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Abstract

Let X be an irreducible smooth projective curve over an algebraically
closed field of characteristic p > 0. Let [ be either a finite field of char-
acteristic p or a local field of residue characteristic p. Let F' be a con-
structible étale sheaf of F-vector spaces on X. Suppose that there exists
a finite Galois covering m: Y — X such that the generic monodromy
of #*F is pro-p and Y is ordinary. Under these assumptions we derive
an explicit formula for the Euler-Poincaré characteristic x(X, F') in terms
of easy local and global numerical invariants, much like the formula of
Grothendieck-Ogg-Shafarevich in the case of different characteristic. Al-
though the ordinariness assumption imposes severe restrictions on the
local ramification of the covering =, it is satisfied in interesting cases such
as Drinfeld modular curves.’
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0 Introduction

Let X be an irreducible smooth projective curve over an algebraically closed
field k. Let T be either a finite field of characteristic £ or a local field of residue
characteristic £. Let F be a constructible étale sheaf of F-vector spaces on X.
The Euler-Poincaré characteristic of F' is defined as
X(X, F) = (=1) dimyp H (X, F).
i

The cohomology groups in this formula are known to have finite dimension and
to vanish for almost all 7; hence this invariant is a well-defined integer.

If ¢ is different from the characteristic of k, the fundamental formula of
Grothendieck-Ogg-Shafarevich ([SGA5] exp. X, [11]) expresses this invariant as
a sum of an easy global term with local terms at finitely many closed points
of X. More precisely, let gx denote the genus of X, and let [ denote the stalk
of F' at a geometric point 7 above the generic point of X. The formula asserts

(0.1) X(X,F) =2 (1 — gx) - dimp Fy + Y _(dimg Fp — LT} 7).

Here the local term LTY Fy depends only on the action of the inertia group at x
on the generic stalk F;; and can be written explicitly in the form

LT} Fy = dimy Fyy 4+ Swany, Fy,

where Swan’, Fj is the Swan conductor of the local Galois representation (see
[loc. cit.]) Tn particular, we have LT, Fy = dimy F,, whenever F is lisse at z,
so the sum is really finite. The importance of this formula stems from the fact
that it separates clearly the global and local contributions and that both of
them have easy expressions in terms of appropriate numerical invariants.



Let us now suppose that £ = p, where p is the characteristic of k. Then
there cannot exist a universal formula as simple as 0.1, because the p-rank
of a curve in characteristic p depends on algebraic invariants in addition to the
usual numerical invariants of algebraic geometry. To illustrate this phenomenon,
consider an elliptic curve E over an algebraically closed field k of characteristic
p # 2. Every such elliptic curve is a double covering = : E — P of the
projective line which is (tamely) ramified in exactly 4 points. Thus the local
numerical invariants of the étale sheaf m,[F,, on P}, as well as its generic rank, are
independent of E. But the Euler-Poincaré characteristic x (Pt mFp) = x(E, F,)
can be 0 or 1, according to whether E is ordinary or not. Thus there cannot
exist a general Euler-Poincaré formula involving the usual kind of numerical

invariants alone.

As this failure is related to the fact that the p-rank of a curve can decrease
under specialization, one may still expect a numerical formula under suitable
genericity assumptions. To explain this let us assume for the moment that F is
finite. Then the sheaf F' has finite monodromy, and we may fix an irreducible
finite Galois covering m: Y — X with Galois group G such that #* F' is constant
over some open dense subscheme of Y. Apart from some easy local terms
the Euler-Poincaré characteristic x (X, F') will depend on this covering together
with the F[G]-module Fj. A long exact cohomology sequence shows that this
mysterious contribution of Fj is additive in short exact sequences.

If G is a p-group, every F[G]-module is an extension of copies of the trivial
representation IF. Thus in this case x(X, F) is equal to x(X,F,) - dimy F}; plus
a finite number of explicit local terms. This observation goes back essentially
to Deuring [4] and Shafarevich [13] and has been used by other authors (e.g.,
Madan [8], Crew [3], Hawkins [6]).

In this article we pursue a different direction and assume that Y (sic!) s
ordinary. Then the p-rank of Y is gy; hence x(X,mF) = x(V,F) = 1 — gv.
By the Hurwitz genus formula, this is equal to |G| (1 — gx) minus a sum of
local terms depending only on the ramification of 7. This expression is certainly
in the spirit of 0.1. Since the generic stalk of m,JF is free of rank 1 over F[G],
one can view this as an explicit formula for some positive linear combination
of the mysterious contributions from all irreducible F[G]-modules. While this
argument falls, of course, much short of determining the contributions for all
F[G]-modules, it nevertheless suggests that their behavior might be predictable.

The main result of this paper gives an explicit formula for them. It involves
a certain local term LT]; Fr
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action of the inertia group at x on the generic stalk F, and which is equal to

which is a rational number depending only on the

dimp F,; whenever F is lisse at . Curiously, in contrast to the case £ # p, this lo-
cal term depends only on the action of the tame part of inertia, disregarding wild
inertia entirely. For its explicit definition see Setion 5. By combining methods
relying on ordinariness assumptions with the p-group argument sketched above

we arrive at the following main result:

Theorem 0.2 Let X be an irreducible smooth projective curve over an al-
gebraically closed field of characteristic p > 0. Let F be either a finite field



of characteristic p or a local field of residue characteristic p. Let F be a con-
structible étale sheaf of F-vector spaces on X. Assume that there exists an
wrreducible finite Galois covering w:Y — X such that

(a) the generic monodromy of @ F is a pro-p-group, and
(b) Y is ordinary.
Then
X(X, F) = (1= gx)- dimp Fy + > (dimy F, — LT} Fy).

It is natural to wonder whether the ordinariness assumption should be viewed
as very restrictive. The existence of at least one interesting application (see
below) suggests that this is not necessarily so. On the other hand, it was
observed already by Nakajima that this assumption imposes severe restrictions
on the local ramification of the covering w. Namely, any automorphism of Y
which fixes a point y and acts trivially on Oy’y/m?ﬂy must be the identity:
see Section 1 or [10] Th. 2 (i). In other words, all the wild inertia must be
concentrated in the first possible step for the lower numbering filtration. (Note
that this forces wild inertia to be an elementary abelian p-group, which is already
a purely group theoretical restriction.) In a different form (see Section 3) such
local properties actually play an essential role in our proof of Theorem 0.2. If the
global ordinariness condition is replaced by this weaker ramification condition,
our methods yield an inequality: see Proposition 7.1.

The assumptions of Theorem 0.2 hold in the following interesting case. Sup-
pose that X is the smooth compactification of a Drinfeld modular curve in
characteristic p. (For the general background in this area see [1] and the refer-
ences therein.) There is a global function field underlying the definition of X;
let I¥ denote its completion at some finite place g. The g-adic Tate modules
for the universal family of Drinfeld modules combine to an étale sheaf F' of
IF-vector spaces on X. This sheaf is, say, zero at a finite number of so-called
cusps of X and lisse of rank 2 elsewhere, provided that the “level” of X is suffi-
ciently high. Of special interest are sheaves deduced from F by linear algebra,
say be taking symmetric powers. To satisfy the above assumptions let Y — X
be the finite Galois covering obtained by imposing an additional principal level
structure at . Then condition 0.2 (a) holds for F' and any sheaf deduced from
it. Moreover, analytic uniformization shows that Y specializes to a semistable
curve composed of rational curves only; this implies condition 0.2 (b).

Finally, the author would like to thank the referee for some useful sugges-
tions.

1 Ordinariness and ramification

Throughout this paper we consider the following situation. Let k be an alge-
braically closed field of characteristic p > 0. Let 7: Y — X be a finite Galois



covering of irreducible smooth projective curves over k, with Galois group G. In
this section we review a theorem of Nakajima on local obstructions to Y being

ordinary. This result will not be used in the proof of Theorem 0.2.

For any closed point y € Y we let GGy, denote its stabilizer in G and my,, C
Oy, the maximal ideal of the associated local ring. The kernel of the action
of Gy on OY,y/mij,-yl is denoted Gy ; and called the i ramification subgroup
(with respect to the lower numbering). As the field of constants is algebraically
closed, the residue field extension is trivial and Gy = Gy o is the inertia group
at y. The wild inertia subgroup is Gy 1; the factor group Gy o/Gy 1 consists of
tame inertia and is cyclic of order prime to p.

Definition 1.1 We call the ramification at y “of type i” if Gy acts faithfully
on 0Y7y/m§;':;, that iS, Zf Gy,i =1.

Thus, type 0 means unramified, type 1 means at most tamely ramified,
and type 2 allows both tame and the simplest kind of wild ramification. The
following theorem was proved essentially in [10] Th. 2 (i).

Theorem 1.2 If G is a p-group, the following assertions are equivalent:

(a) Y is ordinary.

(b) X is ordinary and the ramification of ™ at every closed point y € Y is of
type 2.

Without assumption on G one still has the implication (a)=(b).

Proof.  We first consider the case that G is a p-group. Under this assump-
tion the p-rank of Y can be calculated explicitly via the Deuring-Shafarevich
formula ([4], [13], [8]). We review the necessary arguments. Note that, since
Y is a curve, the étale cohomology group H'(Y,[F,) vanishes for i # 0,1 (cf.
Section 2). Moreover, we have H%(Y,TF,) = [, because Y is connected. Thus
the Euler characteristic is x(V,F,) = 1 — A'(V,F,). To determine it, choose a
G-invariant effective divisor D C Y containing all ramification points of 7. The
open and closed embeddings

vy psy<iop
induce a short exact sequence of étale sheaves on Y':
0 — jiF, — F, — i.F, — 0.
Letting |D| denote the cardinality of D, the associated long exact cohomology
sequence implies
Xe(YND,F) = x(Y,jiF,)

X(Y, ) = x(Y, 0.TFy)
= 1-RrY(Y,F,) —|D|.

(1.3)



Similarly, we obtain
(1.4) (X N 7(D),Fy) = 1= K(X,Fy) = [x(D)].

On the open subscheme X ~\ 7(D), the étale sheaf 7,TF, is the locally constant
sheaf associated to the natural representation of G on its group ring IF, [G]. As
G is a p-group, this representation is a successive extension of |G| copies of the
identity representation IF,. Therefore m,IF, on X ~7(D) is a successive extension
of |G| copies of the constant sheaf IF,. The additivity of the Euler characteristic
in short exact sequences implies

Xe(Y N D, F,) = x(X N\ m(D), mT,)

(1.5)
= X (X ~7(D),F,)- |G|

Combining formulas 1.3, 1.4, and 1.5 yields:
(1.6) L=h!(Y,[Fp) = D= (1= h'(X, ) — |7(D)]) -|G.
Since
ONIG = 3161 = 3 GGyl Gyl = 3 IGl
y€D mod G y€D mod G yeD
we may rewrite 1.6 in the form (cf. [3] Cor. 1.8)
(1.7) L= (Y, Fp) = (1= ' (X, 1)) - 1G] = D (IGyl = 1).
yeD
We will compare this with the Hurwitz genus formula ([5] Ch. IV Cor. 2.4)
(1.8) 2-(1—gv)=2-(1—gx) G| - >_ 4y,
yeD
where the ramification term is ([12] ch. TIT §7 Prop. 14, ch. IV §2 Prop. 4)
6y =) _(IGyil = 1).
i>0
As G is a p-group, all inertia is wild; hence Gy = Gy,0 = Gy, 1. Therefore
oy = 2- (|Gy| - 1) + Z(|Gy,i| - 1)'
i>2
Substituting this expression into 1.8 and dividing by 2 we obtain
_ |Gyl =1
(1.9) 1—gy—(1—gx)-|G|—Z<|Gy|_1+ZT .
yeD i>2
Subtracting 1.9 from 1.7 yields
|Gyl =1
(110 =B R = oy 5y 161+ 3 1O
Y 2

Here the left hand side is always > 0, and it is = 0 if and only if Y is ordinary.
Likewise, the first summand on the right hand side is always > 0, and it is = 0
if and only if X is ordinary. The remaining summands on the right hand side



are also > 0, and they vanish for all 7 > 2 if and only if the ramification is of
type 2. Thus the equality 1.10 implies the desired equivalence (a)<(b).

It remains to prove the implication (a)=>(b) for arbitrary G. Assume (a)
that Y is ordinary. Then so is its Jacobian Jacy. It is known that ordinariness
for abelian varieties is an isogeny invariant (see [9] §15). Since, moreover, a
direct product of abelian varieties is ordinary if and only if both factors are
ordinary, any subquotient of an ordinary abelian variety is ordinary. In our
case the pullback and pushforward maps induce an isogeny between Jacx and
a subquotient of Jacy; hence Jacx is ordinary. Thus X is ordinary, proving
the first part of (b). To prove the second part fix any closed point y € Y. We
must show that G o vanishes. This assertion does not change if we replace
X =Y/G by Y/Gy and G by Gy 5. After this replacement G is a p-group, so
the equivalence already proved implies Gy 2 = 1, as desired. This finishes the
proof of Theorem 1.2. q-e.d.

2 Artin-Schreier theory

This section contains a brief review of Artin-Schreier theory in étale cohomology
and some preparatory remarks for use in the following sections.

Quasi-coherent, sheaves on a scheme X are usually viewed as sheaves with
respect to the Zariski topology. But they also induce sheaves in the étale topol-
ogy by pullback (see [SGA4] exp. VII §4). Tt is a fundamental fact that the
quasi-coherent cohomology of the former is canonically isomorphic to the étale
cohomology of the latter ([loc. cit.] Prop. 4.3). Therefore we can use the two

standpoints interchangeably and will not distinguish them in our notation.

Suppose now that X is a scheme over [F,. Then the structure sheaf carries the
natural Frobenius endomorphism o: Ox — Ox, s — s”. Consider a coherent
sheaf of Ox-modules F on X. By a o-linear endomorphism 7: F — F we mean
a homomorphism of sheaves of abelian groups satisfying 7(s-f) = sP - 7(f) for
all local sections s of Ox and f of F. For example, every ideal sheaf in Ox
carries a canonical such endomorphism, namely the restriction of o. Whenever

7 is clear from the context, we call it the associated Frobenius endomorphism.

One natural way that such pairs (F,7) arise is as follows (cf. [SGA4%],
Fonctions L ..., §3). Let F be a locally constant étale sheaf of TF,-modules of
finite type on X. Set F := F @ Ox and 7 :=id ® 0. (All tensor products will
be taken over T, unless otherwise specified.) Then F is, actually, a locally free

coherent sheaf, and the sequence

0 plOL 17 0

is exact. Consider an open embedding j: X < X where X is a noetherian
scheme over IF,. Let Z C Ox be an ideal sheaf whose zero locus is the comple-
ment X \ X. The extension by zero on the étale side corresponds to the fol-

lowing construction on the o-linear side. We give a formulation that is slightly



stronger than in [SGA4%], Fonctions L ..., Lemme 3.3, but the proof remains

almost literally the same:

Proposition 2.1  (a) There erists a coherent sheaf F on X extending F
and a o-linear endomorphism 7: F — F extending T such that the induced
endomorphism on F|TF is nilpotent.

(b) For any F and 7 as in (a) the following sequence is exact:

0 ia F 0.

For example, if F' is the constant sheaf IF,, we can take F :=1T and obtain
the exact sequence

(2.2) 0 Ty 1-"%71 0.

Suppose now that X is proper over an algebraically closed field k. Then
the cohomology groups of the above F are finite dimensional over k. This fact,
together with the long exact cohomology sequence associated to 2.1 (b), are
the basic tools in studying étale cohomology with torsion coefficients in equal
characteristic. The following elementary statements summarize what we need
from [SGAT] exp. XXIT §1.

Proposition 2.3 Let H be a finite dimensional vector space over an al-
gebraically closed field k of characteristic p > 0, and 7: H — H a o-linear
endomorphism. Put

H™ ::{hEH | Th:h}.
(a) The following sequence is exact:

0 H” H H 0.

(b) dimp, H™ < dimy H, with equality if and only if T is an isomorphism.

Applying this to the Frobenius endomorphism of H?(.X, F) induced by 7 one
deduces an isomorphism (cf. [SGA43], Fonctions L ..., 3.7)

(2.4) Hi(X,F) == H'(X,F)".

It follows that hL(X, F) < h*(X,F), with equality if and only if the Frobenius
map on Hi()?,f) is an isomorphism. In any case hi(X, F) vanishes when-
ever hi()_(, .7?) vanishes; this happens in particular for all ¢ outside the interval
[0, dim X].

We finish this section with a technical result in the curve case.

Proposition 2.5 Let 7 be an irreducible smooth projective curve over an
algebraically closed field k of characteristic p > 0. Let T C Oz be the ideal sheaf
of an effective divisor E C Z. Then the following assertions are equivalent:



(a) The Frobenius map on H'(Z,T) is an isomorphism.

(b) Z is ordinary and E is reduced.

Proof.  The short exact sequence 0 - Z — Oz — O — 0 induces a long
exact cohomology sequence

HYZ,0z) — H(Z,05) —= HY(Z,I) —= HY(Z,07) — 0.

All these maps commute with the respective Frobenius endomorphisms. On the
HO-terms Frobenius is given by s + sP. Since the leftmost term is k, Frobenius is
an isomorphism there. 1t follows that Frobenius on H!(Z,Z) is an isomorphism
if and only if it is an isomorphism on both H(Z,Of) and H'(Z,0z). As
HY(Z,0g) is just the affine ring of F, Frobenius is an isomorphism there if
and only if F is reduced. On the other hand Frobenius on H!(Z,07z) is an
isomorphism if and only if k' (Z,FF,) = h'(Z,0z) = gz, that is, if Z is ordinary.
This proves the desired equivalence. q.e.d.

3 Local Freeness

We return to the setup and the notations of Section 1. The aim of this section
is to relate ordinariness of Y to a somewhat different local condition, by taking
a closer look at the relevant coherent sheaves.

Let D C Y be a G-invariant effective divisor containing all ramification
points of w. Let J C Oy denote the associated ideal sheaf. We assume that
D is reduced. Then the stalk J, of J at any closed point y € Y is either Oy,
or my,y. The second case occurs whenever Gy # 1, but possibly also at some
other points. Since D is G-invariant, the coherent sheaf m,J carries a natural
(left) action of G. Thus we can view 7, J as a sheaf of (left) modules over the
“sheaf of group rings” Ox[G] := Ox ® F,[G]. The main result of this section
is the following. (But see also the corresponding local result at the end of this
section.)

Theorem 3.1 If G is a p-group, the following assertions are equivalent:
(a) Y is ordinary.
(b) X is ordinary and the sheaf 7, J is locally free of rank 1 over Ox[G].

Without assumption on G one still has the implication (a)=(b).

The proof will extend over most of this section. First we note a technical
lemma concerning passage to completion.

Lemma 3.2 Consider a closed point © € X and let = denote completion
with respect to mx . The following assertions are equivalent:

(a) mJ is locally free of rank 1 over Ox|[G] in a neighborhood of x.



(b) (m.J), is free of rank 1 over @XW[G]‘

Its proof, by standard arguments of commutative algebra, is left to the
reader. For any closed point z € X which is unramified in Y we have
= D
yen—'(z)
This is clearly free of rank 1 over @X,z[G]- Thus Lemma 3.2 shows that 7,7 is

locally free of rank 1 over Ox[G] outside the ramification locus. In particular,
this holds outside (D).

We now assume that G is a p-group and begin with some technical prepa-
rations. Consider the group ring A := F,[G] as a right module over itself. The
assumption on G implies that A is a successive extension of n := |G| copies of

the trivial 1-dimensional representation. In other words, there exists a flag
0=4 CA C...CA1CA =4
of right A-submodules with dim]pp A; = i for all i. We fix such a flag.

Let I denote the augmentation ideal of A. Since G acts trivially on the
1-dimensional subquotient gr; A := A;/A;_1, we have A; I C A;_1, for every
1 < i < n. In particular, we have I = A,,-Ig C A,_1, which for dimension
reasons implies I¢ = A,_1. Similarly, we have Ay -Ig C Ay = 0, so A; is
contained in the subspace of right G-invariantsin A. This subspace is generated
by Ng = deG g, so again for dimension reasons we must have Ay = [F,-Ng.

Lemma 3.3 There exist F,-bases {ay,...,a,} and {a},... a,} of A such

that, for all 1 < i < n, left multiplication by a;, resp. al, induce isomorphisms

lai- ] oy ]
gr, A - gr; A - gri A = Ay,

Proof.  Choosing any a; € A; N\ A;_1, we clearly obtain an [F,-basis of A.
Moreover, we have a;-A, C A; since the latter is a right A-submodule, and
a;*An—1 = a;-Ig C A;-Ig C A;—1, as seen above. Thus the map on the left
hand side is well-defined. As a; ¢ A;_1, this map is non-zero. It is therefore an

isomorphism, as desired.

For the right hand side we will dualize this argument. Consider the anti-
automorphism

() A— A Fagg =Y ag™!
and the linear form
CA—TF,, Y agg— a.
The pairing

Ax A— A, (a,d')— L(a*d)

10



comes out explicitly as

(X agg, S agg) = S agay,
so it is the standard G-invariant non-degenerate symmetric [F,-bilinear pairing
on A. The orthogonal complements A} thus form another flag of right A-
submodules, with dimy,, A+ = n —i. Choose any @ € A+ | ~ AL. Then we
have £(a;-A;—1) = 0. As A;_y and hence a@}-A;_q is right invariant under G,
from the definition of £ we see at once that af-A;_1 = 0. On the other hand
a; ¢ Af‘ implies a} - A; # 0. But (d;‘~Ai) g = &;‘~(Ai-lg) Ca;-Ai-1 =0, 0
a;-A; is contained in the subspace of right G-invariants A;. Setting a} := a7, it
follows that the map on the right hand side is well-defined and non-zero. It is
therefore an isomorphism, as desired. q-e.d.

We now use the above setup to decompose F := m,J as a sheaf of Ox-
modules. For every 0 < i < n let F; C F denote the saturation of the subsheaf
A; - F, that is, the unique coherent subsheaf of O x-modules such that F; =
A;-F generically and F/F; is torsion free. Wherever F is locally isomorphic to
Ox ® A, we have A; . F = Ox ® A; and hence A; - F = F;. In particular, we have
rankp, F; = i, and gr; F := F;/F;_1 is an invertible sheaf for every 1 <i < n.
From Lemma 3.3 we deduce homomorphisms

(3.4) g F—2] g p ] o FoF.

Wherever F is locally free with respect to Ox ® A, these maps are isomorphisms.
In particular, they are isomorphisms outside (D), and they are monomor-
phisms everywhere.

Next observe that Ay = IF, - Ng coincides with the space of left G-invariants
in A. In particular Ig-A; = 0. This implies I-F; = 0; hence F; is contained
in the subsheaf of G-invariants F¢. Now FE = Ox N mJ is the ideal sheaf
of the reduced divisor m(D)™4. Let us denote it by Z. Since both of F; C
have rank 1 over Ox, and F; is saturated in F, we deduce F1 = Z. Using
the right hand side of 3.4 we may now identify each gr; 7 with some non-zero
ideal sheaf contained in Z. Let E; C X denote the associated effective divisor.

As the homomorphisms 3.4 are isomorphisms outside 7(D), and E; contains
m(D)"d we have Ef*d = 7(D)™d. We will be concerned with the respective

multiplicities.

Lemma 3.5 The following assertions are equivalent:

(a) For every 1 <i < n the divisor E; is reduced.
(b) For every 1 < i < n the sheaf gr; F is isomorphic to L.

(¢) For every 1 < i < n the homomorphism on the left hand side of 3.4 is an
1somorphism.

(d) F is locally free of rank 1 over Ox|[G].

11



Proof.  The equivalence (a)<>(b) follows from the equality Efed = r(D)red.
The implication (b)=>(c) results from the fact that any non-zero endomorphism
of an invertible sheaf is an isomorphism. For (c)=(d) let s be any local section
of F whose image generates gr, F. If (c) holds, the image of a;-s generates
gr; F; hence all sections a;-s together form a local basis of F over Ox. As the
a; form a basis of A over IF,, the map Ox @ A — F, f @ a — f-a-s is then
a local isomorphism, proving (d). The remaining implication (d)=(b) follows
from the fact that the homomorphisms in 3.4 are isomorphisms wherever F is
locally free over Ox [G]. q.e.d.

Since J is an ideal sheaf in Oy, it carries a natural Frobenius endomorphism.
This induces a Frobenius endomorphism on 7,7 . This, in turn, obviously com-
mutes with the G-action and is therefore compatible with all the constructions
above. In particular, it induces endomorphisms of all F; and gr; F, which com-
mute with the homomorphisms in 3.4. Moreover, on F1 = Z it coincides with
the natural Frobenius endomorphism from being an ideal sheaf in Ox. The
same follows for every gr; F when viewed as an ideal sheaf of Ox.

After all these preparations, we can now prove the desired equivalence in 3.1.
We have already seen that 7,7 is locally free of rank 1 over Ox[G] outside the
ramification locus of . Thus the condition 3.1 (b) does not change when D
is enlarged by throwing in some unramified points. Therefore we may, and do,
assume without loss of generality that D is non-empty.

We first apply Proposition 2.5 to (Z,E) = (Y, D). By assumption D is
reduced, so it follows that Y is ordinary if and only if the Frobenius map on
H(Y,J) is an isomorphism. Since H(Y,J) = HY(X,7m.J), we can study
this condition over X. As D is non-empty, so i1s each F;, and this implies
HY(X,gr; F) = 0. Thus gr; F can have non-zero cohomology only in degree 1.
The usual long exact cohomology sequences show that H'(X,m.J) is a suc-
cessive extension of H!(X, gr; F) for all 1 < i < n. All this is compatible
with Frobenius; hence Frobenius is an isomorphism on H'(X,r,J) if and only
if it is an isomorphism on every H'(X,gr; F). Applying Proposition 2.5 to
(Z,E) = (X, E;) we find that this is equivalent to saying that X is ordinary and
every F; reduced. By Lemma 3.5 this, in turn, is equivalent to condition 3.1 (b).
This shows the desired equivalence (a)<(b).

It remains to prove the implication 3.1 (a)=(b) for arbitrary G. Assume
(a) that Y is ordinary. At the end of Section 1 we already proved that X is
ordinary. To show the local freeness we consider stalks at any fixed closed point
reX.

We first suppose that z is totally ramified in Y. Then G coincides with
the inertia group above z, and the wild inertia group G is the unique p-Sylow
subgroup of G. Thus 7 factors through the two Galois coverings ¥ — 7 :=
Y/Gy — X. Let y € Y and 2z € Z denote the unique points above z. The
upper covering has p-power order, so by the earlier case of the theorem 7, is
free of rank 1 over Oz .[G]. Clearly this algebra is local, and my ,-J, is a
maximal submodule of 7. It is therefore the unique maximal submodule and

12



any element v € J, \ my ,-J, is a generator. The lower covering is totally and
tamely ramified at z, so its Galois group is cyclic of order prime to p. Choose
a complement H of G4, so that G = G1 x H and H —~ G/G,. Since H acts
semisimply on J,, we can choose the above generator v in an eigenspace for H.
Then for some abelian character y we have v = X(h)-vforall h € H. Similarly,
the stalk Oz . decomposes under H into torsion free Ox y-modules of rank 1,
indexed by the abelian characters of H. Therefore Oz . is free of rank 1 over
Ox [H]. Choose any generator w. We claim that w-v is a basis of 7, over
Ox »[G]. In fact, for all g1 € G; and h € H we have

9 (w-v) =9 ("wx(h)-v) = "w-x(h) T,

where we have used the fact that G acts trivially on Oz .. Now, as g; varies,
the elements 91v form a basis of J, over Oz .. As h varies, the elements haw
form a basis of Oz, over Ox ;. The factor x(h) being a unit in Ox ,, it follows
that the elements glh(w -v) form a basis of J, over Ox ;. This proves the claim
and hence the remaining implication at z in the totally ramified case.

In the general case choose any point y € Y above . Applying the preceding
case to the covering Y — Y/G,, and passing to completions we find that 7, is
free of rank 1 over Ox ;[Gy]. Now (n*j)ﬂ

» as a representation of G over Ox ,

is induced from the representation fy of Gy. It is therefore free of rank 1 over
Ox ¢[G]. By Lemma 3.2 this implies that 7,7 is locally free of rank 1 over

Ox[G] near z, as desired. This finishes the proof of Theorem 3.1. q-e.d.

We finish this section with the following local corollary. Given Theorem 1.2,
one could deduce Theorem 3.1 essentially from that local result, which must
surely possess an entirely local proof. But we proceed in the opposite direction
and deduce it from our global results. We feel justified in this because, among
the results of Sections 1 and 3, only Theorem 3.1 is really needed to prove
Theorem 0.2. Besides, our direct proof for 3.1 is very much in the spirit of the

remaining sections.

Corollary 3.6 Consider any closed point x € X. If m 1s totally wildly
ramified at x, the following assertions are equivalent:

(a) The ramification of m above x is of type 2.
(b) The stalk (7T ), is locally free of rank 1 over Ox ,[G].

Without assumption one still has the implication (a)=(b).

Proof.  Assume first that 7 is totally wildly ramified at 2. By Lemma 3.2
we may pass to the respective completions. Let L/K denote the resulting exten-
sion of local fields, and choose any identification K = k((7~')). By a theorem
of Katz ([7] Thm. 1.4.1) the extension L/K is the completion at 7' = oo of some
Galois extension of k(7") with the same Galois group G = Gal(L/K) and which
is unramified outside 7' = co. Let 7': Y’ — X’ := P} denote the associated

Galois covering of the projective line. Using Lemma 3.2 again it suffices to prove
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the equivalence for this new global covering instead of the old one. Thus after
replacing Y — X by Y/ — X’ we may assume that X = P} and 7 is unramified
outside z = oo.

As seen earlier the local freeness condition in Theorem 3.1 is then automati-
cally satisfied outside co. Note also that the total wild ramification implies that
(G is a p-group. Since X is ordinary, Theorems 1.2 and 3.1 thus imply that each
of (a) and (b) is equivalent to Y being ordinary. Thus they are equivalent to
each other, as desired. (Curiously, the formula 1.7 implies that the p-rank of Y

is always zero in this situation; hence Y is ordinary if and only if it is rational.)

The implication (a)=>(b) in the general case follows from the totally wildly

ramified case in exactly the same way as in the proof of Theorem 3.1. q.e.d.

4 Reduction to coherent cohomology

Keeping the previous notations, we now consider the commutative diagram

V=YD ! 5 Y

wl l‘rr

U:=Xn(D)Ls>x.
Let F' be a locally constant étale sheaf of [F,-modules on U which becomes
constant over V. Since V is connected, this constant value is M := H°(V, @* F)
and it carries a natural representation of G. The given isomorphism between
@* I and the constant sheaf M induces an isomorphism w,@* F = M @ w,lF,,

which is compatible with the natural action of G on all terms. Taking G-
invariants, we deduce

F 2 (o F)% = (M@ wlF,)°.
Conversely, we can begin with any (left) F,[G]-module M. Then
(4.1) Far = (M @ w.F,) ¢

is a locally constant étale [F,-sheaf on U which becomes constant over V' and
whose associated representation is M. Clearly the functor M +— Fis is exact.

Recall that J C Oy denotes the ideal sheaf of D. It therefore carries a
canonical Frobenius endomorphism giving rise to a short exact sequence (cf. 2.2)

~ 1-0
0 1 J J 0.

If 7 denotes the induced Frobenius endomorphism of 7,7, we deduce a short

exact sequence

. 1-71
0 —— sy T T 0.

For every finite F, [G]-module M we consider the coherent sheaf

(4.2) Fu = (Mo mJ)°.
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From Corollary 3.6 we immediately deduce:

Proposition 4.3 If the ramification of w is everywhere of type 2, the functor
M — Fur is ezact.

Next, the sheaf Fur inherits a Frobenius endomorphism from 7,7, denoted
again by 7.

Lemma 4.4 There is a natural short exact sequence

0—>j!FM Fur Fur 0.

Proof.  Since w is étale, we have w,lF, ® Oy —== w,Ov. Therefore
P*Fu = (M @@.0v)¢ 2 (Mo =F, ®0y)° = Fuy @ Oy.

In other words, the restriction of Far to U is the coherent sheaf corresponding
to the locally constant étale sheaf Fir by Artin-Schreier theory. Let Z C Ox
denote the ideal sheaf of m(D)™. We will show that Fps together with its
Frobenius endomorphism satisfies the condition 2.1 (a). Since o(J) C J7,
there exists an integer m > 0 such that 7" (7w, J) C Z-(m.J). This implies

(Fy) = (M@ md)% Cc (Merm(md)’ c (MeT-(mg) =1-Fu.

The desired assertion now follows from Proposition 2.1 (b). q-e.d.

We can now compare certain étale and coherent Euler characteristics.

Proposition 4.5 For every M we have x(X, jiFar) > x(X, Far), with equal-
ity if Y is ordinary.

Proof. By Lemma 4.4, Proposition 2.3, and the isomorphy 2.4 for every
i we have hi(X,jiFar) < h'(X, Far), with equality if and only if 7 induces an
isomorphism on H*(X, Far). In degree 0 we have

HO(X, Fur) = HO (X, M @ m.J)% = (M @ H(Y, 7))°.

Note that H°(Y, J) = k or 0, depending on whether D = & or not. Accordingly,
we deduce that

HY (X, Frr) = (M@ k) =M% @k, resp. = 0.

In both cases 7 is an isomorphism on this group. The only other possibly
non-zero cohomology group occurs in degree 1. Thus the inequality of Euler
characteristics follows from the inequality of h's, and it remains to show that =

induces an isomorphism on H!(X, Far) if Y is ordinary.

In this case, Theorem 3.1 implies that the functor M — Fy; is exact. Let us
assume for simplicity that D is non-empty. (It is easy to extend the proof to the
general case.) Then ot (X, .7:"M) 1s a successive extension of Hl(X, .7:"N) where N
runs through the simple subquotients of M in any chosen Jordan-Holder series.
Thus 7 is an isomorphism on H' (X, ]:'M) if and only if the same holds for every
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simple subquotient of M. As every irreducible representation is a subquotient
of the regular representation, it suffices to consider the case M = T, [G]. In this
case Fyr = F Gl @ mJ)¢ = m.J; hence Hl(X,]:"M) ~ HY(Y,J). AsY is
ordinary and D reduced, the desired isomorphy now results from Proposition 2.5.

q.e.d.

5 Local Terms

In the section we define the local terms occurring in Theorem 0.2. As before let
X be an irreducible smooth projective curve over an algebraically closed field &
of characteristic p > 0. For any closed point # € X let I, denote the absolute
Galois group of Quot((/’)\xyx) and I3M€ its maximal tame quotient. Let Z(p)
denote the ring of rational numbers without p in the denominator. There is a

well-known canonical isomorphism
Z(p)/Z ——= Homcont(fiame,k*).

To recall its definition, for any positive integer n which is not divisible by p let

uy, denote an n'™ root of any uniformizer in (/9\)(@. For = € Z(p) and o € [fame
set
u ™m
(5.1) Xz (o) = ( n) €k*.
5 u,

This defines a continuous homomorphism I;*™¢ — k* which depends only on 2
modulo Z and not on the choice of u,,. The following notation will be convenient.

Definition 5.2 For any continuous character x : I*™¢ — k* we let (x)
denote the unique rational number o € Z(py with X = xo and 0 < a < 1.

Now suppose that T is a finite field of order p”, and consider a finite dimen-
sional continuous representation M of I, over F. As k is algebraically closed,
there are precisely r different embeddings ¢: F < k. For each of them, the rep-
resentation M ®@r , k is a successive extension of 1-dimensional representations
of I'»™e Let y, , denote the multiplicity of x as subquotient of M ®y , k.

Definition 5.3 IfTF is finite of order p", we set

LT, M = %'ZZM,X'@‘(X» €Q.

Note that this local term depends only on the semisimplification of M ; hence
it 1s additive in short exact sequences. Note also that LTE M = dimy M when-
ever I, acts trivially on M. Furthermore, the local terms of M as a repre-

~

sentation over [F, respectively over F,, are related. Namely, since M ®@p, k =

P
P, M @y, k, one easily sees that
(5.4) LT M = . LTE M.
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Now suppose that F is a local field of residue characteristic p, and consider
a finite dimensional continuous representation M of I, over F. Let m C R
denote the maximal ideal and the ring of integers of FF, and set Iy := R/m. The
representation of I stabilizes some R-lattice A C M of maximal rank. Tt is well-
known that the semisimplification of A/mA is, up to isomorphism, independent
of the choice of A. Thus the following definition makes sense.

Definition 5.5 IfTF is a local field of residue characteristic p, we set

LT M = LTI (A/mA) € Q.
Again this 1s clearly additive in short exact sequences. Note that again

LTE M = dimp M whenever I, acts trivially on M.

We finish this section by giving simple formulas in certain special cases.

Proposition 5.6 (a) If I, acts on M through a pro-p-group, then
LT} M = dimy M.
(b) If M s a self-dual representation of I, then
LT, M = %.(dimFM+u0),

where pg s the multiplicity of the trivial 1-dimensional representation of I,
as subquotient of M if F is finite, resp. of A/mA if F is local.

Proof.  Part (a) is immediate from the definitions. In (b) the local case
follows from the finite case, so we assume that F is finite of order p”. As M
is self-dual, we have p, -1 = p, for all + and x. In the case of the trivial
character 1, we have p, 1 = po for every +. Thus from Definition 5.3 we obtain

IO M = %'ZZ““X'O_ &)
_ %'ZZ“%X'@_ -
= $~XL:XX:NL,X'{1 jfi;é]l,
— _.Z(dimk(M @, k) + p.1)

2r

1 .
= §~(d1m]pM+/L0),

as desired. q.e.d.
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6 Degree calculation

Now we return to the situation of Section 4, where M is a finite dimensional
representation of GG over the field F,. For any closed point € X there is a
canonical conjugacy class of continuous homomorphisms 7, — GG whose images
are precisely the stabilizers G, for all points y € Y above . Thus M can be
viewed as a representation of I, unique up to isomorphism, and hence the local
terms LTEPM are defined. The aim of this section is to prove the following

formula. (Compare the formula of Chevalley-Weil [2] for Riemann surfaces.)

Proposition 6.1 If the ramification of m is everywhere of type 2, for any
finite F, [G]-module M we have

deg Fyy = — LI} M.
zen(D)

This will result from a series of reduction steps. To begin with, observe that
_ degmF

(6.2) deg Fry = “B8T 7M

1G]
The definition 4.2 of Fys implies

o Fy = 7r*(M®7r*j)G = (M®7T*7r*J)G C Me@r'mJ,
so the adjunction map 7*m,J — J < Oy induces a homomorphism
op: ™Fy — M ® Oy.

Its local properties are described by the following lemma.

Lemma 6.3 ©ar is an isomorphism outside D and a monomorphism every-
where. Taking stalks at any point y € D we have

o

(Coker @ar)y

Proof. For any closed point y € Y there is a natural isomorphism of

(/')\y7y[G]—modules
(7r*7r*j); = (Indgy fy) ®dx. @yyy,

where on the right hand side G acts on the first tensor factor and @yw on the
second. With this identification the adjunction map is the composite of two

maps
¢ = ~ ~ ~ ~
(Inde Ty) O . Oyy — Jy O . Oyy — Iy,

where the first map comes from projection to the identity coset Gy, C G and
the second is simply the multiplication map. It follows that

(T Fu), = (Mo (@@ mg),)”
(M@ (Indgy jy) O, @Yyy)G
(M & jy)Gy ®@X’I @Y,y;

R

R
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and here the map ¢y to M ® @yyy is given simply by multiplication between
jy and @yﬂ.

If y € D, we have Gy = 1 and jy = @yy = (;)\X@. In this case the above
map on completions is visibly an isomorphism. Thus ¢p; is an isomorphism out-
side D. As 7* Far and M @Oy are locally free coherent sheaves of the same rank,
it follows that ¢ar is a monomorphism everywhere and its cokernel is torsion.
This proves the first assertion, and for y € D it also shows that (Coker @),
does not change on passing to completions. Thus the second assertion follows
directly from the calculation above. q.e.d.

Since deg(M ® Oy ) = 0, Lemma 6.3 implies

(6.4) degm* Fpyr = — Z dimy (Coker @ar)y.
yeD

Clearly any two points y that are conjugate under G yield the same local con-
tribution. Thus by combining 6.4 with 6.2 we obtain

(6.5) deg Fay = — Z dimy (Coker goM)y.
. y€D mod G |Gy|

To prove Proposition 6.1 we may thus fix a point y € D with image z := 7 (y)

and must show

dimy (Coker @ar)y
G,

(6.6) =LTh» M.

By Lemma 6.3 and the definition of LTEP M, both sides of 6.6 depend only
on the action of Gy, on Y and M. Thus we are reduced to an entirely local
problem. For ease of notation, let us replace X =Y /G by Y/Gy and G by Gy,
while keeping Y and y the same. In other words, we now assume that G, = G.

Then the next lemma becomes very useful.

Lemma 6.7 If the ramification of m at y is of type 2, then dimg (Coker par),

s additive in short exact sequences.

Proof.  Any short exact sequence 0 = M’ — M — M" — 0 gives rise to a

commutative diagram:

0 0 0
0 7 Far M' @ Oy —— Coker oy — 0
0 ™ Far M @ Oy — Coker ppr —— 0

0—>7T* _M” —>M”®OY —>Cokerg0Mu —>0
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Here the rows are exact by construction, and the middle column is obviously
split exact. The left hand column is exact by Proposition 4.3 and the flatness
of w. Thus the 3 x 3-lemma implies that the right hand column is exact; whence
the lemma. q-e.d.

By Lemma 6.7 and the definition of LTE" M, both sides of 6.6 depend only
on the semisimplification of M. To prove 6.6 we may thus assume that M is
semisimple. Let G'1 4G denote the wild inertia group at . Then M comes from
a representation of the tame quotient G/G.

Lemma 6.8 For any finite IF, [G/G1]-module M the two sides of 6.6 do not
change when Y 1s replaced by Y/G1 and G by G/G1.

Proof. For the right hand side of 6.6 this is clear from the definition
of LTEP M . For the left hand side consider the factorization ¥ — 7 := Y/G,
— X, where the second map is again a Galois covering, with group H := G/G.
Let z € Z denote the unique point between y and z. Since y € D, we have
jy = My, and hence (jy)Gl = My, N @Z,z = My_.. The denominator in
Lemma 6.3 is therefore

(M®jy)G'@Y,y = (M® (@)GI)H'@Y&/ = (M®aZVZ)H'@Y,y~

Thus both the denominator and the numerator in 6.3 are obtained by base
extension from Oz, to Oy,y. Since the latter is free of rank |G| = |G|/|H| over
the former, the left hand side of 6.6 is

dimy (Coker SOM)y 6.3 1 . < M@ @Y,y >
= — . dimg = -
|G G (M ® Jy)%-Ov,y

= g dim MO )

G (M @mz:)" Oy,
1 . < M & @Z 2 )

= — - dimy — = ,

|H| (M®mZ7z)H'OZ,z
as desired. q.e.d.

To prove 6.6 we may now assume that G = G is tame. We can identify
the group of characters x : G — k* with a subgroup of continuous characters
Itame _y k* of the absolute tame inertia group. Consider any finite dimensional
representation V' of G over k, and let y, denote the multiplicity of x in V. Any
finite IF, [G]-module M gives rise to such V := M ® k via the unique embedding
F, < k, and Definition 5.3 becomes

LTy M =Y (1= (x))-
X
In view of Lemma 6.3 we must therefore prove

V@k @Yy )
s =G| ty (1 —{x)).
V @ jy)G'OY,y XX: X ( < >)

(6.9) dimy ((
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This formula makes sense for any V' as above, even if V' does not arise from
a representation over IF,. On the other hand any such V is a direct sum of 1-
dimensional representations. Since both sides of 6.9 are additive in direct sums,
it suffices to prove the equality when dimg V = 1. Assume this from now on.

Put n := |G|. There is a unique integer 0 < m < n such that G, and
equivalently 753M¢ acts on V through the character xz= from 5.1. Following

Definition 5.2 the right hand side of 6.9 is then
m
Gl-(1 = (x2) =n-(1-2) =n—m.

n

To determine the left hand side let u,, € 6y7y be an n* root of any uniformizer
in Ox . Then G acts on u, through the character x1, and we have the G-
isotypic decomposition

jy = I/ﬁY,y = @UZ—L@X,T
i=1
Since G acts on V' through the character xm = (x1)™, we deduce that
(Vo Jy)¢ = up=™-Ox .
Thus the left hand side of 6.9 is
dimy < 4 ®k_(')y€\ ) =n—-m.
V @k up "Oyy

This shows the equality 6.9 in the case dimg V' = 1 and thereby finishes the
proof of Proposition 6.1. q.e.d.

7 Euler-Poincaré formula
With the notations of the preceding sections we can now deduce:

Proposition 7.1 If the ramification of 7 is everywhere of type 2, for any
finite ¥, [G]-module M we have

X(X,jiFy) > (1 - gx)- dimg, M — >~ LTy» M.
zE'rr(D)

If Y is ordinary, we have equality.

Proof.  This follows from the Riemann-Roch formula via the calculation

45 ~
X(X, 0 Fm) 2(=) x(X, Fu)

RR (l—gX_)-rank]:'M-l-deg]:'M
1

= (I—gx)-dimp, M — > LI} M.
zeT(D)

(=]

q.e.d.

21



Remark 7.2 Tt can happen that the above inequality is an equality, even
when Far cannot be trivialized by an ordinary covering. The referee suggested
that such a sheaf be called ordinary. A systematic analysis of such ordinary
sheaves is as yet lacking. Tt would also be interesting to know whether the
inequality holds without ramification assumption.

In the remainder of this section, we deduce Theorem 0.2 from Proposi-
tion 7.1.

Lemma 7.3 Theorem (.2 holds when F = T,.

Proof. Let m: Y — X be as in 0.2. Choose a G-invariant reduced effective
divisor D C Y such that F is lisse outside m(D). For simplicity, we suppose
that D is non-empty. The open and closed embeddings

X n(D) s x <L On(D)
induce a short exact sequence of étale sheaves
0— jij*F — F — i, i"F — 0.

As both sides of the desired equality are additive in short exact sequences, we are
reduced to the cases F' = jij* F and F = 7,7* F'. In the second case the equality
is obvious. In the first case consider the representation of the fundamental
group 7$'(X \ m(D),7) on the stalk M := Fj. By assumption, the normal
subgroup 7$*(Y . D, ) acts through a p-group. The coefficients being Fp, it
therefore acts trivially on the semisimplification of M. As both sides of the
desired equality are additive in short exact sequences, we may replace M and
F by their semisimplifications. Thereafter, we can view M as a representation
of G and identify F' with the sheaf jiFas (see 4.1). It then remains to show
that the right hand side in Proposition 7.1 coincides with that in Theorem 0.2.
The contributions of any point # € m(D) are equal, because (jiFar)e = 0. For
z € X ~ w(D) the contribution in 0.2 vanishes, because Fys is lisse at z. Thus
the respective right hand sides do coincide, as desired. q-e.d.

Lemma 7.4 Theorem 0.2 holds when I¥ 1s finite.

Proof.  Suppose that [F/FF,] = r. Then for any F-vector space M we have
dim]]‘p M = r-dimyp M. If F' is viewed as a sheaf of modules over I, instead of IF,
its cohomology groups do not change; hence its Euler characteristic is multiplied
by r. By 5.4 the same happens to the right hand side of the desired equality.
Thus we are reduced to Lemma 7.3. q.e.d.

Now suppose that ¥ is a local field of residue characteristic p. For appli-
cations to function fields we definitely want to include the case of equal char-
acteristic, where étale sheaves of F-modules are not commonly used. Since all
notions and arguments are literal extensions from the case I = Q,, we merely

22



give a brief review based on [SGA41] Rapport §2 and [SGA5] exp. V, exp. VI,

keeping everything as elementary as possible.

Let m C R denote the maximal ideal and the ring of integers of IF, and set
Fo := R/m. A constructible sheaf of F-modules on X is given by the following
data. For every integer n > 0 consider a constructible étale sheaf F, of R/m"*1-
modules on X. Consider isomorphisms F,,/m"t'F,, —~5 F, forallm >n >0
which satisfy the obvious cocycle relation. Thus (Fy) is an inverse system of
étale sheaves of torsion R-modules ([SGA5] exp. V Def. 3.1.1). The category of
constructible sheaves of F-modules is obtained from the category of such systems
by a certain localization process ([SGAH] exp. VI 1.4.2), which corresponds to
the heuristic interpretation

_ 2N 9
F = FQ®g 1{171111 F,.
In fact, the stalk of F' at any geometric point z is formed exactly in this way:

F, =FQ®r 1}_111 Fo s
n

To some extent, the system (F,) can be modified without changing these
stalks. Tt turns out that the F,, can be chosen flat over R/m”*! that is, their
stalks are free of finite type over R/m"*! ([SGA43] Rapport 2.8). We assume
this from now on. Then A, := lim F,, , is an R-lattice of maximal rank in F,
and F, , = Az/m”‘i'l/\z. In par‘;i_c_ular, this implies dimg F, = dimy, Fy .

Let j: U = X be the embedding of a dense open subscheme such that
J* Fp is lisse. Then flatness implies that j* F, is lisse for every n. Giving j*F is
therefore equivalent to giving the continuous F-linear representation of 75 (U, 1)
on the geometric generic stalk Fj.

Like the stalks, the cohomology groups are obtained by actually taking the
inverse limit:

H'(X,F) :=For limH (X, Fy).

As X is proper, the groups H'(X, F,) are finite. The inverse system thus
automatically satisfies the Mittag-Leffler condition; hence the H'(X, F) form a
system of d-functors on the category of constructible sheaves of F-modules. One
can also deduce in general that H!(X, F) has finite dimension over F ([SGAS5]
exp. VI 2.2). Under the flatness assumption above, the Euler characteristics of

F (with respect to F) and of Fy (with respect to Fg) coincide:
Lemma 7.5 x(X, F) = x(X, Fo).

Proof.  The general way to show this uses the notion of perfect complexes
and their invariance under cohomology ([SGA43] 4.6, 4.9), and the argument
in [loc. cit.] 4.11. But in the curve case the following standard direct argument
suffices.

If F is supported on a finite set of points, its cohomology is concentrated in
degree 0 and the assertion follows at once from the corresponding equality for
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stalks. Using long exact sequences, we can thus reduce ourselves to the case that
F = j1ij* F for some dense open subscheme j: U < X such that j* Fp is lisse.
After shrinking U we may also suppose that U # X. Then all the cohomology
of F,, = jij* F, is concentrated in degree 1. Let us abbreviate H,, := Hl(X, F,).
Let h := dimgp, Hy and choose a uniformizer + € m. For any n > 0 the exact

sequences

0 Fo—YsF,—LsF, Fo 0
N
Fn—l

7N
0 0

give rise to the following exact cohomology sequences:

t

0 HO Hn Hn HO 0
NS
Hn—l
0 0
Using any half of this, one shows by induction that length, H,, = (n + 1)-h
for every n > 0. The right half implies H,/mH, = Hg; hence H, is generated
by h elements. Being a module over R/m"*! whose own length is n + 1, it
is therefore free of rank h over this ring. We also find that the maps H,, —

H,_1 are surjective. It follows that ]Lm H, 1s free of rank h over R; whence

dimp H (X, F) = h, as desired. q.e.d.

Lemma 7.6 Theorem 0.2 holds when I¥ s a local field.

Proof. By Lemma 7.5 the left hand side of the desired equality remains
unchanged on passing to Fy. By the above remarks the same is true for the
dimensions of stalks, and for the local terms it is true by Definition 5.5. Thus
we are reduced to Lemma 7.4. q.e.d.

This finishes the proof of Theorem 0.2 in all cases.
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