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§11 Galois descent

Let k′/k be a finite Galois extension of fields with Galois group Γ. Let
k′[Γ] denote the twisted group ring of Γ over k′, that is, the set of formal
linear combinations

∑

γ∈Γ x′

γ [γ] for x′

γ ∈ k′, with coefficientwise addition
and the multiplication (x′[γ]) · (y′[δ]) = (x′ ·γ(y′))[γδ]. Note that giving a
left module over k′[Γ] is the same as giving a k′-vector space together with
a semilinear action by Γ, that is, an additive action satisfying γ(x′v′) =
γ(x′)γ(v′). Extension of scalars gives us a functor

(11.1) Veck = Modk −→ Modk′[Γ], V 7→ V ⊗k k′,

where γ ∈ Γ acts on V ⊗k k′ via id⊗γ.

Theorem 11.2. This functor is an equivalence of categories.

Proof. We prove that the functor V ′ 7→ (V ′)Γ is a quasi-inverse. Indeed, the
natural isomorphism

(V ⊗k k′)Γ = V ⊗k (k′)Γ = V ⊗k k ∼= V

shows that the composite Veck → Modk′[Γ] → Veck is isomorphic to the
identity. For the other way around we consider the natural k′[Γ]-linear homo-
morphism

(V ′)Γ ⊗k k′ −→ V ′, v′ ⊗ x′ 7→ x′v′.

Claim. It is injective.

Proof. Assume that it is not, and let
∑r

i=1 v′

i ⊗ x′

i be a non-zero element in
the kernel with r minimal. Then r ≥ 1 and all v′

i and all x′

i are linearly
independent over k. In particular x′

1 6= 0, so after dividing by x′

1 we may
assume that x′

1 = 1. Then for every γ ∈ Γ the element

r
∑

i=2 (sic!)

v′

i ⊗ (γ(x′

i) − x′

i) = γ
(

r
∑

i=1

v′

i ⊗ x′

i

)

−

r
∑

i=1

v′

i ⊗ x′

i

again lies in the kernel. Thus the minimality of r and the linear independence
of the v′

i imply that γ(x′

i) = x′

i. Thus all x′

i ∈ k; hence
∑r

i=1 v′

i ⊗ x′

i =
(
∑r

i=1 v′

ix
′

i

)

⊗ 1 = 0, and we get a contradiction.

24



Consequence. dimk(V
′)Γ ≤ dimk′(V ′).

Claim. It is bijective.

Proof. It is enough to prove this when d := dimk′ V ′ is finite, because every
finite dimensional k′-subspace of V ′ is contained in a Γ-invariant one. Choose
a basis v′

1, ..., v
′

d of V ′ over k′ and consider the surjective k′[Γ]-linear map

ϕ′ : W ′ := k′[Γ]⊕d → V ′,
(

∑

γ

x′

i,γ [γ]
)

i
7→

∑

i,γ

x′

i,γ · γ(v′

i).

Then the short exact sequence

0 → ker(ϕ′) → W ′ → V ′ → 0

induces a left exact sequence

0 → ker(ϕ′)Γ → (W ′)Γ → (V ′)Γ.

Now observe that k′[Γ] is a free k[Γ]-module; hence W ′ is one. Therefore

dimk(W
′)Γ =

dimk W ′

|Γ|
=

[k′/k] · |Γ| · d

|Γ|
= d|Γ|.

On the other hand, the above Consequence applied to ker(ϕ′) shows that

dimk ker(ϕ′)Γ ≤ dimk′ ker(ϕ′) = d(|Γ| − 1).

Thus the left exactness implies that dimk(V
′)Γ ≥ d|Γ| − d(|Γ| − 1) = d. This

plus the injectivity shows the bijectivity.

This finishes the proof of Theorem 11.2.

Note. The functor (11.1), and hence the equivalence in Theorem 11.2, is
compatible with the tensor product (over k, respectively over k′). Therefore,
it extends to an equivalence for vector spaces with any additional multilinear
structures, such as that of an algebra or a Hopf-algebra (over k, resp. k′),
together with the appropriate homomorphisms. In particular we deduce:

Theorem 11.3. The base change functor X 7→ X ×k k′ induces an equiv-
alence from the category of affine schemes over k to the category of affine
schemes over k′ together with a covering action by Γ. The same holds for
the categories of affine group schemes, or of finite group schemes.

Note. By going to the limit over finite Galois extensions we deduce the same
for any infinite Galois extension k′/k with profinite Galois group Γ, provided
that the action of Γ on an affine scheme over k′ is continuous, in the sense
that the stabilizer of every regular function is an open subgroup of Γ.
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§12 Étale group schemes

Let ksep denote a separable closure of k.

Proposition 12.1. A finite group scheme G is étale iff Gksep is constant.

Proof. By definition a morphism of schemes is étale if and only if it is smooth
of relative dimension zero, i.e., if it is flat of finite type and the sheaf of relative
differentials vanishes. Since k is a field, G is automatically flat over k; hence
it is étale if and only if ΩG/k = 0. As the formation of ΩG/k is invariant
under base change, this is equivalent to ΩGksep/ksep = 0. This in turn means
that Gksep is reduced with all residue fields separable over ksep. But ksep is
separably closed; hence it is equivalent to saying that Gksep

∼=
∐

Spec ksep

as a scheme. The group structure on Gksep then corresponds to the group
structure on G(ksep) as in §5, yielding a natural isomorphism

Gksep
∼= G(ksep)

ksep
.

Theorem 12.2. The functor G 7→ G(ksep) defines an equivalence from the
category of finite étale group schemes over k to the category of continuous
finite Z[Gal(ksep/k)]-modules.

Proof. By the remark after Theorem 11.3 the base change functor G 7→ Gksep

induces an equivalence from the category of étale finite group schemes over
k to the category of étale finite group schemes over ksep together with a
continuous covering action by Gal(ksep/k). Proposition 12.1 implies that the
latter is equivalent to the category of continuous finite Galois-modules.

§13 The tangent space

Let G = Spec A be a finite commutative group scheme over k, and denote
by TG,0 the tangent space at the unit element 0.

Proposition 13.1. There is a natural isomorphism of k-vector spaces

TG,0
∼= Hom(G∗, Ga,k),

where k acts on the right hand side through Ga,k.

Proof. The tangent space TG,0 is naturally isomorphic to the kernel of the
restriction map

G(Spec(k[t]/(t2)) −→ G(Spec k).
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This is the set of k-algebra homomorphisms A → k[t]/(t2) ∼= k ⊕ t k whose
first component is the counit ε. Such a homomorphism has the form ϕ = ε+tλ
for a homomorphism of k-vector spaces λ : A → k, and the relations ϕ(ab) =
ϕ(a)ϕ(b) and ϕ(e(1)) = 1 making ϕ a homomorphism of k-algebras translate
into the relations λ(ab) = λ(a)ε(b)+ ε(a)λ(b) and λ(e(1)) = 0. In dual terms
we get the set of λ ∈ A∗ such that µ∗(λ) = λ⊗ε∗(1)+ε∗(1)⊗λ and e∗(λ) = 0.
But giving an element λ ∈ A∗ is equivalent to giving the homomorphism of k-
algebras k[T ] → A∗ sending T to λ, which in turn corresponds to a morphism
` : G∗ = Spec A∗ → A1

k. The first condition on λ then amounts to saying
that ` is a group homomorphism, and the second condition to `(0) = 0. But
the latter is already a consequence of the former. This proves the bijectivity;
the k-linearity is left to the reader.

Theorem 13.2. All finite commutative group schemes over a field of char-
acteristic zero are étale.

Proof. Without loss of generality we can assume that k is algebraically closed.
Then the translation action of G(k) on G is transitive. Therefore it is enough
to prove étaleness at 0, that is, TG,0 = 0. By Proposition 13.1 we must show
that any homomorphism G∗ → Ga,k vanishes. Since its image is a finite
subgroup scheme of Ga,k, it suffices to show that any finite subgroup scheme
H ⊂ Ga,k vanishes.

For any such H , the group H(k) is a finite subgroup of Ga,k(k), the
additive group of k. Since this is a Q-vector space, it contains no non-
zero finite subgroup; hence H(k) = 0. Thus H is purely local, i.e. H =
Spec k[X]/(Xn) for some n ≥ 1. The fact that H is a subgroup scheme
means that the comultiplication X 7→ X ⊗ 1 + 1 ⊗ X on k[X] induces a
homomorphism k[X]/(Xn) −→ k[X]/(Xn) ⊗k k[X]/(Xn). This means that

(X ⊗ 1 + 1 ⊗ X)n =
n

∑

m=1

(

n
m

)

· Xm ⊗ Xn−m ∈ (Xn ⊗ 1, 1 ⊗ Xn).

Here all binomial coefficients are non-zero in k, because k has characteristic
zero. Thus n = 1 and hence H = 0, as desired.

Proposition 13.3. For any field k of characteristic p > 0, the finite group
scheme ααp,k = Spec k[X]/(Xp) ⊂ Ga,k is simple.

Proof. Any proper subgroup scheme H ⊂ ααp,k has the form Spec k[X]/(Xn)
for some n < p. Thus all binomial coefficients

(

n
m

)

are non-zero in k for
0 < m < n, so as in the preceding proof we deduce that n = 1 and H = 0.
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