in A;.

For any increasing sequence of Zariski dense finitely generated subgroups
of A we thus obtain an increasing sequence of subfields of F. This sequence
must become constant, say equal to Fy; C F, and the associated model of
PGL,  over F} is the same up to isomorphism from that point onwards. Thus
we have a triple (Fy, G1, A1) with A; € A\ (G1(F})) for every sufficiently large
finitely generated subgroup A; C A. But then we also have A C A\ (G1(FY)),
which by assumption implies that F; = F'. Thus every sufficiently large finitely
generated subgroup of A satisfies the same assumptions as A, as desired. O

Proof of Theorem 1. In the situation of Theorem 1 we automatically have r >
2, so the assertion follows by combining Propositions 1 and 2 with Theorem 5
for A=. O
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8 Arbitrary endomorphism rings

Set E := Ends.(¢7.), which is a finite integral ring extension of A. Write
r = r’-[E//A]; then the centralizer of F in GLT(A{,) is isomorphic to GL, (E® 4
Aé) Lemma 2 implies that all elements of E are defined over some fixed finite
extension of K. This means that an open subgroup of p(7r1 (X, ﬁ)) is contained

in GL(E®4 A{,) Thus by Lemma 1 the same holds for a subgroup of finite
index of A=. The following results can be deduced easily from Theorems 1,
2, and 3, using the same arguments as in [Pi97, end of §2].

Theorem 6. In the situation of before Theorem 1, for E := Endg.(p5.) ar-
bitrary, the closure in GLT(A{,) of some subgroup of finite index of A= is an
open subgroup of SL,.(E ®4 A};)

Theorem 7. In the situation of before Theorem 2, for E := Endgser(py)
arbitrary,

(a) some open subgroup of I'8%°™ .= p(ﬂ'l(stcp,ﬁ)) is an open subgroup of
SL.(E®a4 A{;), and

(b) some open subgroup of I' := p(m1 (X, 7)) is an open subgroup of GL,/(E® 4
AL).

Theorem 8. In the situation of before Theorem 3, for E := Endgser () ar-
bitrary, suppose that ¢ cannot be defined over a finite extension of F inside
K®°P. Then some open subgroup of I' := U(Gal(Ksep/K)) is an open subgroup
Of GLT/(E Ra A{,ﬂ)
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