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§26 Duality and the Dieudonné functor

Let k be a perfect field of characteristik p > 0 and W (k) its ring of Witt
vectors, and consider the torsion W (k)-module

T := W (k)
[

1
p

]

/W (k).

Proposition 26.1. The functor

N 7→ N∗ := HomW (k)(N, T )

defines an anti-equivalence from the category of finite length W (k)-modules
to itself, and there is a functorial isomorphism

N ∼= (N∗)∗.

Proof. The biduality homomorphism N → (N∗)∗ is obtained by resolving the
evaluation pairing N ×N∗ → T . It suffices to prove that this homomorphism
is an isomorphism; everything else then follows. Since the functor is addi-
tive, and every N is a direct sum of cyclic modules, it suffices to prove the
isomorphy in the case N = W (k)/pn W (k). But that is straightforward.

We denote by σ the endomorphism of T that is induced by F , the Frobe-
nius on W (k). Let E be the ring of “noncommutative polynomials” over
W (k) in the two variables F and V with the relations as defined in §23. For
any left E-module N we define maps F, V : N∗ → N∗ by

` 7→ F`, n 7→ (F`)(n) := σ(`(V n)),

` 7→ V `, n 7→ (V `)(n) := σ−1(`(Fn)).

As F is σ-linear and V is σ−1-linear with respect to W (k), the twists by σ±1

on the right hand side are precisely those necessary to make F` and V ` again
W (k)-linear. One easily calculates that together with the usual W (k)-action
on N∗, this turns N∗ into a left E-module.

Proposition 26.2. The functor N 7→ N∗ defines an anti-equivalence from
the category of finite length left E-modules to itself, and there is a functorial
isomorphism

N ∼= (N∗)∗.
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Proof. This is a direct consequence of Proposition 26.1.

The aim of this section is to show:

Theorem 26.3. For any local-local commutative group scheme G there is a
functorial isomorphism of E-modules

M(G∗) ∼= M(G)∗.

Note. The idea behind the proof is to reduce the general case to the case
G = W n

n and to use the isomorphism (W n
n )∗ ∼= W n

n from Theorem 25.3.

We start with the isomorphisms from Proposition 23.3 (a)

(26.4) En
n := E/(EF n + EV n) ∼= End(W n

n ) ∼= M(W n
n ).

We denote the residue class of e ∈ E in En
n by [e].

Note that En
n is an algebra quotient of E, that is noncommutative in

general. We will always consider En
n as a left E-module. Multiplication on

the right by any e ∈ E induces an endomorphism of left E-modules, which we
denote by ρe : En

n → En
n . Recall that by definition any ξ ∈ W (k) acts on W n

n

through multiplication by σ−n(ξ); we denote this endomorphism by µσ−n(ξ) :
W n

n → W n
n . For the later use we observe that under the isomorphisms (26.4)

the following endomorphisms correspond:

(26.5)

action on
∖

of ξ ∈ W (K) F V

M(W n
n ) M(µσ−n(ξ)) M(F ) M(V )

o‖

End(W n
n ) ( ) ◦ µσ−n(ξ) ( ) ◦ F ( ) ◦ V

o‖

En
n ρξ ρF ρV

Next we determine the relation with the epimorphism fr : W n+1
n+1 → W n

n .

Lemma 26.6. The following diagram commutes:

M(W n
n ) �

� M(fr) // M(W n+1
n+1 )

End(W n
n ) �

� iv◦( )◦fr //

o

End(W n+1
n+1 )

o

En
n

�

� [p]: [e] 7→[pe] //

o

En+1
n+1 .

o
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Proof. The top square commutes, because iv : W n
n ↪→ W n+1

n+1 induces the
transition map in the direct system defining M . For the bottom square,
since all arrows are E-module homomorphisms, it suffices to prove the com-
mutativity for the generator [1]. But this follows from:

id
� // ivfr = V F = p · id

[1]
_

OO

� // [p].
_

OO

By the self-duality (W n
n )∗ ∼= W n

n and the isomorphisms 26.4, Theorem
26.3 in the special case G = W n

n amounts to an isomorphism of left E-
modules (En

n)∗ ∼= En
n . Our next job is to construct such an isomorphism

directly. First we decompose En
n as a left W (k)-module as

(26.7) En
n =

⊕

|i|<n

W (k)/pn−|i|W (k) ·

{

[F |i|], i ≥ 0,

[V |i|], i ≤ 0.

We define a left W (k)-bilinear pairing

〈 , 〉n : En
n × En

n → T,

by setting
〈[F i], [F i]〉n := 〈[V i], [V i]〉n := [p−(n−i)],

for any 0 ≤ i ≤ n and mapping all the other pairs of generators to zero.

Lemma 26.8. This is a symmetric, perfect bilinear pairing of left W (k)-
modules, and it satisfies the following relations for all e, e′ ∈ E and ξ ∈ W (k):

(a) 〈[Fe], [e′]〉n = σ (〈[e], [V e′]〉n)

(b) 〈[eF ], [e′]〉n = 〈[e], [e′V ]〉n

(c) 〈[eξ], [e′]〉n = 〈[e], [e′ξ]〉n

(d) 〈[pe], [e′]〉n+1 = 〈[e], [e′]〉n

Proof. The first statement follows directly from the construction. It is enough
to prove the remaining formulas when e and e′ are W (k)-multiples of classes
of generators. For example, for α, β ∈ W (k) and 0 ≤ i ≤ n we have

〈[FαF i], [βF i+1]〉n = 〈[σ(α)F i+1], [βF i+1]〉n = [σ(α)βp−(n−i−1)] and
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σ
(

〈[αF i], [V βF i+1]〉n
)

= σ
(

〈[αF i], [σ−1(β)pF i]〉n
)

= σ
(

[ασ−1(β)pp−(n−i)]
)

,

which are equal. Together with similar calculations this proves (a). (b) is
proved in the same way, except that no twist by σ occurs, because F and
V are multiplied from the right. What happens in (c) is illustrated by the
typical case:

〈[F iξ], [F i]〉n = 〈[σi(ξ)F i], [F i]〉n = [σi(ξ)p−(n−i)]

= 〈[F i], [σi(ξ)F i]〉n = 〈[F i], [F iξ]〉n.

Finally, (d) is also straightforward.

Lemma 26.9. The pairing 〈 , 〉n induces a left E-linear isomorphism

En
n
∼= (En

n)∗.

Proof. By the first assertion of Lemma 26.8 only the compatility with F and
V needs to be checked. But that follows at once from 26.8 (a), from the
symmetry of the pairing, and the definition of the action of F and V on
(En

n)∗.

Now we can construct the isomorphism in Theorem 26.3. Fix a local-local
G and take any n � 0 such that F n and V n annihilate G. Then they also
annihilate G∗ and M(G∗) and M(G)∗. We obtain the following sequence of
isomorphisms

M(G∗) ∼= Hom(G∗, W n
n )

25.3
∼= Hom(G∗, (W n

n )∗)
Cartier duality

∼= Hom(W n
n , G)

23.2
∼= HomE(M(G), M(W n

n ))
26.4
∼= HomE(M(G), En

n)
26.2
∼= HomE((En

n)∗, M(G)∗)
26.9
∼= HomE(En

n , M(G)∗)
evaluate at [1]∈En

n∼= {` ∈ M(G)∗|F n` = V n` = 0}

= M(G)∗.

Clearly the composite isomorphism is functorial in G. It remains to show
that it is E-linear and independent of n. To prove that it is E-linear we trace
the action through the whole sequence of isomorphisms:
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action on
∖

of ξ ∈ W (K) F V explanation

Hom(G∗, W n
n ) µσ−n(ξ) ◦ ( ) F ◦ ( ) V ◦ ( )

o‖ Theorem 25.3 (a,d,e)
Hom(G∗, (W n

n )∗) µ∗
σ−n(ξ) ◦ ( ) V ∗ ◦ ( ) F ∗ ◦ ( )

o‖
Functoriality of
Cartier duality

Hom(W n
n , G) ( ) ◦ µσ−n(ξ) ( ) ◦ V ( ) ◦ F

o‖ Functoriality of M
HomE(M(G), M(W n

n )) M(µσ−n(ξ)) ◦ ( ) M(V ) ◦ ( ) M(F ) ◦ ( )
o‖ Table (26.5)

HomE(M(G), En
n) ρξ ◦ ( ) ρV ◦ ( ) ρF ◦ ( )

o‖
Functoriality of ( )∗

from Lemma 26.2
HomE((En

n)∗, M(G)∗) ( ) ◦ ρ∗
ξ ( ) ◦ ρ∗

V ( ) ◦ ρ∗
F

o‖ Lemma 26.8 (b,c)
HomE(En

n , M(G)∗) ( ) ◦ ρξ ( ) ◦ ρF ( ) ◦ ρV
o‖

explicit calculation,
see below

M(G)∗ ξ F V

The explicit calculation verifying the last step is the commutativity of the
following diagram for any ϕ ∈ HomE(En

n , M(G)∗) and any e ∈ E:

ϕ � //
_

��

ϕ( · e)
_

��
ϕ([1]) � // e · ϕ([1]) = ϕ([e]).

Finally, the following commutative diagram gives the independence of n:

Hom(G∗, W n
n ) �

� iv◦(·) //

o

Hom(G∗, W n+1
n+1 )

o Theorem 25.3 (b,c)

Hom(G∗, (W n
n )∗) �

� (fr)∗◦(·) //

o

Hom(G∗, (W n+1
n+1 )∗)

o
Functoriality of
Cartier duality

Hom(W n
n , G) �

� (·)◦fr //

o

Hom(W n+1
n+1 , G)

o Functoriality of M

HomE(M(G), M(W n
n )) �

� M(fr)◦(·) //

o

HomE(M(G), M(W n+1
n+1 ))

o Lemma 26.6
HomE(M(G), En

n) �

� [p]◦() //

o

HomE(M(G), En+1
n+1)

o Functoriality of ( )∗

HomE((En
n)∗, M(G)∗) �

� (·)◦[p]∗ //

o

HomE((En+1
n+1)

∗, M(G)∗)
o Lemma 26.8 (d)

HomE(En
n , M(G)∗) �

� (·)◦[1] //

o

HomE(En+1
n+1 , M(G)∗)
o evaluation at [1]

M(G)∗
id // M(G)∗
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