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§27 The Dieudonné functor in the étale case

Let E act on Wn from the left hand side, where F and V act as such and
ξ ∈ W (k) through multiplication by σ−n(ξ). Then the monomorphisms
v : Wn ↪→ Wn+1 are E-equivariant (compare Prop. 23.1). Also, the W m

n

form a fundamental system of infinitesimal neighborhoods of zero in all Wn.
Thus for G local-local the functor M of §23 can be described equivalently
as M(G) = lim

−→ n
Hom(G, Wn). Using this latter description we now prove a

similar result for reduced-local groups:

Theorem 27.1. The functor G 7−→ M(G) = lim
−→ n

Hom(G, Wn) induces an
anti-equivalence of categories:

{{
finite commutative
étale group schemes
over k of p-power order

}}
∼

−→

{{
left E-modules of
finite length with
F an isomorphism

}}
.

Moreover, lengthW (k) M(G) = logp |G|.

Remark. The target category can be identified with the category of finite
length W (k)-modules N together with a σ-linear automorphism F : N → N ,
because V is determined by the relation V = pF−1.

Remark. In [DG70] and [Fo77] the above theorem is proved jointly with the
local-local case and using the same kind of reductions. But it also ties up
nicely with descent and Lang’s theorem, which have an independent interest,
and which I want to describe.

Theorem 27.2 (Lang’s Theorem). Let k be an algebraically closed field
of positive characteristic. Let G be a connected algebraic group of finite type
over k, and F : G → G a homomorphism with dF = 0. Then the map

G(k) −→ G(k), g 7−→ g−1 · F (g)

is surjective.

Proof. For any g ∈ G(k) the morphism G → G, h 7→ h−1gF (h) has derivative
− id everywhere, which is surjective; hence this morphism is dominant. As
G is connected, the image contains an open dense subset Ug ⊆ G. The same
holds in particular with g = 1. It follows that Ug∩U1 6= ∅, and therefore there
exist h, h̃ ∈ G(k) with h−1gF (h) = h̃−1F (h̃). Thus g = hh̃−1F (h̃)F (h)−1 =
(h̃h−1)−1 · F (h̃h−1), as desired.
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Proposition 27.3. Let k be an algebraically closed field of positive charac-
teristic. Let N be a W (k)-module of finite length together with a σ-linear
automorphism F : N → N . Then

NF := {n ∈ N |Fn = n }

is a finite commutative p-group, and the natural homomorphism

W (k) ⊗Zp NF −→ N , x ⊗ n 7−→ xn

is an isomorphism. In particular lengthW (k) N = logp |N
F |.

Proof. Consider first the special case N = Wn(k) with F = σ. In this case
we have

NF = Wn(kF ) = Wn(Fp) = Z/pnZ,

from which the claim obviously follows. The same follows for direct sums
of modules of this type. In the general case, the proposition amounts to
showing that every N is isomorphic to such a direct sum, because the desired
isomorphism W (k)⊗Zp NF → N is equivariant with respect to σ⊗ id on the
source and F on the target.

To identify N with such a direct sum, we begin with any isomorphism of
W (k)-modules

ϕ :

r⊕

i=1

Wni
(k)

∼
−→ N.

Via this the endomorphism ring

EndW (k) N ∼=

r⊕

i,j=1

Wmin{ni,nj} , k

can be viewed as a unitary ring scheme over k. As a scheme it is isomorphic
to an affine space of some dimension over k; in particular it is irreducible.
Its group of units G := AutW (k) N is an open subscheme in it; hence G is a
connected algebraic group over k. The given σ-linear automorphism F then
has the form ϕgσϕ−1 for some g ∈ G(k). By Lang’s theorem applied to the
Frobenius on G we can write g = h−1 · σ(h) for some h ∈ G(k). Thus

F = ϕh−1σ(h)σϕ−1 = (ϕh−1)σ(hϕ−1) = (ϕh−1)σ(ϕh−1)−1 ,

which means that ϕh−1 is the desired F -equivariant isomorphism.
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Proof of Theorem 27.1 for k algebraically closed: In this case the source
category is equivalent to the category of finite commutative p-groups Γ, and
the functor gives:

Γ 7−→ Γk 7−→ lim
−→
n

Hom(Γk, Wn) .

The latter group is equal to lim
−→ n

Hom(Γ, Wn(k)), which in turn is isomorphic
to

Hom
(
Γ, W (k)

[
1
p

]
/W (k)

)
∼= W (k) ⊗Zp Hom(Γ, Qp/Zp).

We note that Hom(Γ, Qp/Zp) is the Pontrjagin dual of Γ, and the action
of F corresponds to the action of σ ⊗ id on W (k) ⊗Zp Hom(Γ, Qp/Zp). By
Proposition 27.3 this gives the desired anti-equivalence and the formula for
the length.

Proof of Theorem 27.1 in general: Let k̄ be an algebraic closure of k. Then
we have (anti-)equivalences of categories:

{{
finite commutative
étale group schemes
over k of p-power order

}}
G 7→M(G) //

∼= G 7→Gk̄

��











finite length W (k)-
modules with a σ-linear
automorphism F





















finite commutative étale
group schemes over k̄ of
p-power order with a con-
tinuous Gal(k̄/k)-action










∼=

Gk̄ 7→M(Gk̄)
//











finite length W (k̄)-mod-
ules with a σ-linear auto-
morphism F and a con-
tinuous Gal(k̄/k)-action










.

N 7→NGal(k̄/k)∼=

OO

In fact, the vertical arrows are equivalences by descent, and the lower hori-
zontal arrow is an anti-equivalence by Theorem 27.1 for k̄, where it is proven
already, and the functoriality of M( ) under automorphisms of k̄. Since

M(Gk̄)
Gal(k̄/k) = lim

−→
n

Hom(Gk̄, Wn,k̄)
Gal(k̄/k) = lim

−→
n

Hom(G, Wn) = M(G),

the whole diagram commutes, and therefore the upper horizontal arrow is
an anti-equivalence, too. Finally the formula for the length is preserved by
descent, because

lengthW (k) M(G) = lengthW (k̄) W (k̄) ⊗W (k) M(G) = lengthW (k̄) M(Gk̄) ,

and we are done.
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Caution. In general lengthW (k) M(G) 6= lengthE M(G), although for local-
local G the equality does hold. The point is that all simple local-local G have
order p, but not the simple étale ones.

Example. Let G(k̄) ∼= Fr
p with an irreducible action of the absolute Galois

group Gal(k̄/k). Then M(G) must be a simple E-module, i.e., we have
M(G) ∼= kr with an irreducible F -action.

§28 The Dieudonné functor in the general case

Recall from Theorems 15.5 and 17.1 that any finite commutative group
scheme of p-power order has a unique decomposition

G = Gr` ⊕ G`r ⊕ G`` .

In §23 and §27 we have already defined M(G``) and M(Gr`). Since G∗
`r is of

reduced-local type, we can define:

(28.1) M(G) := M(Gr`) ⊕ M(G∗
`r)

∗ ⊕ M(G``) .

By construction this is a finite length left E-module, and by combining The-
orem 27.1 and Propositions 23.3 (b) and 26.2, we deduce that

lengthW (k) M(G) = logp |G|.

Also, F and V are nilpotent on M(G``), and F is an isomorphism on M(Gr`).
Since FV = p in E, it follows that V is nilpotent on M(Gr`). The same holds
for M(G∗

`r), and so V is an isomorphism and F is nilpotent on M(G∗
`r)

∗. In
fact, such a decomposition exists for any finite length E-module:

Lemma 28.2. Every finite length left E-module has a unique and functorial
decomposition

M = Mr` ⊕ M`r ⊕ M``

where F is isom. nilpot. nilpot.

where V is nilpot. isom. nilpot.

Proof. The images of F n : M → M form a decreasing sequence of E-sub-
modules of M . Since M has finite length, this sequence stabilizes, say with
F nM = M ′ for all n � 0. Then F : M ′ → M ′ is an isomorphism; hence
M ′ ∩ ker(F n|M) = 0; and so by looking at the length we find that M =
M ′ ⊕ ker(F n|M). Repeating the same with V on ker(F n|M) we obtain the
desired decomposition. Uniqueness and functoriality are clear.
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Recall from Theorem 26.3 that there is a functorial isomorphism M(G∗
``)

∼=
M(G``)

∗. By construction this isomorphism extends to G. Altogether we
have now proven:

Theorem 28.3. The functor M defined by (28.1) induces an anti-equivalence
of categories

{{
finite commutative
group schemes over
k of p-power order

}}
∼

−→

{{
left E-modules
of finite length

}}
.

Moreover lengthW (k) M(G) = logp |G|, and there is a functorial isomorphism
M(G∗) ∼= M(G)∗.

Note. The definition M(G`r) := M(G∗
`r)

∗ looks somewhat artificial and
cheap. But it is a fact that often one does need special arguments for G`r or
Gr`. Nevertheless Fontaine [Fo77] uses a uniform definition of M(G) for all
cases, basically using a combination of the Wn with the formal group scheme
Ŵ from §25.

In principle, since M is an equivalence of categories, all properties of G
can be read off from M(G). We end with an example:

Proposition 28.4. There is a natural isomorphism

TG,0
∼=

(
M(G)/FM(G)

)∗
.

Proof. It suffices to show this in each of the cases G = Gr`, G`r, and G``. In
the first case TG,0 = 0 and F is an isomorphism on M(G), and so both sides
vanish. In the other two cases we have by Proposition 13.1

TG,0
∼= Hom(G∗, Ga,k) = Hom(G∗, W1) .

Since M(G∗) = lim
−→ n

Hom(G∗, Wn) and W1 = ker(V |Wn) for all n ≥ 1, the
latter is

ker(V |M(G∗)) = ker(V |M(G)∗) = coker(F |M(G))
∗,

as desired.
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