Lecture 10

December 23, 2004
Notes by Nicolas Stalder

8§23 The Dieudonné functor in the local-local case

Recall that £ is a perfect field, W = W) is the Witt group scheme over k,
W, is the cokernel of V" on W, and W] is the kernel of /™ on W,,. The
collection of all W)™ becomes a direct system via the homomorphisms v and i:

Wm { Werl
n n
N
] 1
Wil =Wy

Let o : W(k) — W (k) denote the ring endomorphism induced by F. (We
use a different letter to avoid confusion with F' as an endomorphism of the
group scheme W)

Definition. Let E be the ring of “noncommutative polynomials” over W (k)
in two variables F' and V', subject to the following relations:

o F-é{=0(&)-F  VYEeW(k)
o V.o(e)=¢-V  VeeW(k)
o 'V=VF=p
Note that E is a free left, or right, module over W (k) with basis
(. VAV, 1,FF2 .. ).

Example. If k = F,, then £ = Z,[F,V]|/(FV —p) is a regular commutative
ring of Krull dimension 2. In all other cases, F is non-commutative.

Proposition 23.1. There exist unique ring homomorphisms £ — Aut(W")
for all m,n such that F' and V act as such and ¢ € W(k) acts through
multiplication by ¢~"(£). Moreover, these actions of E are compatible with
the transition homomorphisms 7 and v of the direct system.

Proof. For any £ € W (k) and z € W, the formulas in Proposition 21.1 imply
that F'(§x) = o(§) - F(x) and £ -V (z) = V(o(§)z). On the other hand recall
that VoF = FoV = p-id by Theorem 14.4. Thus there is a unique action of F
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on W, where F and V act as such and £ € W (k) acts through multiplication
by itself. The above relations also imply that this action induces a unique
action of  on W,, and on W)" for all n and m. Moreover, the functoriality
of F' and V shows that the homomorphisms ¢ and r are equivariant.
However, since V' = vr, the relation £ - V(z) = V(o(£)x) implies that
¢-v(x) =v(o(&)x). Thus in order to turn v into an E-linear homomorphism,
we must modify the action of W (k) by an appropriate power of ¢. This is
precisely what we accomplish by letting £ act on W* through multiplication
by o="(§). Then E acts compatibly on the whole direct system. O

Definition. For any finite commutative group scheme G over k of local-local
type we define

M(G) := lim Hom(G, W)"),
with its induced left E-module structure via the actions of £ on the W".
Clearly this defines a left exact additive contravariant functor to the category
of left F-modules.

Theorem 23.2. The functor M induces an anti-equivalence of categories
finite commutative left E-modules of
{{ group schemes over }} = {{ finite length with }} .
k of local-local type F and V nilpotent

This “main theorem of contravariant Dieudonné theory in the local-local
case” is essentially a formal consequence of the results obtained so far. As a
preparation note that the action of E on W via Proposition 23.1 and the
embedding of W)™ into the whole direct system induce homomorphisms of
left E-modules

E" .= E/(EF™+ EV") — End(W") — M(W").
Proposition 23.3. (a) These homomorphisms are isomorphisms.
(b) lengthyy ) M(G) = log, |G].

Proof. As W™ — W;Z?/ is a monomorphism for all n < n’ and m < m/, the
map End(W") — M(W]") is injective. By Lemma 22.1 it is also surjective,
and hence bijective. Next Proposition 16.1 implies that

k = E/(EF + EV) = End(a,) — M(a,)

and hence (a) for m = n = 1. More generally, one easily checks that every
non-trivial E-submodule of E™ contains the residue class of F™ V"1 (com-
pare Proposition 23.9 below). Since the image of F™~ V"l in End(W™) is
non-zero, we deduce that the map E™ — End(W™) is injective.
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Before finishing the proof of (a), we prove (b), using induction on |G|.
The assertion is trivial when |G| = 1, and holds for G = aj, by the above.
Whenever |G| # 1 there exists a short exact sequence

0—G —G—a,—0,
and we may assume that (b) holds for G’. The induced sequence
(23.4) 0+— M(G") «— M(G) «— M(a,) <— 0

is exact except possibly at M (G"). To prove the exactness there consider any
element of M(G’), say represented by a homomorphism ¢ : G' — W™ for
some m, n. Consider the morphism of short exact sequences

0 G G a, 0
R
0 wpr H o 0

where H is the pushout of the left hand square. Applying Proposition 22.2
to the lower exact sequence yields a homomorphism H — Wrﬁﬁl extending
the homomorphism v: W — W:;ﬁl The composite homomorphism G —
H — W4' then defines an element of M(G) which maps to the given
element of M(G"). This proves that the sequence (23.4) is exact, and hence

lengthy, ) M(G) = lengthy, ) M(G") + lengthy, ) M(ay,)

log, |G| + log,, |ay,|
= log, |G],

proving (b).

Returning to (a) one directly calculates that lengthyy, ) B = nm. By
(b) and the beginning of §22, we also have lengthy, ) M (W) = nm. Thus
E™ — End(W}") is an injective homomorphism of E-modules of equal finite

length; hence it is an isomorphism, finishing the proof of (a). O
Lemma 23.5. The functor M is exact.

Proof. By construction it is left exact. For any exact sequence 0 — G’ —
G — G" — 0, Proposition 23.3 (b) and the multiplicativity of group orders
imply that the image of the induced map M(G) — M(G’) has the same
finite length over W (k) as M(G’) itself. Thus the map is surjective, and M
is exact. U
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Lemma 23.6. If F7' = 0 and V& = 0, then F'™ and V" annihilate M(G).
In particular, the functor M lands in the indicated subcategory.

Proof. The first assertion follows from the definition of M(G) and the func-
toriality of F" and V, the second from the first and Proposition 23.3 (b). O

Lemma 23.7. The functor M is fully faithful.

Proof. For given G, H choose m, n such that F™ and V™ annihilate G, H, and
abbreviate U := W/". By Proposition 22.6, we may choose a copresentation

0— H—U —U?
for some r, s. By the exactness of M, we obtain a presentation of E-modules
0 — M(H) — M(U) — M(U)"

Applying the left exact functors Hom (G, —) and Homg(—, M(G)), we obtain
a commutative diagram with exact rows

0

Hom(G, H) Hom(G,U") Hom(G, U?)

g | |

0 —Homp(M(H), M(G)) — Homg(M(U"), M(G)) — Homg (M (U?), M(G))

where the vertical arrows are induced by the functor M. We must prove that
the left vertical arrow is bijective. By the 5-Lemma it suffices to show that
the other vertical arrows are bijective. Since M is an additive functor, this
in turn reduces to direct summands of U” and U®. All in all, it suffices to
prove the bijectivity in the case that H = U = W]". For this consider the
following commutative diagram:

Hom(G, W) Hompg(M (W), M(G))

l zlzs.?, (a)

M(G) <22 Homp(E™, M(G))

Here the left vertical arrow is simply that induced by the embedding of W
into the whole direct system; hence it is an isomorphism by Lemma 22.1.
The lower horizontal arrow is an isomorphism by Lemma 23.6. Thus the
upper horizontal arrow is an isomorphism, as desired. O

Lemma 23.8. The functor M is essentially surjective.
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Proof. Let N be a left F-module of finite length with F' and V nilpotent.
Suppose that F™ and V" annihilate N. Then there exists an epimorphism
of E-modules (E")®" — N for some r. Its kernel is again annihilated by F™
and V"; hence there exists a presentation

(Em)@s (Em)@r — N — 0.

Since B = M(W") and M is fully faithful, we see that ¢ = M(¢)) for a
unique homomorphism (W™)®" —£o (Wm)®s_ Setting G(N) := ker(¢)), the
5-Lemma shows that N = M(G(N)). O

Piecing together the above results, we see that Theorem 23.2 is proven.

Proposition 23.9. “ limm W7 is the injective hull of @y, in the associated

)

category of ind-objects.

Proof. 1t is injective, because Hom(—, “ lim —W" 7) = M(—) is an exact
functor. To show that is a hull, we must pfove that any non-trivial sub-
group scheme G C W™ contains i 10" }(W}) 2 a,. For this note first
that W), and hence G, is an extension of copies of a,. In particular there
exists a monomorphism @, — G. On the other hand, Lemma 22.1 implies
that ¢™ o™~ ! induces an isomorphism Hom(a,, W}') = Hom(ay, W™). Thus
i~ Ly~ H (W) is the only copy of @y, inside W™, and so this copy must be
contained in G, as desired. O

Remark. For any abelian category € with an injective cogenerator I one has
a faithful exact contravariant functor X — Home (X, I) to the category of left
modules over End¢(7). If € is artinian, i.e., if every object has finite length,
one can show that this defines an anti-equivalence of categories from € to
the category of left modules of finite length over Endg(l). Above we have
essentially done this for the category of finite commutative group schemes
annihilated by F™ and V", with I = W)"* and Ende(/) = EJ, and then
taken the limit over all m,n.

Remark. Instead of the contravariant functor M above, one can define a
covariant functor G — hglmnHom(W,T,G) landing in right E-modules,
where the W are viewed as an inverse system with transition epimor-
phisms 7 and f, and on which the action of W (k) must be defined differ-
ently. The “main theorem of covariant Dieudonné theory in the local-local
case” is then the direct analogue of Theorem 23.2 and can be proved sim-
ilarly. It can also be deduced from Theorem 23.2 itself by showing that
N +— hm HomE(N E™) defines an antiequivalence between left and right

E- modules of finite length with F' and V nilpotent.
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