Lecture 12

Januar 28, 2005
Notes by Alexander Caspar

8§26 Duality and the Dieudonné functor
Let k be a perfect field of characteristik p > 0 and W (k) its ring of Witt

vectors, and consider the torsion W (k)-module
T:=W(k)[1]/W (k).
Proposition 26.1. The functor
N — N* .= Homw(k)(N, T)

defines an anti-equivalence from the category of finite length W (k)-modules
to itself, and there is a functorial isomorphism

N = (N*)*.

Proof. The biduality homomorphism N — (N*)* is obtained by resolving the
evaluation pairing N x N* — T'. It suffices to prove that this homomorphism
is an isomorphism; everything else then follows. Since the functor is addi-
tive, and every N is a direct sum of cyclic modules, it suffices to prove the
isomorphy in the case N = W (k)/p™ W (k). But that is straightforward. O

We denote by o the endomorphism of 7" that is induced by F', the Frobe-
nius on W(k). Let E be the ring of “noncommutative polynomials” over
W (k) in the two variables F' and V' with the relations as defined in §23. For
any left F-module N we define maps F,V : N* — N* by

(— Fl, n— (Fl)(n):=o((Vn)),

(VI n— (VO)(n) :=o '({(Fn)).

As F is o-linear and V is o~ !-linear with respect to W (k), the twists by o*!
on the right hand side are precisely those necessary to make F'¢ and V¢ again
W (k)-linear. One easily calculates that together with the usual W (k)-action
on N*, this turns N* into a left E-module.

Proposition 26.2. The functor N — N* defines an anti-equivalence from
the category of finite length left E-modules to itself, and there is a functorial
isomorphism

N = (N*)*.
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Proof. This is a direct consequence of Proposition 26.1. U
The aim of this section is to show:

Theorem 26.3. For any local-local commutative group scheme G there is a
functorial isomorphism of E-modules

M(G*) = M(G)".

Note. The idea behind the proof is to reduce the general case to the case
G = W and to use the isomorphism (W?)* = W from Theorem 25.3.

We start with the isomorphisms from Proposition 23.3 (a)
(26.4) E" .= B/(EF" + EV") = End(W™) 22 M(W™).

We denote the residue class of e € E in E] by [e].

Note that E' is an algebra quotient of E, that is noncommutative in
general. We will always consider E" as a left F-module. Multiplication on
the right by any e € E induces an endomorphism of left F-modules, which we
denote by p. : E' — E'. Recall that by definition any £ € W (k) acts on W)
through multiplication by 07" (&); we denote this endomorphism by fi5—n(e)
W — W, For the later use we observe that under the isomorphisms (26.4)
the following endomorphisms correspond:

action on\of ¢ e W(K) F Vv

M(Wy) M(po=ne)) | M(F) | M(V)
(26.5) ]
Endz(”Wﬁ ) || Qoo | Qe F | (JoV

Ly Pe PF PV

Next we determine the relation with the epimorphism fr : ngfll — Wr.
Lemma 26.6. The following diagram commutes:

M) .

M (W) ———— MW" )
]l | ql

End (W) 2222 pq et

i ]

n [p]: [e]—[pe] n
By ores
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Proof. The top square commutes, because v : W — W2 induces the
transition map in the direct system defining M. For the bottom square,
since all arrows are F-module homomorphisms, it suffices to prove the com-
mutativity for the generator [1]. But this follows from:

id——ivfr =VF =p-id

| J

1] [p].

O

By the self-duality (W')* = W and the isomorphisms 26.4, Theorem
26.3 in the special case G = W] amounts to an isomorphism of left E-
modules (E)* = E"™. Our next job is to construct such an isomorphism
directly. First we decompose E" as a left W (k)-module as

‘ /i i
(26.7) E} = E{? W (k) /p" W (k) - {{5} i i

0.

We define a left W (k)-bilinear pairing
(,n:ENXE!—T,

by setting A ' A ' A
(FLF D= (V] VD= 0777,

for any 0 < ¢ < n and mapping all the other pairs of generators to zero.

Lemma 26.8. This is a symmetric, perfect bilinear pairing of left W (k)-
modules, and it satisfies the following relations for all e, ¢’ € E and £ € W (k):

) ([Fel, [¢n = o ({[e], [Ve')n)
) ([eF], [¢)n = ([e], [e'V])n

(c) (le€], [e'Thn = ([e], [€'€])n
) |

Proof. The first statement follows directly from the construction. It is enough
to prove the remaining formulas when e and ¢’ are W (k)-multiples of classes
of generators. For example, for a, 3 € W (k) and 0 < i < n we have

(FaF), [3F*)), = ((o(a) F'*], [BF™]), = [o(a)Bp~ "] and
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o ({[0F], VB )a) = o (([0F"], [0 (B)pFT)a) = o ([ao (B)pp~ ")

which are equal. Together with similar calculations this proves (a). (b) is
proved in the same way, except that no twist by o occurs, because F' and
V' are multiplied from the right. What happens in (c) is illustrated by the
typical case:

(Fe[Fa = (o"©F ) [F)n = ['©p ")
= ([FLIOF D = (P&

Finally, (d) is also straightforward. O

Lemma 26.9. The pairing (_, ), induces a left E-linear isomorphism
By 2 ()

Proof. By the first assertion of Lemma 26.8 only the compatility with F' and
V' needs to be checked. But that follows at once from 26.8 (a), from the
symmetry of the pairing, and the definition of the action of F' and V' on
(B O

Now we can construct the isomorphism in Theorem 26.3. Fix a local-local
G and take any n > 0 such that F™ and V" annihilate G. Then they also

annihilate G* and M(G*) and M(G)*. We obtain the following sequence of
isomorphisms

=
9
I

Hom(G*, W)

N
ot
w

112

> Hom(G", (W7)')

Cartier duali

=
-+
<

12

Hom(W)', G)

[\
w
[\

(12

N
=N
=~

[12:

[\~
(=)
[\
~—~~

= Homg((E})", M(G)")
26.9
= Homg(E;, M(G)")
evaluate at [1]€ETR
= {0e M(G)*|F™ = V"0 = 0}
— MG

Clearly the composite isomorphism is functorial in G. It remains to show
that it is E-linear and independent of n. To prove that it is E-linear we trace
the action through the whole sequence of isomorphisms:
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action on\of ¢ e W(K) F Vv explanation
Hom(G*, W o—n(e) © (L Fo Vo
(z|| ) o= © () L L Theorem 25.3 (a,d,e)
Hom (G, (W)") Hgn(e) © L) Vo () Fro() Functoriality of
2l Cartier duality
Hom(W} G ) O fig-n oV oF
(z|| ) Con © G 9 Functoriality of M
Hompg(M(G), M(W} M (pg—n(ey) © M(WV)o ()| M(F)o (_
B( (Z”) (W) | M) o (L) | M(V)o () | M(F)o() Table (26.5)
HomE(ZW” (@), Ey) peo () pv o () pro () Functoriality of ()*
!
from Lemma 26.2
Hompg((E])*, M(G)* _)opt _)opt )opi
B(( l”) (@)) (L) opz (L) opi (L) o pk Lemma 26.8 (b.c)
HomE(ET?| , M(G)") (L) o pe () opr ()opv explicit calculation,
!
1
M(G)* ¢ I v see below

The explicit calculation verifying the last step is the commutativity of the
following diagram for any ¢ € Homg(E!, M(G)*) and any e € E:

Hom(G*, W) ¢

o)

|

o(_-e)

p([1]) e ¢([1]) = ¢(e]).

Finally, the following commutative diagram gives the independence of n:

two(+)

(fr)*o(")

Hom(G*, ng:ll)

dl

Hom(G*, (Wyi1)")

dl

Theorem 25.3 (b,c)

Functoriality of

Cartier duality

Functoriality of M

Lemma 26.6

Functoriality of (_)*

Hom (W, ()¢ Oelr Hom (W1, G)
| M(fr)ol) |
Hompg(M(G), M(W;)) ———— Hompg (M (G), M(W]))
q ql
Homp(M(G), E7)C W0 Homp(M(G), EMH)
1 1
H (-)elp]" |

————= Homg

id

dl
dl
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M(G)

(Enti)" M(G)Y)

Lemma 26.8 (d)

Homp(E; Ly, M(G))

evaluation at [1]




