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Summary. Let ϕ be a non-isotrivial family of Drinfeld A-modules of rank r in
generic characteristic with a suitable level structure over a connected smooth alge-
braic variety X. Suppose that the endomorphism ring of ϕ is equal to A. Then we
show that the closure of the analytic monodromy group of X in SLr(Af

F ) is open,
where Af

F denotes the ring of finite adèles of the quotient field F of A.
From this we deduce two further results: (1) If X is defined over a finitely gen-

erated field extension of F , the image of the arithmetic étale fundamental group
of X on the adèlic Tate module of ϕ is open in GLr(Af

F ). (2) Let ψ be a Drinfeld
A-module of rank r defined over a finitely generated field extension of F , and sup-
pose that ψ cannot be defined over a finite extension of F . Suppose again that the
endomorphism ring of ψ is A. Then the image of the Galois representation on the
adèlic Tate module of ψ is open in GLr(Af

F ).
Finally, we extend the above results to the case of arbitrary endomorphism rings.
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1 Analytic monodromy groups

Let Fp be the finite prime field with p elements. Let F be a finitely generated
field of transcendence degree 1 over Fp. Let A be the ring of elements of F
which are regular outside a fixed place ∞ of F . Let M be the fine moduli
space over F of Drinfeld A-modules of rank r with some sufficiently high level
structure. This is a smooth affine scheme of dimension r − 1 over F .

Let F∞ denote the completion of F at ∞, and C the completion of an
algebraic closure of F∞. Then the rigid analytic variety Man

C is a finite disjoint
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union of spaces of the form ∆\Ω, where Ω ⊂ (Pr−1
C )an is Drinfeld’s upper half

space and ∆ is a congruence subgroup of SLr(F ) commensurable with SLr(A).

Let XC be a smooth irreducible locally closed algebraic subvariety of MC.
Then Xan

C lies in one of the components ∆\Ω of Man
C . Fix an irreducible

component Ξ ⊂ Ω of the pre-image of Xan
C . Then Ξ → Xan

C is an unramified
Galois covering whose Galois group ∆Ξ := Stab∆(Ξ) is a quotient of the
analytic fundamental group of Xan

C .

Let ϕ denote the family of Drinfeld modules over XC determined by the
embedding XC ⊂MC. We assume that dimXC ≥ 1. Since M is a fine moduli
space, this means that ϕ is non-isotrivial. It also implies that r ≥ 2. Let ηC be
the generic point of XC and η̄C a geometric point above it. Let ϕη̄C denote the
pullback of ϕ to η̄C. Let Af

F denote the ring of finite adèles of F . The main
result of this article is the following:

Theorem 1. In the above situation, if Endη̄C(ϕη̄C) = A, then the closure of
∆Ξ in SLr(Af

F ) is an open subgroup of SLr(Af
F ).

The proof uses known results on the p-adic Galois representations associ-
ated to Drinfeld modules [Pi97] and on strong approximation [Pi00].

Theorem 1 leaves open the following natural question:

Question 1. If Endη̄C(ϕη̄C) = A, is ∆Ξ an arithmetic subgroup of SLr(F )?

Theorem 1 has applications to the analogue of the André-Oort conjecture
for Drinfeld moduli spaces: see [Br]. Consequences for étale monodromy groups
and for Galois representations are explained in Sections 2 and 3. The proof
of Theorem 1 will be given in Sections 4 through 7. Finally, in Section 8 we
outline the case of arbitrary endomorphism rings.

For any variety Y over a field k and any extension field L of k we will
abbreviate YL := Y ×k L.

2 Étale monodromy groups

We retain the notations from Section 1. Let k ⊂ C be a subfield that is
finitely generated over F , such that XC = X ×k C for a subvariety X ⊂ Mk.
Let K denote the function field of X and Ksep a separable closure of K. Then
η := SpecK is the generic point of X and η̄ := SpecKsep a geometric point
above η. Let ksep be the separable closure of k in Ksep. Then we have a short
exact sequence of étale fundamental groups

1 −→ π1(Xksep , η̄) −→ π1(X, η̄) −→ Gal(ksep/k) → 1.
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Let Â ∼=
∏

p6=∞Ap denote the profinite completion of A. Recall that Af
F
∼=

F⊗A Â and contains Â as an open subring. Let ϕη denote the Drinfeld module
over K corresponding to η. Its adèlic Tate module T̂ (ϕη) is a free module of
rank r over Â. Choose a basis and let

ρ : π1(X, η̄) −→ GLr(Â) ⊂ GLr(Af
F )

denote the associated monodromy representation. Let Γ geom ⊂ Γ ⊂ GLr(Â)
denote the images of π1(Xksep , η̄) ⊂ π1(X, η̄) under ρ.

Lemma 1. Γ geom is the closure of g−1∆Ξ g in SLr(Â) for some element g ∈
GLr(Af

F ).

Proof. Choose an embedding Ksep ↪→ C and a point ξ ∈ Ξ above η̄. Let
Λ ⊂ F r be the lattice corresponding to the Drinfeld module at ξ. This is
a finitely generated projective A-module of rank r. The choice of a basis of
T̂ (ϕη) yields a composite embedding

Âr ∼= T̂ (ϕη) ∼= Λ⊗A Â ↪→ F r ⊗A Â ∼= (Af
F )r,

which is given by left multiplication with some element g ∈ GLr(Af
F ). Since

the discrete group ∆ ⊂ SLr(F ) preserves Λ, we have g−1∆g ⊂ SLr(Â).

For any non-zero ideal a ⊂ A let M(a) denote the moduli space obtained
from M by adjoining a full level a structure. Then πa : M(a) � M is an étale
Galois covering with group contained in GLr(A/a), and one of the connected
components of M(a)anC above the connected component ∆\Ω of Man

C has the
form ∆(a)\Ω for

∆(a) :=
{
δ ∈ ∆

∣∣ g−1δg ≡ id mod aÂ
}
.

Let X(a)ksep be any connected component of the inverse image π−1
a (Xksep) ⊂

M(a)ksep . Since ksep is separably closed, the variety X(a)C over C obtained by
base change is again connected. The associated rigid analytic variety X(a)anC is
then also connected (cf. [Lü74, Kor. 3.5]) and therefore a connected component
of π−1

a (Xan
C ). But one of these connected components is

(
∆Ξ ∩ ∆(a)

)
\Ξ,

whose Galois group over Xan
C
∼= ∆Ξ\Ξ is ∆Ξ/

(
∆Ξ ∩∆(a)

)
. This implies that

g−1∆Ξ g and π1(Xksep , η̄) have the same images in GLr(A/a) = GLr(Â/aÂ).
By taking the inverse limit over the ideal a we deduce that the closure of
g−1∆Ξ g in SLr(Â) is Γ geom, as desired. ut

Lemma 2. EndKsep(ϕη) = Endη̄C(ϕη̄C).

Proof. By construction η̄C is a geometric point above η, and ϕη̄C is the pullback
of ϕη. Any embedding of Ksep into the residue field of η̄C induces a morphism
η̄C → η̄. Thus the assertion follows from the fact that for every Drinfeld
module over a field, any endomorphism defined over any field extension is
already defined over a finite separable extension. ut
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Theorem 2. In the above situation, suppose that EndKsep(ϕη) = A. Then

(a)Γ geom is an open subgroup of SLr(Af
F ), and

(b) Γ is an open subgroup of GLr(Af
F ).

Proof. By Lemma 2 the assumption implies that Endη̄C(ϕη̄C) = A. Thus part
(a) follows at once from Theorem 1 and Lemma 1. Part (b) follows from (a) and
the fact that det(Γ ) is open in GL1(Af

F ). This fact is a consequence of work
of Drinfeld [Dr74, §8 Thm. 1] and Hayes [Ha79, Thm. 9.2] on the abelian class
field theory of F , and of Anderson [An86] on the determinant Drinfeld module.
Note that Anderson’s paper only treats the case A = Fq[T ]; the general case
has been worked out by van der Heiden [He03, Chap. 4]. Compare also [Pi97,
Thm. 1.8]. ut

3 Galois groups

Let F and A be as in Section 1. Let K be a finitely generated extension field
of F of arbitrary transcendence degree, and let ψ : A→ K{τ} be a Drinfeld
A-module of rank r over K. Let Ksep denote a separable closure of K and

σ : Gal(Ksep/K) −→ GLr(Af
F )

the natural representation on the adèlic Tate module of ψ. Let Γ ⊂ GLr(Af
F )

denote its image.

Theorem 3. In the above situation, suppose that EndKsep(ψ) = A and that
ψ cannot be defined over a finite extension of F inside Ksep. Then Γ is an
open subgroup of GLr(Af

F ).

Proof. The assertion is invariant under replacing K by a finite extension.
We may therefore assume that ψ possesses a sufficiently high level structure
over K. Then ψ corresponds to a K-valued point on the moduli space M
from Section 1. Let η denote the underlying point on the scheme M , and let
L ⊂ K be its residue field. Then ψ is already defined over L, and σ factors
through the natural homomorphism Gal(Ksep/K) → Gal(Lsep/L), where Lsep

is the separable closure of L in Ksep. Since K is finitely generated over L, the
intersection K ∩Lsep is finite over L; hence the image of this homomorphism
is open. To prove the theorem we may thus replace K by L, after which K is
the residue field of η.

The assumption on ψ implies that even after this reduction, K is not a
finite extension of F . Therefore its transcendence degree over F is ≥ 1. Let k
denote the algebraic closure of F in K. Then η can be viewed as the generic
point of a geometrically irreducible and reduced locally closed algebraic sub-
variety X ⊂ Mk of dimension ≥ 1. After shrinking X we may assume that
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X is smooth. We are then precisely in the situation of the preceding section,
with ψ = ϕη. The homomorphism σ above is then the composite

Gal(Ksep/K) ∼= π1(η, η̄) � π1(X, η̄)
ρ→ GLr(Af

F )

with ρ as in Section 2. It follows that the groups called Γ in this section and
the last coincide. The desired openness is now equivalent to Theorem 2 (b).

ut

Note. The adèlic openness for a Drinfeld module ψ as in Theorem 3, but
defined over a finite extension of F , is conjectured yet still unproved.

4 p-Adic openness

This section and the next three are devoted to proving Theorem 1. Throughout
we retain the notations from Sections 1 and 2 and the assumptions dimX ≥
1 and Endη̄C(ϕη̄C) = A. In this section we recall a known result on p-adic
openness. For any place p 6= ∞ of F let Γp denote the image of Γ under the
projection GLr(Af

F ) � GLr(Fp).

Theorem 4. Γp is open in GLr(Fp).

Proof. By construction Γp is the image of the monodromy representation

ρp : π1(X, η̄) −→ GLr(Fp)

on the rational p-adic Tate module of ϕη. This is the same as the image of
the composite homomorphism

Gal(Ksep/K) ∼= π1(η, η̄) � π1(X, η̄)
ρp→ GLr(Fp).

Since K is a finitely generated extension of F , and EndKsep(ϕη) = A by the
assumption and Lemma 2, the desired openness is a special case of [Pi97,
Thm. 0.1]. ut

Next let Γ geom
p denote the image of Γ geom under the projection GLr(Af

F ) �
GLr(Fp). Note that this is a normal subgroup of Γp. Lemma 1 immediately
implies:

Lemma 3. Γ geom
p is the closure of g−1∆Ξ g in SLr(Fp) for some element

g ∈ GLr(Fp).
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5 Zariski density

Lemma 4. The Zariski closure H of ∆Ξ in GLr,F is a normal subgroup
of GLr,F .

Proof. Choose a place p 6= ∞ of F . Then by base extension HFp is the Zariski
closure of ∆Ξ in GLr,Fp . Thus Lemma 3 implies that g−1HFpg is the Zariski
closure of Γ geom

p in GLr,Fp . Since Γp normalizes Γ geom
p , it therefore normalizes

g−1HFpg. But Γp is open in GLr(Fp) by Theorem 4 and therefore Zariski dense
in GLr,Fp . Thus GLr,Fp normalizes g−1HFpg and hence HFp , and the result
follows. ut
Lemma 5. ∆Ξ is infinite.

Proof. Let X,K, k and ϕη be as in Section 2. Then, as Mk is affine and
dimX ≥ 1, there exists a valuation v of K, corresponding to a point on
the boundary of X not on Mk, at which ϕη does not have potential good
reduction. Denote by Iv ⊂ Gal(Ksep/Kksep) the inertia group at v. By the
criterion of Néron-Ogg-Shafarevich [Go96, §4.10], the image of Iv in Γ geom

p is
infinite for any place p 6= ∞ of F . In particular, ∆Ξ is infinite by Lemma 3,
as desired.

Alternatively, we may argue as follows. Suppose that ∆Ξ is finite. Then af-
ter increasing the level structure we may assume that∆Ξ = 1. Then Γ geom

p = 1
by Lemma 3, which means that ρp factors as

π1(X, η̄) −→→ Gal(ksep/k) −→ GLr(Fp).

After a suitable finite extension of the constant field k we may assume that
X possesses a k-rational point x. Let ϕx denote the Drinfeld module over
k corresponding to x. Via the embedding k ⊂ K we may consider it as a
Drinfeld module over K and compare it with ϕη. The factorization above
implies that the Galois representations on the p-adic Tate modules of ϕx

and ϕη are isomorphic. By the Tate conjecture (see [Tag95] or [Tam95]) this
implies that there exists an isogeny ϕx → ϕη over K. Its kernel is finite and
therefore defined over some finite extension k′ of k. Thus ϕη, as a quotient of
ϕx by this kernel, is isomorphic to a Drinfeld module defined over k′. But the
assumption dimX ≥ 1 implies that η is not a closed point of Mk; hence ϕη

cannot be defined over a finite extension of k. This is a contradiction. ut
Proposition 1. ∆Ξ is Zariski dense in SLr,F .

Proof. By construction we have H ⊂ SLr,F , and Lemma 5 implies that H
is not contained in the center of SLr,F . From Lemma 4 it now follows that
H = SLr,F , as desired. ut

The above results may be viewed as analogues of André’s results [An92,
Thm. 1, Prop. 2], comparing the monodromy group of a variation of Hodge
structures with its generic Mumford-Tate group. Our analogue of the former
is∆Ξ , and by [Pi97] the latter corresponds to GLr,F . In our situation, however,
we do not need the existence of a special point on X.
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6 Fields of coefficients

Let ∆̄Ξ denote the image of ∆Ξ in PGLr(F ). In this section we show that
the field of coefficients of ∆̄Ξ cannot be reduced.

Definition 1. Let L1 be a subfield of a field L. We say that a subgroup ∆̄ ⊂
PGLr(L) lies in a model of PGLr,L over L1, if there exist a linear algebraic
group G1 over L1 and an isomorphism λ1 : G1,L

∼−−→ PGLr,L, such that
∆̄ ⊂ λ1(G1(L1)).

Proposition 2. ∆̄Ξ does not lie in a model of PGLr,F over a proper subfield
of F .

Proof. As before we use an arbitrary auxiliary place p 6= ∞ of F . Let Γ̄ geom
p /Γ̄p

denote the images of Γ geom
p /Γp in PGLr(Fp). Lemma 3 implies that Γ̄ geom

p is
conjugate to the closure of ∆̄Ξ in PGLr(Fp). By Proposition 1 it is therefore
Zariski dense in PGLr,Fp . On the other hand Theorem 4 implies that Γ̄p is an
open subgroup of PGLr(Fp). It therefore does not lie in a model of PGLr,Fp

over a proper subfield of Fp. Thus Γ̄ geom
p is Zariski dense and normal in a

subgroup that does not lie in a model over a proper subfield of Fp, which by
[Pi98, Cor. 3.8] implies that Γ̄ geom

p , too, does not lie in a model over a proper
subfield of Fp.

Suppose now that ∆̄Ξ ⊂ λ1(G1(F1)) for a subfield F1 ⊂ F , a linear alge-
braic group G1 over F1, and an isomorphism λ1 : G1,F

∼−−→ PGLr,F . Since
∆̄Ξ is Zariski dense in PGLr,F , it is in particular infinite. Therefore F1 must
be infinite. As F is finitely generated of transcendence degree 1 over Fp, it fol-
lows that F1 contains a transcendental element, and so F is a finite extension
of F1. Let p1 denote the place of F1 below p. Since Γ̄ geom

p is the closure of ∆̄Ξ

in PGLr(Fp), it is contained in λ1(G1(F1,p1)). The fact that Γ̄ geom
p does not

lie in a model over a proper subfield of Fp thus implies that F1,p1 = Fp.

But for any proper subfield F1 $ F , we can choose a place p 6= ∞ of
F above a place p1 of F1, such that the local field extension F1,p1 ⊂ Fp is
non-trivial. Thus we must have F1 = F , as desired. ut

7 Strong approximation

The remaining ingredient is the following general theorem.

Theorem 5. For r ≥ 2 let ∆ ⊂ SLr(F ) be a subgroup that is contained in a
congruence subgroup commensurable with SLr(A). Assume that ∆ is Zariski
dense in SLr,F and that its image ∆̄ in PGLr(F ) does not lie in a model of
PGLr,F over a proper subfield of F . Then the closure of ∆ in SLr(Af

F ) is
open.
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Proof. For finitely generated subgroups this is a special case of [Pi00, Thm. 0.2].
That result concerns arbitrary finitely generated Zariski dense subgroups of
G(F ) for arbitrary semisimple algebraic groups G, but it uses the finite gen-
eration only to guarantee that the subgroup is integral at almost all places
of F . For ∆ as above the integrality at all places 6= ∞ is already known in
advance, so the proof in [Pi00] covers this case as well.

As an alternative, we will deduce the general case by showing that every
sufficiently large finitely generated subgroup ∆1 ⊂ ∆ satisfies the same as-
sumptions. Then the closure of ∆1 in SLr(Af

F ) is open by [Pi00], and so the
same follows for ∆, as desired.

For the Zariski density of ∆1 note first that the trace of the adjoint rep-
resentation defines a dominant morphism to the affine line SLr,F → A1

F ,
g 7→ tr(Ad(g)). Since ∆ is Zariski dense, this function takes infinitely many
values on ∆. As the field of constants in F is finite, we may therefore choose
an element γ ∈ ∆ with tr(Ad(γ)) transcendental. Then γ has infinite order;
hence the Zariski closure H ⊂ SLr,F of the abstract subgroup generated by
γ has positive dimension. Let H◦ denote its identity component. Since ∆ is
Zariski dense and SLr,F is almost simple, the ∆-conjugates of H◦ generate
SLr,F as an algebraic group. By noetherian induction finitely many conjugates
suffice. It follows that finitely many conjugates of γ generate a Zariski dense
subgroup of SLr,F . Thus every sufficiently large finitely generated subgroup
∆1 ⊂ ∆ is Zariski dense.

Consider such ∆1 and let ∆̄1 denote its image in PGLr(F ). Consider
all triples (F1, G1, λ1) consisting of a subfield F1 ⊂ F , a linear algebraic
group G1 over F1, and an isomorphism λ1 : G1,F

∼−−→ PGLr,F , such that
∆̄1 ⊂ λ1(G1(F1)). By [Pi98, Thm. 3.6] there exists such a triple with F1

minimal, and this F1 is unique, and G1 and λ1 are determined up to unique
isomorphism. Consider another finitely generated subgroup∆1 ⊂ ∆2 ⊂ ∆ and
let (F2,H2, λ2) be the minimal triple associated to it. Then the uniqueness
of (F1, G1, λ1) implies that F1 ⊂ F2, that G2

∼= G1,F2 , and that λ2 coincides
with the isomorphism G2,F

∼= G1,F → PGLr,F obtained from λ1. In other
words, the minimal model (F1, G1, λ1) is monotone in ∆1.

For any increasing sequence of Zariski dense finitely generated subgroups
of ∆ we thus obtain an increasing sequence of subfields of F . This sequence
must become constant, say equal to F1 ⊂ F , and the associated model of
PGLr,F over F1 is the same up to isomorphism from that point onwards. Thus
we have a triple (F1, G1, λ1) with ∆̄1 ⊂ λ1(G1(F1)) for every sufficiently large
finitely generated subgroup ∆̄1 ⊂ ∆̄. But then we also have ∆̄ ⊂ λ1(G1(F1)),
which by assumption implies that F1 = F . Thus every sufficiently large finitely
generated subgroup of ∆ satisfies the same assumptions as ∆, as desired. ut

Proof of Theorem 1. In the situation of Theorem 1 we automatically have r ≥
2, so the assertion follows by combining Propositions 1 and 2 with Theorem 5
for ∆Ξ . ut
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8 Arbitrary endomorphism rings

Set E := Endη̄C(ϕη̄C), which is a finite integral ring extension of A. Write
r = r′·[E/A]; then the centralizer of E in GLr(Af

F ) is isomorphic to GLr′(E⊗A

Af
F ). Lemma 2 implies that all elements of E are defined over some fixed finite

extension of K. This means that an open subgroup of ρ
(
π1(X, η̄)

)
is contained

in GLr′(E ⊗A Af
F ). Thus by Lemma 1 the same holds for a subgroup of finite

index of ∆Ξ . The following results can be deduced easily from Theorems 1,
2, and 3, using the same arguments as in [Pi97, end of §2].

Theorem 6. In the situation of before Theorem 1, for E := Endη̄C(ϕη̄C) ar-
bitrary, the closure in GLr(Af

F ) of some subgroup of finite index of ∆Ξ is an
open subgroup of SLr′(E ⊗A Af

F ).

Theorem 7. In the situation of before Theorem 2, for E := EndKsep(ϕη)
arbitrary,

(a) some open subgroup of Γ geom := ρ
(
π1(Xksep , η̄)

)
is an open subgroup of

SLr′(E ⊗A Af
F ), and

(b) some open subgroup of Γ := ρ
(
π1(X, η̄)

)
is an open subgroup of GLr′(E⊗A

Af
F ).

Theorem 8. In the situation of before Theorem 3, for E := EndKsep(ψ) ar-
bitrary, suppose that ψ cannot be defined over a finite extension of F inside
Ksep. Then some open subgroup of Γ := σ

(
Gal(Ksep/K)

)
is an open subgroup

of GLr′(E ⊗A Af
F ).
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