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§23 The Dieudonné functor in the local-local case

Recall that k is a perfect field, W = Wk is the Witt group scheme over k,
Wn is the cokernel of V n on W , and Wm

n is the kernel of Fm on Wn. The
collection of allWm

n becomes a direct system via the homomorphisms v and i:

Wm
n

� � i //
� _

v

��

Wm+1
n � _

v

��

Wm
n+1

� � i // Wm+1
n+1

Let σ : W (k) −→ W (k) denote the ring endomorphism induced by F . (We
use a different letter to avoid confusion with F as an endomorphism of the
group scheme W !)

Definition. Let E be the ring of “noncommutative polynomials” over W (k)
in two variables F and V , subject to the following relations:

• F · ξ = σ(ξ) · F ∀ξ ∈W (k)

• V · σ(ξ) = ξ · V ∀ξ ∈W (k)

• FV = V F = p

Note that E is a free left, or right, module over W (k) with basis

{. . . , V 2, V, 1, F, F 2, . . .}.

Example. If k = Fp, then E = Zp[F, V ]/(FV − p) is a regular commutative
ring of Krull dimension 2. In all other cases, E is non-commutative.

Proposition 23.1. There exist unique ring homomorphisms E → Aut(Wm
n )

for all m,n such that F and V act as such and ξ ∈ W (k) acts through
multiplication by σ−n(ξ). Moreover, these actions of E are compatible with
the transition homomorphisms i and v of the direct system.

Proof. For any ξ ∈W (k) and x ∈W , the formulas in Proposition 21.1 imply
that F (ξx) = σ(ξ) · F (x) and ξ · V (x) = V (σ(ξ)x). On the other hand recall
that V ◦F = F◦V = p·id by Theorem 14.4. Thus there is a unique action of E
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on W , where F and V act as such and ξ ∈W (k) acts through multiplication
by itself. The above relations also imply that this action induces a unique
action of E on Wn and on Wm

n for all n and m. Moreover, the functoriality
of F and V shows that the homomorphisms i and r are equivariant.

However, since V = vr, the relation ξ · V (x) = V (σ(ξ)x) implies that
ξ ·v(x) = v(σ(ξ)x). Thus in order to turn v into an E-linear homomorphism,
we must modify the action of W (k) by an appropriate power of σ. This is
precisely what we accomplish by letting ξ act on Wm

n through multiplication
by σ−n(ξ). Then E acts compatibly on the whole direct system.

Definition. For any finite commutative group scheme G over k of local-local
type we define

M(G) := lim
−→
m,n

Hom(G,Wm
n ),

with its induced left E-module structure via the actions of E on the Wm
n .

Clearly this defines a left exact additive contravariant functor to the category
of left E-modules.

Theorem 23.2. The functor M induces an anti-equivalence of categories
{{

finite commutative
group schemes over
k of local-local type

}}

∼
−→

{{

left E-modules of
finite length with
F and V nilpotent

}}

.

This “main theorem of contravariant Dieudonné theory in the local-local
case” is essentially a formal consequence of the results obtained so far. As a
preparation note that the action of E on Wm

n via Proposition 23.1 and the
embedding of Wm

n into the whole direct system induce homomorphisms of
left E-modules

Em
n := E/(EFm + EV n) −→ End(Wm

n ) −→M(Wm
n ).

Proposition 23.3. (a) These homomorphisms are isomorphisms.

(b) lengthW (k)M(G) = logp |G|.

Proof. As Wm
n ↪→ Wm′

n′ is a monomorphism for all n ≤ n′ and m ≤ m′, the
map End(Wm

n )→ M(Wm
n ) is injective. By Lemma 22.1 it is also surjective,

and hence bijective. Next Proposition 16.1 implies that

k
∼
−→ E/(EF + EV )

∼
−→ End(ααp)

∼
−→M(ααp)

and hence (a) for m = n = 1. More generally, one easily checks that every
non-trivial E-submodule of Em

n contains the residue class of Fm−1V n−1 (com-
pare Proposition 23.9 below). Since the image of Fm−1V n−1 in End(Wm

n ) is
non-zero, we deduce that the map Em

n → End(Wm
n ) is injective.
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Before finishing the proof of (a), we prove (b), using induction on |G|.
The assertion is trivial when |G| = 1, and holds for G = ααp by the above.
Whenever |G| 6= 1 there exists a short exact sequence

0 −→ G′ −→ G −→ ααp −→ 0,

and we may assume that (b) holds for G′. The induced sequence

(23.4) 0←−M(G′)←−M(G)←−M(ααp)←− 0

is exact except possibly at M(G′). To prove the exactness there consider any
element of M(G′), say represented by a homomorphism ϕ : G′ → Wm

n for
some m,n. Consider the morphism of short exact sequences

0 // G′ //

ϕ

��

G //

��

ααp // 0

0 // Wm
n

// H // ααp // 0

where H is the pushout of the left hand square. Applying Proposition 22.2
to the lower exact sequence yields a homomorphism H → Wm+1

n+1 extending
the homomorphism iv : Wm

n → Wm+1
n+1 . The composite homomorphism G →

H → Wm+1
n+1 then defines an element of M(G) which maps to the given

element of M(G′). This proves that the sequence (23.4) is exact, and hence

lengthW (k)M(G) = lengthW (k)M(G′) + lengthW (k)M(ααp)

= logp |G
′|+ logp |ααp|

= logp |G|,

proving (b).
Returning to (a) one directly calculates that lengthW (k)E

m
n = nm. By

(b) and the beginning of §22, we also have lengthW (k)M(Wm
n ) = nm. Thus

Em
n → End(Wm

n ) is an injective homomorphism of E-modules of equal finite
length; hence it is an isomorphism, finishing the proof of (a).

Lemma 23.5. The functor M is exact.

Proof. By construction it is left exact. For any exact sequence 0 → G′ →
G → G′′ → 0, Proposition 23.3 (b) and the multiplicativity of group orders
imply that the image of the induced map M(G) → M(G′) has the same
finite length over W (k) as M(G′) itself. Thus the map is surjective, and M
is exact.
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Lemma 23.6. If Fm
G = 0 and V n

G = 0, then Fm and V n annihilate M(G).
In particular, the functor M lands in the indicated subcategory.

Proof. The first assertion follows from the definition of M(G) and the func-
toriality of F and V , the second from the first and Proposition 23.3 (b).

Lemma 23.7. The functor M is fully faithful.

Proof. For givenG,H choosem, n such that Fm and V n annihilateG,H , and
abbreviate U := Wm

n . By Proposition 22.6, we may choose a copresentation

0 −→ H −→ U r −→ Us

for some r, s. By the exactness of M , we obtain a presentation of E-modules

0←−M(H)←−M(U)r ←−M(U)s.

Applying the left exact functors Hom(G,−) and HomE(−,M(G)), we obtain
a commutative diagram with exact rows

0 // Hom(G,H) //

M

��

Hom(G,U r) //

M

��

Hom(G,Us)

M

��

0 // HomE(M(H),M(G)) // HomE(M(U r),M(G)) // HomE(M(Us),M(G))

where the vertical arrows are induced by the functor M . We must prove that
the left vertical arrow is bijective. By the 5-Lemma it suffices to show that
the other vertical arrows are bijective. Since M is an additive functor, this
in turn reduces to direct summands of U r and Us. All in all, it suffices to
prove the bijectivity in the case that H = U = Wm

n . For this consider the
following commutative diagram:

Hom(G,Wm
n )

M //

��

HomE(M(Wm
n ),M(G))

o 23.3 (a)
��

M(G) HomE(Em
n ,M(G))

ϕ([1])←pϕ
oo

Here the left vertical arrow is simply that induced by the embedding of Wm
n

into the whole direct system; hence it is an isomorphism by Lemma 22.1.
The lower horizontal arrow is an isomorphism by Lemma 23.6. Thus the
upper horizontal arrow is an isomorphism, as desired.

Lemma 23.8. The functor M is essentially surjective.
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Proof. Let N be a left E-module of finite length with F and V nilpotent.
Suppose that Fm and V n annihilate N . Then there exists an epimorphism
of E-modules (Em

n )⊕r � N for some r. Its kernel is again annihilated by Fm

and V n; hence there exists a presentation

(Em
n )⊕s ϕ−−→ (Em

n )⊕r −→ N −→ 0.

Since Em
n = M(Wm

n ) and M is fully faithful, we see that ϕ = M(ψ) for a

unique homomorphism (Wm
n )⊕r

ψ
−−→ (Wm

n )⊕s. Setting G(N) := ker(ψ), the
5-Lemma shows that N ∼= M(G(N)).

Piecing together the above results, we see that Theorem 23.2 is proven.

Proposition 23.9. “ lim
−→m,n

Wm
n ” is the injective hull of ααp in the associated

category of ind-objects.

Proof. It is injective, because Hom(−, “ lim
−→m,n

Wm
n ”) = M(−) is an exact

functor. To show that is a hull, we must prove that any non-trivial sub-
group scheme G ⊂ Wm

n contains im−1vn−1(W 1
1 ) ∼= ααp. For this note first

that Wm
n , and hence G, is an extension of copies of ααp. In particular there

exists a monomorphism ααp ↪→ G. On the other hand, Lemma 22.1 implies
that im−1vn−1 induces an isomorphism Hom(ααp,W

1
1 )
∼
→ Hom(ααp,W

m
n ). Thus

im−1vn−1(W 1
1 ) is the only copy of ααp inside Wm

n , and so this copy must be
contained in G, as desired.

Remark. For any abelian category C with an injective cogenerator I one has
a faithful exact contravariant functorX 7→ HomC(X, I) to the category of left
modules over EndC(I). If C is artinian, i.e., if every object has finite length,
one can show that this defines an anti-equivalence of categories from C to
the category of left modules of finite length over EndC(I). Above we have
essentially done this for the category of finite commutative group schemes
annihilated by Fm and V n, with I = Wm

n and EndC(I) = Em
n , and then

taken the limit over all m,n.

Remark. Instead of the contravariant functor M above, one can define a
covariant functor G 7→ lim

−→m,n
Hom(Wm

n , G) landing in right E-modules,

where the Wm
n are viewed as an inverse system with transition epimor-

phisms r and f , and on which the action of W (k) must be defined differ-
ently. The “main theorem of covariant Dieudonné theory in the local-local
case” is then the direct analogue of Theorem 23.2 and can be proved sim-
ilarly. It can also be deduced from Theorem 23.2 itself by showing that
N 7→ lim

−→m,n
HomE(N,Em

n ) defines an antiequivalence between left and right

E-modules of finite length with F and V nilpotent.
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