
Lecture 9

December 16, 2004

Notes by Richard Pink

(§16 was also presented on that day, but moved to its proper place in the text.)

§22 Finite Witt group schemes

From now on we abbreviate W := Wk, restoring the index k only when the
dependence on the field k is discussed. Also, we will no longer underline
points in W or in quotients thereof.

For any integer n ≥ 1 we let Wn
∼= W/V nW denote the additive group

scheme of Witt vectors of length n over k. Truncation induces natural epimor-
phisms r : Wn+1 � Wn, and Verschiebung induces natural monomorphisms
v : Wn ↪→ Wn+1, such that rv = vr = V . For any n, n′ ≥ 1 they induce a
short exact sequence

0 −→Wn′

vn

−→Wn+n′

rn
′

−→Wn −→ 0.

(The exactness can be deduced from the fact that rn
′

possesses the scheme
theoretic splitting x 7→ (x, 0, . . . , 0), although we have not proved in this
course that the category of all affine commutative group schemes is abelian.)
Together with the natural isomorphism W1

∼= Ga, these exact sequences
describe Wn as a successive extension of n copies of Ga.

For any integers n, m ≥ 1 we let Wm
n denote the kernel of Fm on Wn.

As above, truncation induces natural epimorphisms r : Wm
n+1 � Wm

n , and
Verschiebung induces natural monomorphisms v : Wm

n ↪→ Wm
n+1, such that

rv = vr = V . Similarly, the inclusion induces natural monomorphisms
i : Wm

n ↪→ Wm+1
n , and Frobenius induces natural epimorphisms f : Wm+1

n �

Wm
n , such that if = fi = F . For any n, n′, m, m′ ≥ 1 they induce short

exact sequences

0 −→Wm
n′

vn

−→Wm
n+n′

rn
′

−→Wm
n −→ 0,

0 −→ Wm
n

im
′

−→ Wm+m′

n

fm

−→Wm′

n −→ 0.

Together with the natural isomorphism W 1
1

∼= ααp, these exact sequences
describe Wm

n as a successive extension of nm copies of ααp. For later use note
the following fact:

Lemma 22.1. Let G be a finite commutative group scheme with Fm
G = 0

and V n
G = 0. Then any homomorphism ϕ : G → Wm′

n′ with m′ ≥ m and
n′ ≥ n factors uniquely through the embedding im

′−mvn
′−n : Wm

n ↪→ Wm′

n′ .
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Proof. By the functoriality of Frobenius from Proposition 14.1, the assump-
tion implies that Fm

Wm′

n′

◦ ϕ = ϕ(pm) ◦ Fm
G = 0. Thus ϕ factors through the

kernel of Fm on Wm′

n′ , which is the image of im
′−m : Wm

n′ ↪→ Wm′

n′ . The
analogous argument with V n

G in place of Fm
G shows the rest.

We will show that all commutative finite group schemes of local-local
type can be constructed from the Witt group schemes Wm

n . The main step
towards this is the following result on extensions:

Proposition 22.2. For any short exact sequence 0 → Wm
n → G → ααp → 0

there exists a homomorphism ϕ making the following diagram commute:

0 // Wm
n

//
_�

iv

��

G //

ϕ
}}{{

{{
{{

{{
{

ααp // 0

Wm+1
n+1

Note. In more highbrow language this means that the homomorphism in-
duced by iv on the Yoneda Ext groups Ext1(ααp,W

m
n ) → Ext1(ααp,W

m+1
n+1 ) is

zero. I prefer to stay as down to earth as possible in this course.

Lemma 22.3. Proposition 22.2 holds in the case n = m = 1.

Proof. As a preparation let U denote the kernel of the epimorphism rf :
W 2

2 � W 1
1 = ααp. Then r and f induce epimorphisms

r′ : U � ker(f : W 2
1 � W 1

1 ) ∼= W 1
1 = ααp,

f ′ : U � ker(r : W 1
2 � W 1

1 ) ∼= W 1
1 = ααp,

which together yield a short exact sequence

0 −→ ααp = W 1
1

iv
−→ U

(r′,f ′)
−→ αα⊕2

p −→ 0.

Since F = V = 0 on ααp, one easily shows that FU and VU are induced from

k⊕2 ∼= Hom(αα⊕2
p , ααp) ↪→ Hom(U,U).

In fact, going through the construction one finds that FU and VU correspond
to the elements (0, 1) and (1, 0) of k⊕2, respectively. Essentially the proof
will show that U represents the universal extension of ααp with ααp.
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For any short exact sequence 0 → ααp → G
π
→ ααp → 0 we define a group

scheme G′ such that the upper left square in the following commutative
diagram with exact rows and columns is a pushout:

0

��

0

��
0 // ααp //

��

G //

��

ααp // 0

0 // U //

(r′,f ′)
��

G′
π′

//

ρ′

��

ααp // 0

αα⊕2
p

��

αα⊕2
p

��
0 0

By looking at the induced short exact sequence

0 −→ ααp −→ G′ (π′,ρ′)
−→ αα⊕3

p −→ 0

one shows as above that FG′ and VG′ are induced from

k⊕3 ∼= Hom(αα⊕3
p , ααp) ↪→ Hom(G′, G′).

In fact, comparison with the result for U shows that FG′ and VG′ correspond
to triples (x, 0, 1) and (y, 1, 0), respectively, for certain elements x, y ∈ k.
Define a subgroup scheme G′′ ⊂ G′ as the pullback in the following commu-
tative diagram with exact rows:

0 // ααp // G′ // αα⊕3
p

// 0

0 // ααp // G′′ //
� ?

OO

ααp //
� ?

(1,−y,−x)

OO

0

Then by construction one finds that FG′′ = 0 and VG′′ = 0. (In fact, G′′ is
just the right Baer linear combination of the extension G with the two basic
extensions W 1

2 and W 2
1 which enjoys this property.) Thus Proposition 16.2

implies that G′′ ∼= αα⊕2
p is split. This splitting yields an embedding ι : ααp ↪→ G′

satisfying π′ι = id, which in turn splits the extension 0 → U → G′ → ααp → 0.
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Finally, the resulting homomorphism G′ → U yields a composite arrow mak-
ing the following diagram commute:

ααp //
_�

��

Pp

iv

��

G
_�

��

rr

U
_�

��

G′oo

W 2
2

as asserted by Proposition 22.2.

Lemma 22.4. (a) Fix n ≥ 1. If Proposition 22.2 holds for this n and
m = 1, then it holds for this n and all m ≥ 1.

(b) Fix m ≥ 1. If Proposition 22.2 holds for this m and n = 1, then it
holds for this m and all n ≥ 1.

Proof. For any short exact sequence 0 → Wm
n → G → ααp → 0, define G′

such that the left square in the following commutative diagram with exact
rows is a pushout:

0 // Wm
n

//
_�

i

��

G //

ψ

��

ααp // 0

0 // Wm+1
n

// G′ // ααp // 0

As F = 0 on ααp, and Fm = 0 on Wm
n , one easily shows that Fm+1 = 0 on G.

Thus Fm+1 vanishes on Wm+1
n ⊕ G, and since G′ can be constructed as a

quotient thereof, also on G′. Consider the following commutative diagram
with exact rows, where the dashed arrows are not yet defined:

0 // Wm+1
n

//

F

��

f !! !!C
CC

CC
CC

C
G′ //

F

��

F ′′

||y
y

y
y

y

F ′

tt

�
�




�

z
s

m

ααp //

F=0

��

0

Wm
n

N n

i

}}{{
{{

{{
{{

0 // Wm+1
n

//

Fm

��

G′(p) //

Fm

��

ααp // 0

0 // Wm+1
n

// G′(pm+1)
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The dashed arrow F ′ is obtained from the fact that the upper right square
commutes and that F = 0 on ααp. Looking at the lower left part of the
diagram, the fact that Fm ◦ F = Fm+1 = 0 on G′ implies that F ′ factors
through the kernel of Fm on Wm+1

n . But this kernel is just the image of
Wm
n under i, which yields the dashed arrow F ′′ making everything commute.

Since the oblique arrow f is an epimorphism, the same holds a fortiori for F ′′.
Setting G′′ := kerF ′′ we obtain a commutative diagram with exact rows and
columns

0

��

0

��
0 // W 1

n
//

im

��
(∗)

G′′ //

��

ααp // 0

0 // Wm+1
n

//

f

��

G′ //

F ′′

��

ααp // 0

Wm
n

��

Wm
n

��
0 0

Here by diagram chasing we find that the square marked (∗) is a pushout. By
assumption we may apply Proposition 22.2 toG′′, obtaining a homomorphism
ϕ′′ making the upper triangle of the following Toblerone diagram commute:

W 1
n

//
_�

im

��

q�

iv ""EE
EE

EE
EE

G′′

��

ϕ′′

~~~~
~~

~~
~~

W 2
n+1
_�

im−1

��

Wm+1
n

//
q�

v ""EE
EE

EE
EE

G′

ϕ′

~~~
~

~
~

Wm+1
n+1

Since (∗) is a pushout, this commutative diagram can be completed by the
dashed homomorphism ϕ′ at the lower right. Altogether, the composite
homomorphism ϕ := ϕ′ψ : G → G′ → Wm+1

n+1 has the desired properties,
proving (a). The proof of (b) is entirely analogous, with V in place of F .
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Proof of Proposition 22.2. By Lemma 22.3 the proposition holds in the case
n = m = 1. By Lemma 22.4 (a) the proposition follows whenever n = 1, and
from this it follows in general by Lemma 22.4 (b). �

Proposition 22.5. Every commutative finite group scheme of local-local
type can be embedded into (Wm

n )⊕r for some n, m, and r.

Proof. To prove this by induction on |G|, we may consider a short exact
sequence 0 → G′ → G→ ααp → 0 and assume that there exists an embedding
ψ = (ψ1, . . . , ψr) : G′ ↪→ (Wm

n )⊕r. For 1 ≤ i ≤ r define Gi such that the
upper left square in the following commutative diagram with exact rows is a
pushout:

0 // G′ //

ψi

��

G //

��

ααp // 0

0 // Wm
n

//
_�

iv

��

Gi
//

zzv
v

v
v

v
ααp // 0

Wm+1
n+1

The dashed arrows, which exist by Proposition 22.2, determine an extension
of the composite embedding ivψ : G′ ↪→ (Wm+1

n+1 )⊕r to a homomorphism
G → (Wm+1

n+1 )⊕r. The direct sum of this with the composite homomorphism
G � ααp = W 1

1 ↪→ Wm+1
n+1 is an embedding G ↪→ (Wm+1

n+1 )⊕r+1.

Proposition 22.6. Every commutative finite group scheme G with Fm
G = 0

and V n
G = 0 possesses a copresentation (i.e., an exact sequence) for some r, s

0 −→ G −→ (Wm
n )⊕r −→ (Wm

n )⊕s .

Proof. By Proposition 22.5 there exists an embedding G ↪→ (Wm′

n′ )⊕r for
some n′, m′, and r. After composing it in each factor with the embedding iv :
Wm′

n′ ↪→Wm′+1
n′+1 , if necessary, we may assume that n′ ≥ n and m′ ≥ m. Then

Lemma 22.1 implies that the embedding factors through a homomorphism
G → (Wm

n )⊕r, which is again an embedding. Let H denote its cokernel.
Since Fm = 0 and V n = 0 on Wm

n , the same is true on (Wm
n )⊕r and hence

on H . Repeating the first part of the proof with H in place of G, we therefore
find an embedding H ↪→ (Wm

n )⊕s for some s. The proposition follows.
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