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8§27 The Dieudonné functor in the étale case

Let E act on W, from the left hand side, where F' and V act as such and
¢ € W(k) through multiplication by o7 "(£). Then the monomorphisms
v : W, — W,,, are E-equivariant (compare Prop. 23.1). Also, the W™
form a fundamental system of infinitesimal neighborhoods of zero in all W,,.
Thus for G local-local the functor M of §23 can be described equivalently
as M(G) = lim Hom(G,W,,). Using this latter description we now prove a
similar result for reduced-local groups:

Theorem 27.1. The functor G — M(G) = lim | Hom(G,W,,) induces an
anti-equivalence of categories:

finite commutative left E-modules of

{{ étale group schemes }} - {{ finite length with }} .
over k of p-power order F an isomorphism

Moreover, lengthy,, M(G) = log, |G|.

Remark. The target category can be identified with the category of finite

length W (k)-modules N together with a o-linear automorphism F': N — N,
because V' is determined by the relation V = pF 1.

Remark. In [DG70] and [Fo77] the above theorem is proved jointly with the
local-local case and using the same kind of reductions. But it also ties up
nicely with descent and Lang’s theorem, which have an independent interest,
and which I want to describe.

Theorem 27.2 (Lang’s Theorem). Let k be an algebraically closed field
of positive characteristic. Let G be a connected algebraic group of finite type
over k, and F': G — G a homomorphism with dF' = 0. Then the map

G(k) — G(k), g+~ g ' Flg)
is surjective.

Proof. For any g € G(k) the morphism G — G, h — h~'gF(h) has derivative
—1id everywhere, which is surjective; hence this morphism is dominant. As
G is connected, the image contains an open dense subset U, C G. The same
holds in particular with g = 1. It follows that U,NU; # 0, and therefore there
exist h,h € G(k) with h='gF(h) = h™'F(h). Thus g = hh 'F(h)F(h)™' =
(hh=1)"'. F(hh™1), as desired. O
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Proposition 27.3. Let k£ be an algebraically closed field of positive charac-
teristic. Let N be a W (k)-module of finite length together with a o-linear
automorphism F : N — N. Then

Nf = {neN|Fn=n}
is a finite commutative p-group, and the natural homomorphism
W(k)®z, N® — N, z®n +— an
is an isomorphism. In particular lengthy, ) N = log, [N F.

Proof. Consider first the special case N = W, (k) with F' = ¢. In this case
we have

NE =W, (k") = W, (F,) = Z/p"Z,

from which the claim obviously follows. The same follows for direct sums
of modules of this type. In the general case, the proposition amounts to
showing that every NV is isomorphic to such a direct sum, because the desired
isomorphism W (k) ®z, N F — N is equivariant with respect to o ®id on the
source and F' on the target.

To identify N with such a direct sum, we begin with any isomorphism of
W (k)-modules

@ é}Wm(k) = N.
i=1

Via this the endomorphism ring

MW(]C) N = @ I/I/vmin{ni,nj}7 k

1,j=1

can be viewed as a unitary ring scheme over k. As a scheme it is isomorphic
to an affine space of some dimension over k; in particular it is irreducible.
Its group of units G := Auty, ) N is an open subscheme in it; hence G is a
connected algebraic group over k. The given o-linear automorphism F' then
has the form @gop~! for some g € G(k). By Lang’s theorem applied to the
Frobenius on G we can write g = h™! - o(h) for some h € G(k). Thus

F=gph 'o(h)op™ = (¢h No(he™") = (eh o (eh™)™",

which means that ¢h~! is the desired F-equivariant isomorphism. O
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Proof of Theorem 27.1 for k algebraically closed: In this case the source
category is equivalent to the category of finite commutative p-groups I', and
the functor gives:

I' — I} — limHom(L,, W,,).

—
n

The latter group is equal to lim Hom(T', W,,(k)), which in turn is isomorphic
to

Hom (T, W (k) [ ] /W (k)) = W (k) @z, Hom(T,Q,/Z,).
We note that Hom(I',Q,/Z,) is the Pontrjagin dual of I', and the action
of I corresponds to the action of o ® id on W (k) ®z, Hom(I',Q,/Z,). By
Proposition 27.3 this gives the desired anti-equivalence and the formula for
the length.

Proof of Theorem 27.1 in general: Let k be an algebraic closure of k. Then
we have (anti-)equivalences of categories:

finite commutative finite length W (k)-
, G—M(G) . .
{{ étale group schemes }} —— <« modules with a o-linear
over k of p-power order automorphism F
~ | G—Gy, >~ | N NGal(k/k)
finite commutative étale finite length W (k)-mod-
group schemes over k of > ules with a o-linear auto-
p-power order with a con- Gp—M(Gp) morphism F and a con-
tinuous Gal(k/k)-action tinuous Gal(k/k)-action

In fact, the vertical arrows are equivalences by descent, and the lower hori-
zontal arrow is an anti-equivalence by Theorem 27.1 for k, where it is proven
already, and the functoriality of M( ) under automorphisms of k. Since

M(Gy) @ ™®) = Tim Hom(Gy, W, ;) * /M = lim Hom (G, W,) = M(G),

n n

the whole diagram commutes, and therefore the upper horizontal arrow is
an anti-equivalence, too. Finally the formula for the length is preserved by
descent, because

lengthy, ) M(G) = lengthy g W (k) Qwuw M(G) = lengthy, g M(Gy),

and we are done.
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Caution. In general lengthyy, ) M(G) # lengthy M(G), although for local-
local G the equality does hold. The point is that all simple local-local G' have
order p, but not the simple étale ones.

Example. Let G(k) = F) with an irreducible action of the absolute Galois
group Gal(k/k). Then M(G) must be a simple E-module, i.e., we have
M(G) = k" with an irreducible F-action.

8§28 The Dieudonné functor in the general case

Recall from Theorems 15.5 and 17.1 that any finite commutative group
scheme of p-power order has a unique decomposition

G =G ®Goy © Gu.
In §23 and §27 we have already defined M (Gy) and M(G,;). Since G}, is of

reduced-local type, we can define:
(28.1) M(G) .= M(G.) ® M(G},)" ® M(Gy) .

By construction this is a finite length left E-module, and by combining The-
orem 27.1 and Propositions 23.3 (b) and 26.2, we deduce that

lengthy, ) M(G) = log, |G|.

Also, F and V" are nilpotent on M (Gy), and F is an isomorphism on M (G,).
Since F'V = pin E, it follows that V' is nilpotent on M(G,,). The same holds
for M(G},), and so V is an isomorphism and F is nilpotent on M (G},)*. In
fact, such a decomposition exists for any finite length F-module:

Lemma 28.2. Every finite length left F-module has a unique and functorial
decomposition

M= M, & My, & My

where F' is isom. nilpot. nilpot.

where V' is nilpot. isom. nilpot.

Proof. The images of F™: M — M form a decreasing sequence of FE-sub-
modules of M. Since M has finite length, this sequence stabilizes, say with
F"M = M’ for all n > 0. Then F': M’ — M’ is an isomorphism; hence
M’ N ker(F"|p) = 0; and so by looking at the length we find that M =
M’ @ ker(F™|5r). Repeating the same with V' on ker(F"|y;) we obtain the
desired decomposition. Uniqueness and functoriality are clear. O
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Recall from Theorem 26.3 that there is a functorial isomorphism M (G7,)
M(Gy)*. By construction this isomorphism extends to G. Altogether we
have now proven:

Theorem 28.3. The functor M defined by (28.1) induces an anti-equivalence
of categories

ﬁil1te co}rlmlzutatlvi . left F-modules
group schemes ove of finite length [ -

k of p-power order

Moreover lengthyy ) M(G) = log, |G|, and there is a functorial isomorphism
M(G*) = M(G)*.

Note. The definition M(Gy.) = M(G},)* looks somewhat artificial and
cheap. But it is a fact that often one does need special arguments for Gy, or
Gye. Nevertheless Fontaine [Fo77] uses a uniform definition of M(G) for all

cases, basically using a combination of the W}, with the formal group scheme
W from §25.

In principle, since M is an equivalence of categories, all properties of G
can be read off from M(G). We end with an example:

Proposition 28.4. There is a natural isomorphism
Too = (M(G)/FM(G))".

Proof. 1t suffices to show this in each of the cases G = Gy, Gy, and Gy. In
the first case T o = 0 and F' is an isomorphism on M (G), and so both sides
vanish. In the other two cases we have by Proposition 13.1

TG,O = Hom(G*,Ga,k) = HOH’I(G*,Wl) .

Since M(G*) = lim Hom(G*,W,) and Wy = ker(Vw,) for all n > 1, the
latter is
ker(V|ara+)) = ker(V|ame)+) = coker(F|ae)”,

as desired. O
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